JP2012129079A - Anode plate manufacturing method - Google Patents

Anode plate manufacturing method Download PDF

Info

Publication number
JP2012129079A
JP2012129079A JP2010279751A JP2010279751A JP2012129079A JP 2012129079 A JP2012129079 A JP 2012129079A JP 2010279751 A JP2010279751 A JP 2010279751A JP 2010279751 A JP2010279751 A JP 2010279751A JP 2012129079 A JP2012129079 A JP 2012129079A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
particles
electrode plate
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010279751A
Other languages
Japanese (ja)
Inventor
Tomohide Sumi
友秀 角
Tomohiko Ishida
智彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010279751A priority Critical patent/JP2012129079A/en
Publication of JP2012129079A publication Critical patent/JP2012129079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an anode plate which includes an anode active material layer which is uniform in the orientation of at least surface particles out of anode active material particles.SOLUTION: The manufacturing method of an anode plate 20, including a plate-like current collector plate 28 having a principal plane 28X, anode active material particles 22 whose magnetic field orientation by a magnetic field is changeable and an anode active material layer 21 formed on the principal plane, comprises a coating step in which an active material paste 21P having anode active material particles dispersed in a solvent AQ is applied to the principal plane of the current collector plate, an orientation step in which a magnetic field H is applied to a coated film PS consisting of the active material paste so that surface particles 22H located on at least a surface PSA, out of anode active material particles 22 in the coated film, will have their magnetic fields oriented, and a drying step in which, after the orientation step, the coated film is dried in a windless environment.

Description

本発明は、リチウムイオン二次電池に用いる負極板の製造方法に関する。   The present invention relates to a method for producing a negative electrode plate used for a lithium ion secondary battery.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
このような電池に関して、例えば、特許文献1には、黒鉛粒子(負極活物質粒子)が溶媒に分散されてなるペースト(活物質ペースト)を基材シート(集電板)に塗布後、磁場中で黒鉛粒子(負極活物質粒子)の(002)面を基材シート(集電板)のシート面(主面)に対し垂直に配向させ、さらにその後に溶媒を除去するリチウム二次電池用の負極(負極板)の製造方法が開示されている。具体的には、この特許文献1の製造方法では、塗布されたペースト(活物質ペースト)に一旦磁場を印加して、黒鉛粒子(負極活物質粒子)の配向を揃えた後、加熱炉を用いて溶媒を乾燥除去している。
In recent years, lithium-ion secondary batteries (hereinafter simply referred to as batteries) that can be charged and discharged have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
With respect to such a battery, for example, in Patent Document 1, a paste (active material paste) in which graphite particles (negative electrode active material particles) are dispersed in a solvent is applied to a base sheet (current collector plate), and then in a magnetic field. For the lithium secondary battery in which the (002) surface of the graphite particles (negative electrode active material particles) is oriented perpendicularly to the sheet surface (main surface) of the base material sheet (current collector plate) and then the solvent is removed. A method for producing a negative electrode (negative electrode plate) is disclosed. Specifically, in the manufacturing method of Patent Document 1, a magnetic field is once applied to the applied paste (active material paste) to align the orientation of graphite particles (negative electrode active material particles), and then a heating furnace is used. The solvent is removed by drying.

特開2003−197189号公報JP 2003-197189 A

しかしながら、特許文献1の負極板の製造方法では、加熱炉において風を用いて乾燥すると、その風により、一旦配向させた負極活物質粒子が、倒れるなど物理的に移動してしまい、乾燥後には、負極活物質粒子の配向が乱れた状態となっている場合が多い。   However, in the negative electrode plate manufacturing method of Patent Document 1, when air is dried using a wind in a heating furnace, the negative electrode active material particles once oriented are physically moved by the wind, such as falling down, and after drying, In many cases, the orientation of the negative electrode active material particles is disturbed.

本発明は、かかる問題に鑑みてなされたものであって、負極活物質粒子のうち少なくとも表面粒子の配向が揃った負極活物質層を備える負極板の製造方法を提供する。   This invention is made | formed in view of this problem, Comprising: The manufacturing method of a negative electrode plate provided with the negative electrode active material layer with which the orientation of at least surface particle | grains was uniform among negative electrode active material particles is provided.

本発明の一態様は、主面を有する板状の集電板、及び、磁界による磁場配向可能な負極活物質粒子を含み、上記主面上に形成されてなる負極活物質層、を備える負極板の製造方法であって、溶媒中に上記負極活物質粒子を分散させた活物質ペーストを、上記集電板の上記主面上に塗布する塗布工程と、上記活物質ペーストからなる塗膜に磁界を印加して、上記塗膜中の上記負極活物質粒子のうち、少なくとも表面に位置する表面粒子を磁場配向させる配向工程と、上記配向工程の後、上記塗膜を無風で乾燥させる乾燥工程と、を備える負極板の製造方法である。   One embodiment of the present invention is a negative electrode including a plate-shaped current collector having a main surface, and a negative electrode active material layer including negative electrode active material particles that can be magnetically oriented by a magnetic field and formed on the main surface. A method for producing a plate, wherein an active material paste in which the negative electrode active material particles are dispersed in a solvent is applied onto the main surface of the current collector plate, and a coating film made of the active material paste. An orientation step of applying a magnetic field to magnetically orientate at least the surface particles located on the surface of the negative electrode active material particles in the coating film, and a drying step of drying the coating film without wind after the orientation step And a method for producing a negative electrode plate.

ところで、発明者らの研究によれば、乾燥工程において、塗膜に風(熱風)を当ててこの塗膜を乾燥させて形成した負極板を用いた電池に比して、塗膜に風を当てずに乾燥させて形成した負極板を用いた電池は、その内部抵抗を小さくできることが判ってきた。塗膜の乾燥の際に風(熱風)を当てないことで、塗膜の表面粒子の配向を崩さずに、塗膜を乾燥することができるからである。このように、上述の負極板の製造方法では、乾燥工程において、塗膜を無風で乾燥させるので、電池の内部抵抗を小さくできる負極板を製造できる。   By the way, according to the research of the inventors, in the drying process, the coating film is blown in comparison with a battery using a negative electrode plate formed by applying wind (hot air) to the coating film and drying the coating film. It has been found that a battery using a negative electrode plate which is formed by drying without applying can reduce its internal resistance. This is because the coating film can be dried without destroying the orientation of the surface particles of the coating film by not applying wind (hot air) when the coating film is dried. Thus, in the above-described method for producing a negative electrode plate, since the coating film is dried without wind in the drying step, a negative electrode plate capable of reducing the internal resistance of the battery can be produced.

なお、磁界による磁場配向可能な負極活物質粒子としては、例えば、鱗片状黒鉛,塊状黒鉛,土状黒鉛等の天然黒鉛や人造黒鉛や、天然黒鉛あるいは人造黒鉛を球形に加工した球形化黒鉛などの黒鉛粒子など、結晶異方性が高く、反磁性磁場配向性により、自身の向きが変わりうる特性を有する粒子が挙げられる。
また、乾燥工程において、塗膜を乾燥させる手法としては、例えば、赤外線、電磁誘導加熱(IH)、コンデンサードライヤを用いて加熱し、溶媒を蒸発させて塗膜を乾燥させる手法が挙げられる。なお、無風とは、熱風を塗膜に当てるなど、ファン等による強制的な雰囲気の移動を行わないことを指し、加熱等に伴う自然対流による空気の移動は許容される。
Examples of negative electrode active material particles that can be magnetically oriented by a magnetic field include natural graphite such as flaky graphite, massive graphite, and earthy graphite, artificial graphite, and spherical graphite obtained by processing natural graphite or artificial graphite into a spherical shape. Examples thereof include particles having high crystal anisotropy, such as graphite particles, and a property that the orientation of the particles can be changed by the diamagnetic magnetic field orientation.
In the drying step, examples of the method of drying the coating include heating by using infrared rays, electromagnetic induction heating (IH), and a condenser dryer, and evaporating the solvent to dry the coating. The term “no wind” means that the air is not forcedly moved by a fan or the like such as hot air is applied to the coating film, and air movement by natural convection accompanying heating or the like is allowed.

さらに、上述の負極板の製造方法であって、前記負極活物質粒子は、扁平な黒鉛粒子である負極板の製造方法とすると良い。   Furthermore, in the above-described method for manufacturing a negative electrode plate, the negative electrode active material particles may be a method for manufacturing a negative electrode plate that is flat graphite particles.

扁平な黒鉛粒子を用いた活物質ペーストを用いた場合、黒鉛粒子が扁平であるため、風の影響を受けやすく、塗膜の乾燥中に倒れて配向が崩れるなど、磁場配向時の黒鉛粒子の配向が揃った状態のままで塗膜の乾燥を完了させ難い。
これに対して、上述の負極板の製造方法では、塗膜を無風で乾燥させるので、扁平な黒鉛粒子を用いていながらも、その配向を維持しつつ、塗膜を乾燥させることができる。従って、扁平な黒鉛粒子の配向を確実に揃えた負極板を形成できる。
When an active material paste using flat graphite particles is used, the graphite particles are flat, so they are easily affected by wind, and the orientation of the graphite particles collapses during drying of the coating, causing the orientation to collapse. It is difficult to complete the drying of the coating film in a state where the orientation is uniform.
On the other hand, in the manufacturing method of the above-mentioned negative electrode plate, since the coating film is dried without wind, the coating film can be dried while maintaining its orientation while using flat graphite particles. Therefore, it is possible to form a negative electrode plate in which flat graphite particles are aligned with certainty.

なお、扁平な黒鉛粒子としては、例えば、鱗片状黒鉛が挙げられる。   In addition, as flat graphite particle | grains, scaly graphite is mentioned, for example.

実施形態,変形形態にかかる電池の斜視図である。It is a perspective view of the battery concerning embodiment and a modification. 実施形態,変形形態にかかる負極板の斜視図である。It is a perspective view of the negative electrode plate concerning embodiment and a modification. 実施形態,変形形態で用いる負極活物質粒子についての図であり、(a)は典型的な粒子の形状を表す説明図、(b)は粒子外周縁と単一層との関係を示す説明図(図3(a)のB部)である。It is a figure about the negative electrode active material particle used by embodiment and a deformation | transformation form, (a) is explanatory drawing showing the shape of typical particle | grains, (b) is explanatory drawing which shows the relationship between particle | grain outer periphery and a single layer ( FIG. 3B is a part B). 実施形態,変形形態にかかり、負極活物質層における負極活物質粒子の配向状態を示す説明図である。It is explanatory drawing which shows the orientation state of the negative electrode active material particle in a negative electrode active material layer concerning embodiment and a deformation | transformation form. 実施形態にかかる塗布工程及び配向乾燥工程の説明図である。It is explanatory drawing of the application | coating process and orientation drying process concerning embodiment. 実施形態にかかり、配向乾燥工程中の塗膜における負極活物質粒子の配向状態を示す説明図である。It is explanatory drawing which concerns on embodiment and shows the orientation state of the negative electrode active material particle in the coating film in an orientation drying process. 活物質ペーストの粘度と極板抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of an active material paste, and an electrode plate resistance value. 活物質ペーストの粘度と電池の内部抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of an active material paste, and the internal resistance value of a battery. 変形形態にかかる塗布工程及び配向乾燥工程の説明図である。It is explanatory drawing of the application | coating process and orientation drying process concerning a deformation | transformation form. 変形形態の製造方法に用いる光沢計の計測原理を示す説明図である。It is explanatory drawing which shows the measurement principle of the gloss meter used for the manufacturing method of a deformation | transformation form. 未圧縮活物質層についてのピーク強度比と光沢度との関係を示すグラフである。It is a graph which shows the relationship between the peak intensity ratio and glossiness about an uncompressed active material layer. 未圧縮活物質層についての光沢度と電池の内部抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the glossiness about an uncompressed active material layer, and the internal resistance value of a battery.

(実施形態)
次に、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態にかかる負極板20を備える電池1について、図1を参照して説明する。
この電池1は、正極板30及び負極板20を有するリチウムイオン二次電池である。また、図1に示すように、電極体10及び電解液(図示しない)を矩形箱状の電池ケース80に収容している。このうち、電解液は、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートを調整した混合有機溶媒に、溶質としてLiPF6を添加した有機電解液である。
(Embodiment)
Next, embodiments of the present invention will be described with reference to the drawings.
First, a battery 1 including the negative electrode plate 20 according to the present embodiment will be described with reference to FIG.
The battery 1 is a lithium ion secondary battery having a positive electrode plate 30 and a negative electrode plate 20. In addition, as shown in FIG. 1, the electrode body 10 and the electrolytic solution (not shown) are accommodated in a rectangular box-shaped battery case 80. Among these, the electrolytic solution is an organic electrolytic solution in which LiPF 6 is added as a solute to a mixed organic solvent prepared by adjusting ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate.

また、電池1の電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。なお、この電池ケース80と電極体10との間には、樹脂からなり、箱状に折り曲げた、透明な絶縁フィルム(図示しない)が介在させてある。   The battery case 80 of the battery 1 has a battery case body 81 and a sealing lid 82 both made of aluminum. A transparent insulating film (not shown) made of resin and bent in a box shape is interposed between the battery case 80 and the electrode body 10.

このうち封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、電極体10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A或いは負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   Among these, the sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collector 91 and the negative electrode current collector 92 connected to the electrode body 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 penetrate, respectively. 1 protrudes from the lid surface 82a facing upward. An insulating member 95 made of an insulating resin is interposed between the positive terminal portion 91A or the negative terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電極体10は、帯状の正極板30及び負極板20を、多孔質のポリエチレンからなる帯状のセパレータ(図示しない)を介して扁平形状に捲回してなる。なお、この電極体10の正極板30及び負極板20はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合されている。
この電極体10のうち、薄板帯状の正極板30は、帯状でアルミニウムからなる正極集電箔(図示しない)と、この正極集電箔の両主面上に形成された正極活物質層(図示しない)とを有する。このうち、正極活物質層は、LiNiCoMnO2からなる正極活物質粒子(図示しない)、PVDFからなる結着剤(図示しない)、及び、アセチレンブラックからなる導電剤(図示しない)を有する。なお、この正極活物質層における、正極活物質粒子、導電剤及び結着剤の重量比を、正極活物質粒子:導電剤:結着剤=90:5:5としてある。
The electrode body 10 is formed by winding a belt-like positive electrode plate 30 and a negative electrode plate 20 into a flat shape via a belt-like separator (not shown) made of porous polyethylene. The positive electrode plate 30 and the negative electrode plate 20 of the electrode body 10 are respectively joined to a plate-like positive electrode current collector 91 or negative electrode current collector 92 bent in a crank shape.
Among the electrode bodies 10, a thin plate-like positive electrode plate 30 is a belt-like positive electrode current collector foil (not shown) made of aluminum, and a positive electrode active material layer (shown in the figure) formed on both main surfaces of the positive electrode current collector foil. Not). Among these, the positive electrode active material layer has positive electrode active material particles (not shown) made of LiNiCoMnO 2 , a binder (not shown) made of PVDF, and a conductive agent (not shown) made of acetylene black. In this positive electrode active material layer, the weight ratio of the positive electrode active material particles, the conductive agent and the binder is positive electrode active material particles: conductive agent: binder = 90: 5: 5.

また、負極板20は、図2に示すように、薄板帯状で銅製の銅箔28(厚みが10μm)と、この銅箔28の両箔主面28X,28Xにそれぞれ帯状に配置された2つの負極活物質層21,21とを有している。
このうち、負極活物質層21は、平均粒径が11μmの鱗片状黒鉛からなる負極活物質粒子22、カルボキシルメチルセルロース(CMC)からなる増粘剤23、及び、スチレンブタジエンラバー(SBR)からなる結着剤24を含んでいる。なお、この負極活物質層21における、負極活物質粒子22、増粘剤23及び結着剤24の重量比を、負極活物質粒子22:増粘剤23:結着剤24=98:1:1としてある。
Further, as shown in FIG. 2, the negative electrode plate 20 is formed of a thin strip-shaped copper copper foil 28 (thickness: 10 μm), and two foil main surfaces 28X, 28X of the copper foil 28 disposed in a strip shape. And negative electrode active material layers 21 and 21.
Among these, the negative electrode active material layer 21 is composed of negative electrode active material particles 22 made of flaky graphite having an average particle diameter of 11 μm, a thickener 23 made of carboxymethyl cellulose (CMC), and a styrene butadiene rubber (SBR). A dressing 24 is included. In this negative electrode active material layer 21, the weight ratio of the negative electrode active material particles 22, the thickener 23 and the binder 24 was determined as follows: negative electrode active material particles 22: thickener 23: binder 24 = 98: 1: As 1.

また、鱗片状黒鉛からなる負極活物質粒子22は、図3(a)に示すような、略平板状の扁平な黒鉛粒子である。この負極活物質粒子22は、典型的には2つの略平板状の粒子主面22f,22fと、この粒子主面22fの外周縁に位置する粒子外周縁22sとを有する。
この負極活物質粒子22は、粒子主面22fと平行な平面方向に広がる単一層CLが複数積層された形態の結晶構造を有している(図3(b)参照)。なお、図3(b)に示すように、2つの粒子主面22f,22fの間の厚み方向DTは、複数の単一層CL,CLが積層する方向と同じである。また、この負極活物質粒子22では、粒子外周縁22sを通じて、単一層CL同士の層間(面間)にリチウムイオンを取り込み、またここから取り出すことができる。
Moreover, the negative electrode active material particles 22 made of scaly graphite are substantially flat, flat graphite particles as shown in FIG. This negative electrode active material particle 22 typically has two substantially tabular particle main surfaces 22f and 22f, and a particle outer peripheral edge 22s located at the outer peripheral edge of the particle main surface 22f.
The negative electrode active material particles 22 have a crystal structure in which a plurality of single layers CL extending in a plane direction parallel to the particle main surface 22f are stacked (see FIG. 3B). In addition, as shown in FIG.3 (b), the thickness direction DT between the two particle main surfaces 22f and 22f is the same as the direction where several single layer CL and CL laminate | stack. Further, in the negative electrode active material particles 22, lithium ions can be taken into and taken out from the interlayer (between planes) of the single layers CL through the outer peripheral edge 22s.

また、この負極活物質粒子22は、磁界による磁場配向が可能な反磁性磁場配向性を有している。具体的には、負極活物質粒子22に強い磁界を印加すると、負極活物質粒子22は、その磁界の向きに対し、負極活物質粒子22(鱗片状黒鉛)の結晶構造をなす単一層CLの層平面(ベイサル面)が平行になる向きに配向する。換言すれば、磁界の向きに対し、負極活物質粒子22の厚み方向DTが直交する向きに配向する。   Further, the negative electrode active material particles 22 have a diamagnetic magnetic field orientation capable of magnetic field orientation by a magnetic field. Specifically, when a strong magnetic field is applied to the negative electrode active material particles 22, the negative electrode active material particles 22 have a single-layer CL that forms the crystal structure of the negative electrode active material particles 22 (flaky graphite) with respect to the direction of the magnetic field. The layer plane (Baisal plane) is oriented in parallel. In other words, the negative electrode active material particles 22 are oriented so that the thickness direction DT thereof is orthogonal to the direction of the magnetic field.

なお、本実施形態の負極板20における負極活物質層21のうち、活物質層表面21Fの様子を図4に示す。図4には、負極活物質粒子22のうち、活物質層表面21Fに露出する表面粒子22Hが複数示されている。これらの表面粒子22H,22Hはそれぞれ、磁場配向によって表面粒子22Hの厚み方向DTが、図4の紙面と平行に広がる箔主面28Xに平行になる向きに配置されている。   In addition, the state of the active material layer surface 21F among the negative electrode active material layers 21 in the negative electrode plate 20 of this embodiment is shown in FIG. FIG. 4 shows a plurality of surface particles 22 </ b> H that are exposed to the active material layer surface 21 </ b> F among the negative electrode active material particles 22. These surface particles 22H and 22H are respectively arranged in a direction in which the thickness direction DT of the surface particles 22H is parallel to the foil main surface 28X extending parallel to the paper surface of FIG.

次に、本実施形態にかかる負極板20を備える電池1の製造方法について説明する。
まず、負極板20の製造方法について、図5を参照しつつ説明する。この負極板20の製造方法は、後述する活物質ペースト21Pを、銅箔28の箔主面28X上に塗布する塗布工程、活物質ペースト21Pからなる塗膜PSに磁界を印加して、塗膜PS中の表面粒子22Hを磁場配向させる配向工程、及び、この配向工程の後に、塗膜PSを無風で乾燥させる乾燥工程を含む。
Next, the manufacturing method of the battery 1 provided with the negative electrode plate 20 concerning this embodiment is demonstrated.
First, a method for manufacturing the negative electrode plate 20 will be described with reference to FIG. The manufacturing method of this negative electrode plate 20 applies the magnetic material to the coating process PS which consists of the application | coating process which apply | coats the active material paste 21P mentioned later on the foil main surface 28X of the copper foil 28, and the active material paste 21P. An orientation step of magnetically orienting the surface particles 22H in the PS, and a drying step of drying the coating film PS without wind after the orientation step are included.

これら塗布工程、配向工程及び乾燥工程では、図5に示す装置100を用いる。この装置100は、巻出し部101、コータ110、磁石121,122を含む磁気回路、乾燥機130、巻取り部102、及び、複数の補助ローラ140を備えている(図5参照)。   In these coating process, orientation process, and drying process, an apparatus 100 shown in FIG. 5 is used. The apparatus 100 includes an unwinding unit 101, a coater 110, a magnetic circuit including magnets 121 and 122, a dryer 130, a winding unit 102, and a plurality of auxiliary rollers 140 (see FIG. 5).

このうち、コータ110は、活物質ペースト21Pを内部に貯留してなる金属製のペースト保持部111と、このペースト保持部111に保持した活物質ペースト21Pを銅箔28の箔主面28Xに向かって連続的に吐出する吐出口112とを有する。   Among these, the coater 110 is directed to the metal paste holding part 111 in which the active material paste 21P is stored inside, and the active material paste 21P held in the paste holding part 111 toward the foil main surface 28X of the copper foil 28. And a discharge port 112 that discharges continuously.

また、磁気回路は、コータ110と次述の乾燥機130との間に配置されている。この磁気回路は、塗膜PS(銅箔28)の表面PSAに対向しつつ、この表面PSAを挟んで第1磁石121及び第2磁石122を配置している。これら第1磁石121及び第2磁石122は、これらの間に第1磁石121から第2磁石122に向く(図5中、上方から下方に向く)磁界Hを発生させることができる。即ち、これらの間に位置する塗膜PSに対し、この塗膜PSに直交する方向に磁界Hを印加することができる。   Further, the magnetic circuit is disposed between the coater 110 and the dryer 130 described below. In this magnetic circuit, the first magnet 121 and the second magnet 122 are arranged across the surface PSA while facing the surface PSA of the coating film PS (copper foil 28). The first magnet 121 and the second magnet 122 can generate a magnetic field H between them from the first magnet 121 to the second magnet 122 (from the top to the bottom in FIG. 5). That is, the magnetic field H can be applied to the coating film PS positioned between them in a direction perpendicular to the coating film PS.

また、乾燥機130は、既知の赤外線乾燥機であり、機内の雰囲気は、自然対流によって入れ替わる構成とされている。この乾燥機130を用いて、銅箔28、及び、この銅箔28に塗布された活物質ペースト21Pからなる塗膜PSを加熱し、無風で乾燥させる。これにより、この乾燥機130の下方側(図5中、下側)を移動している間に、銅箔28に塗布された塗膜PSの乾燥が徐々に進み、乾燥機130を通過し終えたときには、塗膜PSは全乾燥、即ち、塗膜PS内の水AQが全て蒸発している。   The dryer 130 is a known infrared dryer, and the atmosphere in the machine is configured to be replaced by natural convection. Using this dryer 130, the coating film PS made of the copper foil 28 and the active material paste 21P applied to the copper foil 28 is heated and dried without wind. Thereby, while moving the lower side (lower side in FIG. 5) of the dryer 130, the drying of the coating film PS applied to the copper foil 28 gradually proceeds and finishes passing through the dryer 130. When the coating film PS is completely dried, that is, all the water AQ in the coating film PS is evaporated.

まず、水AQ中に、前述した負極活物質粒子22、増粘剤23及び結着剤24を分散させた活物質ペースト21Pを用意した。
この活物質ペースト21Pは、以下のように作製した。まず、増粘剤23を水AQに溶解させて1%水溶液とし、これに負極活物質粒子22を加えて、公知の2軸プラネタリ混練機で混練した。そして、これに水AQ及び結着剤24を加えてさらに混練し、負極活物質粒子22、増粘剤23及び結着剤24の重量比が、負極活物質粒子22:増粘剤23:結着剤24=98:1:1、かつ、これら負極活物質粒子22、増粘剤23及び結着剤24の固形分が46%に調製された活物質ペースト21Pを作製した。この活物質ペースト21Pを装置100のコータ110のペースト保持部111に投入した。
First, an active material paste 21P in which the negative electrode active material particles 22, the thickener 23, and the binder 24 described above were dispersed in water AQ was prepared.
This active material paste 21P was produced as follows. First, the thickener 23 was dissolved in water AQ to make a 1% aqueous solution, the negative electrode active material particles 22 were added thereto, and the mixture was kneaded with a known biaxial planetary kneader. Then, water AQ and the binder 24 are added to this and further kneaded, and the weight ratio of the negative electrode active material particles 22, the thickener 23 and the binder 24 is determined as follows: An active material paste 21P was prepared in which the adsorbent 24 = 98: 1: 1, and the solid content of the negative electrode active material particles 22, the thickener 23, and the binder 24 was adjusted to 46%. This active material paste 21 </ b> P was put into the paste holding unit 111 of the coater 110 of the apparatus 100.

塗工工程では、巻出し部101に捲回した帯状の銅箔28を長手方向DAに移動させ、その銅箔28の一方の箔主面28X上に、コータ110により活物質ペースト21Pを塗布した。なお、塗工速度は5m/minである。銅箔28に塗布された活物質ペースト21Pは、箔主面28X上で塗膜PSとなって、次述する配向工程に進む。   In the coating process, the strip-shaped copper foil 28 wound around the unwinding portion 101 is moved in the longitudinal direction DA, and the active material paste 21P is applied on one foil main surface 28X of the copper foil 28 by the coater 110. . The coating speed is 5 m / min. The active material paste 21P applied to the copper foil 28 becomes a coating film PS on the foil main surface 28X, and proceeds to the orientation process described below.

配向工程では、磁石を含む磁気回路を用いて、塗膜PSに磁界を印加する(図5参照)。具体的には、磁気回路をなす第1磁石121及び第2磁石122を用いて、これらの間に位置する塗膜PSに磁界Hを印加して(磁束密度は300mT)、負極活物質粒子22のうち少なくとも塗膜表面PSAに位置する表面粒子22Hを磁場配向させる。即ち、その厚み方向DTが銅箔28の箔主面28Xに平行になる向きに、つまり、ベイサル面が箔主面28Xに直交する向きに磁場配向させる。なお、図6は、塗膜PSの塗膜表面PSAにおける負極活物質粒子22と表面粒子22Hとの関係を示す説明図である。この図6では、磁気回路で発生させる磁界Hの向きは、紙面に対し、手前から奥に向かう方向である。   In the orientation step, a magnetic field is applied to the coating film PS using a magnetic circuit including a magnet (see FIG. 5). Specifically, using the first magnet 121 and the second magnet 122 forming a magnetic circuit, a magnetic field H is applied to the coating film PS positioned therebetween (magnetic flux density is 300 mT), and the negative electrode active material particles 22 are applied. Among these, at least the surface particles 22H located on the coating surface PSA are magnetically oriented. That is, the magnetic field orientation is performed so that the thickness direction DT is parallel to the foil main surface 28X of the copper foil 28, that is, the basal surface is orthogonal to the foil main surface 28X. In addition, FIG. 6 is explanatory drawing which shows the relationship between the negative electrode active material particle 22 and the surface particle 22H in the coating-film surface PSA of coating-film PS. In FIG. 6, the direction of the magnetic field H generated by the magnetic circuit is the direction from the front to the back with respect to the paper surface.

上述の配向工程の後、乾燥機130を用いて、塗膜PSを無風で乾燥させる乾燥工程を行う(図5参照)。即ち、配向工程で磁場配向させた表面粒子22Hに熱風を当てると、表面粒子22Hが倒れるなど、塗膜PSに風が当たることによる移動を生じることがある。これを抑制しつつ、塗膜PSから水AQを蒸発させて塗膜PSを乾燥させる。これにより、表面粒子22Hの厚み方向DTが箔主面28Xに平行になる向きに配向された未圧縮活物質層21Bができあがる。
その後、この未圧縮活物質層21Bを箔主面28X上に担持した片面担持銅箔28Kを、一旦、巻取り部102に巻き取る。
After the orientation step described above, a drying step is performed in which the coating film PS is dried without wind using the dryer 130 (see FIG. 5). That is, when hot air is applied to the surface particles 22H that have been magnetically aligned in the alignment step, the surface particles 22H may fall down, causing movement due to the wind hitting the coating film PS. While suppressing this, water AQ is evaporated from the coating film PS to dry the coating film PS. As a result, the uncompressed active material layer 21 </ b> B oriented in the direction in which the thickness direction DT of the surface particles 22 </ b> H is parallel to the foil main surface 28 </ b> X is completed.
Thereafter, the single-side supported copper foil 28K supporting the uncompressed active material layer 21B on the foil main surface 28X is temporarily wound around the winding portion 102.

次に再度、装置100を用いて、上述の片面担持銅箔28K(銅箔28)の他方の箔主面28Xにも、活物質ペースト21Pを塗布して、箔主面28X上に塗膜PSを形成する。そして、上述した磁気回路(第1磁石121,第2磁石122)を用いて、この塗膜PSに磁界Hを印加して、塗膜PSの表面粒子22Hを磁場配向させて、その後、乾燥機130により無風で塗膜PSを全乾燥させる。
かくして、銅箔28の両方の箔主面28X,28Xに未圧縮活物質層21Bを積層配置した、プレス前の活物質積層板20Bが作製される。
Next, again using the apparatus 100, the active material paste 21P is applied to the other foil main surface 28X of the above-mentioned single-side supported copper foil 28K (copper foil 28), and the coating PS is applied on the foil main surface 28X. Form. And using the magnetic circuit (the 1st magnet 121, the 2nd magnet 122) mentioned above, the magnetic field H is applied to this coating film PS, the surface particle 22H of the coating film PS is magnetic-field-oriented, and drying machine after that The coating film PS is completely dried by 130 with no wind.
Thus, an active material laminate 20B before pressing in which the uncompressed active material layer 21B is laminated on both the foil main surfaces 28X and 28X of the copper foil 28 is produced.

その後、図示しないロールプレスを用いて、上述の活物質積層板20Bを圧縮し、表面粒子22Hの厚み方向DTが箔主面28Xに平行になる向きに配置されている負極活物質層21を有する負極板20を作製した(図2参照)。なお、このとき、未圧縮活物質層21Bの負極活物質粒子22(表面粒子22H)の磁場配向が壊れない程度の圧力で、活物質積層板20Bを圧縮する。これにより、負極板20の表面粒子22Hは、上述の配向工程でなされた磁場配向を維持した状態にある。   Thereafter, the active material laminate 20B is compressed by using a roll press (not shown), and the negative electrode active material layer 21 is disposed in a direction in which the thickness direction DT of the surface particles 22H is parallel to the foil main surface 28X. A negative electrode plate 20 was produced (see FIG. 2). At this time, the active material laminate 20B is compressed with a pressure that does not break the magnetic field orientation of the negative electrode active material particles 22 (surface particles 22H) of the uncompressed active material layer 21B. Thereby, the surface particles 22H of the negative electrode plate 20 are in a state in which the magnetic field orientation performed in the above-described orientation process is maintained.

一方、結着剤(PVDF、図示しない)を溶解した溶媒中に、正極活物質粒子(LiNiCoMnO2、図示しない)及び導電剤(アセチレンブラック、図示しない)をそれぞれ投入し混練してなるペースト(図示しない)の塗布、乾燥を、帯状のアルミニウム製の正極集電箔(図示しない)の両面に行った。
その後、図示しないロールプレスで乾燥させたペーストを圧縮し、正極活物質層(図示しない)を有する正極板30を作製した。
On the other hand, a paste (illustrated) in which positive electrode active material particles (LiNiCoMnO 2 , not illustrated) and a conductive agent (acetylene black, not illustrated) are charged and kneaded in a solvent in which a binder (PVDF, not illustrated) is dissolved. Coating) and drying were performed on both sides of a strip-shaped aluminum positive electrode current collector foil (not shown).
Then, the paste dried with the roll press which is not illustrated was compressed, and the positive electrode plate 30 which has a positive electrode active material layer (not shown) was produced.

上述のように作製した正極板30と負極板20との間に、セパレータ(図示しない)を介在させて捲回し、電極体10とする。さらに、正極板30及び負極板20にそれぞれ正極集電部材91及び負極集電部材92を溶接し、電池ケース本体81に挿入し、図示しない電解液を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1が完成する(図1参照)。   The electrode body 10 is formed by winding a separator (not shown) between the positive electrode plate 30 and the negative electrode plate 20 manufactured as described above. Further, the positive electrode current collecting member 91 and the negative electrode current collecting member 92 are welded to the positive electrode plate 30 and the negative electrode plate 20, respectively, inserted into the battery case main body 81, and after injecting an electrolyte solution (not shown), the battery case main body 81 with the sealing lid 82. Seal with welding. Thus, the battery 1 is completed (see FIG. 1).

ところで、本発明者らは、前述のようにして作製した負極板20について、負極活物質層21(活物質層表面21F)における負極活物質粒子22の配向性について調査した。
具体的には、負極板20における負極活物質層21(鱗片状黒鉛)について、X線回折法(負極活物質層21に対し、X線を垂直に照射)を用いて、負極活物質粒子22の結晶面のうち、(110)面及び(002)面のピーク強度I(110)及びI(002)を測定した。そして、ピーク強度I(110)をピーク強度I(002)で割った、ピーク強度比(=I(110)/I(002))を算出した。なお、このピーク強度比(=I(110)/I(002))が大きいほど、負極活物質層21において、負極活物質粒子22の配向が揃っていることが判る。具体的には、ピーク強度比が大きいほど、より多くの負極活物質粒子22の単一層CLがなす平面(ベイサル面:(002)面)が揃って、箔主面28Xと直交していることが判る。
By the way, the present inventors investigated the orientation of the negative electrode active material particles 22 in the negative electrode active material layer 21 (active material layer surface 21F) for the negative electrode plate 20 produced as described above.
Specifically, for the negative electrode active material layer 21 (flaky graphite) in the negative electrode plate 20, the negative electrode active material particles 22 are obtained using an X-ray diffraction method (X-rays are irradiated perpendicularly to the negative electrode active material layer 21). Among the crystal planes, the peak intensities I (110) and I (002) of the (110) plane and the (002) plane were measured. Then, a peak intensity ratio (= I (110) / I (002)) obtained by dividing the peak intensity I (110) by the peak intensity I (002) was calculated. It can be seen that the larger the peak intensity ratio (= I (110) / I (002)), the more the negative electrode active material particles 22 are aligned in the negative electrode active material layer 21. Specifically, as the peak intensity ratio is larger, the plane (basal plane: (002) plane) formed by the single layer CL of more negative electrode active material particles 22 is aligned and orthogonal to the foil main surface 28X. I understand.

また、上述の負極板20の比較例である比較負極板C20を用意した。この比較負極板C20は、前述の塗布工程及び配向工程までは、負極板20と同様であるが、乾燥工程で、熱風を用いて塗膜PSを乾燥させて作製した点で負極板20と異なる。
この比較負極板C20について、負極板20と同様、X線回折法を用いて、ピーク強度I(110)及びI(002)を測定し、ピーク強度比(=I(110)/I(002))を算出して、負極板20のピーク強度比と比較した。
Also, a comparative negative electrode plate C20, which is a comparative example of the negative electrode plate 20 described above, was prepared. This comparative negative electrode plate C20 is the same as the negative electrode plate 20 up to the application step and the alignment step described above, but differs from the negative electrode plate 20 in that the coating film PS is dried using hot air in the drying step. .
For this comparative negative electrode plate C20, similarly to the negative electrode plate 20, the peak intensities I (110) and I (002) were measured using the X-ray diffraction method, and the peak intensity ratio (= I (110) / I (002) ) Was calculated and compared with the peak intensity ratio of the negative electrode plate 20.

熱風を用いて塗膜PSを乾燥させた比較負極板C20のピーク強度比は、0.200であった。これに対し、負極板20のピーク強度比は0.228であり、比較負極板C20よりも若干大きな値となった。このことから、比較負極板C20に比して、負極板20は負極活物質粒子22がより配向していることが判る。これは、負極板20が、乾燥工程における塗膜PSの乾燥の際に、風(熱風)を当てずに乾燥させたことにより、塗膜PS中の表面粒子22Hの配向を崩さずに、塗膜PSを乾燥させて負極板20を作製できたからである。   The peak intensity ratio of the comparative negative electrode plate C20 in which the coating film PS was dried using hot air was 0.200. On the other hand, the peak intensity ratio of the negative electrode plate 20 was 0.228, which was slightly larger than that of the comparative negative electrode plate C20. From this, it can be seen that the negative electrode active material particles 22 are more oriented in the negative electrode plate 20 than in the comparative negative electrode plate C20. This is because the negative electrode plate 20 was dried without applying wind (hot air) when drying the coating film PS in the drying step, so that the orientation of the surface particles 22H in the coating film PS was not destroyed. This is because the negative electrode plate 20 was produced by drying the film PS.

次いで、本発明者らは、上述の負極板20を用いた電池1の特性を評価すべく、電池1に用いたのと同じ正極板、負極板、セパレータ及び電解液を用いた試料電池T1を用意した。
具体的には、前述の正極板30及び負極板20をそれぞれ5cm程度の長さに裁断したものを用意し、これらの間にセパレータを介在させて、これら正極板、負極板及びセパレータを積層した平板状積層型の電極体を形成した。なお、この電極体において、負極板の表面粒子は、その厚み方向DTが、箔主面28Xに平行となる向きに配向している。
そして、この電極体を、アルミニウム製の箔を樹脂でコーティングしたシート状のラミネートシート2枚で挟み、正極板の一部(正極リード部)、及び、負極板の一部(負極リード部)を外部に延出させつつ内側に電解液を封入して、ラミネート型の試料電池T1を作製した。
Next, in order to evaluate the characteristics of the battery 1 using the above-described negative electrode plate 20, the inventors of the present invention used a sample battery T1 using the same positive electrode plate, negative electrode plate, separator, and electrolyte as those used for the battery 1. Prepared.
Specifically, the positive electrode plate 30 and the negative electrode plate 20 described above were each cut to a length of about 5 cm, and a separator was interposed between the positive electrode plate, the negative electrode plate, and the separator. A flat laminated electrode body was formed. In this electrode body, the surface particles of the negative electrode plate are oriented so that the thickness direction DT thereof is parallel to the foil main surface 28X.
The electrode body is sandwiched between two sheet-like laminate sheets obtained by coating an aluminum foil with a resin, and a part of the positive electrode plate (positive electrode lead part) and a part of the negative electrode plate (negative electrode lead part) are A laminate type sample battery T1 was manufactured by enclosing the electrolyte solution inside while extending outward.

まず、この試料電池T1について、充電(初期充電)を行った。具体的には、25℃の温度環境下で、正極板と負極板との間の電圧が4.1Vになるまで、1Cで定電流充電を行った。
その後、この試料電池T1の内部抵抗を測定した。具体的には、電極間の開放電圧を3.75Vにした試料電池T1について、25℃の温度環境下で1/2,1,5,10Cの定電流放電をそれぞれ行い、各定電流放電について放電開始から10秒経過時点の電圧を測定した。そして、各電流値について測定した電圧を、縦軸に電圧、横軸に定電流放電の値を示すグラフにプロットして、全ての点の近似直線の傾きから試料電池T1の内部抵抗の値を算出した。
First, this sample battery T1 was charged (initial charge). Specifically, constant current charging was performed at 1 C until the voltage between the positive electrode plate and the negative electrode plate reached 4.1 V under a temperature environment of 25 ° C.
Thereafter, the internal resistance of the sample battery T1 was measured. Specifically, the sample battery T1 having an open-circuit voltage between the electrodes of 3.75 V was subjected to constant current discharges of 1/2, 1, 5, 10 C in a temperature environment of 25 ° C. The voltage when 10 seconds elapsed from the start of discharge was measured. Then, the voltage measured for each current value is plotted on a graph showing the voltage on the vertical axis and the value of constant current discharge on the horizontal axis, and the value of the internal resistance of the sample battery T1 is calculated from the slopes of the approximate straight lines at all points. Calculated.

一方、試料電池T1の比較例である比較電池C1を用意し、この電池についての電池特性を、試料電池T1と同様に測定した。
但し、比較電池C1は、前述した比較負極板C20、即ち、配向工程の後に、熱風を用いて塗膜PSを乾燥させて作製した負極板を用いている点で試料電池T1と異なる。
この比較電池C1について、まず、試料電池T1と同様にして、充電(初期充電)を行い、その後、試料電池T1と同様にして、この比較電池C1の内部抵抗を測定した。
On the other hand, a comparative battery C1, which is a comparative example of the sample battery T1, was prepared, and the battery characteristics of this battery were measured in the same manner as the sample battery T1.
However, the comparative battery C1 differs from the sample battery T1 in that the comparative negative electrode plate C20 described above, that is, the negative electrode plate prepared by drying the coating film PS using hot air after the alignment step is used.
The comparative battery C1 was first charged (initial charge) in the same manner as the sample battery T1, and then the internal resistance of the comparative battery C1 was measured in the same manner as the sample battery T1.

比較電池C1の内部抵抗の値は、0.518Ωであった。これに対し、試料電池T1の内部抵抗の値は、比較電池C1よりも小さい0.496Ωであった。前述したように、試料電池T1の負極板20では、比較電池C1の比較負極板C20に比して、より多くの表面粒子22Hの厚み方向DTが銅箔28の箔主面28Xに平行となる向きに配向している。このため、試料電池T1では、比較電池C1に比して、リチウムイオンの出入り部分である粒子外周縁22sをセパレータや正極板30に向けた表面粒子22Hがより多く存在している。これにより、正極板30から移動してきたリチウムイオンを、正極板30から見て、最も短い移動距離で粒子外周縁22sを通じて、表面粒子22H(負極活物質粒子22)内に容易に取り込むことができる。かくして、試料電池T1の内部抵抗が比較電池C1よりも小さくできたと考えられる。   The value of the internal resistance of the comparative battery C1 was 0.518Ω. On the other hand, the value of the internal resistance of the sample battery T1 was 0.496Ω, which was smaller than that of the comparative battery C1. As described above, in the negative electrode plate 20 of the sample battery T1, the thickness direction DT of more surface particles 22H is parallel to the foil main surface 28X of the copper foil 28 as compared with the comparative negative electrode plate C20 of the comparative battery C1. Oriented in the direction. For this reason, in the sample battery T1, as compared with the comparative battery C1, there are more surface particles 22H in which the outer peripheral edge 22s of the lithium ion is directed to the separator and the positive electrode plate 30. Thereby, the lithium ions that have moved from the positive electrode plate 30 can be easily taken into the surface particles 22H (negative electrode active material particles 22) through the outer peripheral edge 22s of the particles with the shortest moving distance as viewed from the positive electrode plate 30. . Thus, it is considered that the internal resistance of the sample battery T1 was made smaller than that of the comparative battery C1.

以上より、本実施形態の電池1に用いた負極板20の製造方法では、乾燥工程において、塗膜PSを無風で乾燥させるので、電池1の内部抵抗を小さくできる負極板20を製造できる。   As mentioned above, in the manufacturing method of the negative electrode plate 20 used for the battery 1 of this embodiment, since the coating film PS is dried without wind in the drying step, the negative electrode plate 20 capable of reducing the internal resistance of the battery 1 can be manufactured.

また、扁平な負極活物質粒子22を用いた活物質ペースト21Pを用いた場合、負極活物質粒子22(表面粒子22H)が扁平であるため、風の影響を受けやすく、塗膜PSの乾燥中に倒れて配向が崩れるなど、磁場配向時の負極活物質粒子22(表面粒子22H)の配向が揃った状態のままで塗膜PSの乾燥を完了させ難い。
これに対して、本実施形態の負極板20の製造方法では、塗膜PSを無風で乾燥させるので、扁平な負極活物質粒子22(表面粒子22H)を用いていながらも、その配向を維持しつつ、塗膜PSを乾燥させることができる。従って、扁平な負極活物質粒子22(表面粒子22H)の配向を確実に揃えた負極板20を形成できる。
In addition, when the active material paste 21P using the flat negative electrode active material particles 22 is used, the negative electrode active material particles 22 (surface particles 22H) are flat, so that they are easily affected by wind and the coating film PS is being dried. It is difficult to complete the drying of the coating film PS in a state where the orientation of the negative electrode active material particles 22 (surface particles 22H) at the time of magnetic field orientation is aligned.
On the other hand, in the manufacturing method of the negative electrode plate 20 of this embodiment, since the coating film PS is dried without wind, the orientation is maintained while using the flat negative electrode active material particles 22 (surface particles 22H). Meanwhile, the coating film PS can be dried. Accordingly, it is possible to form the negative electrode plate 20 in which the orientations of the flat negative electrode active material particles 22 (surface particles 22H) are reliably aligned.

ところで、本発明者らは、負極板の製造に用いる活物質ペーストの粘度と、製造した負極板の抵抗特性との関係について調査すべく、粘度の異なる複数のペーストを用意した。なお、ペーストの粘度は、水AQの投入量を変えることで調整した。また、ペーストの粘度については、公知のE型粘度計の2sec-1における測定値を表1に示す。
各ペーストを塗布した塗膜に、前述した配向工程で磁場を印加し、その後、熱風乾燥により参考負極板を作製する。これを2cm×2cmの平板状に裁断し、テストピースとする。このテストピースを2枚重ね合わせ、重ね合わせた方向に2000Nの荷重をかけたときの、2枚のテストピースの間の抵抗値(以下、極板抵抗値ともいう)を、ミリオームテスタを用いて公知の4端子法で測定した。
各ペーストの粘度と、これを用いた参考例の各負極板の極板抵抗値とを表1に示す。
By the way, the present inventors prepared a plurality of pastes having different viscosities in order to investigate the relationship between the viscosity of the active material paste used for manufacturing the negative electrode plate and the resistance characteristics of the manufactured negative electrode plate. The viscosity of the paste was adjusted by changing the amount of water AQ. Moreover, about the viscosity of a paste, the measured value in 2 sec- 1 of a well-known E-type viscosity meter is shown in Table 1.
A magnetic field is applied to the coating film to which each paste is applied in the above-described orientation step, and then a reference negative electrode plate is produced by hot air drying. This is cut into a flat plate of 2 cm × 2 cm to obtain a test piece. Two test pieces are overlapped, and when a load of 2000 N is applied in the overlapping direction, the resistance value between the two test pieces (hereinafter also referred to as electrode plate resistance value) is measured using a milliohm tester. It measured by the well-known 4 terminal method.
Table 1 shows the viscosity of each paste and the electrode plate resistance value of each negative electrode plate of the reference example using the paste.


Figure 2012129079
Figure 2012129079

また、各ペーストの粘度と、これを用いた参考例1〜6の負極板の極板抵抗値との関係を表すグラフを図7に示す。
このグラフによれば、活物質ペーストの粘度が4000mPa・s以下である場合には、極板抵抗値を4〜5mΩ程度に抑えることができる。これに対し、活物質ペーストの粘度が4000mPa・sを超えると、極板抵抗値がいずれも5.5mΩを超えることが判る。
Moreover, the graph showing the relationship between the viscosity of each paste and the electrode plate resistance value of the negative electrode plate of Reference Examples 1-6 using this is shown in FIG.
According to this graph, when the viscosity of the active material paste is 4000 mPa · s or less, the electrode plate resistance can be suppressed to about 4 to 5 mΩ. On the other hand, when the viscosity of the active material paste exceeds 4000 mPa · s, it can be seen that the electrode plate resistance values all exceed 5.5 mΩ.

これは、粘度が4000mPa・sを超える高い粘度の活物質ペーストを用いた場合、前述の配向工程で磁気回路を用いて塗膜に磁界Hを印加しても、表面粒子22H(負極活物質粒子22)が動きにくいため、これを磁場配向させ難い。一方、4000mPa・s以下の比較的低い粘度の活物質ペーストを用いた場合には、配向工程で塗膜に磁界Hを印加することで、表面粒子22Hを磁場配向させ得る。このため、粘度が4000mPa・s以下の活物質ペーストを用いて製造した負極板は、4000mPa・sを超える活物質ペーストを用いた負極板に比して、配向が揃っている。従って、粘度が4000mPa・s以下の活物質ペーストを用いた負極板は、より多くの表面粒子22Hがリチウムイオンの出入り部分である粒子外周縁をセパレータや正極板に向けているために、極板抵抗が低くなったと考えられる。かくして、粘度が4000mPa・s以下の活物質ペーストを用いると良いことが判る。   When an active material paste having a viscosity exceeding 4000 mPa · s is used, even if a magnetic field H is applied to the coating film using a magnetic circuit in the above-described orientation step, surface particles 22H (negative electrode active material particles) 22) is difficult to move, so it is difficult to orient it. On the other hand, when an active material paste having a relatively low viscosity of 4000 mPa · s or less is used, the surface particles 22H can be magnetically aligned by applying a magnetic field H to the coating film in the alignment step. For this reason, the negative electrode plate manufactured using the active material paste having a viscosity of 4000 mPa · s or less has a uniform alignment as compared with the negative electrode plate using the active material paste exceeding 4000 mPa · s. Therefore, the negative electrode plate using the active material paste having a viscosity of 4000 mPa · s or less has a larger number of surface particles 22H facing the outer peripheral edge of the particle, which is a portion where lithium ions enter and exit, toward the separator and the positive electrode plate. It is thought that resistance became low. Thus, it can be seen that an active material paste having a viscosity of 4000 mPa · s or less is preferably used.

また、本発明者らは、活物質ペーストの粘度と、これを用いた塗膜に磁場を印加した後、乾燥させた負極板を用いた電池の内部抵抗との関係を評価すべく、粘度の異なる複数のペーストを用意した。
そして、これらペーストを用いた参考例1〜6の負極板を備える電池について、前述の試料電池T1と同様にして、まず、充電(初期充電)を行い、その後、試料電池T1と同様にして、各電池の内部抵抗を測定した。
各電池についての、内部抵抗値をも表1に示す。
Further, the present inventors have evaluated the relationship between the viscosity of the active material paste and the internal resistance of the battery using the dried negative electrode plate after applying a magnetic field to the coating film using the active material paste. Several different pastes were prepared.
And about a battery provided with the negative electrode plate of the reference examples 1-6 using these pastes, it carries out charge (initial charge) first like the above-mentioned sample battery T1, and then like a sample battery T1, The internal resistance of each battery was measured.
The internal resistance values for each battery are also shown in Table 1.

さらに、各ペーストの粘度と、これを用いた負極板を備える電池の内部抵抗値との関係を表すグラフを図8に示す。
このグラフによれば、粘度が4000mPa・s以下の活物質ペーストを用いた電池では、内部抵抗値がいずれも0.52Ω以下である。これに対し、粘度が4000mPa・sを超えた活物質ペーストを用いた電池では、内部抵抗値がいずれも0.52Ωを超えている。
これは、前述した負極板の極板抵抗値の結果(図7)と同様、粘度が4000mPa・sを超える活物質ペーストを用いた電池では、表面粒子22H(負極活物質粒子22)を磁場配向させ難い。この一方、4000mPa・s以下の比較的低い粘度の活物質ペーストを用いた電池では、表面粒子22Hを磁場配向させ易い。このため、その表面粒子22Hの配向が揃っており、より多くの表面粒子22Hがリチウムイオンの出入り部分である粒子外周縁をセパレータや正極板に向けているので、電池の内部抵抗が低くなったと考えられる。
Furthermore, the graph showing the relationship between the viscosity of each paste and the internal resistance value of a battery provided with a negative electrode plate using the paste is shown in FIG.
According to this graph, in the battery using the active material paste having a viscosity of 4000 mPa · s or less, all the internal resistance values are 0.52Ω or less. On the other hand, in the battery using the active material paste having a viscosity exceeding 4000 mPa · s, the internal resistance value exceeds 0.52Ω.
This is similar to the result of the electrode plate resistance value of the negative electrode plate described above (FIG. 7). In the battery using the active material paste having a viscosity exceeding 4000 mPa · s, the surface particles 22H (negative electrode active material particles 22) are magnetically aligned. It is difficult to let it. On the other hand, in a battery using an active material paste having a relatively low viscosity of 4000 mPa · s or less, the surface particles 22H are easily magnetically oriented. For this reason, the orientation of the surface particles 22H is uniform, and more surface particles 22H are directed to the separator or the positive electrode plate with the outer peripheral edge of the particles, which is the portion where lithium ions enter and exit, so that the internal resistance of the battery is reduced. Conceivable.

但し、活物質ペーストの粘度が極端に低い、20mPa・s以下の場合、塗工工程において、塗布した活物質ペーストの一部が銅箔の箔主面上から流れ落ちてしまい、箔主面上に適切に塗膜を形成できない。
かくして、活物質ペーストの粘度は、20mPa・s以上、4000mPa・s以下の範囲が好ましいことが判る。
However, when the viscosity of the active material paste is extremely low, that is, 20 mPa · s or less, a part of the applied active material paste flows down from the main foil surface of the copper foil in the coating process, and on the main foil surface. A coating film cannot be formed properly.
Thus, it can be seen that the viscosity of the active material paste is preferably in the range of 20 mPa · s to 4000 mPa · s.

(変形形態)
次に、前述した実施形態にかかる製造方法の変形形態について、図面を参照しつつ説明する。
なお、本変形形態にかかる負極板の製造方法では、前述の乾燥工程の後に、負極活物質層の表面の光沢度を検知する光沢度検知工程を更に備えている点で、前述した実施形態の製造方法とは異なる。
そこで、実施形態と異なる点を中心に説明し、実施形態と同様の部分の説明は省略または簡略化する。なお、実施形態と同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Deformation)
Next, modifications of the manufacturing method according to the above-described embodiment will be described with reference to the drawings.
Note that the method for manufacturing a negative electrode plate according to this modified embodiment further includes a glossiness detection step for detecting the glossiness of the surface of the negative electrode active material layer after the drying step. It is different from the manufacturing method.
Therefore, the differences from the embodiment will be mainly described, and the description of the same parts as the embodiment will be omitted or simplified. In addition, the same effect is produced about the part similar to embodiment. In addition, the same contents are described with the same numbers.

光沢度検知工程では、具体的には、図9に示す光沢計200を用いて、乾燥工程で全乾燥した未圧縮活物質層21Bの光沢度を測定する。
なお、光沢計200は、未圧縮活物質層21Bに照射光L1を照射する光源部210と、未圧縮活物質層21Bからの反射光L2を受光する受光部220とを有する。この光沢計200では、図10に示すように、光源部210及び受光部220の光軸L1X,L2Xと、未圧縮活物質層21Bの垂線VLの方向との間の角度(測定角α)を、それぞれ85°としている。
Specifically, in the glossiness detection step, the glossiness of the uncompressed active material layer 21B that has been completely dried in the drying step is measured using the gloss meter 200 shown in FIG.
The gloss meter 200 includes a light source unit 210 that irradiates the uncompressed active material layer 21B with the irradiation light L1, and a light receiving unit 220 that receives the reflected light L2 from the uncompressed active material layer 21B. In the gloss meter 200, as shown in FIG. 10, the angle (measurement angle α) between the optical axes L1X and L2X of the light source unit 210 and the light receiving unit 220 and the direction of the perpendicular VL of the uncompressed active material layer 21B is set. , 85 degrees each.

ところで、本発明者らは、上述の光沢計200を用いて未圧縮活物質層の光沢度と、この未圧縮活物質層の配向の程度(ピーク強度比)との関係について調査した。
具体的には、前述した粘度の異なる複数のペースト(参考例)を用いた。
各ペーストを塗布し、前述した配向工程で塗膜に磁場を印加し、その後、熱風乾燥により作製した未圧縮活物質層の光沢度を光沢計200を用いて測定した。
ペーストを用いた各未圧縮活物質層の光沢度についても、表1に示す。
By the way, the present inventors investigated the relationship between the glossiness of the uncompressed active material layer and the degree of orientation (peak intensity ratio) of the uncompressed active material layer using the gloss meter 200 described above.
Specifically, a plurality of pastes (reference examples) having different viscosities described above were used.
Each paste was applied, a magnetic field was applied to the coating film in the orientation process described above, and then the glossiness of the uncompressed active material layer produced by hot air drying was measured using a gloss meter 200.
The glossiness of each uncompressed active material layer using the paste is also shown in Table 1.

併せて、未圧縮活物質層について、X線回折法を用いて、負極活物質粒子22の(110)面及び(002)面のピーク強度I(110)及びI(002)を測定した。そして、実施形態と同様にして、ピーク強度比(=I(110)/I(002))を算出した。
各未圧縮活物質層のピーク強度比も、表1に示す。
In addition, for the uncompressed active material layer, the peak intensities I (110) and I (002) of the (110) plane and the (002) plane of the negative electrode active material particles 22 were measured using an X-ray diffraction method. Then, the peak intensity ratio (= I (110) / I (002)) was calculated in the same manner as in the embodiment.
The peak intensity ratio of each uncompressed active material layer is also shown in Table 1.

ピーク強度比と光沢度との相関関係を表すグラフを図11に示す。
このグラフによれば、X線回折法で測定したピーク強度比が大きいほど、光沢度が小さいことが判る。なお、前述したようにピーク強度比(=I(110)/I(002))が大きいほど、未圧縮活物質層において、負極活物質粒子22の配向が揃っている。従って、表面粒子22Hの配向度が高いほど、光沢度は逆に小さくなることが判る。これは、配向度の高い負極活物質層ほど、光を反射し易い扁平面を外に向ける粒子が少なくなるためである。
A graph showing the correlation between the peak intensity ratio and the glossiness is shown in FIG.
According to this graph, it can be seen that the greater the peak intensity ratio measured by the X-ray diffraction method, the smaller the glossiness. As described above, as the peak intensity ratio (= I (110) / I (002)) is larger, the orientation of the negative electrode active material particles 22 is more uniform in the uncompressed active material layer. Therefore, it can be seen that the higher the degree of orientation of the surface particles 22H, the smaller the glossiness. This is because the negative electrode active material layer having a higher degree of orientation has fewer particles that face the flat surface that easily reflects light.

なお、前述の実施形態で示したように、負極活物質層21のピーク強度比が大きいほど、つまり、負極活物質粒子22(表面粒子22H)の配向度が高いほど、負極活物質層21を用いた電池の内部抵抗の値が小さくできる。従って、光沢度が小さい負極板を用いた電池ほど、その内部抵抗を低くできると考えられる。   Note that, as shown in the above-described embodiment, the negative electrode active material layer 21 is increased as the peak intensity ratio of the negative electrode active material layer 21 increases, that is, as the degree of orientation of the negative electrode active material particles 22 (surface particles 22H) increases. The value of the internal resistance of the used battery can be reduced. Therefore, it is considered that the battery using the negative electrode plate having a lower glossiness can lower its internal resistance.

表1に記載の光沢度と内部抵抗値との関係を図12のグラフに示す。このグラフから、光沢度が低い負極板を用いた電池ほど、その内部抵抗値が小さくなることが確認できる。   The relationship between the glossiness described in Table 1 and the internal resistance value is shown in the graph of FIG. From this graph, it can be confirmed that the battery using the negative electrode plate having a lower glossiness has a smaller internal resistance value.

以上より、例えば、X線回折法によるピーク強度比の測定などに代えて、前述した光沢計200を用いて光沢度を計測することで、表面粒子22Hの配向度を簡易に検知し、これを管理することができることが判る。また、例えば、光沢度検知工程で検知した光沢度に基づいて、表面粒子22H(負極活物質粒子22)の配向が揃った負極板、さらには低抵抗の電池を確実に製造することができる。   From the above, for example, instead of measuring the peak intensity ratio by the X-ray diffraction method or the like, the degree of orientation of the surface particles 22H can be easily detected by measuring the gloss using the gloss meter 200 described above. It can be seen that it can be managed. Further, for example, based on the glossiness detected in the glossiness detection step, a negative electrode plate in which the orientation of the surface particles 22H (negative electrode active material particles 22) is aligned, and a low-resistance battery can be reliably manufactured.

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態等では、乾燥工程で赤外線を用いて加熱し、溶媒を蒸発させて塗膜PSを乾燥させる手法を示したが、例えば、赤外線のほかに、電磁誘導加熱(IH)、コンデンサードライヤを用いて加熱して塗膜を乾燥させる手法としても良い。また、配向工程では、磁石を含む磁気回路を用いて磁界を印加させたが、例えば、電磁石を用いて行っても良い。
In the above, the present invention has been described with reference to the embodiments and modifications. However, the present invention is not limited to the above-described embodiments and the like, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in the embodiments and the like, a method for drying the coating film PS by evaporating the solvent by using infrared rays in the drying step has been shown. For example, in addition to infrared rays, electromagnetic induction heating (IH), condenser dryer It is good also as a method of heating using and drying a coating film. In the orientation step, a magnetic field is applied using a magnetic circuit including a magnet. However, for example, an electromagnet may be used.

20 負極板
21 負極活物質層
21P 活物質ペースト
22 負極活物質粒子(黒鉛粒子)
22H 表面粒子(表面黒鉛粒子)
28 銅箔(集電板)
28X 箔主面((集電板の)主面)
AQ 水(溶媒)
H 磁界
PS 塗膜
PSA 塗膜表面(表面)
20 Negative electrode plate 21 Negative electrode active material layer 21P Active material paste 22 Negative electrode active material particles (graphite particles)
22H surface particles (surface graphite particles)
28 Copper foil (current collector plate)
28X foil main surface (main surface of current collector)
AQ Water (solvent)
H Magnetic field PS Coating film PSA Coating surface (surface)

Claims (2)

主面を有する板状の集電板、及び、
磁界による磁場配向可能な負極活物質粒子を含み、上記主面上に形成されてなる負極活物質層、を備える
負極板の製造方法であって、
溶媒中に上記負極活物質粒子を分散させた活物質ペーストを、上記集電板の上記主面上に塗布する塗布工程と、
上記活物質ペーストからなる塗膜に磁界を印加して、上記塗膜中の上記負極活物質粒子のうち、少なくとも表面に位置する表面粒子を磁場配向させる配向工程と、
上記配向工程の後、上記塗膜を無風で乾燥させる乾燥工程と、を備える
負極板の製造方法。
A plate-like current collector having a main surface; and
A negative electrode active material layer comprising negative electrode active material particles capable of magnetic field orientation by a magnetic field and formed on the main surface, comprising:
An application step of applying an active material paste in which the negative electrode active material particles are dispersed in a solvent on the main surface of the current collector;
An orientation process in which a magnetic field is applied to the coating film made of the active material paste, and at least surface particles located on the surface of the negative electrode active material particles in the coating film are magnetically aligned,
After the said orientation process, the drying process which dries the said coating film in a windless manner, The manufacturing method of a negative electrode plate provided with.
請求項1に記載の負極板の製造方法であって、
前記負極活物質粒子は、
扁平な黒鉛粒子である
負極板の製造方法。
It is a manufacturing method of the negative electrode plate according to claim 1,
The negative electrode active material particles are
A method for producing a negative electrode plate which is flat graphite particles.
JP2010279751A 2010-12-15 2010-12-15 Anode plate manufacturing method Pending JP2012129079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279751A JP2012129079A (en) 2010-12-15 2010-12-15 Anode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279751A JP2012129079A (en) 2010-12-15 2010-12-15 Anode plate manufacturing method

Publications (1)

Publication Number Publication Date
JP2012129079A true JP2012129079A (en) 2012-07-05

Family

ID=46645887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279751A Pending JP2012129079A (en) 2010-12-15 2010-12-15 Anode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP2012129079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996561B2 (en) 2020-11-02 2024-05-28 Sk On Co., Ltd. Anode for lithium ion secondary battery, method for preparing the same and lithium ion secondary battery comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313323A (en) * 2001-04-13 2002-10-25 Toyota Central Res & Dev Lab Inc Negative electrode for use in lithium secondary battery and lithium secondary battery using it
JP2003157849A (en) * 2001-11-21 2003-05-30 Toyota Central Res & Dev Lab Inc Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2003197189A (en) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd Manufacturing method for graphite containing composition, manufacturing method for negative electrode for lithium secondary battery, and manufacturing method for lithium secondary battery
JP2004220926A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2006083030A (en) * 2004-09-17 2006-03-30 Sony Corp Graphite powder and nonaqueous electrolyte secondary battery
JP2006252945A (en) * 2005-03-10 2006-09-21 Sony Corp Electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008108649A (en) * 2006-10-27 2008-05-08 Toyota Motor Corp Manufacturing method of vehicular lithium secondary cell cathode
JP2010067579A (en) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd Electrode material drying device, and electrode material drying method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313323A (en) * 2001-04-13 2002-10-25 Toyota Central Res & Dev Lab Inc Negative electrode for use in lithium secondary battery and lithium secondary battery using it
JP2003157849A (en) * 2001-11-21 2003-05-30 Toyota Central Res & Dev Lab Inc Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2003197189A (en) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd Manufacturing method for graphite containing composition, manufacturing method for negative electrode for lithium secondary battery, and manufacturing method for lithium secondary battery
JP2004220926A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2006083030A (en) * 2004-09-17 2006-03-30 Sony Corp Graphite powder and nonaqueous electrolyte secondary battery
JP2006252945A (en) * 2005-03-10 2006-09-21 Sony Corp Electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008108649A (en) * 2006-10-27 2008-05-08 Toyota Motor Corp Manufacturing method of vehicular lithium secondary cell cathode
JP2010067579A (en) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd Electrode material drying device, and electrode material drying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996561B2 (en) 2020-11-02 2024-05-28 Sk On Co., Ltd. Anode for lithium ion secondary battery, method for preparing the same and lithium ion secondary battery comprising the same

Similar Documents

Publication Publication Date Title
KR101556049B1 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
AU2017329931B2 (en) Electrode assemblies
US20140134486A1 (en) Method for manufacturing lithium ion secondary battery
WO2012039041A1 (en) Nonaqueous electrolyte secondary battery
WO2018068663A1 (en) Anode slurry for lithium ion battery
CN105932209B (en) Ceramic coating diaphragm for lithium ion battery and preparation method thereof
AU2017329491B2 (en) Method of preparing electrode assemblies
JP4025094B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode
JP6337512B2 (en) Nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane, and secondary battery
JP6673341B2 (en) Composition for secondary battery porous membrane
Shin et al. Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries
WO2013138588A1 (en) Microwave drying of lithium-ion battery materials
WO2015173623A1 (en) Method of manufacturing secondary battery
CN108365164B (en) Method for manufacturing battery
JP5768883B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
JP2014096386A (en) Lithium ion secondary battery
JP6969518B2 (en) Manufacturing method of electrodes for solid-state batteries
Yamada et al. Development of a roll-to-roll high-speed laser micro processing machine for preparing through-holed anodes and cathodes of lithium-ion batteries
KR20220032502A (en) A separator for electrochemical device and a manufacturing method thereof
JP2014007037A (en) Method for manufacturing nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery manufactured by the method
JP2012129079A (en) Anode plate manufacturing method
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
US9373830B2 (en) Lithium ion secondary battery, separator thereof, and method for producing each of same
JP2003178752A (en) Dried state evaluation method for sheet-shaped electrode
CN114447285A (en) Method for producing negative electrode plate for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224