JP2012122102A - Magnesium alloy sheet material improved in cold formability and strength, and method for producing the same - Google Patents

Magnesium alloy sheet material improved in cold formability and strength, and method for producing the same Download PDF

Info

Publication number
JP2012122102A
JP2012122102A JP2010273990A JP2010273990A JP2012122102A JP 2012122102 A JP2012122102 A JP 2012122102A JP 2010273990 A JP2010273990 A JP 2010273990A JP 2010273990 A JP2010273990 A JP 2010273990A JP 2012122102 A JP2012122102 A JP 2012122102A
Authority
JP
Japan
Prior art keywords
mass
magnesium alloy
alloy
rolling
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010273990A
Other languages
Japanese (ja)
Other versions
JP5692847B2 (en
Inventor
Yasumasa Chino
千野  靖正
Mitsuru Sakamoto
満 坂本
Xinsheng Huang
新ショウ 黄
Kazutaka Suzuki
一孝 鈴木
Mamoru Mabuchi
馬渕  守
Hideki Mori
英樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
National Institute of Advanced Industrial Science and Technology AIST
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Kyoto University
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Kyoto University, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Metals Ltd
Priority to JP2010273990A priority Critical patent/JP5692847B2/en
Publication of JP2012122102A publication Critical patent/JP2012122102A/en
Application granted granted Critical
Publication of JP5692847B2 publication Critical patent/JP5692847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a magnesium alloy sheet material having cold formability equal to that of an aluminum alloy and exhibiting excellent strength; a method for producing the magnesium alloy sheet material; and a member of the magnesium alloy sheet material.SOLUTION: This easily formable magnesium alloy sheet material having an Erichsen value of 7.0 or more and an yield stress in a TD direction of 90 MPa or more is produced by rolling an alloy at a sample surface temperature of 150°C to 450°C or below and then annealing the alloy. In the alloy, an additive amount of Zn is restricted in 2.61-6.20 mass%, 0.01-0.9 mass% of Ca is added or Ca and Sr are added so that the total amount of Ca and Sr is 0.01-1.5 mass% while a Ca concentration is restricted in 0.01-0.9 mass%, and, if required, 0.01-0.7 mass% of Zr and/or Mn is added. The member of the easily formable magnesium alloy sheet material is also produced. Thus, an inexpensive magnesium alloy can be positively applied to the press molding of home electric appliances, such as a digital camera, a notebook personal computer and a PDA.

Description

本発明は、優れた常温成形性と強度を有する易成形性マグネシウム合金板材、並びにその製造方法、及び易成形性マグネシウム合金板材を用いて作製したプレス成形体及びその部材に関するものであり、更に詳しくは、Zn、Ca、Sr、Zr、Mnを適当量添加したマグネシウム合金圧延材を、所定の条件で,圧延・焼鈍することにより、常温(30℃)で、アルミニウム合金(5000系もしくは6000系相当)に匹敵する成形性を付与し、更に、優れた強度(降伏応力)を付与することを可能とする、マグネシウム合金板材、その製造方法、そのプレス成形体及びその部材に関するものである。本発明は、宇宙・航空材料・電子機器材料、自動車部材等、幅広い分野で利用することが可能なマグネシウム合金製部材及び筐体に関する新技術・新製品を提供するものである。   The present invention relates to an easily formable magnesium alloy sheet having excellent room temperature formability and strength, a method for producing the same, a press-molded body produced using the easily formable magnesium alloy sheet, and a member thereof. Is an aluminum alloy (corresponding to 5000 series or 6000 series) at room temperature (30 ° C.) by rolling and annealing a rolled magnesium alloy material to which an appropriate amount of Zn, Ca, Sr, Zr, Mn is added under predetermined conditions. The present invention relates to a magnesium alloy sheet, a manufacturing method thereof, a press-molded body thereof, and a member thereof, which are capable of imparting formability comparable to that of a) and further capable of imparting excellent strength (yield stress). The present invention provides a new technology and a new product relating to a magnesium alloy member and a housing that can be used in a wide range of fields such as space / aviation materials / electronic device materials, automobile members, and the like.

マグネシウムは、実用構造金属材料中、最も低密度(=1.7g/cm)であり、金属材料特有の易リサイクル性を有し、資源も豊富に存在することから、次世代の構造用軽量材料として注目されている。 Magnesium has the lowest density (= 1.7 g / cm 3 ) among practical structural metal materials, has easy recyclability unique to metal materials, and has abundant resources. It is attracting attention as a material.

塑性加工プロセス、特に、板材のプレス成形は、高い歩留まりを保持しつつ、精密成形品・大型成形品を作製するための重要な手段であり、更に、成形と同時に、高強度・高靭性化を図ることができることから、この種のプロセスは、需要拡大の有効な手段と言える。マグネシウム合金製板材から、プレス成形により、成形体を作製する場合、薄肉、かつ高比強度な成形体を、安価なプロセスで作製することができ、家電製品筐体等の分野において、多くの需要が予測できる。   The plastic working process, especially press forming of plate materials, is an important means for producing precision molded products and large molded products while maintaining a high yield. In addition, high strength and high toughness are achieved simultaneously with forming. This kind of process can be said to be an effective means of expanding demand. When producing a compact from a magnesium alloy sheet by press molding, a thin and high specific strength compact can be produced by an inexpensive process. Can be predicted.

金属の塑性変形の基本となる転位の運動性は、すべり面間隔/原子間距離の比に影響されることが知られている。したがって、最密六方晶であるマグネシウム合金の場合、a軸長さとc軸長さの比(c/a比)が大きく(c/a=1.6236)、底面すべりと非底面すべりでは、転位の運動性に大きな違いが生じる。   It is known that dislocation motility, which is the basis of plastic deformation of metals, is affected by the ratio of slip plane spacing / interatomic distance. Therefore, in the case of a close-packed hexagonal magnesium alloy, the ratio of the a-axis length to the c-axis length (c / a ratio) is large (c / a = 1.6236). There is a big difference in motility.

そのため、マグネシウム合金の非底面すべりの臨界分解せん断応力(CRSS)は、常温において、他のすべり系と比較して、非常に大きく、常温成形性は、必然的に低い。更に、マグネシウム合金板材には、(0002)面が板面に対して平行に配向する、集合組織が形成されるため、塑性変形時の板厚方向の歪みが期待できず、そのことが、常温成形性を低める一因となっている。   Therefore, the critical decomposition shear stress (CRSS) of the non-bottom slip of the magnesium alloy is very large at room temperature as compared with other slip systems, and the room temperature formability is inevitably low. Furthermore, since a texture is formed in the magnesium alloy plate material in which the (0002) plane is oriented parallel to the plate surface, distortion in the plate thickness direction during plastic deformation cannot be expected. This contributes to lowering the moldability.

現在、幅広い分野で利用されているアルミニウム合金の常温成形性(エリクセン値)は、上記のマグネシウム合金よりも高く、5000系合金であると、8.3(5083−O材)、6000系合金であると、9.2(6061−T4材)、1000系合金であると、11.0(1100−O材)である(非特許文献1)。一方、従来の商用マグネシウム合金の常温成形性(エリクセン値)は、せいぜい2.0〜5.0である(非特許文献2)。   The room temperature formability (Ericsen value) of aluminum alloys currently used in a wide range of fields is higher than that of the above magnesium alloys, and is 8.3 (5083-O material) and 6000 series alloys. If it is, it is 11.0 (1100-O material) if it is 9.2 (6061-T4 material) and 1000 series alloy (Non-patent Document 1). On the other hand, the room temperature formability (Ericsen value) of conventional commercial magnesium alloys is at most 2.0 to 5.0 (Non-patent Document 2).

したがって、マグネシウム合金に関しても、今後、マグネシウム合金板材の著しい需要を見込むためには、アルミニウム合金板材に相当する常温成形性(常温でのエリクセン値が、少なくとも7.0以上)を付与することが必要であり、当技術分野においては、優れた易成形性を有する新しいマグネシウム合金板材の製造技術及びその製品を開発することが強く要請されている。   Therefore, regarding the magnesium alloy, it is necessary to provide room temperature formability (the Erichsen value at room temperature is at least 7.0 or higher) equivalent to the aluminum alloy sheet in order to anticipate significant demand for the magnesium alloy sheet in the future. In this technical field, it is strongly demanded to develop a manufacturing technology for a new magnesium alloy sheet having excellent easy formability and its product.

成形性に乏しいマグネシウム合金を、常温でプレス成形する手法としては、集合組織を制御したマグネシウム合金板材を利用することが挙げられる。近年、マグネシウム合金の集合組織を改質する手法として、マグネシウム合金板材に繰り返し曲げ加工を施す手法が提案されている。   As a technique for press-molding a magnesium alloy having poor formability at room temperature, use of a magnesium alloy sheet having a controlled texture can be mentioned. In recent years, a technique for repeatedly bending a magnesium alloy sheet has been proposed as a technique for modifying the texture of the magnesium alloy.

本手法は、主に汎用マグネシウム合金(Mg−Al−Zn−Mn系合金)を対象とし、その常温成形性を、アルミニウム合金並み(エリクセン値:6.5以上)に高めるものである(特許文献1)。しかし、本手法は、圧延プロセスにおいて、繰り返し曲げ加工を行う必要があり、既存の圧延設備を直接利用することができないという問題がある。   This method is mainly intended for general-purpose magnesium alloys (Mg—Al—Zn—Mn alloys), and its room temperature formability is improved to an aluminum alloy level (Ericsen value: 6.5 or more) (patent document). 1). However, this method has a problem that it is necessary to repeatedly perform bending in the rolling process, and the existing rolling equipment cannot be used directly.

近年、本発明者らは、マグネシウム合金の集合組織を改質する他の手法として、例えば、汎用マグネシウム合金(Mg−Al−Zn−Mn系合金)を、所定の試料温度、すなわち490℃〜566℃まで、短時間、好ましくは5分未満で昇温し、圧延率5%以上、好ましくは5〜50%の範囲で、熱間圧延を行い、圧延後に、焼鈍を行う手法を開発している(特許文献2)。   In recent years, as another technique for modifying the texture of a magnesium alloy, the present inventors have used a general-purpose magnesium alloy (Mg—Al—Zn—Mn alloy) at a predetermined sample temperature, that is, 490 ° C. to 566 ° C. Developed a technique to heat up to ℃ for a short time, preferably less than 5 minutes, perform hot rolling at a rolling rate of 5% or more, preferably 5 to 50%, and anneal after rolling. (Patent Document 2).

また、本発明者らは、汎用マグネシウム合金に対し、固相線温度より50℃低い温度から固相線温度までの温度範囲に加熱した試料を、一回又は複数回で圧延し、その後、温間、すなわち150〜300℃で、仕上げ圧延を実施し、圧延後に、焼鈍を行う手法を開発している(特許文献3)。   In addition, the inventors of the present invention rolled a sample heated to a temperature range from a temperature lower than the solidus temperature to 50 ° C. to the solidus temperature with respect to the general-purpose magnesium alloy one or more times, and then heated A method of carrying out finish rolling at 150 to 300 ° C. and annealing after rolling has been developed (Patent Document 3).

更に、本発明者らは、汎用マグネシウム合金(Mg−Al−Zn−Mn系合金)に、微量、すなわち0.01〜0.5質量%のカルシウムを添加した合金を、所定の試料温度、すなわち450〜566℃まで昇温し、圧延率5%以上の熱間圧延を行い、圧延後に、焼鈍を行う手法を開発している(特許文献4)。   Furthermore, the present inventors used a general sample magnesium alloy (Mg—Al—Zn—Mn alloy) added with a trace amount, that is, 0.01 to 0.5 mass% of calcium, at a predetermined sample temperature, that is, A technique has been developed in which the temperature is raised to 450 to 566 ° C., hot rolling with a rolling rate of 5% or more is performed, and annealing is performed after rolling (Patent Document 4).

上記手法により作製される圧延材は、いずれも、アルミニウム合金並みの常温成形性を示す。しかし、本手法は、圧延時に、試料を450℃以上に加熱する必要があり、試料の発火及び試料の酸化に関する問題があり、そのことが、実用化に際しての問題となっている。   Any of the rolled materials produced by the above method exhibits room temperature formability comparable to that of an aluminum alloy. However, in this method, it is necessary to heat the sample to 450 ° C. or higher at the time of rolling, and there are problems regarding ignition of the sample and oxidation of the sample, which is a problem in practical use.

一方、汎用マグネシウム合金とは異なる組成を有するマグネシウム合金に関しては、本発明者らは、規定量の軽希土類元素、Zn、Mn、Zrを添加したマグネシウム合金、もしくは規定量のCa、Zn、Al、Mn、Zrを添加したマグネシウム合金を、特定の条件で、熱間・温間圧延し、特定の条件で、焼鈍する手法を開発している。   On the other hand, regarding a magnesium alloy having a composition different from that of a general-purpose magnesium alloy, the present inventors have prepared a magnesium alloy to which a specified amount of light rare earth element, Zn, Mn, Zr is added, or a specified amount of Ca, Zn, Al, We are developing a technique in which Mn and Zr-added magnesium alloys are hot and warm rolled under specific conditions and annealed under specific conditions.

本手法により作製した板材の(0002)面集合組織には、板幅方向(TD方向)に、約35度傾いた極が現れ、アルミニウム合金並みの成形性(エリクセン値8.0以上)が発現する(特許文献5)。   In the (0002) plane texture of the plate produced by this method, a pole tilted by about 35 degrees appears in the plate width direction (TD direction), and the formability (Erichsen value of 8.0 or more) similar to that of an aluminum alloy is exhibited. (Patent Document 5).

しかし、本手法により得られる圧延材の(0002)面集合組織は、TD方向に、約35°傾いた極を有するため、圧延方向(RD方向)には、変形しにくいが、TD方向には、変形し易く、TD方向の強度(降伏応力)が低いことが、実用化に向けた課題となっている。   However, since the (0002) plane texture of the rolled material obtained by this method has a pole inclined about 35 ° in the TD direction, it is difficult to deform in the rolling direction (RD direction), but in the TD direction. Therefore, it is easy to deform and the strength in TD direction (yield stress) is low, which is a problem for practical use.

従来、アルミニウム合金並みの常温成形性を有するマグネシウム合金板材を作製する手段として、繰り返し曲げ加工を行う手法、汎用マグネシウム合金(Mg−Al−Zn−Mn系合金)を、高温で、圧延する手法、特定元素を微量添加したマグネシウム合金を、熱間加工する手法等、様々な方法が提案されている。しかし、いずれの手法も、1)既存の圧延機を用いて、2)試料の発火や酸化を心配する必要のない圧延温度で、3)圧延材に高い常温成形性と強度(降伏応力)を同時に付与すること、を、同時に満足することは困難であり、そのことが、マグネシウム合金板材の実用化に向けての課題となっていた。   Conventionally, as a means for producing a magnesium alloy sheet having room temperature formability comparable to that of an aluminum alloy, a technique of repeatedly bending, a technique of rolling a general-purpose magnesium alloy (Mg—Al—Zn—Mn alloy) at a high temperature, Various methods such as a method of hot working a magnesium alloy to which a specific element is added in a small amount have been proposed. However, in any of the methods, 1) using an existing rolling mill, 2) at a rolling temperature at which it is not necessary to worry about ignition or oxidation of the sample, and 3) high cold formability and strength (yield stress) on the rolled material At the same time, it is difficult to satisfy the requirements simultaneously, which has been a problem for the practical application of magnesium alloy sheet.

特開2005−298885号公報Japanese Patent Laid-Open No. 2005-29885 特開2010−133005号公報JP 2010-133005 A 特開2010−202897号公報JP 2010-202897 A 特願2010−044795Japanese Patent Application No. 2010-044795 特開2010−013725号公報JP 2010-013725 A

アルミニウムハンドブック(第4版),軽金属協会編(軽金属協会発行,東京,1989),p.98Aluminum Handbook (4th edition), Light Metal Association (published by Light Metal Association, Tokyo, 1989), p. 98 Y.Chino,H.Iwasaki and M.Mabuchi:Mater.Sci.Eng.A,Vol.466(2007),p.90Y. Chino, H .; Iwasaki and M.I. Mabuchi: Mater. Sci. Eng. A, Vol. 466 (2007), p. 90

このような状況の中で、本発明者らは、上記従来技術に鑑みて、既存の圧延機を利用する技術であり、また、発火や酸化が懸念される450℃を超えて試料を加熱する必要の無い技術であり、かつ、作製された板材に優れた常温成形性(エリクセン値で、7.0以上)と、強度(TD方向の降伏応力が、90MPa以上)を付与する技術、を開発することを目標として鋭意研究開発を重ねた結果、マグネシウムに、特定量のZn、Ca(もしくはCaとSr)、及び、必要により、Zr、Mnを添加した合金を、適当な条件で圧延し、更に、適当な熱処理に供することにより、既存の圧延機を用い、試料温度450℃以下の圧延で、優れた常温成形性と、強度(降伏応力)を有する、マグネシウム合金板材を作製することに成功し、本発明を完成するに至った。   In such a situation, the present inventors are a technique that uses an existing rolling mill in view of the above-described conventional technology, and heats a sample above 450 ° C. where ignition and oxidation are a concern. Developed a technology that is not necessary and that imparts excellent room temperature formability (Erichsen value of 7.0 or more) and strength (yield stress in the TD direction is 90 MPa or more) to the manufactured plate material. As a result of intensive research and development with the goal of doing, as a result of rolling a magnesium alloy with a specific amount of Zn, Ca (or Ca and Sr) and, if necessary, Zr, Mn, under suitable conditions, Furthermore, by using an appropriate heat treatment, a magnesium alloy sheet with excellent room temperature formability and strength (yield stress) was successfully produced by rolling at a sample temperature of 450 ° C or less using an existing rolling mill. And the present invention This has led to the formation.

本発明は、優れた常温成形性と、強度(降伏応力)を有する、易成形性マグネシウム合金板材及びその製造方法を提供することを目的とするものである。また、本発明は、該易成形性マグネシウム合金を成形して、複雑形状を有するマグネシウム合金製プレス成形体、及びそのマグネシウム合金製部材を常温で作製することを可能とする、当該マグネシウム合金プレス成形体の製造方法及びその製品を提供することを目的とするものである。   An object of the present invention is to provide an easily formable magnesium alloy sheet having excellent room temperature formability and strength (yield stress) and a method for producing the same. The present invention also provides a magnesium alloy press-molded body having a complex shape by molding the easily moldable magnesium alloy, and the magnesium alloy press-molded body that can be produced at room temperature. It aims at providing the manufacturing method of a body, and its product.

上記技術課題を解決するための本発明は、以下の技術的手段から構成される。
(1)質量%で、Znを2.61〜6.20%含有し、Caを0.01〜0.9%含有し、任意に、Sr、Zr、Mnの1種以上を含有し、残部が、Mg及び不可避不純物からなるMg合金を、試料表面温度150〜450℃まで加熱した状態で、少なくとも圧延率5%以上の圧延を施し、圧延後に、焼鈍を行うことを特徴とする易成形性マグネシウム合金板材の製造方法。
(2)質量%で、CaとSrの総量が0.01〜1.5%になるように、Srを含有する、前記(1)に記載の易成形性マグネシウム合金板材の製造方法。
(3)質量%で、Zr及び/又はMnを、0.01〜0.7%付加したMg合金を用いる、前記(1)又は(2)に記載の易成形性マグネシウム合金板材の製造方法。
(4)上記Mg合金を、試料表面温度150〜420℃まで加熱する、前記(1)から(3)のいずれかに記載の易成形性マグネシウム合金板材の製造方法。
(5)質量%で、Znを2.61〜6.20%含有し、Caを0.01〜0.9%を含有し、任意に、Sr、Zr、Mnの1種以上を含有し、残部が、Mg及び不可避不純物からなるMg合金圧延材であり、常温におけるエリクセン値が、少なくとも7.0以上である、易成形性マグネシウム合金板材。
(6)質量%で、CaとSrの総量が0.01〜1.5%になるように、Srを含有する、前記(5)に記載の易成形性マグネシウム合金板材。
(7)質量%で、Zr及び/又はMnを0.01〜0.7%付加したMg合金である、前記(5)又は(6)に記載の易成形性マグネシウム合金板材。
(8)XRD法(シュルツの反射法)による測定で、(0002)面集合組織の板幅方向に極を有する、前記(5)から(7)のいずれかに記載の易成形性マグネシウム合金板材。
(9)板幅方向に対して、平行に引張り変形を行う準静的室温引張り試験において、得られる0.2%耐力が、90MPa以上である、前記(5)から(8)のいずれかに記載の易成形性マグネシウム合金板材。
(10)前記(5)から(9)のいずれかに記載の易成形性マグネシウム合金板材の成形体からなることを特徴とするマグネシウム合金製プレス成形体。
(11)前記(10)に記載のマグネシウム合金製プレス成形体からなることを特徴とするマグネシウム合金製部材。
The present invention for solving the above technical problems is composed of the following technical means.
(1) By mass%, containing 2.61 to 6.20% Zn, 0.01 to 0.9% Ca, optionally containing one or more of Sr, Zr, Mn, the balance However, the Mg alloy composed of Mg and inevitable impurities is heated to a sample surface temperature of 150 to 450 ° C., subjected to rolling at a rolling rate of at least 5%, and annealed after rolling. Manufacturing method of magnesium alloy sheet.
(2) The method for producing an easily formable magnesium alloy sheet according to (1) above, containing Sr so that the total amount of Ca and Sr is 0.01 to 1.5% by mass%.
(3) The method for producing an easily formable magnesium alloy sheet according to (1) or (2), wherein an Mg alloy to which 0.01 to 0.7% of Zr and / or Mn is added in mass% is used.
(4) The method for producing an easily formable magnesium alloy sheet according to any one of (1) to (3), wherein the Mg alloy is heated to a sample surface temperature of 150 to 420 ° C.
(5) By mass%, containing 2.61 to 6.20% Zn, containing 0.01 to 0.9% Ca, optionally containing one or more of Sr, Zr, Mn, An easily formable magnesium alloy sheet material in which the balance is a Mg alloy rolled material composed of Mg and inevitable impurities, and the Erichsen value at room temperature is at least 7.0 or more.
(6) The easily formable magnesium alloy sheet according to (5), containing Sr so that the total amount of Ca and Sr is 0.01 to 1.5% by mass%.
(7) The easily formable magnesium alloy sheet according to (5) or (6), which is an Mg alloy added with 0.01 to 0.7% of Zr and / or Mn in mass%.
(8) The easily formable magnesium alloy sheet according to any one of (5) to (7), having a pole in the sheet width direction of the (0002) plane texture as measured by the XRD method (Schulz reflection method) .
(9) In the quasi-static room temperature tensile test in which tensile deformation is performed in parallel with the plate width direction, the 0.2% yield strength obtained is 90 MPa or more, and any of (5) to (8) The easily formable magnesium alloy sheet described.
(10) A magnesium alloy press-molded body comprising the easily-formable magnesium alloy sheet material according to any one of (5) to (9).
(11) A magnesium alloy member comprising the magnesium alloy press-molded body as described in (10) above.

次に、本発明について更に詳細に説明する。
本発明は、常温(30℃)で、エリクセン値が、7.0以上の優れた成形性を有し、かつTD方向の引張り降伏応力が90MPa以上の、優れた強度を有する、易成形性マグネシウム合金板材を製造する方法であって、Znの総量が、2.61〜6.20mass%(以下、質量%をmass%と記載する。)であり、Caの総量が、0.01〜0.9mass%であり、もしくは、Caを、0.01〜0.9mass%含有した上で、CaとSrを、総量として0.01〜1.5mass%含有し、必要に応じて、Zr及び/又はMnを、0.01〜0.7mass%含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材を、150〜450℃、より好ましくは、150〜420℃の試料温度まで昇温した上で、圧延率5%以上の圧延行い、圧延後に、焼鈍を行うことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is an easily moldable magnesium that has excellent formability at ordinary temperature (30 ° C.), an excellent Erichsen value of 7.0 or higher, and a tensile yield stress in the TD direction of 90 MPa or higher. A method for producing an alloy sheet, wherein the total amount of Zn is 2.61 to 6.20 mass% (hereinafter, mass% is described as mass%), and the total amount of Ca is 0.01 to 0.00. 9 mass%, or 0.01 to 0.9 mass% of Ca, and 0.01 to 1.5 mass% of Ca and Sr as a total amount, and if necessary, Zr and / or A magnesium alloy plate material containing 0.01 to 0.7 mass% of Mn and the balance being composed of Mg and inevitable impurities is heated to a sample temperature of 150 to 450 ° C., more preferably 150 to 420 ° C. On Rolling ratio of 5% or more of the rolling performed, after rolling, is characterized in that to perform annealing.

また、本発明は、Znの総量が、2.61〜6.20mass%であり、Caの総量が、0.01〜0.9mass%であり、もしくは、Caを、0.01〜0.9mass%含有した上で、Ca及びSrを、総量として0.01〜1.5mass%含有し、必要に応じて、Zr及び/又はMnを、0.01〜0.7mass%含有し、残部が、Mg及び不可避不純物からなる組成を有するマグネシウム合金板材であって、XRD法(シュルツの反射法)による測定で、(0002)面集合組織のTD方向に極を有し、エリクセン値で、少なくとも7.0以上の常温成形性を示し、更に、TD方向の室温引張り試験において、90MPa以上の降伏応力(0.2%耐力)を示すことを特徴とするものである。   In the present invention, the total amount of Zn is 2.61 to 6.20 mass%, the total amount of Ca is 0.01 to 0.9 mass%, or Ca is 0.01 to 0.9 mass%. In addition, Ca and Sr are contained in a total amount of 0.01 to 1.5 mass%, and if necessary, Zr and / or Mn is contained in an amount of 0.01 to 0.7 mass%, and the balance is A magnesium alloy sheet having a composition comprising Mg and inevitable impurities, having a pole in the TD direction of the (0002) plane texture as measured by XRD method (Schulz reflection method), and having an Erichsen value of at least 7. It exhibits a room temperature formability of 0 or more, and further exhibits a yield stress (0.2% yield strength) of 90 MPa or more in a room temperature tensile test in the TD direction.

更に、本発明は、上述の製造方法で作製した易成形性マグネシウム合金板材の成形体であって、上記のエリクセン値と、上記の降伏応力を示す、マグネシウム合金製プレス成形体、及び該マグネシウム合金製プレス成形体からなるマグネシウム合金部材の点に、特徴を有するものである。   Furthermore, the present invention is a molded body of a readily moldable magnesium alloy sheet produced by the above-described manufacturing method, the magnesium alloy press-molded body exhibiting the Erichsen value and the yield stress, and the magnesium alloy. It has characteristics in terms of magnesium alloy members made of a press-formed body.

本発明者らは、以前の研究において、Mg−Zn系合金に、微量の軽希土類元素(Ce、La、Nd、Pr、Y等)を添加した合金、もしくは、Mg−Zn系合金に、微量のCaを添加した合金を、熱間圧延に供し、更に、熱処理を行うと、エリクセン値8.0以上の優れた常温成形性が発現することを明らかにした。   In the previous studies, the inventors have made a slight amount of an alloy obtained by adding a small amount of light rare earth elements (Ce, La, Nd, Pr, Y, etc.) to an Mg—Zn alloy, or an Mg—Zn alloy. It was clarified that when the alloy containing Ca was subjected to hot rolling and further subjected to heat treatment, excellent room temperature formability with an Erichsen value of 8.0 or more was exhibited.

図1の(1)及び(2)は、Mg−1.5mass%Zn合金試料、及びMg−1.5mass%Zn−0.1mass%Ca合金試料を、試料温度450℃で、1パスあたりの圧下率を20%/パスとし、厚み5mmから1mmまで圧延した試料の、焼鈍後の(0002)面集合組織と常温エリクセン試験の結果である。   (1) and (2) in FIG. 1 show that an Mg-1.5 mass% Zn alloy sample and an Mg-1.5 mass% Zn-0.1 mass% Ca alloy sample are measured at a sample temperature of 450 ° C. per pass. It is the result of the (0002) plane texture and the room temperature Eriksen test after annealing of a sample rolled at a reduction rate of 20% / pass and a thickness of 5 mm to 1 mm.

なお、図1(1)及び(2)は、後に示す[比較例1]及び[比較例2]に相当する。図1(1)には、汎用マグネシウム合金圧延材に特有の集合組織が観察される。すなわち、ND方向(垂直方向)に対して平行な位置に、(0002)面のピークが現れる。   1 (1) and (2) correspond to [Comparative Example 1] and [Comparative Example 2] described later. In FIG. 1 (1), a texture specific to the general-purpose magnesium alloy rolled material is observed. That is, the peak of the (0002) plane appears at a position parallel to the ND direction (vertical direction).

一方、図1(2)には、ND方向からTD方向に、約35°回転した付近に、(0002)面の極が現れる。TD方向に広がりを持った集合組織を示すMg−1.5mass%Zn−0.1mass%Ca合金圧延材は、汎用マグネシウム合金よりも、ランダムな集合組織を有し、常温成形性は、著しく向上する。   On the other hand, in FIG. 1 (2), a pole on the (0002) plane appears in the vicinity of about 35 ° rotation from the ND direction to the TD direction. Mg-1.5mass% Zn-0.1mass% Ca alloy rolled material showing a texture with a spread in the TD direction has a random texture than general-purpose magnesium alloys, and room temperature formability is significantly improved. To do.

TD方向に、約35°回転した付近に、(0002)面の極が現れる集合組織は、c/a比の低いHCP金属(ZrやαTi)を、圧延した際に得られる集合組織と同じである。それゆえに、Mg−1.5mass%Zn−0.1mass%Ca合金圧延材に現れた特異な集合組織の形成は、Znと特定元素(軽希土類元素もしくはカルシウム)を添加した合金について、特定の条件で、圧延を行うと、c/a比が低くなった際に現れる効果と同様の効果(非底面すべりの活発化等)が発現し、それが、集合組織形成に影響を及ぼした結果であると考えることができる。   The texture in which the poles of the (0002) plane appear in the vicinity of about 35 ° rotated in the TD direction is the same as the texture obtained when rolling an HCP metal (Zr or αTi) with a low c / a ratio. is there. Therefore, the formation of a specific texture appearing in the Mg-1.5 mass% Zn-0.1 mass% Ca alloy rolled material is based on the specific conditions of the alloy to which Zn and a specific element (light rare earth element or calcium) are added. Then, when rolling is performed, the same effect as when the c / a ratio is lowered (such as activation of non-bottom slip) is exhibited, and this is the result of affecting the texture formation. Can be considered.

上述した以前の研究で作製された圧延材は、優れた常温成形性を示すが、TD方向に、約35°傾いた位置に、(0002)面の極を有するため、TD方向には変形し易いが、RD方向には変形しにくい欠点がある。ここで、下記の表1に、各種Mg合金の常温引張り特性を示す。表1の(1)と(2)は、Mg−1.5mass%Zn合金とMg−1.5mass%Zn−0.1mass%Ca合金の結果である。それぞれ、図1の(1)と(2)、もしくは[比較例1]と[比較例2]と同じ試料の結果である。   The rolled material produced in the previous research described above exhibits excellent room temperature formability, but has a (0002) plane pole at a position inclined about 35 ° in the TD direction, and therefore deforms in the TD direction. Although it is easy, there is a defect that it is difficult to deform in the RD direction. Here, Table 1 below shows room temperature tensile properties of various Mg alloys. (1) and (2) of Table 1 are the results of the Mg-1.5 mass% Zn alloy and the Mg-1.5 mass% Zn-0.1 mass% Ca alloy. These are the results of the same samples as (1) and (2) in FIG. 1 or [Comparative Example 1] and [Comparative Example 2], respectively.

Mg−1.5mass%Zn−0.1mass%Ca合金圧延材の結果に注目すると、RD方向に対して、0°の方向に引張り変形を加えた場合は、Mg−1.5mass%Zn合金よりも高い降伏応力を示すが、圧延方向に対して、45°、90°方向に引張り変形を加えた場合の降伏応力は、Mg−1.5mass%Zn合金よりも、著しく低い値を示す。この降伏応力の低下の原因は、(0002)面の極のTD方向への傾きに起因する。このような機械的特性の異方性を改善すること、すなわち、TD方向の降伏応力低下を抑制することが、当該マグネシウム合金圧延材を実用化する上での課題となっている。   Paying attention to the results of the Mg-1.5 mass% Zn-0.1 mass% Ca alloy rolled material, when tensile deformation is applied in the direction of 0 ° with respect to the RD direction, the Mg-1.5 mass% Zn alloy However, the yield stress when tensile deformation is applied in the 45 ° and 90 ° directions with respect to the rolling direction is significantly lower than that of the Mg-1.5 mass% Zn alloy. The cause of the decrease in yield stress is due to the inclination of the (0002) plane pole in the TD direction. Improving such anisotropy of mechanical properties, that is, suppressing a decrease in yield stress in the TD direction is a problem in putting the magnesium alloy rolled material into practical use.

そこで、本発明者らは、鋭意研究開発の結果、上記の圧延材に、高い常温成形性と優れた強度を同時に付与する手段として、マグネシウムに、高濃度のZnを固溶させることにより発現する固溶強化を積極的に利用することに着目した。   Therefore, as a result of earnest research and development, the present inventors express the above-mentioned rolled material by dissolving Zn at a high concentration in magnesium as a means for simultaneously imparting high room temperature formability and excellent strength. We focused on actively using solid solution strengthening.

本発明者らは、詳細かつ系統的な実験を試みた結果、Zn添加量を、2.61〜6.20mass%に限定し、微量添加する元素を、Ca(もしくはCaとSr)に限定した上で、所定濃度のCa(もしくはCaとSr)を添加し、必要に応じて、所定濃度のZr及び/又はMnを添加した合金試料を、試料表面温度150〜450℃で圧延し、焼鈍を行うと、優れた常温成形性と、優れた強度(降伏応力)が、同時に発現することを見出した。   As a result of trying detailed and systematic experiments, the present inventors limited the amount of Zn added to 2.61 to 6.20 mass%, and limited the element to be added in a small amount to Ca (or Ca and Sr). Above, a predetermined concentration of Ca (or Ca and Sr) is added, and if necessary, an alloy sample added with a predetermined concentration of Zr and / or Mn is rolled at a sample surface temperature of 150 to 450 ° C. and annealed. When it did, it discovered that the outstanding normal temperature moldability and the outstanding intensity | strength (yield stress) were expressed simultaneously.

ここで、図1の(3)に、Mg−3.0mass%Zn−0.1mass%Ca合金を350℃で圧延した試料の、焼鈍後の(0002)面集合組織とエリクセン試験結果を示す。図1の(3)は、後に示す[実施例2]に該当する。図1の(3)の(0002)面集合組織は、図1の(2)と同様に、ND方向からTD方向に、約35°回転した付近に、(0002)面の極を有し、TD方向に広がりを持った集合組織を示すため、アルミニウム合金並みの優れた常温成形性(エリクセン値:8.1)が発現する。   Here, (3) in FIG. 1 shows the (0002) plane texture and the Erichsen test result after annealing of a sample obtained by rolling an Mg-3.0 mass% Zn-0.1 mass% Ca alloy at 350 ° C. (3) in FIG. 1 corresponds to [Example 2] described later. The (0002) plane texture of (3) in FIG. 1 has a (0002) plane pole in the vicinity of about 35 ° rotation from the ND direction to the TD direction, as in (2) of FIG. Since it shows a texture having a spread in the TD direction, excellent room temperature formability (Ericsen value: 8.1) similar to that of an aluminum alloy is exhibited.

Mg−3.0mass%Zn−0.1mass%Ca合金圧延材[図1の(3)]が、特異な集合組織を示したのは、前述の通り、Mg−Zn合金に、微量のCaを添加することにより、c/a比が低まる時に発現する効果(非底面すべりの活発化)と同じ効果が発現し、それが、圧延時の材料変形メカニズムに影響を及ぼしたためと考えることができる。   The Mg-3.0 mass% Zn-0.1 mass% Ca alloy rolled material [(3) in FIG. 1] showed a unique texture as described above, because a small amount of Ca was added to the Mg-Zn alloy. By adding, the same effect as when the c / a ratio is lowered (activation of non-bottom slip) is manifested, which can be considered to have affected the material deformation mechanism during rolling. .

本発明者らは、更に、Caの他に、Srを付加的に添加すると、Caを単独で添加した時と同様に、もしくは相対的に、優れた常温成形性が発現することを見出した。図1の(4)は、Mg−3.0mass%Zn−0.1mass%Ca−0.1mass%Sr合金を、350℃で、圧延した試料の、焼鈍後の(0002)面集合組織とエリクセン試験の結果である。   The present inventors have further found that when Sr is additionally added in addition to Ca, excellent room temperature formability is exhibited in the same manner or relatively when Ca is added alone. (4) in FIG. 1 shows (0002) texture and Erichsen after annealing of a sample obtained by rolling an Mg-3.0 mass% Zn-0.1 mass% Ca-0.1 mass% Sr alloy at 350 ° C. It is a result of a test.

図1の(4)は、後に示す[実施例8]に該当する。図1の(4)に示す通り、Srを0.1mass%添加した合金は、Srを添加しない合金[図1の(3)]よりも、優れた常温成形性を示す。なお、図1の(3)、及び図1の(4)からは、Sr添加の有無に伴う底面集合組織の変化は確認できない。それゆえに、Srを添加することにより、常温成形性が向上する理由としては、Sr添加により、相対的に微細な結晶粒が得られたことが挙げられる。   (4) in FIG. 1 corresponds to [Embodiment 8] described later. As shown in FIG. 1 (4), an alloy added with 0.1 mass% of Sr exhibits a better room temperature formability than an alloy without adding Sr [(3) of FIG. 1]. In addition, from (3) of FIG. 1 and (4) of FIG. 1, the change of the bottom texture accompanying the presence or absence of Sr addition cannot be confirmed. Therefore, the reason why the room temperature formability is improved by adding Sr is that relatively fine crystal grains are obtained by adding Sr.

表1の(3)は、Mg−3.0mass%Zn−0.1mass%Ca合金を、350℃で圧延した試料の室温引張り試験の結果である。表1の(3)の試料は、図1の(3)の試料([実施例1])に該当する。表1の(3)の試料は、表1の(2)の試料よりも、高い降伏応力(0.2%耐力)を示し、圧延方向に対して、90°の引張り変形を加えた場合でも、94MPaの降伏応力を示す。   (3) in Table 1 is a result of a room temperature tensile test of a sample obtained by rolling an Mg-3.0 mass% Zn-0.1 mass% Ca alloy at 350 ° C. The sample of (3) in Table 1 corresponds to the sample of (3) in FIG. 1 ([Example 1]). The sample of (3) in Table 1 shows a higher yield stress (0.2% proof stress) than the sample of (2) in Table 1, and even when 90 ° tensile deformation is applied to the rolling direction. The yield stress is 94 MPa.

Mg−3.0mass%Zn−0.1mass%Ca合金圧延材[表1の(3)]が、相対的に高い降伏応力を示す理由としては、高濃度の亜鉛を添加することにより発現する固溶硬化が挙げられる。すなわち、高濃度の亜鉛添加により、母相(マグネシウム)内部に、単範囲規則格子が形成され、顕著な材料硬化が発現したと考えられる。この単範囲規則格子の形成による材料硬化は、後に示す実施例に示す通り、Srを添加しても発現する。   The reason why the Mg-3.0 mass% Zn-0.1 mass% Ca alloy rolled material ((3) in Table 1) exhibits a relatively high yield stress is that it is expressed by adding a high concentration of zinc. Examples include solution hardening. That is, it is considered that a single-range ordered lattice was formed in the matrix (magnesium) by adding a high concentration of zinc, and remarkable material hardening occurred. The material curing by the formation of the single range ordered lattice is manifested even when Sr is added, as shown in the examples described later.

なお、Zn添加量を、2.61〜6.20mass%に限定し、微量添加する元素をCa(もしくはCaとSr)に限定した上で、所定濃度のCa(もしくはCaとSr)を添加したMg合金を、図1の(2)([比較例2])と同じ条件で、圧延を行っても、優れた圧延材を作製することはできない。   The Zn addition amount was limited to 2.61 to 6.20 mass%, and the element to be added in a small amount was limited to Ca (or Ca and Sr), and then a predetermined concentration of Ca (or Ca and Sr) was added. Even if the Mg alloy is rolled under the same conditions as (2) in FIG. 1 ([Comparative Example 2]), an excellent rolled material cannot be produced.

ここで、各種Mg合金圧延材の圧延後の外観を、図2にまとめて示す。図2の(1)は、Mg−3.0mass%Zn合金試料の試料表面を350℃まで加熱した後に、圧延を行った試料であり、(2)は、Mg−3.0mass%Zn合金試料の試料表面を、400℃まで加熱した後に、圧延を行った試料であり、(3)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、480℃まで加熱した後に、圧延を行った試料である。   Here, the appearance after rolling of various Mg alloy rolled materials is shown together in FIG. (1) in FIG. 2 is a sample that was rolled after heating the sample surface of the Mg-3.0 mass% Zn alloy sample to 350 ° C., and (2) is an Mg-3.0 mass% Zn alloy sample. The sample surface was heated to 400 ° C. and then rolled, (3) after heating the sample surface of the Mg-3.0 mass% Zn—0.1Ca alloy sample to 480 ° C. This is a rolled sample.

図2の(4)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、300℃まで加熱した後に、圧延を行った試料であり、(5)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、350℃まで加熱した後に、圧延を行った試料であり、(6)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、400℃まで加熱した後に、圧延を行った試料である。   (4) in FIG. 2 is a sample in which the sample surface of the Mg-3.0 mass% Zn-0.1Ca alloy sample was heated to 300 ° C. and then rolled, and (5) is Mg-3. The sample surface of the 0 mass% Zn-0.1Ca alloy sample was heated to 350 ° C. and then rolled. (6) is the sample surface of the Mg-3.0 mass% Zn-0.1Ca alloy sample. The sample was rolled after heating to 400 ° C.

上記図2の(3)を除き、総圧延率80%(1パスあたりの圧延率20%)で、厚み5mmから1mmまでの圧延を行ったものである。図2の(1)、(2)、(3)、(4)、(5)、(6)は、それぞれ、後に示す[比較例3]、[比較例4]、[比較例5]、[実施例1]、[実施例2]、[実施例3]に該当する。   Except for (3) in FIG. 2 above, rolling was performed from a thickness of 5 mm to 1 mm at a total rolling rate of 80% (20% rolling rate per pass). (1), (2), (3), (4), (5), and (6) in FIG. 2 are respectively shown as [Comparative Example 3], [Comparative Example 4], [Comparative Example 5], This corresponds to [Example 1], [Example 2], and [Example 3].

マグネシウム合金は、一般的に、試料を、250℃以上に加熱すると、非底面すべりの活動が活発化し、その圧延特性は、著しく向上する。図2の(1)及び(2)に示す通り、Mg−3.0mass%Zn合金試料に関しても、試料温度を、350℃から400℃に高めることにより、耳割れの無い圧延材を作製することができる。この傾向は、亜鉛濃度の低いMg−Zn−Ca合金(Mg1.5mass%Zn−0.1mass%Ca合金[比較例2])においても、現れる。   In general, when a magnesium alloy is heated to 250 ° C. or more, the activity of non-bottom sliding is activated and the rolling characteristics thereof are remarkably improved. As shown in (1) and (2) of FIG. 2, for the Mg-3.0 mass% Zn alloy sample, the sample temperature is increased from 350 ° C. to 400 ° C. to produce a rolled material free from ear cracks. Can do. This tendency also appears in an Mg—Zn—Ca alloy having a low zinc concentration (Mg1.5 mass% Zn—0.1 mass% Ca alloy [Comparative Example 2]).

一方、Mg−Zn−Ca系合金(Mg−Zn−Ca−Sr系合金)のZn濃度を、2.61mass%以上に設定すると、上記と異なる圧延特性が発現する。図2の(4)及び(5)に示すように、合金試料の圧延温度が、300℃ないし350℃までの場合、試料温度を、300℃から350℃に高めることにより、耳割れの無い圧延材を作製することができる。   On the other hand, when the Zn concentration of the Mg—Zn—Ca alloy (Mg—Zn—Ca—Sr alloy) is set to 2.61% by mass or more, rolling characteristics different from the above appear. As shown in (4) and (5) of FIG. 2, when the rolling temperature of the alloy sample is 300 ° C. to 350 ° C., rolling without cracks by increasing the sample temperature from 300 ° C. to 350 ° C. A material can be produced.

一方、図2の(6)に示すように、合金試料の試料表面温度を、400℃以上に設定すると、圧延特性は劣化し、試料端部に耳割れが発生する。更に、試料表面温度を、450℃を超える高温に設定すると、わずかな圧下を加えただけで、破壊が生じる。   On the other hand, as shown in FIG. 2 (6), when the sample surface temperature of the alloy sample is set to 400 ° C. or higher, the rolling characteristics deteriorate, and an edge crack occurs at the end of the sample. Furthermore, when the sample surface temperature is set to a high temperature exceeding 450 ° C., destruction occurs only by applying a slight reduction.

例えば、合金試料を試料表面温度480℃で圧延を行うと、20%の圧下を加えただけで、板材は、破壊してしまう[図2の(3)]。このように、高濃度の亜鉛を添加したMg−Zn−Ca系合金(Mg−Zn−Ca−Sr系合金)の圧延特性は、公知のマグネシウム合金とは、逆の温度依存性を示す。   For example, when an alloy sample is rolled at a sample surface temperature of 480 ° C., the plate material is destroyed only by applying 20% reduction [(3) in FIG. 2]. As described above, the rolling characteristics of the Mg—Zn—Ca alloy (Mg—Zn—Ca—Sr alloy) to which high-concentration zinc is added show temperature dependence opposite to that of the known magnesium alloy.

高濃度の亜鉛を添加したMg−Zn−Ca系合金(Mg−Zn−Ca−Sr系合金)が、特異な圧延特性(圧延特性の逆温度依存性)を示す理由は、現在調査中であるが、推測される理由の一つとして、析出する金属間化合物の融点を挙げることができる。Ca−Zn合金の金属間化合物の融点は、比較的低く、CaZnやCaZnは、380〜420℃で融解してしまう。そのため、高濃度のZnを添加すると、低融点の金属間化合物が過度に析出し、見かけ上、特異な圧延特性(圧延特性の逆温度依存性)が発現したものと推測できる。 The reason why the Mg—Zn—Ca alloy (Mg—Zn—Ca—Sr alloy) added with high concentration of zinc exhibits unique rolling characteristics (inverse temperature dependence of rolling characteristics) is currently under investigation. However, one of the presumed reasons is the melting point of the precipitated intermetallic compound. The melting point of the intermetallic compound of the Ca—Zn alloy is relatively low, and Ca 3 Zn and Ca 7 Zn 4 are melted at 380 to 420 ° C. Therefore, when a high concentration of Zn is added, an intermetallic compound having a low melting point is excessively precipitated, and it can be presumed that apparent rolling characteristics (reverse temperature dependence of rolling characteristics) are manifested.

結果として、高濃度の亜鉛を含有したMg−Zn−Ca系合金を圧延するためには、圧延時の試料表面温度を、150〜450℃、より好ましくは、150〜420℃に設定し、圧延を行う必要がある。結果として、試料の発火及び試料の酸化を懸念する必要のない圧延温度で圧延を行っても、優れた常温成形性と強度(降伏応力)を有する高性能マグネシウム合金板材を作製することが可能である。   As a result, in order to roll a Mg-Zn-Ca alloy containing a high concentration of zinc, the sample surface temperature during rolling is set to 150 to 450 ° C, more preferably 150 to 420 ° C. Need to do. As a result, it is possible to produce high-performance magnesium alloy sheets with excellent room temperature formability and strength (yield stress) even when rolling at rolling temperatures that do not require concern about sample ignition and sample oxidation. is there.

以上の知見より、Zn添加量を、2.61〜6.20mass%に限定し、微量添加する元素を、Ca(もしくは、Ca+Sr)に限定した上で、所定濃度のCa(もしくは、Ca+Sr)を添加し、必要に応じて、所定の濃度のZr及び/又はMnを添加した合金試料を、試料表面温度150〜450℃、より好ましくは、150〜420℃で圧延し、焼鈍を行うことにより、エリクセン値7.0以上の優れた常温成形性と、優れた強度(TD方向の降伏応力が90MPa以上)を同時に示す、高性能マグネシウム合金板材を創製した。   From the above knowledge, the Zn addition amount is limited to 2.61 to 6.20 mass%, and the element to be added in a small amount is limited to Ca (or Ca + Sr), and then a predetermined concentration of Ca (or Ca + Sr) is added. By adding an alloy sample to which a predetermined concentration of Zr and / or Mn is added, if necessary, rolling at a sample surface temperature of 150 to 450 ° C., more preferably 150 to 420 ° C., and annealing, A high-performance magnesium alloy sheet was created that exhibits excellent room temperature formability with an Erichsen value of 7.0 or higher and excellent strength (yield stress in the TD direction of 90 MPa or higher) at the same time.

本発明のマグネシウム合金板材の成分及び作製条件の限定理由を説明すると、本発明の製造方法に適用されるマグネシウム合金は、Zn:2.61〜6.20mass%、Ca:0.01〜0.9mass%を含有し、残部が、Mg及び不可避不純物からなる成分組成を有するものであり、もしくは、Znを2.61〜6.20mass%、Caを0.01〜0.9mass%含有し、更に、CaとSrの総量が、0.01〜1.5mass%になるように、Srを含有し、残部が、Mg及び不可避不純物からなる成分組成を有するものである。また、必要に応じて、Zr及び/又はMnを、0.01〜0.7mass%付加した成分組成を有するものである。   Explaining the reasons for limiting the components and production conditions of the magnesium alloy sheet of the present invention, the magnesium alloy applied to the production method of the present invention is Zn: 2.61-6.20 mass%, Ca: 0.01-0. 9 mass% is contained, and the balance has a component composition consisting of Mg and inevitable impurities, or contains 2.61 to 6.20 mass% Zn, 0.01 to 0.9 mass% Ca, and , Sr is contained so that the total amount of Ca and Sr becomes 0.01 to 1.5 mass%, and the balance has a component composition consisting of Mg and inevitable impurities. Moreover, it has a component composition which added 0.01-0.7 mass% of Zr and / or Mn as needed.

Znの含有量は、有意の固溶硬化を達成するために、2.61〜6.20mass%の範囲内で添加されていることが好ましい。なお、2.61mass%以上のZnを添加すると、比較的融点の低いCa−Zn系金属間化合物が析出する可能性があるため、試料温度450℃以下で圧延を行う必要がある。なお、Znの添加量が6.20mass%を超えると、微細析出層が形成され、板材の強度は著しく向上するが、常温成形性が著しく劣化するため、6.20mass%を超える亜鉛添加は、避けるべきである。   The Zn content is preferably added in the range of 2.61 to 6.20 mass% in order to achieve significant solid solution hardening. In addition, since addition of 2.61 mass% or more of Zn may cause precipitation of a Ca—Zn-based intermetallic compound having a relatively low melting point, it is necessary to perform rolling at a sample temperature of 450 ° C. or less. In addition, when the addition amount of Zn exceeds 6.20 mass%, a fine precipitation layer is formed, and the strength of the plate material is remarkably improved. However, since the room temperature formability is remarkably deteriorated, zinc addition exceeding 6.20 mass% is Should be avoided.

Caの含有量は、0.01〜0.9mass%の範囲で添加されることが好ましく、0.01mass%未満であると、集合組織形成に有意の変化が現れなくなる。一方、0.9mass%を超えるカルシウムを添加すると、MgCa等の粗大な金属間化合物が、粒内・粒界に析出し、熱間加工性、常温成形性に悪影響を及ぼすため、避けるべきである。 The Ca content is preferably added in the range of 0.01 to 0.9 mass%, and if it is less than 0.01 mass%, no significant change appears in the texture formation. On the other hand, if calcium exceeding 0.9 mass% is added, coarse intermetallic compounds such as Mg 2 Ca are precipitated in the grains and at the grain boundaries, which adversely affects hot workability and room temperature formability. It is.

Caの他に、Srを付加的に添加すると、Caを単独で添加した時と同様に、もしくはCaを単独添加した時よりも、優れた強度と成形性が発現する。CaとSrを同時に添加する場合は、MgCa等の粗大な金属間化合物の析出を抑制しつつ、有意の集合組織変形を起こすために、Caの含有量を、0.01〜0.9mass%と限定し、更に、CaとSrの総量を、0.01〜1.5mass%と限定することが望ましい。 When Sr is additionally added in addition to Ca, superior strength and formability are exhibited in the same manner as when Ca is added alone or when Ca is added alone. When Ca and Sr are added simultaneously, in order to cause significant texture deformation while suppressing precipitation of coarse intermetallic compounds such as Mg 2 Ca, the Ca content is set to 0.01 to 0.9 mass. It is desirable to limit the total amount of Ca and Sr to 0.01 to 1.5 mass%.

Mn、Zrの添加は、マグネシウム合金板材の結晶粒径を微細にするため、材料強化に有効である。一方、Mn、Zrを一定以上添加すると、粗大なMn、Zr相、もしくはMn、Zr基金属間化合物相が内部に形成され、材料の成形性・延性が劣化する。それゆえに、Mn、Zrの添加量は、0.01〜0.7mass%と設定すべきである。   The addition of Mn and Zr is effective for strengthening the material because the crystal grain size of the magnesium alloy sheet is made fine. On the other hand, when Mn and Zr are added in a certain amount or more, coarse Mn and Zr phases or Mn and Zr-based intermetallic compound phases are formed inside, and the formability and ductility of the material deteriorate. Therefore, the addition amount of Mn and Zr should be set to 0.01 to 0.7 mass%.

上述の通り、合金試料の圧延に際しては、試料表面温度を150〜450℃、より好ましくは、150〜420℃に設定した上で、圧延を行うと、耳割れ無い圧延材を作製することができる。なお、圧延前の試料加熱時間は、Ca(もしくは、Ca及びSr)を微量添加した商用マグネシウム合金板材の集合組織形成には、大きな影響を及ぼさないので、試料加熱時間は、任意に設定することができる。   As described above, when rolling an alloy sample, when the sample surface temperature is set to 150 to 450 ° C., and more preferably 150 to 420 ° C., and rolling is performed, a rolled material with no ear cracks can be produced. . Note that the sample heating time before rolling does not have a significant effect on the texture formation of commercial magnesium alloy sheets with a small amount of Ca (or Ca and Sr) added, so the sample heating time should be set arbitrarily. Can do.

試料に、目的の集合組織を造りこむためには、熱間圧延中に、十分な塑性変形を板材に付与する必要がある。具体的には、全圧延プロセスにおいて、少なくとも所定の試料温度で、5%以上の圧下を行うことが望ましい。   In order to build the target texture in the sample, it is necessary to impart sufficient plastic deformation to the plate during hot rolling. Specifically, it is desirable to perform a reduction of 5% or more at least at a predetermined sample temperature in the entire rolling process.

熱間圧延後の試料内部には、高密度の転位が蓄積されているため、板材の常温成形を行う前に、熱処理(完全焼き鈍し)を行うことが望ましい。具体的には、300〜450℃にて、10分以上の熱処理に供した後に、プレス成形に供することが望ましい。   Since high-density dislocations are accumulated inside the sample after hot rolling, it is desirable to perform heat treatment (complete annealing) before forming the plate material at room temperature. Specifically, it is desirable to subject to press molding after being subjected to heat treatment at 300 to 450 ° C. for 10 minutes or longer.

上記の発明要素を駆使して作製されたマグネシウム合金板材は、常温(30℃)で、アルミニウム合金に相当する成形性(エリクセン値で、少なくとも7.0以上)を示す。ここでは、マグネシウム合金板材の成形性を表す指標として、エリクセン値を採用した。エリクセン試験は、JIS B7729及びJIS Z2274に準ずる試験を指す。   The magnesium alloy sheet produced by making full use of the above inventive elements exhibits formability (Erichsen value of at least 7.0 or more) corresponding to an aluminum alloy at room temperature (30 ° C.). Here, the Erichsen value was adopted as an index representing the formability of the magnesium alloy sheet. The Eriksen test refers to a test according to JIS B7729 and JIS Z2274.

上記の発明要素を駆使して作製されたマグネシウム合金板材は、相対的に高い強度(降伏応力)を示す。ここでは、高い強度(降伏応力)を示す指標値として、準静的常温引張り試験により得られる0.2%耐力を採用し、圧延方向と引張り方向が90°の条件で得られる、0.2%耐力を降伏応力と定義し、指標値とした。準静的引張り試験とは、引張り試験を実施する時の初期ひずみ速度が10−4〜10−1(s−1)の引張り試験を指す。 The magnesium alloy sheet produced by making full use of the above inventive elements exhibits a relatively high strength (yield stress). Here, as an index value indicating high strength (yield stress), 0.2% yield strength obtained by a quasi-static room temperature tensile test is adopted, and the rolling direction and the tensile direction are obtained under the condition of 90 °, 0.2 % Proof stress was defined as yield stress and used as an index value. The quasi-static tensile test refers to a tensile test having an initial strain rate of 10 −4 to 10 −1 (s −1 ) when performing the tensile test.

本発明により、次のような効果が奏される。
(1)Zn添加量を、2.61〜6.20mass%に限定し、微量添加する元素を、Ca(もしくは、CaとSr)に限定した上で、Caの濃度を、0.01〜0.9mass%(もしくは、CaとSrの総量を、0.01〜0.15mass%)添加し、必要に応じて、Zr及び/又はMnを、0.01〜0.7mass%添加した合金を、試料表面温度150〜450℃、より好ましくは、150〜420℃で圧延し、焼鈍を行うことにより、優れた常温成形性と強度を有するマグネシウム合金板材を作製することができる。
(2)本発明を利用すると、試料表面温度150〜450℃、より好ましくは、150〜420℃の圧延により、優れた常温成形性と強度を有するマグネシウム合金板材を作製することができ、圧延時の試料の発火を懸念することなく、圧延を行うことができ、更に、試料表面の酸化を懸念することなく、圧延を行うことができる。
(3)得られた板材は、優れた常温成形性(エリクセン値7.0以上)を示し、更に、優れた強度(圧延方向と引張り方向が90°の条件で得られる降伏応力が、90MPa以上)を示すマグネシウム合金板材であり、幅広い用途に適用可能なマグネシウム合金板材を提供することができる。
(4)本発明を利用すると、既存の圧延装置を利用して、優れた常温成形性と優れた強度を示す板材を作製することが可能であり、低コストで板材を作製することができる。
(5)上記マグネシウム合金板材を、常温成形することにより、マグネシウム合金製プレス成形体を作製し、提供することができる。
(6)上記マグネシウム合金製プレス成形体からなる筐体等のマグネシウム合金製部材を作製し、提供することができる。
The present invention has the following effects.
(1) The Zn addition amount is limited to 2.61 to 6.20 mass%, the element to be added in a small amount is limited to Ca (or Ca and Sr), and the Ca concentration is set to 0.01 to 0. .9 mass% (or a total amount of Ca and Sr of 0.01 to 0.15 mass%) is added, and if necessary, an alloy to which Zr and / or Mn is added in an amount of 0.01 to 0.7 mass%, A magnesium alloy sheet having excellent room temperature formability and strength can be produced by rolling at a sample surface temperature of 150 to 450 ° C., more preferably 150 to 420 ° C., and annealing.
(2) Using the present invention, a magnesium alloy sheet having excellent room temperature formability and strength can be produced by rolling at a sample surface temperature of 150 to 450 ° C., more preferably 150 to 420 ° C. The rolling can be performed without concern about the ignition of the sample, and the rolling can be performed without concern about the oxidation of the sample surface.
(3) The obtained plate material exhibits excellent room temperature formability (Erichsen value of 7.0 or more), and further has an excellent strength (yield stress of 90 MPa or more obtained when the rolling direction and the tensile direction are 90 °). And a magnesium alloy plate material applicable to a wide range of uses.
(4) By using the present invention, it is possible to produce a plate material exhibiting excellent room temperature formability and excellent strength using an existing rolling apparatus, and it is possible to produce a plate material at low cost.
(5) A magnesium alloy press-molded body can be produced and provided by forming the magnesium alloy sheet material at room temperature.
(6) A magnesium alloy member such as a casing made of the magnesium alloy press-formed body can be produced and provided.

マグネシウム合金圧延材の(0002)面集合組織とエリクセン試験の結果を示す。図中、(1)は、Mg−1.5mass%Zn合金を、450℃のマッフル炉に、20分間保持した後に、圧延を行った試料である。(2)は、Mg−1.5mass%Zn−0.1mass%Ca合金を、450℃のマッフル炉に、20分間保持した後に、圧延を行ったものである。(3)は、Mg−3.0mass%Zn−0.1mass%Ca合金試料の試料表面を、350℃まで加熱した後に、圧延を行った試料である。(4)は、Mg−3.0mass%Zn−0.1mass%Ca−0.1mass%Sr合金試料の試料表面を、350℃まで加熱した後に、圧延を行った試料である。いずれの試料の総圧延率も、80%(1パスあたりの圧延率20%)であり、厚み5mmから1mmの圧延を行ったものであり、圧延後に、350℃(90分)の焼鈍に供したものである。The (0002) plane texture of the rolled magnesium alloy and the results of the Erichsen test are shown. In the figure, (1) is a sample obtained by rolling an Mg-1.5 mass% Zn alloy after holding it in a muffle furnace at 450 ° C. for 20 minutes. In (2), the Mg-1.5 mass% Zn-0.1 mass% Ca alloy is rolled after being held in a muffle furnace at 450 ° C. for 20 minutes. (3) is a sample which was rolled after heating the sample surface of the Mg-3.0 mass% Zn-0.1 mass% Ca alloy sample to 350 ° C. (4) is a sample obtained by rolling the sample surface of the Mg-3.0 mass% Zn-0.1 mass% Ca-0.1 mass% Sr alloy sample to 350 ° C. and then rolling it. The total rolling rate of any sample is 80% (rolling rate 20% per pass), and is rolled from 5 mm to 1 mm in thickness. After rolling, it is subjected to annealing at 350 ° C. (90 minutes). It is a thing. 図2は、マグネシウム合金圧延材の外観を示す。図中、(1)は、Mg−3.0mass%Zn合金試料の試料表面を、350℃まで加熱した後に、圧延を行った試料である。(2)は、Mg−3.0mass%Zn合金試料の試料表面を、400℃まで加熱した後に、圧延を行った試料である。(3)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、480℃まで加熱した後に、圧延を行った試料であり、圧延率20%の圧延を1回行っただけで、試料は破断した。(4)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、300℃まで加熱した後に、圧延を行った試料である。(5)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、350℃まで加熱した後に、圧延を行った試料である。(6)は、Mg−3.0mass%Zn−0.1Ca合金試料の試料表面を、400℃まで加熱した後に、圧延を行った試料である。上記(3)以外の試料は、総圧延率80%(1パスあたりの圧延率20%)で、厚み5mmから1mmまでの圧延を行ったものである。FIG. 2 shows the appearance of the magnesium alloy rolled material. In the figure, (1) is a sample that was rolled after the sample surface of the Mg-3.0 mass% Zn alloy sample was heated to 350 ° C. (2) is a sample obtained by rolling the sample surface of the Mg-3.0 mass% Zn alloy sample to 400 ° C. and then rolling it. (3) is a sample obtained by rolling the sample surface of the Mg-3.0 mass% Zn-0.1Ca alloy sample to 480 ° C. and then rolling it at a rolling rate of 20% once. The sample broke. (4) is a sample that was rolled after the sample surface of the Mg-3.0 mass% Zn-0.1Ca alloy sample was heated to 300 ° C. (5) is a sample obtained by rolling the sample surface of the Mg-3.0 mass% Zn-0.1Ca alloy sample to 350 ° C. and then rolling it. (6) is a sample obtained by rolling the sample surface of the Mg-3.0 mass% Zn-0.1Ca alloy sample to 400 ° C. and then rolling it. Samples other than the above (3) were rolled from 5 mm to 1 mm in thickness at a total rolling rate of 80% (rolling rate per pass of 20%).

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

以下の実施例及び比較例では、以下に示す試験方法により、試料を作製し、評価を行った。すなわち、高周波炉を用いて、純Mgを溶解した後、Zn、Ca、Sr、Zr、Mnを、適宜添加することにより、Mg合金を作製した。上記Mg合金のインゴット(50×30×50mm)を、熱間押出し(押出し温度:300℃、押出し速度:5mm/min、押出し比:6)に供し、押出し板材(断面積:50×5mm)を作製した。得られた押出し板材より、60mm×50mm×5mmの試験片を切出し、それらの試験片を、圧延に供した。 In the following examples and comparative examples, samples were prepared and evaluated by the test methods shown below. That is, after melting pure Mg using a high frequency furnace, Zn, Ca, Sr, Zr, and Mn were appropriately added to prepare an Mg alloy. The Mg alloy ingot (50 × 30 × 50 mm 3 ) was subjected to hot extrusion (extrusion temperature: 300 ° C., extrusion speed: 5 mm / min, extrusion ratio: 6), and extruded plate material (cross-sectional area: 50 × 5 mm 2). ) Was produced. From the obtained extruded plate material, 60 mm × 50 mm × 5 mm test pieces were cut out, and these test pieces were subjected to rolling.

圧延に際しては、後に示す[比較例1]及び[比較例2]に関しては、450℃に保持したマッフル炉に、試料を、20分間保持した後、この試料を、圧延速度5m/min、1パス毎の圧下率20%の圧延に供した。この圧延を、繰り返すことにより、厚み5mmから1mmまで、圧延を行った。最後に、得られた圧延材を、350℃で、90分の熱処理に供した。   During rolling, for [Comparative Example 1] and [Comparative Example 2] shown later, after holding the sample in a muffle furnace maintained at 450 ° C. for 20 minutes, the sample was rolled at a rolling speed of 5 m / min and 1 pass. It was subjected to rolling at a rolling reduction of 20%. By repeating this rolling, the rolling was performed from 5 mm to 1 mm in thickness. Finally, the obtained rolled material was subjected to a heat treatment at 350 ° C. for 90 minutes.

他の試料ついては、目的とする試料温度よりも、20℃高めに設定したマッフル炉内に、試料を挿入し、この試料が、所定の温度に到達した時点で、該試料を、圧延速度5m/min、1パス毎の圧下率20%の圧延に供した。各試料の圧延時の試料表面温度を、後に示す表2に記載した。   For other samples, the sample was inserted into a muffle furnace set 20 ° C. higher than the target sample temperature, and when the sample reached a predetermined temperature, the sample was rolled at a rolling speed of 5 m / min. Min. Rolled at a rolling reduction of 20% per pass. Table 2 shows the sample surface temperature during rolling of each sample.

この圧延を、繰り返すことにより、厚み5mmから1mmまで、圧延を行った。最後に、得られた圧延材を、350℃で、90分の熱処理に供した。なお、ロール直径は152mmであり、ロール温度は90℃とした。ロールと試料の潤滑剤として、エステル系の熱間圧延用潤滑剤を用いた。   By repeating this rolling, the rolling was performed from 5 mm to 1 mm in thickness. Finally, the obtained rolled material was subjected to a heat treatment at 350 ° C. for 90 minutes. The roll diameter was 152 mm and the roll temperature was 90 ° C. As a roll and sample lubricant, an ester-based hot rolling lubricant was used.

なお、後に示す[比較例5]に関しては、1回目の圧延において、試料が破壊してしまったため、それ以上の圧延は、実施しなかった。   In addition, regarding [Comparative Example 5] shown later, since the sample was destroyed in the first rolling, no further rolling was performed.

作製したマグネシウム合金板材の、常温成形性を評価するために、エリクセン試験を実施した。エリクセン試験は、JIS B7729及びJIS Z2247に準拠して実施した。なお、ブランクの形状は、板材形状の都合上、φ60mm(厚み1mm)とした。金型(試料)温度は、30℃とし、成形速度は、5mm/minとし、しわ押さえ力は、10kNとした。潤滑剤には、グラファイトグリスを利用した。   In order to evaluate the room temperature formability of the produced magnesium alloy sheet, an Erichsen test was performed. The Eriksen test was conducted according to JIS B7729 and JIS Z2247. In addition, the shape of the blank was set to φ60 mm (thickness 1 mm) for the convenience of the plate material shape. The mold (sample) temperature was 30 ° C., the molding speed was 5 mm / min, and the wrinkle holding force was 10 kN. Graphite grease was used as the lubricant.

作製したマグネシウム合金板材の強度(降伏応力)を調査するために、常温引張特性を実施した。試験片の平行部長さは、10mm、平行部幅は、5mm、平行部厚みは、1.0mmとした。圧延方向と引張り方向の角度が90°となる引張り試験片を、圧延材から切り出し、引張り試験を行い、0.2%耐力を測定し、降伏応力とした。引張り試験を実施する際の、初期ひずみ速度は、1.7×10−3−1とした。 In order to investigate the strength (yield stress) of the produced magnesium alloy sheet, room temperature tensile properties were performed. The parallel part length of the test piece was 10 mm, the parallel part width was 5 mm, and the parallel part thickness was 1.0 mm. A tensile test piece having an angle between the rolling direction and the tensile direction of 90 ° was cut out from the rolled material, subjected to a tensile test, and 0.2% proof stress was measured to obtain a yield stress. The initial strain rate when carrying out the tensile test was 1.7 × 10 −3 s −1 .

上記マグネシウム合金板材の(0002)面集合組織を、XRD法(シュルツの反射法)により測定した。測定に際しては、圧延材より、20mm×20mm×1mmの板材を切り出し、RD−TD面を、厚み0.5mmまで面削した上で、#4000のSiC研磨紙で、表面研磨を実施した試料を利用した。測定データを、ランダムデータ(粉末データ)で規格化した後に、TD方向の極の有無を確認した。   The (0002) plane texture of the magnesium alloy sheet was measured by the XRD method (Schulz reflection method). At the time of measurement, a 20 mm × 20 mm × 1 mm plate was cut out from the rolled material, the RD-TD surface was chamfered to a thickness of 0.5 mm, and a sample subjected to surface polishing with # 4000 SiC abrasive paper was prepared. used. After the measurement data was normalized with random data (powder data), the presence or absence of a pole in the TD direction was confirmed.

各試料のエリクセン値、引張り試験の結果、集合組織測定の結果を、下記の表2にまとめて示す。   Table 2 below summarizes the results of the Erichsen value, tensile test, and texture measurement of each sample.

[実施例1]〜[実施例6]
実施例1〜6では、Zn添加量を、2.61〜6.20mass%に設定し、Ca添加量を、0.01〜0.9mass%に設定した合金試料を、試料表面温度150〜450℃まで加熱して、圧延した。請求項に規定した合金組成で、所定の圧延を実施すると、優れた常温成形性と、優れた強度が同時に発現した。
[Example 1] to [Example 6]
In Examples 1 to 6, an alloy sample in which the Zn addition amount was set to 2.61 to 6.20 mass% and the Ca addition amount was set to 0.01 to 0.9 mass%, the sample surface temperature was 150 to 450. Heated to 0 ° C. and rolled. When predetermined rolling was performed with the alloy composition defined in the claims, excellent room temperature formability and excellent strength were exhibited at the same time.

[実施例7]〜[実施例19]
実施例7〜19では、Zn添加量を、2.61〜6.20mass%に設定し、Caを0.01〜0.9mass%含有し、また、CaとSrの総量が0.01〜1.5mass%になるようにSrを含有した合金試料を、試料表面温度150〜450℃まで加熱して、圧延した。請求項に規定した合金組成で、所定の圧延を実施すると、優れた常温成形性と、優れた強度が同時に発現した。
[Example 7] to [Example 19]
In Examples 7 to 19, the Zn addition amount is set to 2.61 to 6.20 mass%, Ca is contained to 0.01 to 0.9 mass%, and the total amount of Ca and Sr is 0.01 to 1%. An alloy sample containing Sr so as to be 0.5 mass% was heated to a sample surface temperature of 150 to 450 ° C. and rolled. When predetermined rolling was performed with the alloy composition defined in the claims, excellent room temperature formability and excellent strength were exhibited at the same time.

[実施例20]〜[実施例21]
実施例20〜21では、Zn添加量を、2.61〜6.20mass%に設定し、Caを0.01〜0.9mass%含有し、また、CaとSrの総量が0.01〜1.5mass%になるようにSrを含有し、更に、Zr及び/又はMnを、0.01〜0.7mass%含有した合金試料を、試料表面温度150〜450℃まで加熱して、圧延した。請求項に規定した合金組成で、所定の圧延を実施すると、優れた常温成形性と、優れた強度が同時に発現した。
[Example 20] to [Example 21]
In Examples 20 to 21, the Zn addition amount is set to 2.61 to 6.20 mass%, Ca is contained to 0.01 to 0.9 mass%, and the total amount of Ca and Sr is 0.01 to 1%. An alloy sample containing Sr in an amount of 0.5 mass% and further containing Zr and / or Mn in an amount of 0.01 to 0.7 mass% was heated to a sample surface temperature of 150 to 450 ° C. and rolled. When predetermined rolling was performed with the alloy composition defined in the claims, excellent room temperature formability and excellent strength were exhibited at the same time.

[比較例1]及び[比較例2]
比較例1、2では、Zn添加量を、2.61mass%未満に設定した。Caを添加していない[比較例1]の(0002)面集合組織は、TD方向の極を持たないため、低いエリクセン値を示した。また、[比較例2]の(0002)面集合組織には、TD方向の極が確認できるため、優れた常温成形性が発現した。しかし、Zn濃度が低いため、降伏応力は、低い値を示した。
[Comparative Example 1] and [Comparative Example 2]
In Comparative Examples 1 and 2, the Zn addition amount was set to less than 2.61 mass%. The (0002) plane texture of [Comparative Example 1] to which no Ca was added did not have a pole in the TD direction, and thus showed a low Erichsen value. Moreover, since the pole of the TD direction can be confirmed in the (0002) plane texture of [Comparative Example 2], excellent room temperature formability was exhibited. However, since the Zn concentration was low, the yield stress was low.

[比較例3]及び[比較例4]
比較例3、4では、Zn添加量を、2.61mass%以上に設定したが、Caは、添加していない。いずれも、圧延材の0.2%耐力は、90MPa以上の高い強度を示した。一方、[比較例3]及び[比較例4]の(0002)面集合組織には、TD方向の極が発現しないため、低いエリクセン値を示した。
[Comparative Example 3] and [Comparative Example 4]
In Comparative Examples 3 and 4, the Zn addition amount was set to 2.61 mass% or more, but Ca was not added. In any case, the 0.2% yield strength of the rolled material showed a high strength of 90 MPa or more. On the other hand, in the (0002) plane textures of [Comparative Example 3] and [Comparative Example 4], the pole in the TD direction did not appear, and therefore a low Erichsen value was shown.

[比較例5]
比較例5では、Zn添加量を、2.61mass%以上に設定し、Caを0.1mass%添加した合金試料を、請求項で規定した圧延温度よりも高温で、圧延した。450℃を超える温度で圧延を実施すると、わずかな圧下を加えただけで、試料は、破壊してしまい、圧延材を作製することはできなかった。
[Comparative Example 5]
In Comparative Example 5, the amount of Zn added was set to 2.61 mass% or more, and an alloy sample added with 0.1 mass% of Ca was rolled at a temperature higher than the rolling temperature specified in the claims. When rolling was performed at a temperature exceeding 450 ° C., the sample was broken even if a slight reduction was applied, and a rolled material could not be produced.

[比較例6]及び[比較例7]
比較例6、7では、Zn添加量を、2.61mass%以上に設定し、Caを0.9mass%以上(1.0mass%)添加し、Srを所定量(0.1mass%)添加した合金試料を、それぞれ、試料温度300℃及び350℃で、圧延した。いずれの試料も、厚み5mmから1mmの圧延を実施すると、激しい耳割れが起こり、試料評価を行うための圧延材を作製することができなかった。このように、請求項に規定したCa添加量よりも、高濃度のCaを添加すると、圧延中に、試料に激しい耳割れが発生し、圧延を行うことは困難であった。
[Comparative Example 6] and [Comparative Example 7]
In Comparative Examples 6 and 7, the Zn addition amount was set to 2.61 mass% or more, Ca was added by 0.9 mass% or more (1.0 mass%), and Sr was added in a predetermined amount (0.1 mass%). The samples were rolled at sample temperatures of 300 ° C and 350 ° C, respectively. In any sample, when rolling with a thickness of 5 mm to 1 mm was performed, severe ear cracks occurred, and a rolled material for sample evaluation could not be produced. As described above, when a higher concentration of Ca was added than the amount of Ca specified in the claims, severe ear cracks occurred in the sample during rolling, and it was difficult to perform rolling.

[比較例8]
比較例8では、Zn添加量を、2.61mass%以上に設定し、Caを0.8mass%、Srを0.8mass%添加した合金試料を、それぞれ、試料温度350℃で、圧延した。[比較例8]の(0002)面集合組織は、TD方向の極を有するが、圧延材のエリクセン値は、低い値を示した。このように、請求項に規定したCaとSrの添加量よりも、高濃度のCaとSrを添加すると、圧延材内部に、粗大な金属間化合物が形成され、常温成形性が、著しく劣化してしまうことが分かった。
[Comparative Example 8]
In Comparative Example 8, the amount of Zn added was set to 2.61 mass% or more, and alloy samples added with 0.8 mass% Ca and 0.8 mass% Sr were each rolled at a sample temperature of 350 ° C. The (0002) plane texture of [Comparative Example 8] has a pole in the TD direction, but the Erichsen value of the rolled material showed a low value. Thus, when Ca and Sr are added at a higher concentration than the amount of Ca and Sr specified in the claims, a coarse intermetallic compound is formed inside the rolled material, and the room temperature formability is significantly deteriorated. I found out.

以上詳述したように、本発明は、常温成形性と強度を改善したマグネシウム合金板材及びその作製方法に係るものであり、本発明により、Zn添加量を、2.61〜6.20mass%に限定し、Caを0.01〜0.9mass%添加し、もしくはCaとSrを、Ca濃度を0.01〜0.9mass%に限定した上で、CaとSrの総量が0.01〜1.5mass%になるように添加し、必要に応じて、0.01〜0.7mass%のZr及び/又はMnを添加した合金試料を、試料表面温度150〜450℃、より好ましくは150〜420℃で圧延し、焼鈍を行うことからなる易成形性マグネシウム合金板材の作製方法及びその製品を提供することができる。作製された板材は、アルミニウム合金並の常温成形性(エリクセン値7.0以上)と優れた強度(TD方向の降伏応力が90MPa以上)を示す。本発明を利用すると、アルミニウム合金に匹敵する成形性と、優れた強度を有するマグネシウム合金板材を、既存の圧延機を用い、試料の発火や酸化を懸念せずに作製することが可能であり、成形性と強度を同時に改善したマグネシウム合金板材を作製することができる。また、本発明は、デジタルカメラ・ノートパソコン・PDA等の、主に家電製品のプレス成形体を中心として、積極的に適用することが可能な易成形性マグネシウム合金板材を提供するものとして有用である。   As described above in detail, the present invention relates to a magnesium alloy sheet material having improved room temperature formability and strength and a method for producing the same, and according to the present invention, the amount of Zn added is 2.61 to 6.20 mass%. In addition, 0.01 to 0.9 mass% of Ca is added, or Ca and Sr are limited to 0.01 to 0.9 mass%, and the total amount of Ca and Sr is 0.01 to 1%. An alloy sample to which Zr and / or Mn of 0.01 to 0.7 mass% is added as required is added to a sample surface temperature of 150 to 450 ° C., more preferably 150 to 420. It is possible to provide a method for producing a readily formable magnesium alloy sheet material which is rolled at 0 ° C. and annealed, and a product thereof. The produced plate material exhibits room temperature formability (Erichsen value of 7.0 or higher) and excellent strength (yield stress in the TD direction of 90 MPa or higher) similar to that of an aluminum alloy. Utilizing the present invention, it is possible to produce a magnesium alloy plate material having excellent formability and excellent strength comparable to an aluminum alloy, without worrying about ignition and oxidation of the sample using an existing rolling mill, A magnesium alloy sheet having improved formability and strength can be produced. In addition, the present invention is useful for providing an easily formable magnesium alloy sheet material that can be positively applied mainly to press-formed bodies of home appliances such as digital cameras, notebook computers, and PDAs. is there.

Claims (11)

質量%で、Znを2.61〜6.20%含有し、Caを0.01〜0.9%含有し、任意に、Sr、Zr、Mnの1種以上を含有し、残部が、Mg及び不可避不純物からなるMg合金を、試料表面温度150〜450℃まで加熱した状態で、少なくとも圧延率5%以上の圧延を施し、圧延後に、焼鈍を行うことを特徴とする易成形性マグネシウム合金板材の製造方法。   In mass%, Zn is contained in 2.61 to 6.20%, Ca is contained in 0.01 to 0.9%, optionally containing one or more of Sr, Zr and Mn, and the balance is Mg And an Mg alloy comprising inevitable impurities, heated to a sample surface temperature of 150 to 450 ° C., subjected to rolling at a rolling rate of at least 5%, and annealed after rolling. Manufacturing method. 質量%で、CaとSrの総量が0.01〜1.5%になるように、Srを含有する、請求項1に記載の易成形性マグネシウム合金板材の製造方法。   The manufacturing method of the easily moldable magnesium alloy plate material of Claim 1 which contains Sr so that the total amount of Ca and Sr may be 0.01 to 1.5% by mass%. 質量%で、Zr及び/又はMnを、0.01〜0.7%付加したMg合金を用いる、請求項1又は2に記載の易成形性マグネシウム合金板材の製造方法。   The manufacturing method of the easily moldable magnesium alloy plate material of Claim 1 or 2 using Mg alloy which added 0.01 to 0.7% of Zr and / or Mn by mass%. 上記Mg合金を、試料表面温度150〜420℃まで加熱する、請求項1から3のいずれかに記載の易成形性マグネシウム合金板材の製造方法。   The method for producing an easily formable magnesium alloy sheet according to any one of claims 1 to 3, wherein the Mg alloy is heated to a sample surface temperature of 150 to 420 ° C. 質量%で、Znを2.61〜6.20%含有し、Caを0.01〜0.9%を含有し、任意に、Sr、Zr、Mnの1種以上を含有し、残部が、Mg及び不可避不純物からなるMg合金圧延材であり、常温におけるエリクセン値が、少なくとも7.0以上である、易成形性マグネシウム合金板材。   % By mass, containing 2.61 to 6.20% of Zn, 0.01 to 0.9% of Ca, optionally containing one or more of Sr, Zr, Mn, An easily formable magnesium alloy sheet material, which is a Mg alloy rolled material composed of Mg and inevitable impurities, and has an Erichsen value at room temperature of at least 7.0 or more. 質量%で、CaとSrの総量が0.01〜1.5%になるように、Srを含有する、請求項5に記載の易成形性マグネシウム合金板材。   The easily formable magnesium alloy sheet according to claim 5, which contains Sr so that the total amount of Ca and Sr is 0.01 to 1.5% by mass. 質量%で、Zr及び/又はMnを0.01〜0.7%付加したMg合金である、請求項5又は6に記載の易成形性マグネシウム合金板材。   The easily formable magnesium alloy sheet according to claim 5 or 6, wherein the Mg alloy is a Mg alloy added with 0.01 to 0.7% of Zr and / or Mn in mass%. XRD法(シュルツの反射法)による測定で、(0002)面集合組織の板幅方向に極を有する、請求項5から7のいずれかに記載の易成形性マグネシウム合金板材。   The easily formable magnesium alloy sheet material according to any one of claims 5 to 7, which has a pole in the sheet width direction of the (0002) plane texture as measured by an XRD method (Schulz reflection method). 板幅方向に対して、平行に引張り変形を行う準静的室温引張り試験において、得られる0.2%耐力が、90MPa以上である、請求項5から8のいずれかに記載の易成形性マグネシウム合金板材。   The easily formable magnesium according to any one of claims 5 to 8, wherein a 0.2% yield strength obtained in a quasi-static room temperature tensile test in which tensile deformation is performed in parallel to the sheet width direction is 90 MPa or more. Alloy plate material. 請求項5から9のいずれかに記載の易成形性マグネシウム合金板材の成形体からなることを特徴とするマグネシウム合金製プレス成形体。   A magnesium alloy press-molded body comprising the readily-formable magnesium alloy sheet material molded body according to any one of claims 5 to 9. 請求項10に記載のマグネシウム合金製プレス成形体からなることを特徴とするマグネシウム合金製部材。   A magnesium alloy member comprising the magnesium alloy press-formed product according to claim 10.
JP2010273990A 2010-12-08 2010-12-08 Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same Active JP5692847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273990A JP5692847B2 (en) 2010-12-08 2010-12-08 Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273990A JP5692847B2 (en) 2010-12-08 2010-12-08 Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012122102A true JP2012122102A (en) 2012-06-28
JP5692847B2 JP5692847B2 (en) 2015-04-01

Family

ID=46503860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273990A Active JP5692847B2 (en) 2010-12-08 2010-12-08 Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP5692847B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726805A (en) * 2015-04-07 2015-06-24 福州大学 Magnesium alloy plate forming method
JP2018080363A (en) * 2016-11-15 2018-05-24 住友電気工業株式会社 Magnesium alloy plate
JP2018141226A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 Mg ALLOY AND METHOD FOR PRODUCING THE SAME
CN110016599A (en) * 2019-04-23 2019-07-16 中国海洋大学 A kind of high corrosion-resistant and the biological medical magnesium alloy and preparation method thereof uniformly degraded
JP2019218577A (en) * 2018-06-15 2019-12-26 株式会社戸畑製作所 Magnesium alloy
WO2020203980A1 (en) * 2019-03-29 2020-10-08 国立研究開発法人産業技術総合研究所 Magnesium alloy sheet with excellent balance between strength and ductility and workability at ordinary temperature
DE112014002336B4 (en) * 2013-05-07 2021-02-25 Baoshan Iron & Steel Co., Ltd. Inexpensive, fine-grain magnesium alloy sheet and method of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718364A (en) * 1993-06-30 1995-01-20 Toyota Central Res & Dev Lab Inc Heat resistant magnesium alloy
WO2006003833A1 (en) * 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy product
JP2006028548A (en) * 2004-07-13 2006-02-02 Toyota Central Res & Dev Lab Inc Magnesium alloy to be plastic-worked and magnesium alloy member
WO2008016150A1 (en) * 2006-08-03 2008-02-07 National Institute For Materials Science Magnesium alloy and method for producing the same
JP2010013725A (en) * 2008-06-05 2010-01-21 National Institute Of Advanced Industrial & Technology Easily formable magnesium alloy sheet and method for production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718364A (en) * 1993-06-30 1995-01-20 Toyota Central Res & Dev Lab Inc Heat resistant magnesium alloy
WO2006003833A1 (en) * 2004-06-30 2006-01-12 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy product
JP2006028548A (en) * 2004-07-13 2006-02-02 Toyota Central Res & Dev Lab Inc Magnesium alloy to be plastic-worked and magnesium alloy member
WO2008016150A1 (en) * 2006-08-03 2008-02-07 National Institute For Materials Science Magnesium alloy and method for producing the same
JP2010013725A (en) * 2008-06-05 2010-01-21 National Institute Of Advanced Industrial & Technology Easily formable magnesium alloy sheet and method for production thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002336B4 (en) * 2013-05-07 2021-02-25 Baoshan Iron & Steel Co., Ltd. Inexpensive, fine-grain magnesium alloy sheet and method of making the same
CN104726805A (en) * 2015-04-07 2015-06-24 福州大学 Magnesium alloy plate forming method
JP2018080363A (en) * 2016-11-15 2018-05-24 住友電気工業株式会社 Magnesium alloy plate
JP2018141226A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 Mg ALLOY AND METHOD FOR PRODUCING THE SAME
JP2019218577A (en) * 2018-06-15 2019-12-26 株式会社戸畑製作所 Magnesium alloy
WO2020203980A1 (en) * 2019-03-29 2020-10-08 国立研究開発法人産業技術総合研究所 Magnesium alloy sheet with excellent balance between strength and ductility and workability at ordinary temperature
JPWO2020203980A1 (en) * 2019-03-29 2020-10-08
JP7248252B2 (en) 2019-03-29 2023-03-29 国立研究開発法人産業技術総合研究所 Magnesium alloy sheet with excellent strength-ductility balance and room temperature workability
CN110016599A (en) * 2019-04-23 2019-07-16 中国海洋大学 A kind of high corrosion-resistant and the biological medical magnesium alloy and preparation method thereof uniformly degraded

Also Published As

Publication number Publication date
JP5692847B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5467294B2 (en) Easy-formable magnesium alloy sheet and method for producing the same
JP5692847B2 (en) Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same
JP4189687B2 (en) Magnesium alloy material
JP5515167B2 (en) Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same
JP5557121B2 (en) Magnesium alloy
WO2014180187A1 (en) Magnesium alloy sheet of low cost, fine grains, and weak texture, and manufacturing method therefor
JP5660525B2 (en) General-purpose magnesium alloy sheet that exhibits formability similar to that of aluminum alloy and method for producing the same
JP6794264B2 (en) Magnesium-lithium alloy, rolled materials and molded products
CN110945154B (en) Magnesium-based alloy ductile material and method for producing same
JP5565617B2 (en) Method for producing magnesium alloy material and magnesium alloy material
KR101785121B1 (en) Magnesium alloy sheet
JP5590660B2 (en) Magnesium alloy sheet with improved cold formability and in-plane anisotropy and method for producing the same
JP6860235B2 (en) Magnesium-based alloy wrought material and its manufacturing method
JP5252363B2 (en) Magnesium alloy press-molded body and method for producing the same
JP2012214853A (en) Magnesium alloy and method for producing the same
JP4599594B2 (en) Press molded body made of magnesium alloy large cross rolled material
KR20150017143A (en) Magnesium alloy for extrusion with excellent plasticity―workability and method for producing the same
JP5376507B2 (en) Magnesium alloy sheet having excellent cold formability and method for producing the same
JP4803357B2 (en) Heat-resistant magnesium alloy produced by hot working and method for producing the same
JP5700379B2 (en) Magnesium alloy rolled material manufacturing method, magnesium alloy rolled material, and press-formed body
WO2017065208A1 (en) Magnesium alloy that exhibits superelastic effect and/or shape-memory effect
JP5376508B2 (en) High strength magnesium alloy sheet having excellent cold formability and method for producing the same
JPWO2009113601A1 (en) Magnesium-lithium alloy, rolled material, molded product
JP2010070824A (en) Magnesium alloy and method for producing the same
JP7410542B2 (en) magnesium alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5692847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250