JP2012128946A - Method for manufacturing electrode for fuel battery - Google Patents
Method for manufacturing electrode for fuel battery Download PDFInfo
- Publication number
- JP2012128946A JP2012128946A JP2009097836A JP2009097836A JP2012128946A JP 2012128946 A JP2012128946 A JP 2012128946A JP 2009097836 A JP2009097836 A JP 2009097836A JP 2009097836 A JP2009097836 A JP 2009097836A JP 2012128946 A JP2012128946 A JP 2012128946A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- catalyst
- electrode
- precursor
- porous structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8892—Impregnation or coating of the catalyst layer, e.g. by an ionomer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
- H01M4/8668—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、燃料電池用電極の製造方法に係り、特に高分子電解質型燃料電池用電極の製造方法に関するものである。 The present invention relates to a method for manufacturing a fuel cell electrode, and more particularly to a method for manufacturing a polymer electrolyte fuel cell electrode.
燃料電池は、水素などプロトンを生成可能な燃料と、空気など酸素を含有する酸化剤とを、電気化学的に反応させることで、電力を発生させるものである。 A fuel cell generates electric power by electrochemically reacting a fuel capable of generating protons such as hydrogen and an oxidant containing oxygen such as air.
燃料電池のカソード極において、触媒粒子表面では気体の酸素と液体のプロトンと固体である導電性微粉末からの電子とにより水が生成する触媒反応が起きている。 In the cathode of the fuel cell, a catalytic reaction in which water is generated on the surface of the catalyst particles is generated by gaseous oxygen, liquid protons, and electrons from conductive fine powder that is solid.
前記触媒反応が起こっている反応中心は三相界面と一般に呼ばれ、この三相界面の面積はプロトンが効率的に接している触媒粒子の有効面積であり、この面積が大きいほど触媒の利用率が向上し、電池の性能が向上する。 The reaction center where the catalytic reaction occurs is generally called a three-phase interface, and the area of the three-phase interface is an effective area of catalyst particles in contact with protons efficiently. The battery performance is improved.
一般的に燃料電池電極の触媒層は、高分子電解質と、触媒粒子の担持された導電性微粉末とを攪拌混合することで作製する方法がとられている(特許文献1)。 In general, a catalyst layer of a fuel cell electrode is produced by stirring and mixing a polymer electrolyte and conductive fine powder carrying catalyst particles (Patent Document 1).
しかしながら、通常、触媒粒子の担持された導電性微粉末と高分子電解質材料を攪拌混合して形成した触媒層中では、触媒表面は埋もれて、三相界面の面積が小さくなってしまうという課題を有していた。 However, usually, in the catalyst layer formed by stirring and mixing the conductive fine powder carrying the catalyst particles and the polymer electrolyte material, the catalyst surface is buried and the area of the three-phase interface becomes small. Had.
そこで、触媒粒子を最表面に出すために多孔質触媒電極層を形成した後、この触媒電極層上に高分子電解質の分散液を塗布することで、触媒層を形成する方法が提案されている(特許文献2および3)。燃料電池用電解質膜ならびに電極中の電解質層として、Nafion(R)(DuPont社製商品名)に代表されるパーフルオロスルホン酸系高分子電解質が一般的に使用されている。 Therefore, a method has been proposed in which a catalyst layer is formed by forming a porous catalyst electrode layer in order to bring the catalyst particles to the outermost surface, and then applying a polymer electrolyte dispersion on the catalyst electrode layer. (Patent Documents 2 and 3). As an electrolyte membrane for fuel cells and an electrolyte layer in an electrode, a perfluorosulfonic acid polymer electrolyte represented by Nafion (R) (a product name manufactured by DuPont ) is generally used.
これらの高分子電解質材料では、分散溶媒中での粒子径が大きくて多孔質電極層のもつ小さな空隙まで充填されない。そのため、触媒微粒子の近傍にまでプロトンを供給する電解質材料が届かなくて、三相界面の面積が小さくなってしまう、すなわち触媒粒子表面の利用率が低いという課題の解決には至っていない。 These polymer electrolyte materials have a large particle diameter in the dispersion solvent and do not fill even the small voids of the porous electrode layer. For this reason, the electrolyte material that supplies protons to the vicinity of the catalyst fine particles does not reach and the area of the three-phase interface is reduced, that is, the problem of low utilization of the catalyst particle surface has not been solved.
このように触媒粒子に近いところでのプロトン濃度が低いことにより、前記三相界面の面積が小さく、結果触媒粒子の有効面積が小さいという課題がある。 Thus, there is a problem that the proton concentration near the catalyst particles is low, so that the area of the three-phase interface is small, and as a result, the effective area of the catalyst particles is small.
このように前記従来の構成では、高分子電解質と触媒粒子との混ざり方が不十分であったり、高分子電解質が触媒多孔構造体中に分散しないことによって、触媒粒子の近傍にプロトンが十分に供給されなかった。そのため、触媒表面の利用率が低くなってしまうことが課題であった。 As described above, in the conventional configuration, the mixing of the polymer electrolyte and the catalyst particles is insufficient, or the polymer electrolyte is not dispersed in the catalyst porous structure, so that protons are sufficiently present in the vicinity of the catalyst particles. Not supplied. Therefore, the problem is that the utilization factor of the catalyst surface is lowered.
本発明は、前記従来の課題を解決するもので、三相界面の面積を大きくして触媒粒子表面の利用率を向上させるための燃料電池用電極の電極製造方法を提供することを目的とする。 The present invention solves the above-described conventional problems, and an object of the present invention is to provide an electrode manufacturing method for a fuel cell electrode for increasing the utilization ratio of the catalyst particle surface by increasing the area of the three-phase interface. .
前記従来の課題を解決するために、本発明の燃料電池用電極の製造方法は、触媒粒子が炭素微粉末からなる触媒多孔構造体を形成する工程と、溶媒と、少なくとも電解質材料と、により電解質前駆体を調製する工程と、前記触媒多孔構造体に前記電解質前駆体を塗布する工程と、前記触媒多孔構造体に前記電解質前駆体を塗布することにより、触媒電解質複合前駆体を形成する工程と、前記触媒電解質複合前駆体に対して、減圧乾燥処理および加熱乾燥処理を行うことにより前記触媒電解質複合前駆体中に電解質層を形成する工程を行う。 In order to solve the above-mentioned conventional problems, a method for producing an electrode for a fuel cell according to the present invention comprises a step of forming a catalyst porous structure in which catalyst particles are made of fine carbon powder, a solvent, and at least an electrolyte material. A step of preparing a precursor, a step of applying the electrolyte precursor to the catalyst porous structure, and a step of forming a catalyst electrolyte composite precursor by applying the electrolyte precursor to the catalyst porous structure. The catalyst electrolyte composite precursor is subjected to a step of forming an electrolyte layer in the catalyst electrolyte composite precursor by performing a reduced pressure drying process and a heat drying process.
本構成によって、触媒粒子近傍まで、低分子状態の電解質前駆体が隈無く配置され、その場で重縮合反応を経由した電解質前駆体の高分子量化が進行し、プロトン輸送パスとなる電解質層を触媒粒子近傍まで高密度高分散形成することができる。 With this configuration, electrolyte precursors in a low-molecular state are arranged in the vicinity up to the vicinity of the catalyst particles, and the molecular weight of the electrolyte precursor is increased in situ via a polycondensation reaction, so that an electrolyte layer that becomes a proton transport path is formed. High density and high dispersion can be formed up to the vicinity of the catalyst particles.
本発明の、燃料電池用電極およびその製造方法によれば、三相界面の面積を大きくして触媒粒子表面の利用率を向上させることができる。 According to the fuel cell electrode and the method of manufacturing the same of the present invention, the area of the three-phase interface can be increased to improve the utilization rate of the catalyst particle surface.
以下本発明の実施の形態について、図面を参照にしながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.
(実施の形態1)
本実施の形態においては、炭素微粉末からなる多孔体と触媒粒子で構成される触媒多孔構造体と、電解質層からなる燃料電池用電極の製造方法について説明する。本発明の燃料電池用電極の製造方法に関わる工程図を、図1において示す。
(Embodiment 1)
In the present embodiment, a method for producing a fuel cell electrode composed of a porous body made of fine carbon powder and a catalyst porous structure composed of catalyst particles and an electrolyte layer will be described. FIG. 1 shows a process chart relating to a method for producing a fuel cell electrode of the present invention.
まず本実施における触媒多孔構造体(S12)は、炭素微粉末からなる多孔体(S11)に対して、触媒粒子を担持することにより、作製される。本実施における電解質層(S25)は、分子内に重合性官能基とイオン性官能基(特にスルホン酸基)を有する低分子電解質材料(S23)と、重合性官能基を持つがイオン性官能基は持たない低分子スペーサー材料とを有機溶媒へ混合した溶液を電解質前駆体(S24)として用いる。 First, the catalyst porous structure (S12) in the present embodiment is produced by supporting catalyst particles on the porous body (S11) made of carbon fine powder. The electrolyte layer (S25) in this embodiment has a low molecular electrolyte material (S23) having a polymerizable functional group and an ionic functional group (especially a sulfonic acid group) in the molecule, and a polymerizable functional group but an ionic functional group. A solution in which an organic solvent is mixed with a low-molecular spacer material that does not have is used as the electrolyte precursor (S24).
つぎに、前記電解質前駆体(S24)を、炭素微粉末からなる多孔体(S11)と触媒粒子により構成される触媒多孔構造体(S12)へ含浸塗工する。その後、乾燥工程により溶媒等の低分子揮発成分を除去することで、前記触媒多孔構造体(S12)に対して、重合反応を経由して電解質層(S25)が均一分散塗布された燃料電池用電極(S14)を作製できる。 Next, the electrolyte precursor (S24) is impregnated and applied to a porous body (S11) made of fine carbon powder and a catalyst porous structure (S12) composed of catalyst particles. Thereafter, low molecular volatile components such as a solvent are removed by a drying step so that the electrolyte layer (S25) is uniformly dispersed and applied to the catalyst porous structure (S12) via a polymerization reaction. An electrode (S14) can be produced.
なお、本実施の形態1における第2工程<電解質前駆体の含浸塗工(S12→S13)>と第3工程<減圧乾燥および加熱乾燥による電解質層の形成(S13→S14)>の順序を入れ替えて作製された燃料電池用電極は、本願発明の有する効果を奏さない。これは、重合した電解質層の粒子を触媒多孔構造体へ均一導入できないためである。 In addition, the order of the second step <electrolyte precursor impregnation coating (S12 → S13)> and the third step <formation of electrolyte layer by reduced pressure drying and heat drying (S13 → S14)> in the first embodiment is switched. The fuel cell electrode produced in this manner does not exhibit the effects of the present invention. This is because the polymerized electrolyte layer particles cannot be uniformly introduced into the catalyst porous structure.
なお、本実施の形態における触媒多孔構造体(S12)に対して、高分子状態の電解質を含浸塗工しても、多孔体の孔径より高分子の固まりのほうが大きいために均一分散塗布することはできない。 In addition, even if the polymer electrolyte is impregnated and applied to the catalyst porous structure (S12) in the present embodiment, the polymer mass is larger than the pore size of the porous material, so that the polymer is uniformly dispersed and applied. I can't.
次に、電解質原料(S21)から電解質前駆体(S23)を経由して電解質層(S25)を形成する方法について説明する。本発明の電解質層の形成方法に関わる工程図を、図2において示す。 Next, a method for forming the electrolyte layer (S25) from the electrolyte raw material (S21) via the electrolyte precursor (S23) will be described. A process diagram related to the method for forming an electrolyte layer of the present invention is shown in FIG.
本実施における電解質層(S25)の形成方法は、まず電解質原料(S21)を、有機溶剤により希釈した後、酸化剤を用いて酸化することで、分子内に重合性官能基とイオン性官能基を有する低分子電解質材料(S23)へ変換する。続いて前記電解質材料(S23)に、重合性官能基を持つがイオン性官能基は持たない低分子スペーサー材料を混合し、電解質前駆体(S24)とする。そして前記電解質前駆体(S24)を、乾燥することで重合反応を経由して、電解質層(S25)が形成する。 In this embodiment, the electrolyte layer (S25) is formed by first diluting the electrolyte raw material (S21) with an organic solvent and then oxidizing it with an oxidizing agent, so that a polymerizable functional group and an ionic functional group are present in the molecule. Into a low molecular electrolyte material (S23) having Subsequently, the electrolyte material (S23) is mixed with a low molecular spacer material having a polymerizable functional group but not having an ionic functional group to obtain an electrolyte precursor (S24). And the electrolyte layer (S25) is formed via the polymerization reaction by drying the electrolyte precursor (S24).
なお、本実施における電解質原料を混合希釈するために使用する有機溶媒は、低極性溶媒であることが望ましい(S21→S22)。 Note that the organic solvent used for mixing and diluting the electrolyte raw material in the present embodiment is preferably a low polarity solvent (S21 → S22).
なお、本実施における電解質前駆体(S24)において、低分子電解質材料(S23)はイオン性官能基としてスルホン酸基を有することが望ましい。 In the electrolyte precursor (S24) in the present embodiment, it is desirable that the low molecular electrolyte material (S23) has a sulfonic acid group as an ionic functional group.
また、本実施における電解質前駆体(S24)において、分子内に水への可溶性と重合性を有する低分子電解質材料(S23)を、水への不溶性を付与するために、水への不溶性と重合性を有する低分子スペーサー材料と混合した低分子量の有機化合物溶液としての形態をとる。 In addition, in the electrolyte precursor (S24) in this implementation, in order to impart insolubility to water, water insolubility and polymerization of the low molecular electrolyte material (S23) having solubility and polymerizability in water in the molecule. It takes the form of a low molecular weight organic compound solution mixed with a low molecular spacer material having a property.
なお、前記電解質前駆体(S24)から重合反応を経由して電解質層(S25)を形成し、これらは水に不溶性である。 An electrolyte layer (S25) is formed from the electrolyte precursor (S24) via a polymerization reaction, and these are insoluble in water.
なお、上記構成の電解質層(S25)は従来材料のNafion(R)と同程度、もしくはそれ以下のEW値を持つ必要があり、これから外れるとイオン伝導度が低下する。 The electrolyte layer (S25) having the above-described structure needs to have an EW value comparable to or lower than that of the conventional material Nafion (R) .
そして上記構成の電解質層(S25)について、EW値が1000以下かつ水に不溶性であるには、低分子電解質材料(S23)と低分子スペーサー材料の混合溶液中でのモル比1:nは、通常nが0.25以上5以下の範囲であることが望ましい。特に0.5以上3以下の範囲内であることがより好ましい。 For the electrolyte layer (S25) having the above structure, in order for the EW value to be 1000 or less and insoluble in water, the molar ratio 1: n in the mixed solution of the low molecular electrolyte material (S23) and the low molecular spacer material is: Usually, n is preferably in the range of 0.25 to 5. In particular, it is more preferably within the range of 0.5 or more and 3 or less.
なお電解質層を形成する際に経由する重合反応は、特に減圧あるいは加熱乾燥による縮合反応を経由するのがより望ましい。 In addition, it is more preferable that the polymerization reaction through which the electrolyte layer is formed particularly through a condensation reaction by reduced pressure or heat drying.
なお、上記触媒多孔構造体は最小で数nmサイズの細孔が存在し、本実施の形態における工程を経ることで、これらの細孔までも電解質層を形成できる。 Note that the catalyst porous structure has pores having a size of several nm at the minimum, and an electrolyte layer can be formed up to these pores through the steps in the present embodiment.
以下に実施例及び比較例を示して本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
電解質層の形成
電解質層の形成は、実施の形態1で説明した方法に従って、まず電解質原料の希釈溶液を酸化剤で処理することにより、イオン性官能基を有する電解質材料へと変換する。その後、ここに水に不溶性の低分子材料をスペーサー分子として加えて混合して電解質前駆体とする。最後に乾燥により溶媒等の揮発成分を除去することで共重合反応を経由して、水に不溶な電解質層をえるというものである。
Formation of Electrolyte Layer According to the method described in Embodiment 1, the electrolyte layer is formed by first treating the diluted solution of the electrolyte raw material with an oxidizing agent to convert it into an electrolyte material having an ionic functional group. Thereafter, a low molecular weight material insoluble in water is added as a spacer molecule and mixed to obtain an electrolyte precursor. Finally, a volatile component such as a solvent is removed by drying to obtain an electrolyte layer insoluble in water via a copolymerization reaction.
具体的には、以下の手順の通りである。分子中にチオール基を持つトリアルコキシシラン化合物((MeO)3Si-(CH2)3-SH)15mmolを、t-BuOHで希釈して、10wt%溶液を調製する。このチオール化合物溶液に30%過酸化水素水を加え、窒素雰囲気下室温で15時間攪拌混合させた。その後、(MeO)3Si-Me 15mmolを加えて15分間攪拌し、さらに超純水を加えて混合することで電解質前駆体が無色透明均一な溶液として調製できた。この工程により、分子内のチオール基が酸化されスルホン酸基に変換されたシラン化合物((RO)3Si-(CH2)3-SO3H, (RO=HO, MeO))と(MeO)3Si-Meのモル比1:1混合の均一溶液が得られる。 Specifically, the procedure is as follows. A 10 wt% solution is prepared by diluting 15 mmol of trialkoxysilane compound ((MeO) 3 Si— (CH 2 ) 3 —SH) having a thiol group in the molecule with t-BuOH. 30% hydrogen peroxide solution was added to the thiol compound solution, and the mixture was stirred and mixed at room temperature in a nitrogen atmosphere for 15 hours. Thereafter, 15 mmol of (MeO) 3 Si-Me was added, stirred for 15 minutes, and ultrapure water was further added and mixed to prepare an electrolyte precursor as a colorless transparent uniform solution. Silane compounds ((RO) 3 Si— (CH 2 ) 3 —SO 3 H, (RO = HO, MeO)) and (MeO) in which thiol groups in the molecule are oxidized and converted into sulfonic acid groups by this process A homogeneous solution with a 3 : 1 Si-Me molar ratio is obtained.
なお、上記の電解質前駆体の調製法として次のような方法も考えられる。例えば、あらかじめt-BuOHを溶媒として、チオール基を持つトリアルコキシシラン化合物((MeO)3Si-(CH2)3-SH)と(MeO)3Si-Meを所望のモル比で混合した溶液に、30%過酸化水素水を加える。溶液と過酸化水素水との酸化反応によりチオール基をスルホン酸基に変換することができる。 In addition, the following method is also considered as a preparation method of said electrolyte precursor. For example, a solution in which a trialkoxysilane compound ((MeO) 3 Si- (CH 2 ) 3 -SH) having a thiol group and (MeO) 3 Si-Me are mixed in a desired molar ratio using t-BuOH as a solvent in advance. Add 30% hydrogen peroxide solution. A thiol group can be converted into a sulfonic acid group by an oxidation reaction between the solution and hydrogen peroxide solution.
次に、電解質前駆体である上記溶液を容器上に展開したのち、減圧下で溶媒等の揮発成分を徐々に留去することで重合反応が進行し、結果、膜状物質として水に不溶性の電解質層を得た。上記物質はシロキサン(Si-O-Si)骨格を有すると思われる。 Next, after the above solution, which is an electrolyte precursor, is developed on a container, the polymerization reaction proceeds by gradually distilling off volatile components such as a solvent under reduced pressure. As a result, the film-like substance is insoluble in water. An electrolyte layer was obtained. The above material appears to have a siloxane (Si-O-Si) skeleton.
膜状物質として得られた上記電解質層の水への不溶性を確認するために、水にこの膜状物質を浸漬させ1昼夜攪拌した。上澄み液を取って水を減圧留去したが、ポリシロキサン膜状物質は確認されなかった。 In order to confirm the insolubility of the electrolyte layer obtained as a film-like substance in water, the film-like substance was immersed in water and stirred for one day. The supernatant liquid was taken and water was distilled off under reduced pressure, but no polysiloxane film-like substance was confirmed.
また、合成したこの膜状物質について固体NMR測定を行ったところ、13C-DDMAS-NMR(single pulse & 1H decouple)および29Si-CPMAS-NMR(1H→13C cross polarization & 1H decouple)において実測されたシグナルピークの化学シフト値が、その分子構造から予想される理論値と良い一致をし、合成した膜状物質が目的の分子構造を有する共重合物であることがわかった。 In addition, solid-state NMR measurement was performed on the synthesized film-like substance, which was measured in 13 C-DDMAS-NMR (single pulse & 1H decouple) and 29 Si-CPMAS-NMR (1H → 13C cross polarization & 1H decouple). The chemical shift value of the signal peak was in good agreement with the theoretical value expected from its molecular structure, and it was found that the synthesized film-like substance was a copolymer having the target molecular structure.
なお、上記の電解質前駆体の調製法を利用することで、(RO)3Si-(CH2)3-SO3Hと(MeO)3Si-Meの各種モル比1 : n(n=0,0.5,1,2,3)で混合した電解質前駆体を調製可能である。各電解質前駆体をシャーレへ展開後、溶媒の減圧留去による重合反応を経て膜状物質の電解質層を得た。 In addition, various molar ratios of (RO) 3 Si— (CH 2 ) 3 —SO 3 H and (MeO) 3 Si—Me 1: n (n = 0) by using the above-described method for preparing an electrolyte precursor , 0.5,1,2,3) can be prepared. Each electrolyte precursor was developed in a petri dish and then subjected to a polymerization reaction by distilling off the solvent under reduced pressure to obtain an electrolyte layer of a film-like substance.
n=1,2,3,4,5の電解質層について水への不溶性を有することがわかった。一方n=0, 0.5では、容易に水に溶解してしまい、燃料電池用触媒電極中の電解質層として使用するには不適である。 It was found that the electrolyte layers with n = 1, 2, 3, 4, 5 were insoluble in water. On the other hand, when n = 0, 0.5, it easily dissolves in water and is unsuitable for use as an electrolyte layer in a fuel cell catalyst electrode.
また、上記の電解質層(n=1,2,3)の有機溶剤への溶解性を検討したところ、アセトンならびにエチルアルコールならびに含塩素系溶媒ならびにジメチルアセトアミドに、上記の電解質層を浸漬させ一昼夜攪拌した。しかし、全く溶解せず沈殿物のみを与える結果となった。 In addition, when the solubility of the above electrolyte layer (n = 1, 2, 3) in an organic solvent was examined, the above electrolyte layer was immersed in acetone, ethyl alcohol, a chlorine-containing solvent, and dimethylacetamide, and stirred overnight. did. However, it did not dissolve at all and resulted in only a precipitate.
また、(RO)3Si-(CH2)3-SO3HとC6のアルキル鎖を有する(MeO)3Si-C6H13を、モル比1 : nで混合して調製した電解質前駆体を、乾燥して重合反応することにより電解質層を得た。n=0.50,0.75,1,2,3の電解質層は、アセトンならびにエチルアルコールならびに含塩素系溶媒ならびにジメチルアセトアミドに一昼夜浸漬攪拌したが、全く溶解せず沈殿物のみを与える結果となった。 In addition, an electrolyte precursor prepared by mixing (RO) 3 Si— (CH 2 ) 3 —SO 3 H and (MeO) 3 Si—C 6 H 13 having a C6 alkyl chain at a molar ratio of 1: n The electrolyte layer was obtained by drying and polymerizing. The electrolyte layer with n = 0.50,0.75,1,2,3 was immersed and stirred in acetone, ethyl alcohol, a chlorine-containing solvent, and dimethylacetamide for a whole day and night.
また、(RO)3Si-(CH2)3-SO3HとC10のアルキル鎖を有する(MeO)3Si-C10H21を、モル比1 : nで混合して調製した電解質前駆体を、乾燥して重合反応することにより電解質層を得た。n=0.50,0.75,1,2,3の電解質層は、アセトンならびにエチルアルコールならびに含塩素系溶媒ならびにジメチルアセトアミドに一昼夜浸漬攪拌したが、全く溶解せず沈殿物のみを与える結果となった。 An electrolyte precursor prepared by mixing (RO) 3 Si— (CH 2 ) 3 —SO 3 H and (MeO) 3 Si—C 10 H 21 having a C10 alkyl chain at a molar ratio of 1: n The electrolyte layer was obtained by drying and polymerizing. The electrolyte layer with n = 0.50,0.75,1,2,3 was immersed and stirred in acetone, ethyl alcohol, a chlorine-containing solvent, and dimethylacetamide for a whole day and night.
上記の電解質前駆体を調製可能な溶媒は、t-BuOH以外では、アセトン、エタノールなどの低級アルコール、ジメチルアセトアミドなどが挙げられる。 Solvents capable of preparing the above electrolyte precursor include, except for t-BuOH, lower alcohols such as acetone and ethanol, dimethylacetamide, and the like.
触媒多孔構造体の作製
直径約50nmのアセチレンブラック4.0g(電気化学工業)、ポリアクリロニトリル2.0g(シグマアルドリッチ)およびジメチルアセトアミド(和光純薬)をボールミルにより混合した。この混合分散液を面積19.6cm2のカーボンペーパー上に1.69g滴下し、室温のもと真空容器中で溶媒を蒸発させた。次に恒温真空乾燥器を用いて、前記カーボンペーパーを120℃で2時間加熱処理した。最後にこのカーボンペーパーをアルゴン雰囲気下の赤外線イメージ炉内に移し、毎秒20℃で室温から昇温させていき、到達温度800℃で30分間の加熱処理を行った。以上により、炭素微粉末をカーボン薄膜で結着した層を形成したカーボンペーパーを得た。
Preparation of catalyst porous structure 4.0 g of acetylene black having a diameter of about 50 nm (Electrochemical Industry), 2.0 g of polyacrylonitrile (Sigma Aldrich) and dimethylacetamide (Wako Pure Chemical Industries) were mixed by a ball mill. 1.69 g of this mixed dispersion was dropped on carbon paper having an area of 19.6 cm 2, and the solvent was evaporated in a vacuum container at room temperature. Next, the carbon paper was heat-treated at 120 ° C. for 2 hours using a constant temperature vacuum dryer. Finally, the carbon paper was transferred into an infrared image furnace under an argon atmosphere, heated from room temperature at 20 ° C. per second, and heat-treated at an ultimate temperature of 800 ° C. for 30 minutes. As described above, carbon paper having a layer in which carbon fine powder was bound with a carbon thin film was obtained.
塩化白金酸(IV)・6水和物(和光純薬)0.95g、ポリアミド酸溶液7.85g、ジメチルアセトアミド(和光純薬特級)17.5gを混合して調製される含白金ポリアミド酸溶液を、前記で得られたカーボンペーパー上に1.26g滴下し、真空中で溶媒を除去した。次に恒温真空乾燥器を用いて、200℃で2時間カーボンペーパーを乾燥した。最後にアルゴン雰囲気下の赤外線イメージ炉内で、昇温速度毎秒10℃、到達温度800℃で加熱を30分間行った。以上により、炭素微粉末からなる多孔体に対して、白金ナノ粒子が高分散固定された構造を有する触媒多孔構造体を作製した。 Platinum-containing polyamic acid solution prepared by mixing 0.95 g of chloroplatinic acid (IV) hexahydrate (Wako Pure Chemical), 7.85 g of polyamic acid solution, and 17.5 g of dimethylacetamide (special grade of Wako Pure Chemical) Was dropped onto the carbon paper obtained above, and the solvent was removed in vacuo. Next, the carbon paper was dried at 200 ° C. for 2 hours using a constant temperature vacuum dryer. Finally, heating was performed in an infrared image furnace under an argon atmosphere at a temperature rising rate of 10 ° C. per second and an ultimate temperature of 800 ° C. for 30 minutes. As described above, a catalyst porous structure having a structure in which platinum nanoparticles were highly dispersed and fixed with respect to a porous body made of fine carbon powder was produced.
なお前記ポリアミド酸溶液は、4,4’ジアミノジフェニルエーテル(東京化成)5.00gとピロメリット酸無水物(東京化成)5.45gとを、溶媒ジメチルアセトアミド120gを用いて重合反応して調製したものである。 The polyamic acid solution was prepared by polymerizing 5.00 g of 4,4 ′ diaminodiphenyl ether (Tokyo Kasei) and 5.45 g of pyromellitic anhydride (Tokyo Kasei) using 120 g of the solvent dimethylacetamide. It is.
(実施例1)燃料電池用電極A〜Gの製造
まず電解質層の形成で述べた方法により得られる電解質前駆体を用いて、燃料電池用電極を作製する方法について述べる。まず(表1)に示したように、電解質前駆体を7種類調製した。この7種類の電解質前駆体は、電解質材料(RO)3Si-(CH2)3-SO3Hと低分子スペーサー材料(MeO)3Si-R (R:直鎖アルキル基)の3種類のれぞれを所定のモル比で含有する。(表1)にあげた電解質材料と低分子スペーサー材料とそれらの混合比については、前述電解質層の形成における水不溶性を有する材料範囲のなかで、触媒電極として電流―電圧特性を有する適当な組成をを選択しているが、この限りではない。この電解質前駆体に含有される(RO)3Si-(CH2)3-SO3H/(MeO)3Si-R (R:直鎖アルキル基)の各成分は、低分子状態で溶媒和されている。
Example 1 Production of Fuel Cell Electrodes A to G First, a method for producing a fuel cell electrode using the electrolyte precursor obtained by the method described in the formation of the electrolyte layer will be described. First, as shown in Table 1, seven types of electrolyte precursors were prepared. These seven types of electrolyte precursors are divided into three types: electrolyte material (RO) 3 Si— (CH 2 ) 3 —SO 3 H and low molecular spacer material (MeO) 3 Si—R (R: linear alkyl group). Each is contained in a predetermined molar ratio. The electrolyte materials listed in Table 1 and the low molecular spacer materials and their mixing ratios are suitable compositions having current-voltage characteristics as catalyst electrodes within the range of water-insoluble materials in the formation of the electrolyte layer. The choice is not limited to this. Each component of (RO) 3 Si— (CH 2 ) 3 —SO 3 H / (MeO) 3 Si—R (R: linear alkyl group) contained in this electrolyte precursor is solvated in a low molecular state. Has been.
次に、触媒多孔構造体の作製で述べた方法により得られる、炭素微粉末からなる多孔体に白金ナノ粒子が担持された触媒多孔構造体に対して、上記電解質前駆体を滴下し1時間浸漬・静置した。その後、減圧下で揮発成分の除去および加熱下のもと真空乾燥を経て、電解質層を含む燃料電池用電極A〜Gを作製した。 Next, the electrolyte precursor is dropped into the porous porous body made of carbon fine powder obtained by the method described in the preparation of the porous catalytic structure, and the electrolyte precursor is dropped for 1 hour.・ Stand still. Thereafter, removal of volatile components under reduced pressure and vacuum drying under heating were performed to produce fuel cell electrodes A to G including an electrolyte layer.
なお、一般的にポリシロキサンの合成反応例にならい80℃・2時間の真空乾燥条件で、電解質層の形成を行ったが、この限りではない。 In general, the electrolyte layer was formed under conditions of vacuum drying at 80 ° C. for 2 hours following the polysiloxane synthesis reaction example, but this is not restrictive.
(表1)本発明の実施例1と比較例1における燃料電池用電極の作製条件および評価結果 (Table 1) Preparation conditions and evaluation results of fuel cell electrodes in Example 1 and Comparative Example 1 of the present invention
(比較例1)比較電極aの製造
また、市販の高分子電解質である、EW値1100のパーフルオロスルホン酸系電解質Nafion(R)のエタノール分散液を用いて、比較電極aを作製した。作製手順は、以下のとおりである。触媒多孔構造体の作製で述べた方法により得られる、炭素微粉末からなる多孔体に白金ナノ粒子が担持された触媒多孔構造体を、シャーレの上に静置した。上記触媒多孔構造体に対して、パーフルオロスルホン酸系電解質Nafion(R)のエタノール分散液を滴下し1時間浸漬・静置した。その後、減圧下で揮発成分の除去および加熱下のもと真空乾燥を経て、Nafion(R)電解質層を含む比較電極aを作製した。
(Comparative Example 1) Production of Comparative Electrode a A comparative electrode a was produced using an ethanol dispersion of a perfluorosulfonic acid electrolyte Nafion (R) having a EW value of 1100, which is a commercially available polymer electrolyte. The production procedure is as follows. The catalyst porous structure obtained by the method described in the preparation of the catalyst porous structure, in which platinum nanoparticles are supported on the porous body made of carbon fine powder, was allowed to stand on a petri dish. An ethanol dispersion of perfluorosulfonic acid electrolyte Nafion (R) was dropped into the catalyst porous structure, and immersed and left for 1 hour. Thereafter, removal of volatile components under reduced pressure and vacuum drying under heating produced a reference electrode a including a Nafion (R) electrolyte layer.
(比較例2)比較電極bの製造
また、上記電解質前駆体から乾燥工程を経て重合した電解質層を用いて比較電極bの作製を試みた。具体的には、まず電解質材料(RO)3Si-(CH2)3-SO3Hと低分子スペーサー材料(MeO)3Si-Meを、モル比1:3で混合して得られるEW値380の電解質前駆体を調製した。テフロン(登録商標)製シャーレ上に、上記電解質前駆体を展開したのち、減圧下で揮発成分の除去および加熱下での真空乾燥を経て、固体粉状の電解質層を合成した。この固体粉状の電解質層を前記触媒多孔構造体へと含浸塗工することを試みたが、上記電解質層は各種溶媒に不溶性であり、分散溶液を調製できなかった。このために、一旦電解質前駆体から重合反応を経由して合成した固体塊状の電解質層を、再度分散溶液化したうえで触媒多孔構造体に対して含浸塗布できず、比較電極bは作製できなかった。このように、燃料電池用電極Bを構成するものと同様の電解質前駆体を用いたとしても、(図1)燃料電池用電極の製造の工程図における第2工程<電解質前駆体の含浸塗工(S12→S13)>と第3工程<減圧乾燥および加熱乾燥による電解質層の形成(S13→S14)>の順序を入れ替えると本願発明の効果は奏さない。
(Comparative example 2) Manufacture of comparative electrode b Moreover, preparation of the comparative electrode b was tried using the electrolyte layer superposed | polymerized through the drying process from the said electrolyte precursor. Specifically, first, the EW value obtained by mixing the electrolyte material (RO) 3 Si— (CH 2 ) 3 —SO 3 H and the low molecular spacer material (MeO) 3 Si—Me at a molar ratio of 1: 3. 380 electrolyte precursors were prepared. The above electrolyte precursor was developed on a petri dish made of Teflon (registered trademark), and then a solid powder electrolyte layer was synthesized through removal of volatile components under reduced pressure and vacuum drying under heating. An attempt was made to impregnate and apply this solid powder electrolyte layer to the porous catalyst structure, but the electrolyte layer was insoluble in various solvents, and a dispersion solution could not be prepared. For this reason, the solid lump electrolyte layer once synthesized from the electrolyte precursor via the polymerization reaction cannot be impregnated and applied to the catalyst porous structure after being re-dispersed and the reference electrode b cannot be produced. It was. As described above, even if the same electrolyte precursor as that constituting the fuel cell electrode B is used, (FIG. 1) the second step in the process diagram of the production of the fuel cell electrode <the electrolyte precursor impregnation coating If the order of (S12 → S13)> and the third step <formation of electrolyte layer by reduced pressure drying and heat drying (S13 → S14)> is reversed, the effect of the present invention is not achieved.
(比較例3)比較電極cの製造
また、低分子スペーサー材料を全く含有しない電解質前駆体を用いて、比較電極cの作製を試みた。具体的には、電解質材料(RO)3Si-(CH2)3-SO3Hのみで構成される電解質前駆体を調製して、比較電極cを作製した。なお、それ以外の作製条件は、実施例1と同様である。次に、触媒多孔構造体中に電解質層を形成した比較電極cを60℃熱水中に2時間浸漬処理したところ、形成された電解質層が水に溶けて、触媒多孔構造体中から除去された。そのため、適当な電流―電圧特性を有さず、燃料電池用電極として利用不可であった。
(Comparative Example 3) Production of Comparative Electrode c An attempt was made to produce the comparative electrode c using an electrolyte precursor containing no low molecular spacer material. Specifically, an electrolyte precursor composed only of an electrolyte material (RO) 3 Si— (CH 2 ) 3 —SO 3 H was prepared, and a comparative electrode c was produced. The other production conditions are the same as in Example 1. Next, when the reference electrode c in which the electrolyte layer was formed in the catalyst porous structure was immersed in hot water at 60 ° C. for 2 hours, the formed electrolyte layer was dissolved in water and removed from the catalyst porous structure. It was. Therefore, it does not have an appropriate current-voltage characteristic and cannot be used as a fuel cell electrode.
燃料電池用電極の触媒反応面積評価
上記の方法で作製した各電極をカソード極として燃料電池セルに組み込んだ上、サイクリックボルタンメトリー法により触媒反応面積を評価した。アノード極としてPt2.0mg/cm2担持カーボンペースト電極を用いた。アノード極に水素ガス(65℃、100%RH)およびカソード極に窒素ガス(65℃、100%RH)を供給しながら、サイクリックボルタンメトリー測定を行った。このとき、掃印速度を10mV/sec、掃印電位幅を下限:自然電位から上限:1.0Vまでとした。なお自然電位は、上記のような両極でのガス条件下で開回路状態での極間電位のことである。(図3)には、燃料電池用電極G(実線)および比較電極a(破線)についての測定で得られたサイクリックボルタモグラムを示している。各電極について得られたボルタモグラムから白金上でのプロトン脱吸着に関与する電荷量を見積もり、さらに電荷量から単位白金量当たりの触媒反応面積を見積もった。たとえば、比較電極aにおける電荷量は、破線のサイクル上部曲線と実線の水準線で囲まれた斜線領域の面積から見積もる。(表1)には各電極についての触媒反応面積と自然電位の結果をまとめた。
Evaluation of catalytic reaction area of fuel cell electrode Each electrode produced by the above method was incorporated as a cathode electrode in a fuel cell, and the catalytic reaction area was evaluated by a cyclic voltammetry method. A carbon paste electrode carrying Pt 2.0 mg / cm 2 was used as the anode electrode. Cyclic voltammetry measurement was performed while supplying hydrogen gas (65 ° C., 100% RH) to the anode electrode and nitrogen gas (65 ° C., 100% RH) to the cathode electrode. At this time, the sweep speed was set to 10 mV / sec, and the sweep potential width was set from the lower limit: natural potential to the upper limit: 1.0 V. The natural potential is a potential between electrodes in an open circuit state under the gas conditions at both electrodes as described above. (FIG. 3) shows a cyclic voltammogram obtained by measurement of the fuel cell electrode G (solid line) and the comparative electrode a (broken line). The amount of charge involved in proton desorption on platinum was estimated from the voltammogram obtained for each electrode, and the catalytic reaction area per unit platinum amount was estimated from the amount of charge. For example, the charge amount at the comparison electrode a is estimated from the area of the hatched area surrounded by the broken cycle upper curve and the solid level line. Table 1 summarizes the results of the catalytic reaction area and the natural potential for each electrode.
従来材料でよく利用されるパーフルオロスルホン酸系高分子電解質分散液を塗布した比較電極aについては、単位白金量当たりの触媒反応面積は23m2/gであり、カソード極の自然電位については、100mV(vs. SHE)程度で高くとどまる結果となった。ここで自然電位とは、白金表面でのプロトンの脱吸着反応に関する両極間での平衡電位である。すなわち正に大きい値を取る今回の場合は、カソード極においてプロトンが十分に白金表面に到達できていないためと考えられる。 For the reference electrode a coated with a perfluorosulfonic acid polymer electrolyte dispersion often used in conventional materials, the catalytic reaction area per unit platinum amount is 23 m 2 / g, and the natural potential of the cathode electrode is The result stayed high at around 100mV (vs. SHE). Here, the natural potential is an equilibrium potential between the two electrodes regarding proton desorption on the platinum surface. In other words, in this case, which is a positive value, it is considered that protons cannot reach the platinum surface sufficiently at the cathode electrode.
これに対して、低分子量状態で電解質材料と低分子スペーサー材料とが分散している電解質前駆体を、塗布および乾燥重合して電解質層を形成した電極Gでは、飛躍的に反応面積が拡大し52m2/gという結果を与えた。また電極Gの自然電位が著しく低下し20mV(vs.SHE)程度となった。 In contrast, in the electrode G in which an electrolyte precursor in which an electrolyte material and a low molecular spacer material are dispersed in a low molecular weight state is applied and dry polymerized to form an electrolyte layer, the reaction area dramatically increases. A result of 52 m 2 / g was given. In addition, the natural potential of the electrode G was significantly reduced to about 20 mV (vs. SHE).
また、(表1)に挙げた様に電極G以外の電極A〜Fについても、高分子電解質材料を用いた比較電極aと比較して、触媒反応面積の増大と自然電位の低下が起こった。
反応面積の拡大と自然電位の低下という二つの効果発現についての要因は以下のように考察する。
In addition, as shown in Table 1, the electrodes A to F other than the electrode G also had an increase in catalytic reaction area and a decrease in natural potential compared to the comparative electrode a using the polymer electrolyte material. .
The factors for the two effects of expansion of the reaction area and reduction of the natural potential are considered as follows.
通常高分子電解質の分散液では、高分子のサイズが大きいために、小さいサイズ(数から数十nmオーダー)の細孔構造をもつ触媒構造体内に電解質を均一かつ十分に配置することはきわめて困難である。これに対して、低分子量状態の電解質前駆体を用いることで、触媒粒子が担持された細孔構造内への電解質前駆体の導入が容易におこり、更に塗布されたその場での重合反応を経由して固定化することによって、触媒粒子近傍へと十分な電解質層の形成が実現される。これにより白金近傍でのプロトン高濃度状態が作り出されて、三相界面面積の向上と自然電位の低下に繋がった。 In general, dispersions of polymer electrolytes have a large polymer size, so it is extremely difficult to uniformly and sufficiently dispose the electrolyte in a catalyst structure having a pore structure of a small size (several to several tens of nanometers). It is. On the other hand, by using an electrolyte precursor in a low molecular weight state, the electrolyte precursor can be easily introduced into the pore structure on which the catalyst particles are supported, and the applied polymerization reaction can be performed in situ. By immobilizing via, a sufficient electrolyte layer is formed in the vicinity of the catalyst particles. As a result, a high proton concentration state in the vicinity of platinum was created, which led to an increase in the three-phase interface area and a decrease in the natural potential.
本発明にかかる、燃料電池用電極の製造方法は、大きな三相界面面積と高い発電特性を有し、燃料電池用電極、並びにこれを用いた燃料電池に有用である。また、多孔質構造体中に微分散された電極粒子や触媒粒子への電解質の高密度固定化に有効であり、安価な電気化学電極等の用途にもひろく応用できる。 The method for producing a fuel cell electrode according to the present invention has a large three-phase interface area and high power generation characteristics, and is useful for a fuel cell electrode and a fuel cell using the same. In addition, it is effective for high-density immobilization of electrolytes on electrode particles or catalyst particles finely dispersed in a porous structure, and can be widely applied to uses such as inexpensive electrochemical electrodes.
Claims (4)
溶媒と、少なくとも電解質材料と、により電解質前駆体を調製する工程と、
前記触媒多孔構造体に前記電解質前駆体を塗布する工程と、
前記触媒多孔構造体に前記電解質前駆体を塗布することにより、触媒電解質複合前駆体を形成する工程と、前記触媒電解質複合前駆体に対して、減圧乾燥処理および加熱乾燥処理を行うことにより前記触媒電解質複合前駆体中に電解質層を形成する工程を含む、燃料電池用電極の製造方法。 Forming a catalyst porous structure in which the catalyst particles are made of fine carbon powder;
Preparing an electrolyte precursor with a solvent and at least an electrolyte material;
Applying the electrolyte precursor to the catalyst porous structure;
The step of forming a catalyst electrolyte composite precursor by applying the electrolyte precursor to the catalyst porous structure, and the catalyst electrolyte composite by performing reduced-pressure drying treatment and heat drying treatment on the catalyst electrolyte composite precursor. A method for producing an electrode for a fuel cell, comprising a step of forming an electrolyte layer in an electrolyte composite precursor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009097836A JP2012128946A (en) | 2009-04-14 | 2009-04-14 | Method for manufacturing electrode for fuel battery |
PCT/JP2009/005025 WO2010119492A1 (en) | 2009-04-14 | 2009-09-30 | Method for producing electrode for fuel cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009097836A JP2012128946A (en) | 2009-04-14 | 2009-04-14 | Method for manufacturing electrode for fuel battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012128946A true JP2012128946A (en) | 2012-07-05 |
Family
ID=42982176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009097836A Pending JP2012128946A (en) | 2009-04-14 | 2009-04-14 | Method for manufacturing electrode for fuel battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012128946A (en) |
WO (1) | WO2010119492A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4673623B2 (en) * | 2002-08-16 | 2011-04-20 | 猛央 山口 | ELECTRODE FOR FUEL CELL, FUEL CELL USING SAME, AND METHOD FOR PRODUCING THEM |
JP2003178770A (en) * | 2002-12-26 | 2003-06-27 | Sekisui Chem Co Ltd | Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same |
JP4418653B2 (en) * | 2003-07-10 | 2010-02-17 | 積水化学工業株式会社 | Electrode catalyst layer for polymer electrolyte fuel cell, electrode for polymer electrolyte fuel cell, polymer electrolyte fuel cell |
JP4977945B2 (en) * | 2003-12-18 | 2012-07-18 | トヨタ自動車株式会社 | Membrane electrode assembly, method for producing the same, and fuel cell |
JP2006331712A (en) * | 2005-05-24 | 2006-12-07 | Toyota Central Res & Dev Lab Inc | Catalyst layer and manufacturing method therefor, membrane electrode assembly, and polymer electrolyte fuel cell |
JP4923598B2 (en) * | 2006-02-02 | 2012-04-25 | トヨタ自動車株式会社 | Highly hydrophilic carrier, catalyst carrier, fuel cell electrode, method for producing the same, and polymer electrolyte fuel cell including the same |
JP2007213988A (en) * | 2006-02-09 | 2007-08-23 | Canon Inc | Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell |
-
2009
- 2009-04-14 JP JP2009097836A patent/JP2012128946A/en active Pending
- 2009-09-30 WO PCT/JP2009/005025 patent/WO2010119492A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2010119492A1 (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101830291B1 (en) | Highly durable electrode for membrane electrode assembly of polymer electrolyte fuel cells and method for preparing the same | |
KR102015028B1 (en) | Core-shell particle, polymer electrolyte membrane comprising the same, fuel cell or electrochemical cell comprising the polymer electrolyte membrane and method of manufacturing the core-shell particle | |
Singh et al. | High temperature polymer electrolyte membrane fuel cells with Polybenzimidazole-Ce0. 9Gd0. 1P2O7 and polybenzimidazole-Ce0. 9Gd0. 1P2O7-graphite oxide composite electrolytes | |
US10367219B2 (en) | Polymer electrolyte membrane, membrane electrode assembly comprising same, and fuel cell comprising membrane electrode assembly | |
KR100829060B1 (en) | A membrane-electrode binder having a dual electrode, the manufacturing method thereof, and a fuel electrode comprising thereof | |
JP5046307B2 (en) | Fuel cell electrode using triazole modified polymer and membrane electrode composite including the same | |
US7842422B2 (en) | Membrane-electrode assembly for fuel cell and fuel cell comprising the same | |
JP4524579B2 (en) | Proton conductive composite and electrochemical device | |
CN1925198A (en) | Catalyst for cathode of fuel cell, and membrane-electrode assembly for fuel cell | |
WO2010125618A1 (en) | Electrode for fuel cell, method for manufacturing the electrode, and fuel cell using the electrode | |
KR20110110600A (en) | A method of preparing a membrane-electrode assembly for a fuel cell | |
JP4531121B1 (en) | ELECTRODE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE SAME | |
CN112234218B (en) | Oxygen reduction catalyst, preparation process thereof, battery positive electrode, preparation process thereof and battery | |
JP2012128946A (en) | Method for manufacturing electrode for fuel battery | |
CN115397772A (en) | Porous silicon oxycarbide composite material and method for producing porous silicon oxycarbide composite material | |
KR100600150B1 (en) | Composite electrolyte membrane permeated by nano scale dendrimer and the method of preparing the same | |
JP4897119B2 (en) | Manufacturing method of cathode electrode for fuel cell and cathode electrode for fuel cell | |
KR20080041844A (en) | Membrane-electrode assembly for fuel cell, method of producing same, and fuel cell system comprising same | |
JP4271390B2 (en) | Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell | |
KR100759432B1 (en) | Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same | |
CN118140333A (en) | Electrode catalyst containing porous silicon oxycarbide composite material, electrode, fuel cell, and method for producing electrode catalyst containing porous silicon oxycarbide composite material | |
da Silva | Multi-stabilized hybrid membranes for fuel cell and electrolyzer | |
JP2011222350A (en) | Method of manufacturing oxygen reduction reaction electrode and fuel cell using the same | |
Narayanamoorthy et al. | Electroreduction of oxygen using platinum nanoparticles supported on carbon/conductive bipolymeric nanocomposite film for polymer electrolyte membrane fuel cells | |
JP2011187240A (en) | Method of manufacturing electrode for fuel cell, and fuel cell using the same |