JP2012121772A - Method for producing nitride semiconductor substrate - Google Patents

Method for producing nitride semiconductor substrate Download PDF

Info

Publication number
JP2012121772A
JP2012121772A JP2010274650A JP2010274650A JP2012121772A JP 2012121772 A JP2012121772 A JP 2012121772A JP 2010274650 A JP2010274650 A JP 2010274650A JP 2010274650 A JP2010274650 A JP 2010274650A JP 2012121772 A JP2012121772 A JP 2012121772A
Authority
JP
Japan
Prior art keywords
substrate
nitride semiconductor
thick film
layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274650A
Other languages
Japanese (ja)
Inventor
Satoshi Nakayama
智 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010274650A priority Critical patent/JP2012121772A/en
Publication of JP2012121772A publication Critical patent/JP2012121772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nitride semiconductor substrate suppressible of a fissure or crack in a thick film layer in the growth process of the thick film layer.SOLUTION: This method for producing the nitride semiconductor substrate comprises: forming a ground substrate 3 by providing a ground layer comprising a nitride semiconductor on a substrate 2; forming a metal film on the ground layer of the ground substrate 3; then heat-treating the ground substrate 3 in an atmosphere containing hydrogen gas or hydrogen-containing compound gas to form voids in the ground layer and also form micropores in the metal layer; growing a nitride semiconductor on the micropore-formed metal film to form a thick film layer 5; and peeling off the thick film layer 5 from the ground substrate 3 to obtain the nitride semiconductor substrate 1, where the used substrate 2 has a diameter larger than that of the nitride semiconductor substrate 1 and the thick film layer 5 is grown at the central portion of the ground substrate 3.

Description

本発明は、紫外〜青色の半導体レーザや短波長発光ダイオードなどのエピタキシャル成長に用いる窒化物半導体基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a nitride semiconductor substrate used for epitaxial growth of an ultraviolet to blue semiconductor laser, a short wavelength light emitting diode or the like.

半導体成長用基板として既に世の中に広く普及しているSi(シリコン)基板やGaAs(砒化ガリウム)基板は、主に引き上げ法によって融液からバルク結晶を成長させた大型のインゴットを切り出して作製され、これら基板は転位、欠陥が少なく安定的に生産されている。   Si (silicon) substrates and GaAs (gallium arsenide) substrates, which are already widely used as semiconductor growth substrates, are produced by cutting a large ingot in which a bulk crystal is grown from a melt mainly by a pulling method, These substrates are stably produced with few dislocations and defects.

一方、窒化物半導体基板は、シリコン基板や砒化ガリウム基板のような成長方法が困難なため、窒化物半導体を成長させるための基板としては、これまで、単結晶サファイア基板やSiC基板などが利用されてきた。   On the other hand, since a nitride semiconductor substrate is difficult to grow like a silicon substrate or a gallium arsenide substrate, a single crystal sapphire substrate or a SiC substrate has been used as a substrate for growing a nitride semiconductor. I came.

しかしながら、サファイア基板は窒化物半導体であるGaNなどとは大きく格子定数が異なるため、サファイア基板上に直接GaNを成長させたのではGaNの単結晶膜を得ることができない。このため、サファイア基板上にまず比較的低温でAlNやGaNのバッファ層を成長させ、この低温成長バッファ層で格子の歪みを緩和させてからその上にGaNを成長させる方法が考案されている。   However, since the sapphire substrate has a large lattice constant different from that of GaN, which is a nitride semiconductor, a GaN single crystal film cannot be obtained by directly growing GaN on the sapphire substrate. For this reason, a method has been devised in which an AlN or GaN buffer layer is first grown on a sapphire substrate at a relatively low temperature, lattice strain is relaxed by this low temperature growth buffer layer, and then GaN is grown thereon.

この低温成長窒化物層をバッファ層として用いることで、GaNの単結晶のエピタキシャル成長は可能になったが、この方法でも、やはり基板と結晶の格子定数の大きなずれの悪影響から、成長後のGaNは無数の欠陥を有している。この欠陥は、GaN系レーザ発光ダイオード(LD)や高輝度発光ダイオード(LED)を製作する上で性能と信頼性に大きな障害となることが予想される。   By using this low-temperature grown nitride layer as a buffer layer, epitaxial growth of a single crystal of GaN has become possible, but even with this method, GaN after growth is still affected by the large shift in the lattice constant of the substrate and crystal. Has innumerable defects. This defect is expected to be a major obstacle to performance and reliability in manufacturing GaN-based laser light-emitting diodes (LD) and high-intensity light-emitting diodes (LEDs).

上記のような理由から、基板と結晶との格子のずれが生じないGaN自立基板の出現が切望されている。例えば、HVPE(ハイドライド気相成長:Hydride Vapor Phase Epitaxy)法、超高温高圧法、フラックス法等の種々の方法が試みられているが、中でも、HVPE法によるGaN自立基板の開発は最も進んでおり、市場への流通も始まり、窒化物半導体基板は青紫色レーザ発光ダイオード(LD)や青色発光ダイオード(LED)の高出力化、高効率化の材料として注目されている。   For the reasons described above, the appearance of a GaN free-standing substrate that does not cause a lattice shift between the substrate and the crystal is eagerly desired. For example, various methods such as HVPE (Hydride Vapor Phase Epitaxy) method, ultra-high temperature and high pressure method, and flux method have been tried. Among them, the development of GaN free-standing substrate by HVPE method is the most advanced. As a result, the nitride semiconductor substrate has been attracting attention as a material for increasing the output and efficiency of blue-violet laser light-emitting diodes (LDs) and blue light-emitting diodes (LEDs).

GaN自立基板として最も実用化が進んでいるのが、下地基板上に転位密度を低減したGaN層を厚くエピタキシャル成長させ、このGaN厚膜層を下地基板から剥離してGaN自立基板として用いる方法である。   The most practical application as a GaN free-standing substrate is a method in which a GaN layer with a reduced dislocation density is epitaxially grown on the underlying substrate thickly, and this GaN thick film layer is peeled off from the underlying substrate and used as a GaN free-standing substrate. .

具体的には、サファイア基板にGaN下地層を形成した下地基板に、剥離のための中間層としてTi膜を形成した後、水素ガスとアンモニアガスとの混合雰囲気で加熱することにより、上記GaN下地層に空隙(ボイド)を形成すると共にTi膜を微細孔を有するTiN膜とし、このTiN膜上にGaN厚膜層を成長し、GaN厚膜層をサファイア基板から剥離して、反りが少なく且つ低欠陥のGaN自立基板を作製する方法が開示されている(例えば特許文献2参照)。   Specifically, after forming a Ti film as an intermediate layer for peeling on a base substrate in which a GaN base layer is formed on a sapphire substrate, the substrate is heated under a mixed atmosphere of hydrogen gas and ammonia gas, thereby A void (void) is formed in the ground layer, and the Ti film is formed into a TiN film having micropores, a GaN thick film layer is grown on the TiN film, the GaN thick film layer is peeled off from the sapphire substrate, and warpage is small. A method for producing a low-defect GaN free-standing substrate is disclosed (for example, see Patent Document 2).

特開平5−55143号公報JP-A-5-55143 特開2008−290919号公報JP 2008-290919 A

上述のように、従来の窒化物半導体基板の製造では、下地基板と呼ばれるものに窒化物半導体の厚膜成長を行い、その厚膜の窒化物半導体を剥離することで行われるが、下地基板の表面から見た端部分の品質が不安定であり、その影響を受け、厚膜成長過程において特に基板外周からヒビ、クラックが発生し、歩留りが下がる傾向がある。   As described above, in the manufacture of a conventional nitride semiconductor substrate, a thick film of nitride semiconductor is grown on what is called a base substrate, and the nitride semiconductor of the thick film is peeled off. The quality of the end portion viewed from the surface is unstable and is affected by this. In the thick film growth process, cracks and cracks are generated particularly from the outer periphery of the substrate, and the yield tends to decrease.

本発明は、上記事情に鑑み為されたものであり、厚膜成長過程でヒビやクラックが発生することを抑制可能な窒化物半導体基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a nitride semiconductor substrate capable of suppressing the occurrence of cracks and cracks during the thick film growth process.

本発明は上記目的を達成するために創案されたものであり、基材上に窒化物半導体からなる下地層を設けて下地基板を形成し、該下地基板の前記下地層上に金属膜を形成した後、水素ガスまたは水素含有化合物ガスを含む雰囲気中で前記下地基板を熱処理することで、前記下地層中に空隙を形成すると共に前記金属膜に微細孔を形成し、その微細孔を形成した前記金属膜上に窒化物半導体を成長させて厚膜層を形成した後、前記厚膜層を前記下地基板から剥離して窒化物半導体基板を得る窒化物半導体基板の製造方法において、前記基材として、前記窒化物半導体基板の径よりも大きい径のものを用い、前記下地基板の中央部で前記厚膜層を成長させる窒化物半導体基板の製造方法である。   The present invention was devised to achieve the above object, and a base substrate made of a nitride semiconductor is formed on a base material to form a base substrate, and a metal film is formed on the base layer of the base substrate Then, the base substrate is heat-treated in an atmosphere containing hydrogen gas or a hydrogen-containing compound gas, thereby forming voids in the base layer and forming micropores in the metal film, thereby forming the micropores. In the method of manufacturing a nitride semiconductor substrate, a nitride semiconductor substrate is obtained by growing a nitride semiconductor on the metal film to form a thick film layer, and then peeling the thick film layer from the base substrate. As a method for manufacturing a nitride semiconductor substrate, a substrate having a diameter larger than that of the nitride semiconductor substrate is used, and the thick film layer is grown at the center of the base substrate.

前記金属膜の前記微細孔が形成された領域内で、前記厚膜層を成長させるとよい。   The thick film layer may be grown in the region of the metal film where the micropores are formed.

本発明によれば、厚膜成長過程でヒビやクラックが発生することを抑制可能な窒化物半導体基板の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the nitride semiconductor substrate which can suppress that a crack and a crack generate | occur | produce in a thick film growth process can be provided.

(a)〜(f)は、本発明の第一の実施の形態に係る窒化物半導体基板の製造方法を説明する図である。(A)-(f) is a figure explaining the manufacturing method of the nitride semiconductor substrate which concerns on 1st embodiment of this invention. (a)〜(g)は、本発明の第二の実施の形態に係る窒化物半導体基板の製造方法を説明する図である。(A)-(g) is a figure explaining the manufacturing method of the nitride semiconductor substrate which concerns on 2nd embodiment of this invention.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1及び図2は、本発明の実施の第一の形態及び第二の形態に係る窒化物半導体基板の製造方法を説明する図である。以下、窒化物半導体としてGaNを成長する場合を説明するが、窒化物半導体はこれに限定されるものではない。   1 and 2 are views for explaining a method of manufacturing a nitride semiconductor substrate according to the first and second embodiments of the present invention. Hereinafter, although the case where GaN is grown as a nitride semiconductor will be described, the nitride semiconductor is not limited to this.

まず、図1にしたがって本発明の第一の形態について説明する。まず、図1(a)に示すように、基材としてのサファイア基板2を用意する。   First, the first embodiment of the present invention will be described with reference to FIG. First, as shown to Fig.1 (a), the sapphire substrate 2 as a base material is prepared.

サファイア基板2としては、製造する窒化物半導体基板1の径(外径加工を施す前の径、すなわち後述する厚膜層5の径)よりも大きい径のものを用いる。サファイア基板2の径をD、製造する窒化物半導体基板1の径をdとすると、それらの比であるd/Dは、0.89以下であることが望ましい。これは、比d/Dを0.89以下とすることにより、クラック発生割合を15%以下とすることが可能になるためである。   As the sapphire substrate 2, a substrate having a diameter larger than the diameter of the nitride semiconductor substrate 1 to be manufactured (the diameter before the outer diameter processing is performed, that is, the diameter of the thick film layer 5 described later) is used. If the diameter of the sapphire substrate 2 is D and the diameter of the nitride semiconductor substrate 1 to be manufactured is d, the ratio d / D is preferably 0.89 or less. This is because the crack generation ratio can be reduced to 15% or less by setting the ratio d / D to 0.89 or less.

その後、サファイア基板2上に、MOCVD法(有機金属化学気相堆積法)によりによりGaNからなる下地層を設けて下地基板を形成すると共に、該下地基板の下地層上に、真空蒸着法により金属膜(図1(b))を形成し、その後、水素ガスまたは水素含有化合物ガスを含む雰囲気中で下地基板3を熱処理する。なお、下地層や金属膜の形成方法は、MOCVD法や真空蒸着法に限定されるものではない。   Thereafter, a base layer made of GaN is formed on the sapphire substrate 2 by MOCVD (metal organic chemical vapor deposition) to form a base substrate, and a metal is formed on the base layer of the base substrate by vacuum deposition. A film (FIG. 1B) is formed, and then the base substrate 3 is heat-treated in an atmosphere containing hydrogen gas or a hydrogen-containing compound gas. Note that the formation method of the base layer and the metal film is not limited to the MOCVD method or the vacuum evaporation method.

本実施の形態では、金属膜としてTi膜を形成し、水素ガスとアンモニアガスとの混合雰囲気で熱処理することで、下地層中に空隙(ボイド)を形成すると共に、金属膜であるTi膜に微細孔を形成して網目状のTiN膜(TiNナノネット)とした。図1(c)における符号4は、金属膜におけるボイド発生領域(微細孔が均一に形成された領域)を示している。ボイド発生領域4の外側の領域、すなわち下地基板3の端部分の金属膜にも微細孔は形成されるが、この領域に形成される微細孔は不均一となるため、この不安定な部分を避けて厚膜層5を形成するために、下地基板3の径より小さい径が露出するように外周部にマスク6を形成する(図1(d))。なお、金属膜に用いる金属材料や、熱処理の雰囲気はこれに限定されるものではない。   In this embodiment, a Ti film is formed as a metal film, and heat treatment is performed in a mixed atmosphere of hydrogen gas and ammonia gas, whereby voids are formed in the base layer and the Ti film that is the metal film is formed. Fine holes were formed to form a mesh-like TiN film (TiN nanonet). Reference numeral 4 in FIG. 1C indicates a void generation region (region in which fine holes are uniformly formed) in the metal film. Micropores are also formed in the metal film at the outer region of the void generation region 4, that is, at the end portion of the base substrate 3, but the micropores formed in this region are not uniform. In order to avoid the formation of the thick film layer 5, a mask 6 is formed on the outer peripheral portion so that a diameter smaller than the diameter of the base substrate 3 is exposed (FIG. 1D). Note that the metal material used for the metal film and the atmosphere of the heat treatment are not limited thereto.

その後、図1(e)に示すように、露出された金属膜上にGaNを成長させて厚膜層5を形成する。厚膜層5は例えばHVPE法により形成することができる。厚膜層5は、下地基板3の中央部で、かつ金属膜の微細孔が均一に形成された領域内(ボイド発生領域4内)に形成される。   Thereafter, as shown in FIG. 1E, GaN is grown on the exposed metal film to form a thick film layer 5. The thick film layer 5 can be formed by, for example, the HVPE method. The thick film layer 5 is formed in the central portion of the base substrate 3 and in a region where the fine holes of the metal film are uniformly formed (in the void generation region 4).

マスク6の形成幅によって、厚膜層5の径や厚膜層5を成長させる位置を調整するとよい。   The diameter of the thick film layer 5 and the position where the thick film layer 5 is grown may be adjusted according to the formation width of the mask 6.

厚膜層5を形成した後、図1(f)に示すように、厚膜層5を下地基板3から剥離し、外径加工や、オリエンテーションフラット(OF)を形成する高精度OF加工、面取加工を施すと、窒化物半導体基板1であるGaN自立基板が得られる。   After forming the thick film layer 5, as shown in FIG. 1 (f), the thick film layer 5 is peeled from the base substrate 3 to form an outer diameter process or an orientation flat (OF). When the machining is performed, a GaN free-standing substrate that is the nitride semiconductor substrate 1 is obtained.

本発明の第二の形態に係る窒化物半導体基板の製造方法を図2にしたがって説明する。   A method for manufacturing a nitride semiconductor substrate according to the second embodiment of the present invention will be described with reference to FIG.

製造する窒化物半導体基板1の径より大きい径のサファイア基板2(図2(a))上に、MOCVD法(有機金属化学気相堆積法)によりGaNからなる下地層を設け下地基板を形成すると共に、該下地層上に、真空蒸着法により金属膜としてTi膜を形成する(図2(b))。   On the sapphire substrate 2 (FIG. 2 (a)) having a diameter larger than that of the nitride semiconductor substrate 1 to be manufactured, a base layer made of GaN is formed by MOCVD (metal organic chemical vapor deposition) to form a base substrate. At the same time, a Ti film is formed as a metal film on the underlayer by a vacuum deposition method (FIG. 2B).

次いで、下地基板3に堆積した金属膜の外周にマスク6を形成し(図2(c))、水素ガスとアンモニアガスとの混合雰囲気で熱処理をして、下地層中にボイドが発生すると共に、金属膜であるTi膜に微細孔が形成される(図2(d))。下地基板3の外周にマスク6をはるのは、下地層の端部分の不安定な部分を避けて選択的に下地基板3の中心部分にボイドを形成するためである。   Next, a mask 6 is formed on the outer periphery of the metal film deposited on the base substrate 3 (FIG. 2C), and heat treatment is performed in a mixed atmosphere of hydrogen gas and ammonia gas to generate voids in the base layer. Micropores are formed in the Ti film, which is a metal film (FIG. 2D). The reason why the mask 6 is put on the outer periphery of the base substrate 3 is to selectively form voids in the central portion of the base substrate 3 while avoiding unstable portions at the end portions of the base layer.

その後、ボイド発生領域4の外周に第二のマスク7を形成し(図2(e))、HVPE法により、露出された部分にGaN厚膜層5を成長させる(図2(f))。成長したGaN厚膜層5を下地基板3から剥離し、外径加工や高精度OF加工、面取り加工を施し、窒化物半導体基板1であるGaN自立基板が得られる(図2(g))。   Thereafter, a second mask 7 is formed on the outer periphery of the void generation region 4 (FIG. 2E), and the GaN thick film layer 5 is grown on the exposed portion by the HVPE method (FIG. 2F). The grown GaN thick film layer 5 is peeled from the base substrate 3 and subjected to outer diameter processing, high-precision OF processing, and chamfering processing to obtain a GaN free-standing substrate that is the nitride semiconductor substrate 1 (FIG. 2G).

なお、下地層や金属膜の形成方法、金属膜の材料、熱処理方法は上記に限定されるものではない。   Note that the formation method of the base layer and the metal film, the material of the metal film, and the heat treatment method are not limited to the above.

以上説明したように、本発明の窒化物半導体基板の製造方法では、基材2として、窒化物半導体基板1の径よりも大きい径のものを用い、下地基板3の中央部で厚膜層5を成長させるようにしている。   As described above, in the method for manufacturing a nitride semiconductor substrate according to the present invention, the base material 2 having a diameter larger than the diameter of the nitride semiconductor substrate 1 is used, and the thick film layer 5 is formed at the center of the base substrate 3. To grow.

これにより、下地基板3の端部分、すなわち下地層や空隙の不安定な領域を避けて厚膜層5を成長させることが可能となり、厚膜層5の成長過程(厚膜成長過程)で歩留不良の大きな原因となる厚膜層5のヒビやクラックを大幅に抑制することが可能となる。   As a result, it becomes possible to grow the thick film layer 5 while avoiding the end portion of the base substrate 3, that is, the unstable region of the base layer and the gap, and the thick film layer 5 is grown in the growth process (thick film growth process). It is possible to greatly suppress cracks and cracks in the thick film layer 5 that cause a large failure.

また、本発明では、金属膜の微細孔が均一に形成された領域(ボイド発生領域4)内で厚膜層5を成長させているため、厚膜層5のヒビやクラックをさらに抑制できる。   In the present invention, since the thick film layer 5 is grown in the region (void generation region 4) in which the fine holes of the metal film are uniformly formed, cracks and cracks in the thick film layer 5 can be further suppressed.

なお、本発明には、上述のような、所謂ボイド形成剥離法(Yuichi OSHIMA et al.、Japanese Journal of Applied Physics、Vol.42(2003)、pp.L1-L3)を好適に用いることができるが、これに限らず、MOHVPE法(有機金属塩化物気相成長法)や、MOCVD法も採用することができる。   In the present invention, the so-called void formation exfoliation method (Yuichi OSHIMA et al., Japanese Journal of Applied Physics, Vol. 42 (2003), pp. L1-L3) as described above can be suitably used. However, the present invention is not limited to this, and the MOHVPE method (organometallic chloride vapor phase growth method) and the MOCVD method can also be employed.

このように、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   As described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

直径50.8mm(2インチ)の窒化物半導体基板1を得るため、まず直径62mm(2.5インチ)のc面サファイア単結晶基板(サファイア基板2)を用意し(図1(a))、その上に有機金属化学気相堆積(MOCVD)装置を用いて厚さ300nmのGaN薄膜(下地層)を成長した。   In order to obtain a nitride semiconductor substrate 1 having a diameter of 50.8 mm (2 inches), first, a c-plane sapphire single crystal substrate (sapphire substrate 2) having a diameter of 62 mm (2.5 inches) is prepared (FIG. 1A). A 300 nm thick GaN thin film (underlayer) was grown thereon using a metal organic chemical vapor deposition (MOCVD) apparatus.

GaN薄膜(下地層)を形成した後、真空蒸着器を用いてTi薄膜(金属膜)を20nm堆積した(図1(b))。その後、アンモニア及び水素の混合雰囲気中において1060℃での熱処理を30分施し、網目状のTiNナノネットと、Ti/GaN界面に多数のボイドを発生させた(図1(c))。   After forming the GaN thin film (underlying layer), a Ti thin film (metal film) was deposited to a thickness of 20 nm using a vacuum evaporator (FIG. 1B). Thereafter, a heat treatment was performed at 1060 ° C. for 30 minutes in a mixed atmosphere of ammonia and hydrogen to generate a network of TiN nanonets and a large number of voids at the Ti / GaN interface (FIG. 1C).

ボイドが形成された下地基板3上に、ボイド発生領域4より小さい径が露出されるように外周にマスク6を形成する。この場合は、ボイド発生領域4の中心部に直径55mm程度が露出されるように外周にマスク6を形成し(図1(d))、ハイドライド気相エピタキシー(HVPE)装置を用いて、厚さ300μmのGaN厚膜(厚膜層5)を1060℃で成長した(図1(e))。成長に用いた原料はNH3とGaClである。また、供給ガス中のGaCl分圧、NH3分圧は、それぞれ、8×10-3atm(約0.81kPa)、8×10-2atm(約8.1kPa)であった。成長は常圧で行い、キャリアガスとしてN2を用いた。 A mask 6 is formed on the outer periphery of the base substrate 3 on which the void is formed so that a diameter smaller than the void generation region 4 is exposed. In this case, a mask 6 is formed on the outer periphery so that a diameter of about 55 mm is exposed at the center of the void generation region 4 (FIG. 1D), and the thickness is determined using a hydride vapor phase epitaxy (HVPE) apparatus. A 300 μm thick GaN thick film (thick film layer 5) was grown at 1060 ° C. (FIG. 1E). The raw materials used for the growth are NH 3 and GaCl. Moreover, the GaCl partial pressure and NH 3 partial pressure in the supply gas were 8 × 10 −3 atm (about 0.81 kPa) and 8 × 10 −2 atm (about 8.1 kPa), respectively. Growth was performed at normal pressure, and N 2 was used as a carrier gas.

ボイド発生領域4の中心部に直径55mm程度が露出されるように円周にマスク6を形成し、成長させたことで、GaN厚膜(厚膜層5)は選択的にボイドを発生させた部分に形成された。   By forming and growing a mask 6 on the circumference so that a diameter of about 55 mm is exposed at the center of the void generation region 4, the GaN thick film (thick film layer 5) selectively generates voids. Formed in part.

このGaN厚膜(厚膜層5)はHVPE−GaN(厚膜層5)/Ti(金属膜)界面から容易に剥離し、外径加工、高精度OF加工、面取加工を行い、所望の直径である50.8mm(2インチ)の窒化物半導体基板1を得ることができた(図1(f))。   This GaN thick film (thick film layer 5) is easily peeled off from the HVPE-GaN (thick film layer 5) / Ti (metal film) interface, and is subjected to outer diameter processing, high-precision OF processing, and chamfering. A nitride semiconductor substrate 1 having a diameter of 50.8 mm (2 inches) could be obtained (FIG. 1F).

同様にして窒化物半導体基板1を20枚作製し、クラックが発生する枚数を調査した。また、従来例として、GaN厚膜(厚膜層5)の直径と同じ直径のサファイア基板を用いて、窒化物半導体基板を20枚作製し、クラックが発生する枚数を調べた。試験結果を表1に示す。   Similarly, 20 nitride semiconductor substrates 1 were produced and the number of cracks generated was investigated. Further, as a conventional example, 20 nitride semiconductor substrates were produced using a sapphire substrate having the same diameter as that of the GaN thick film (thick film layer 5), and the number of cracks generated was examined. The test results are shown in Table 1.

なお、表1における「金属膜の空隙領域とサファイア基板の直径比」とは、すなわち、製造する窒化物半導体基板の直径(外径加工前の直径、すなわち厚膜層5の直径)dと、基材であるサファイア基板2の直径Dとの比d/Dである。   In Table 1, the “diameter ratio between the void region of the metal film and the sapphire substrate” means that the diameter of the nitride semiconductor substrate to be manufactured (the diameter before outer diameter processing, that is, the diameter of the thick film layer 5) d, It is a ratio d / D with the diameter D of the sapphire substrate 2 which is a base material.

表1に示すように、従来例では20枚中12枚にクラックが発生し、クラック発生割合が60%と非常に高いが、本発明の実施例では、20枚中3枚にクラックが発生し、クラック発生割合が15%と、従来の1/4に抑制されていることが分かる。また、比d/Dを0.89以下とすることにより、クラック発生割合を15%以下にできることが分かる。   As shown in Table 1, cracks occurred in 12 out of 20 sheets in the conventional example, and the crack generation rate was very high at 60%. However, in the example of the present invention, cracks occurred in 3 out of 20 sheets. It can be seen that the crack generation rate is 15%, which is suppressed to 1/4 of the conventional one. It can also be seen that the crack generation ratio can be made 15% or less by setting the ratio d / D to 0.89 or less.

このように、本発明によれば、従来よりもクラック発生割合を低くし、歩留りを向上させることが可能である。   As described above, according to the present invention, it is possible to reduce the crack generation ratio and improve the yield as compared with the prior art.

1 窒化物半導体基板
2 サファイア基板(基材)
3 下地基板(金属膜形成後)
4 ボイド発生領域
5 厚膜層
6 マスク
7 第二のマスク
1 Nitride semiconductor substrate 2 Sapphire substrate (base material)
3 Substrate (after metal film formation)
4 Void generation region 5 Thick film layer 6 Mask 7 Second mask

Claims (2)

基材上に窒化物半導体からなる下地層を設けて下地基板を形成し、該下地基板の前記下地層上に金属膜を形成した後、水素ガスまたは水素含有化合物ガスを含む雰囲気中で前記下地基板を熱処理することで、前記下地層中に空隙を形成すると共に前記金属膜に微細孔を形成し、その微細孔を形成した前記金属膜上に窒化物半導体を成長させて厚膜層を形成した後、前記厚膜層を前記下地基板から剥離して窒化物半導体基板を得る窒化物半導体基板の製造方法において、
前記基材として、前記窒化物半導体基板の径よりも大きい径のものを用い、
前記下地基板の中央部で前記厚膜層を成長させる
ことを特徴とする窒化物半導体基板の製造方法。
A base layer made of a nitride semiconductor is provided on a base material to form a base substrate, a metal film is formed on the base layer of the base substrate, and then the base layer in an atmosphere containing hydrogen gas or a hydrogen-containing compound gas By heat-treating the substrate, voids are formed in the underlayer and fine holes are formed in the metal film, and a nitride semiconductor is grown on the metal film in which the fine holes are formed to form a thick film layer. Then, in the method for manufacturing a nitride semiconductor substrate, the thick film layer is peeled from the base substrate to obtain a nitride semiconductor substrate.
As the base material, one having a diameter larger than the diameter of the nitride semiconductor substrate is used,
The method for producing a nitride semiconductor substrate, wherein the thick film layer is grown at a central portion of the base substrate.
前記金属膜の前記微細孔が均一に形成された領域内で、前記厚膜層を成長させる請求項1記載の窒化物半導体基板の製造方法。   The method for manufacturing a nitride semiconductor substrate according to claim 1, wherein the thick film layer is grown in a region in which the fine holes are uniformly formed in the metal film.
JP2010274650A 2010-12-09 2010-12-09 Method for producing nitride semiconductor substrate Pending JP2012121772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274650A JP2012121772A (en) 2010-12-09 2010-12-09 Method for producing nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274650A JP2012121772A (en) 2010-12-09 2010-12-09 Method for producing nitride semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2012121772A true JP2012121772A (en) 2012-06-28

Family

ID=46503645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274650A Pending JP2012121772A (en) 2010-12-09 2010-12-09 Method for producing nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2012121772A (en)

Similar Documents

Publication Publication Date Title
US6498113B1 (en) Free standing substrates by laser-induced decoherency and regrowth
JP4597259B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP5295871B2 (en) Method for manufacturing group III nitride semiconductor substrate
WO2019033975A1 (en) Method for manufacturing gan substrate material
JP2006273618A (en) AlGaN SUBSTRATE AND ITS MANUFACTURING METHOD
TW201346080A (en) New process for growth of low dislocation density GaN
JP2007070154A (en) Group iii-v nitride-based semiconductor substrate and its manufacturing method
JP2006128626A (en) Nitride semiconductor device and its manufacturing method
US9064685B2 (en) Semiconductor substrate and method of forming
JP2009071279A (en) Substrate for growing gallium nitride and method for preparing substrate for growing gallium nitride
JP5056299B2 (en) Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, and method of manufacturing nitride semiconductor base substrate
JP2015018960A (en) Semiconductor device manufacturing method
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP2011051849A (en) Nitride semiconductor self-supporting substrate and method for manufacturing the same
JP2009208991A (en) Method for producing nitride semiconductor substrate
JP2006225180A (en) Nitride semiconductor crystal and manufacturing method therefor
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP2017226584A (en) Production method of self-standing substrate
JP2005001928A (en) Self-supporting substrate and method for producing the same
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
JP2010251743A (en) Substrate for growing group-iii nitride semiconductor, group-iii nitride semiconductor device, free-standing substrate for group-iii nitride semiconductor, and method for manufacturing the same
JP5488562B2 (en) Manufacturing method of nitride semiconductor substrate
JP2009084136A (en) Method for manufacturing semiconductor device
JP2012121772A (en) Method for producing nitride semiconductor substrate