JP2012119512A - Substrate quality evaluation method and apparatus therefor - Google Patents

Substrate quality evaluation method and apparatus therefor Download PDF

Info

Publication number
JP2012119512A
JP2012119512A JP2010268339A JP2010268339A JP2012119512A JP 2012119512 A JP2012119512 A JP 2012119512A JP 2010268339 A JP2010268339 A JP 2010268339A JP 2010268339 A JP2010268339 A JP 2010268339A JP 2012119512 A JP2012119512 A JP 2012119512A
Authority
JP
Japan
Prior art keywords
substrate
image
light
quality evaluation
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010268339A
Other languages
Japanese (ja)
Inventor
Kaoru Sakai
薫 酒井
Shigenobu Maruyama
重信 丸山
Yasuhiro Yoshitake
康裕 吉武
Kiyomi Yamaguchi
清美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010268339A priority Critical patent/JP2012119512A/en
Priority to TW100140415A priority patent/TW201229493A/en
Priority to KR1020110126910A priority patent/KR101295463B1/en
Priority to CN2011103937328A priority patent/CN102543789A/en
Publication of JP2012119512A publication Critical patent/JP2012119512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Abstract

PROBLEM TO BE SOLVED: To provide a substrate quality evaluation method which enables quick quality evaluation in an ELA process matched with quality evaluation values by a visual inspector or with final picture quality, and an apparatus therefor.SOLUTION: A substrate 5 to be evaluated is moved continuously in one direction while light is impinged on the substrate 5 from an oblique direction, whereby an image based on a primary diffracted light, which is produced by a polycrystalline silicon thin film formed on the substrate 5, is photographed to obtain a primary diffracted light image. Also, an image of scattered light near the optical axis of regular reflected light or transmitted light from the substrate 5 is photographed to obtain a scattered light image near the optical axis. The primary diffracted light image and the scattered light image near the optical axis thus obtained are processed to extract plural features, and at lease one or more of the extracted plural features are used to calculate a quality evaluation value of the polycrystalline silicon thin film formed on the substrate 5 according to preset evaluation standards, to evaluate the quality of the polycrystalline silicon thin film formed on the substrate 5.

Description

本発明は、光若しくはレーザを用いて得られた被検査対象物の画像(検出画像)から基板の品質を評価する検査に係り、特にTFT基板、有機EL基板などに形成された結晶シリコンの品質評価を行うのに好適な基板の品質評価方法及びその装置に関する。   The present invention relates to an inspection for evaluating the quality of a substrate from an image (detected image) of an object to be inspected obtained using light or a laser, and in particular, the quality of crystalline silicon formed on a TFT substrate, an organic EL substrate, or the like. The present invention relates to a substrate quality evaluation method and apparatus suitable for evaluation.

TFT液晶表示装置や有機EL表示装置に代表されるフラットパネルの生産現場において、パルスエキシマレーザをガラス基板上に形成されたアモルファスシリコン膜に照射することにより、低温の状態でガラス基板の一部の領域に結晶シリコンを形成する工程がある。この工程をELA(Excimer Laser Anneal)工程と称す。ここで、照射レーザエネルギーの変動によって、結晶シリコンの粒子の大きさが変化し、最終的なパネルの品質を決定づけるため、結晶シリコンの品質(粒子の大小やばらつき)を評価し、エキシマレーザアニール装置のレーザパワーを最適化したり、品質の悪い基板を排除する必要がある。このため、検査員による目視の評価が行われているが、官能検査であるがゆえ、検査員によって評価結果が異なり、品質が安定しないことが問題となり、品質を定量化する方式、及び装置の必要性が生じている。その方法の1つに、電子顕微鏡(SEM)によるものがあるが、基板を切断する必要がある上、評価に時間がかかり、生産ラインにおいて実用的なものではない。また、基板にマイクロ波とレーザを照射し、結晶の誘電率で結晶性を評価する装置もあるが、全数の検査は困難である。また、生産ラインにおいて、高速に結晶シリコンの品質を評価する別の技術として、特開2006−19408号公報(特許文献1)には、結晶シリコンの表面に可視光線を照射し、その反射光の画像を取得し、画像の輝度均一性、ストライプ状の模様のコントラストなどから結晶シリコン表面の結晶の品質の優劣を検査する方法が記載されている。また、特開2001−308009号公報(特許文献2)には、エキシマレーザアニール処理をした基板に光を照射し、基板からの回折光をモニタリングしてエキシマレーザの照射条件を最適化することが記載されている。   At the production site of flat panels represented by TFT liquid crystal display devices and organic EL display devices, a portion of the glass substrate is irradiated at a low temperature by irradiating an amorphous silicon film formed on the glass substrate with a pulsed excimer laser. There is a step of forming crystalline silicon in the region. This process is referred to as an ELA (Excimer Laser Anneal) process. Here, in order to determine the final panel quality by changing the size of the crystalline silicon particles due to fluctuations in the irradiation laser energy, the quality of the crystalline silicon (particle size and variation) is evaluated, and an excimer laser annealing device is used. It is necessary to optimize the laser power of the laser and eliminate the poor quality substrate. For this reason, visual evaluation is performed by an inspector, but because it is a sensory test, the evaluation result varies depending on the inspector, and the quality is not stable. There is a need. One of the methods is using an electron microscope (SEM), but it is necessary to cut the substrate, takes time for evaluation, and is not practical on the production line. There is also an apparatus that irradiates the substrate with microwaves and lasers and evaluates the crystallinity by the dielectric constant of the crystal, but it is difficult to inspect all the substrates. In addition, as another technique for evaluating the quality of crystalline silicon at high speed in a production line, Japanese Patent Application Laid-Open No. 2006-19408 (Patent Document 1) irradiates the surface of crystalline silicon with visible light and reflects the reflected light. A method for acquiring an image and inspecting the superiority or inferiority of the crystal quality on the crystalline silicon surface from the luminance uniformity of the image, the contrast of the stripe pattern, and the like is described. Japanese Laid-Open Patent Publication No. 2001-308209 (Patent Document 2) discloses that an excimer laser annealing condition is optimized by irradiating light on a substrate subjected to excimer laser annealing treatment and monitoring diffracted light from the substrate. Are listed.

特開2006−19408号公報JP 2006-19408 A 特開2001−308009号公報JP 2001-308209 A

結晶シリコンの品質評価は、上述の通り、目視検査員による官能評価であることが多い。このため、検査員によって判定基準に微妙な違いがあり、それらを集約した判定基準を設定し、適宜更新する必要がある。また、プロセスの立ち上げ時においては、新しい品質劣化要因が生じることも想定され、判定基準が変わっていく可能性もある。更に、被検査対象物であるフラットパネルの製造工程では、ELA工程の後に多数の工程を経たあと、最終的な画質の評価として点灯検査が行われる。このため、結晶シリコンの品質と最終画質との相関を鑑みながら、最終画質の結果を反映させて結晶シリコンの品質判定基準を適宜変更する必要性が生じる可能性がある。   As described above, the quality evaluation of crystalline silicon is often a sensory evaluation by a visual inspector. For this reason, there are subtle differences in the determination criteria depending on the inspector, and it is necessary to set a determination criterion that summarizes them and update it appropriately. In addition, at the time of starting the process, it is assumed that a new quality deterioration factor may occur, and the determination criteria may change. Further, in the manufacturing process of the flat panel, which is an object to be inspected, a lighting inspection is performed as a final image quality evaluation after many steps after the ELA step. For this reason, there is a possibility that it is necessary to appropriately change the quality judgment criteria of the crystalline silicon while reflecting the result of the final image quality in consideration of the correlation between the quality of the crystalline silicon and the final image quality.

特許文献1に記載されている方法では、検査基準をプロセスの変化や検査条件の変化などに応じて柔軟に対応させることについて記載されていない。   In the method described in Patent Document 1, it is not described that the inspection standard is flexibly dealt with in accordance with a change in process, a change in inspection conditions, and the like.

また、特許文献2に記載されている方法においても、基板からの回折光の情報だけを用いることが記載されているだけで、検査基準をプロセスの変化や検査条件の変化などに応じて柔軟に対応させることについて記載されていない。   In the method described in Patent Document 2, only the use of information on the diffracted light from the substrate is described, so that the inspection standard can be flexibly changed according to a change in process or a change in inspection conditions. There is no mention of correspondence.

本発明の目的は、ELA工程において、検査基準をプロセスの変化や検査条件の変化などに応じて柔軟に対応させることができ、高速、かつ目視検査員の品質評価値や最終画質と整合のとれた基板の品質評価方法及びその装置を提供することにある。   The object of the present invention is to make it possible to flexibly cope with inspection standards in accordance with process changes, changes in inspection conditions, etc., in the ELA process, and is consistent with quality evaluation values and final image quality of visual inspectors. Another object of the present invention is to provide a quality evaluation method and apparatus for a substrate.

上記課題を解決するために、本発明は、基板上に形成された多結晶シリコン薄膜の品質を評価する装置において、評価対象となる基板を載置して少なくとも一方向に連続的に移動可能なテーブル手段と、このテーブル手段に載置された基板に斜め方向から光を照射して基板上に形成された多結晶シリコン薄膜により発生する1次回折光による像を撮像して1次回折光像を取得すると共に、基板からの正反射光又は透過光の光軸近傍の散乱光の像を撮像して光軸近傍の散乱光像を取得する画像取得手段と、この画像取得手段で取得した1次回折光像の画像と光軸近傍の散乱光像の画像を処理して複数の特徴を抽出する特徴抽出手段と、この特徴抽出手段で抽出した複数の特徴のうち、少なくとも1つ以上の特徴を用いて事前に設定した評価基準に従って基板上に形成された多結晶シリコン薄膜の品質評価値を算出する品質評価値算出手段とを備えて構成した。   In order to solve the above-mentioned problems, the present invention is an apparatus for evaluating the quality of a polycrystalline silicon thin film formed on a substrate, and the substrate to be evaluated can be placed and continuously moved in at least one direction. A first-order diffracted light image is obtained by irradiating light on the table means and the substrate placed on the table means from an oblique direction to capture an image of the first-order diffracted light generated by the polycrystalline silicon thin film formed on the substrate. In addition, an image acquisition unit that captures an image of scattered light near the optical axis of specularly reflected light or transmitted light from the substrate and acquires a scattered light image near the optical axis, and first-order diffracted light acquired by the image acquisition unit A feature extracting unit that extracts a plurality of features by processing an image of the image and a scattered light image near the optical axis, and at least one of the plurality of features extracted by the feature extracting unit; Pre-set evaluation criteria Thus it was constructed and a quality evaluation value calculating means for calculating the quality evaluation value of the polycrystalline silicon thin film formed on a substrate.

また、上記課題を解決するために、本発明では、基板上に形成された多結晶シリコン薄膜の品質を評価する方法を、評価対象となる基板を一方向に連続的に移動させながら基板に斜め方向から光を照射して基板上に形成された多結晶シリコン薄膜により発生する1次回折光による像を撮像して1次回折光像を取得すると共に、基板からの正反射光又は透過光の光軸近傍の散乱光の像を撮像して光軸近傍の散乱光像を取得し、この取得した1次回折光像の画像と光軸近傍の散乱光像の画像を処理して複数の特徴を抽出し、この抽出した複数の特徴のうち、少なくとも1つ以上の特徴を用いて、事前に設定した評価基準に従って基板上に形成された多結晶シリコン薄膜の品質評価値を算出するようにした。   Further, in order to solve the above-mentioned problems, in the present invention, a method for evaluating the quality of a polycrystalline silicon thin film formed on a substrate is obliquely applied to the substrate while continuously moving the substrate to be evaluated in one direction. The first-order diffracted light image is obtained by capturing an image of the first-order diffracted light generated by the polycrystalline silicon thin film formed on the substrate by irradiating light from the direction, and the optical axis of specularly reflected light or transmitted light from the substrate A scattered light image near the optical axis is acquired by capturing an image of the scattered light in the vicinity, and a plurality of features are extracted by processing the acquired image of the first-order diffracted light image and the scattered light image near the optical axis. The quality evaluation value of the polycrystalline silicon thin film formed on the substrate is calculated using at least one or more of the extracted features according to the evaluation criteria set in advance.

本発明によれば、目視観察・評価による判定と整合のとれた品質評価値を出力することができるようになった。また、基板の品質評価値算出の基になる判定基準を、複数の基板の画像とその基板の製品完成後の品質をセットにして事前に入力して設定することにより最終品質の事前予測が可能になった。   According to the present invention, it is possible to output a quality evaluation value consistent with the determination by visual observation / evaluation. In addition, the final quality can be predicted in advance by setting the criteria for calculating the quality evaluation value of the board in advance by setting multiple board images and the quality of the board after product completion. Became.

品質評価装置の一実施の形態としての概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure as one Embodiment of a quality evaluation apparatus. 品質評価装置の構成の概念を示すブロック図である。It is a block diagram which shows the concept of a structure of a quality evaluation apparatus. 基板上の多結晶シリコン膜にレーザを照射して1次回折光が発生した状態を示す基板の断面図である。It is sectional drawing of a board | substrate which shows the state which irradiated the laser to the polycrystalline-silicon film | membrane on a board | substrate, and the 1st-order diffracted light was generated. アニール用レーザパワーと多結晶シリコン薄膜の結晶粒径との関係を概念的に表現したグラフである。It is the graph which expressed notionally the relationship between the laser power for annealing and the crystal grain diameter of a polycrystalline silicon thin film. 基板の品質評価値を算出する処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process which calculates the quality evaluation value of a board | substrate. 基板の品質評価値を算出する処理の概念を示すフロー図である。It is a flowchart which shows the concept of the process which calculates the quality evaluation value of a board | substrate. 評価対象となる結晶シリコンが形成された基板の画像の概念図である。It is a conceptual diagram of the image of the board | substrate with which the crystalline silicon used as evaluation object was formed. ユーザの観点で判定基準を設定する処理の一例を示すフロー図である。It is a flowchart which shows an example of the process which sets a determination standard from a user's viewpoint. 最終点灯検査時の品質評価値から判定基準を設定する処理の一例を示すフロー図である。It is a flowchart which shows an example of the process which sets a criterion from the quality evaluation value at the time of final lighting inspection. 品質評価装置の照明光学系の別の形態としての概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure as another form of the illumination optical system of a quality evaluation apparatus. 複数の光学系より得られた画像から基板の品質の判定基準を設定する処理の一例を示すフロー図である。It is a flowchart which shows an example of the process which sets the determination standard of the quality of a board | substrate from the image obtained from the some optical system. 複数の光学系より得られた画像から基板の品質評価値を算出する処理の一例を示すフロー図である。It is a flowchart which shows an example of the process which calculates the quality evaluation value of a board | substrate from the image obtained from the some optical system.

本発明に係る基板の品質評価方法及びその装置の実施の形態について図を用いて説明する。まず、被検査対象物として結晶シリコンが形成された基板を対象とした品質評価装置の実施の形態について説明する。   Embodiments of a substrate quality evaluation method and apparatus according to the present invention will be described with reference to the drawings. First, an embodiment of a quality evaluation apparatus for a substrate on which crystalline silicon is formed as an object to be inspected will be described.

図2は本発明に係る基板の品質評価装置100の実施の形態を示す概念図である。光学系1は、照明部4及び複数の検出部7a、7bを有して構成される。照明部4は、照明条件(例えば照射角度、照明方位、照明波長、偏光状態など)が調整された状態で被評価対象物5(結晶シリコンが形成された基板)に照射する。照明部4から出射される照明光により被検査対象物5から散乱光が発生する。ここでは、検出部7aの方向に散乱した光を散乱光6a、検出部7bの方向に散乱した光を散乱光6bと呼ぶ。散乱光6a及び散乱光6bの夫々を検出部7a及び検出部7bの夫々で散乱光強度信号として検出する。該検出された散乱光強度信号の夫々はA/D変換部2で増幅されてA/D変換され、画像処理部3に入力される。
画像処理部3は、前処理部8−1、評価値算出部8−2を適宜有して構成される。画像処理部3に入力された散乱光強度信号に対し、前処理部8−1において、後述する判定基準の算出を行う。評価値算出部8−2は前処理部8−1で生成された判定基準に応じて、後述する処理を行い、基板の品質評価値を算出し、全体制御部9に出力する。
FIG. 2 is a conceptual diagram showing an embodiment of a substrate quality evaluation apparatus 100 according to the present invention. The optical system 1 includes an illumination unit 4 and a plurality of detection units 7a and 7b. The illuminating unit 4 irradiates the evaluation object 5 (the substrate on which the crystalline silicon is formed) with the illumination conditions (for example, the irradiation angle, the illumination direction, the illumination wavelength, the polarization state, etc.) adjusted. Scattered light is generated from the inspection object 5 by the illumination light emitted from the illumination unit 4. Here, the light scattered in the direction of the detector 7a is referred to as scattered light 6a, and the light scattered in the direction of the detector 7b is referred to as scattered light 6b. The scattered light 6a and the scattered light 6b are detected as scattered light intensity signals by the detection unit 7a and the detection unit 7b, respectively. Each of the detected scattered light intensity signals is amplified and A / D converted by the A / D conversion unit 2 and input to the image processing unit 3.
The image processing unit 3 includes a preprocessing unit 8-1 and an evaluation value calculation unit 8-2 as appropriate. For the scattered light intensity signal input to the image processing unit 3, the pre-processing unit 8-1 calculates a determination criterion described later. The evaluation value calculation unit 8-2 performs processing described later according to the determination criterion generated by the preprocessing unit 8-1, calculates the quality evaluation value of the substrate, and outputs it to the overall control unit 9.

散乱光6a及び散乱光6bの夫々は、各々検出部7a及び検出部7bの方向に発生する散乱光分布を指す。照明部4による照明光の光学条件が異なれば、それによって発生する散乱光6aと散乱光6bは互いに異なる。本実施例において、ある照明光によって発生した散乱光の光学的性質およびその特徴を、その散乱光の散乱光分布と呼ぶ。散乱光分布とは、より具体的には、散乱光の出射位置・出射方位・出射角度に対する、強度・振幅・位相・偏光・波長・コヒーレンシ等の光学パラメータ値の分布を指す。   Each of the scattered light 6a and the scattered light 6b indicates a scattered light distribution generated in the direction of the detection unit 7a and the detection unit 7b, respectively. If the optical conditions of the illumination light by the illumination unit 4 are different, the scattered light 6a and the scattered light 6b generated thereby are different from each other. In this embodiment, the optical properties and characteristics of scattered light generated by certain illumination light are referred to as scattered light distribution of the scattered light. More specifically, the scattered light distribution refers to a distribution of optical parameter values such as intensity, amplitude, phase, polarization, wavelength, and coherency with respect to the emission position, emission direction, and emission angle of the scattered light.

次に、図2に示す構成を実現する具体的な品質評価装置の一実施の形態としてのブロック図を図1に示す。即ち、本実施例に係る品質評価装置100は、被検査対象物(例えば、結晶シリコンが形成された基板5)に対して照明光を斜方から照射する照明部4と、基板5からの1次回折光の方向の散乱光を結像させる検出光学系(1次回折光検出系)7aと、試料5からの正反射光の近傍の散乱光を結像させる検出光学系(正反射光近傍散乱光検出系)7bと、それぞれの検出光学系により結像された光学像を受光し、画像信号に変換するセンサ部11a、11bとを有する光学系1と、センサ部11a、11bで得られた画像信号を増幅してA/D変換するA/D変換部2と、画像処理部3と、全体制御部9とを備えて構成される。ここでは、散乱光を例にその処理の詳細を説明する。なお、回折光も同様の処理が行われる。   Next, FIG. 1 shows a block diagram as an embodiment of a specific quality evaluation apparatus for realizing the configuration shown in FIG. That is, the quality evaluation apparatus 100 according to the present embodiment includes an illumination unit 4 that irradiates illumination light obliquely onto an object to be inspected (for example, a substrate 5 on which crystalline silicon is formed), and 1 from the substrate 5. A detection optical system (first-order diffracted light detection system) 7a that forms an image of scattered light in the direction of the next-order diffracted light and a detection optical system that forms an image of scattered light in the vicinity of the specularly reflected light from the sample 5 (scattered light near the specularly reflected light) (Detection system) 7b, an optical system 1 having sensor portions 11a and 11b that receive optical images formed by the respective detection optical systems and convert them into image signals, and images obtained by the sensor portions 11a and 11b. An A / D converter 2 that amplifies the signal and performs A / D conversion, an image processor 3, and an overall controller 9 are configured. Here, the details of the processing will be described using scattered light as an example. The same processing is performed on the diffracted light.

基板5はXY平面内の移動及び回転とXY平面に垂直なZ方向への移動が可能なステージ(X−Y−Z−θステージ)13に搭載され、X−Y−Z−θステージ13はメカニカルコントローラ14により駆動される。このとき、基板5をX−Y−Z−θステージ13に搭載し、該X−Y−Z−θステージ13を水平方向に移動させながら被検査対象物上の異物からの散乱光を検出することで、検出結果を二次元画像として得る。   The substrate 5 is mounted on a stage (XYZ-θ stage) 13 that can move and rotate in the XY plane and move in the Z direction perpendicular to the XY plane. The XYZ-θ stage 13 is It is driven by the mechanical controller 14. At this time, the substrate 5 is mounted on the XYZ-θ stage 13, and the scattered light from the foreign matter on the object to be inspected is detected while moving the XYZ-θ stage 13 in the horizontal direction. Thus, the detection result is obtained as a two-dimensional image.

照明部4の照明光源41は、レーザを用いても、ランプを用いてもよい。また、各照明光源の光の波長は短波長であってもよく、また、広帯域の波長の光(白色光)であってもよい。短波長の光を用いる場合、検出する画像の分解能を上げる(微細な欠陥を検出する)ために、紫外領域の波長(160〜400nm)の光(Ultra Violet Light:UV光)を用いることもできる。レーザを光源として用いる場合、それが単波長のレーザである場合には、可干渉性を低減する手段43を照明部4に備えることも可能である。照明部4は、更に照明光源41から発射された光を平行光とするコリメートレンズ42と、コリメートされた光を一方向に長い(図1の場合には、紙面に直角な方向に長い)ビーム形状に変換するシリンドリカルレンズ44を備えている。照明条件(例えば照射角度、照明方位、照明波長、偏光状態等)はユーザにより選択、もしくは自動選択され、照明ドライバ12において、選択条件に応じた設定、制御を行う。
基板5から発した散乱光のうち、ELAにより基板5に形成された多結晶シリコン膜の規則的な突起状のパターンからの反射光による1次回折光及びその近傍の散乱光は検出光学系7aを介してセンサ部11aにて画像信号に変換される。また、基板5から正反射光の方向に散乱した光は、空間フィルタ71bで正反射光が遮光されて正反射光近傍の散乱光が検出光学系7bを介してセンサ部11bにて画像信号に変換される。検出光学系7aは、対物レンズ72a、光学フィルタ73a、結像レンズ74aを備えて構成され、センサ部11aに集光、結像される。また、検出光学系7bも7aと同様に対物レンズ72b、光学フィルタ73b、結像レンズ74bを備えた構成になっている。
センサ部11a、11bは、1次元イメージセンサ(CCDリニアセンサ)、もしくは、複数の1次元イメージセンサを2次元に配列して構成した時間遅延積分型のイメージセンサ(Time Delay Integration Image Sensor:TDIイメージセンサ)を採用し、X−Y−Z−θステージ12の移動と同期してイメージセンサで散乱光分布を検出し、2次元画像を得る。また、73a、73bは光学フィルタであり、NDフィルタやアッテネータ等の光強度を調整が可能な光学素子、あるいは偏光板や偏光ビームスプリッタや波長板等の偏光光学素子、あるいはバンドパスフィルタやダイクロイックミラー等の波長フィルタの何れか又はそれらを組み合わせたもので構成され、検出光の光強度、偏光特性、波長特性の何れか又はそれらを組み合わせて制御する。
The illumination light source 41 of the illumination unit 4 may use a laser or a lamp. Moreover, the wavelength of the light of each illumination light source may be a short wavelength, or may be light with a broad wavelength (white light). When short-wavelength light is used, light (Ultra Violet Light: UV light) having a wavelength in the ultraviolet region (160 to 400 nm) can be used in order to increase the resolution of the image to be detected (detect fine defects). . When the laser is used as the light source, if it is a single wavelength laser, the illumination unit 4 can be provided with means 43 for reducing coherence. The illumination unit 4 further includes a collimator lens 42 that collimates the light emitted from the illumination light source 41, and a beam that is long in one direction (in the case of FIG. 1, long in a direction perpendicular to the paper surface). A cylindrical lens 44 for converting into a shape is provided. Illumination conditions (for example, irradiation angle, illumination azimuth, illumination wavelength, polarization state, etc.) are selected or automatically selected by the user, and the illumination driver 12 performs setting and control according to the selection conditions.
Of the scattered light emitted from the substrate 5, the first-order diffracted light reflected by the regular projection pattern of the polycrystalline silicon film formed on the substrate 5 by ELA and the scattered light in the vicinity thereof are sent to the detection optical system 7a. And converted into an image signal by the sensor unit 11a. In addition, the light scattered from the substrate 5 in the direction of the specularly reflected light is shielded from the specularly reflected light by the spatial filter 71b, and the scattered light near the specularly reflected light is converted into an image signal by the sensor unit 11b via the detection optical system 7b. Converted. The detection optical system 7a includes an objective lens 72a, an optical filter 73a, and an imaging lens 74a, and is condensed and imaged on the sensor unit 11a. Similarly to 7a, the detection optical system 7b also has an objective lens 72b, an optical filter 73b, and an imaging lens 74b.
The sensor units 11a and 11b are a one-dimensional image sensor (CCD linear sensor) or a time delay integration image sensor (TDI image) configured by two-dimensionally arranging a plurality of one-dimensional image sensors. Sensor), the scattered light distribution is detected by the image sensor in synchronization with the movement of the XYZ-θ stage 12, and a two-dimensional image is obtained. Reference numerals 73a and 73b denote optical filters, such as an optical element capable of adjusting the light intensity such as an ND filter and an attenuator, a polarizing optical element such as a polarizing plate, a polarizing beam splitter, and a wave plate, or a bandpass filter and a dichroic mirror. Or a combination of them, and controls any one of the light intensity, polarization characteristics, and wavelength characteristics of the detection light, or a combination thereof.

画像処理部3は被検査対象物である基板5上の品質評価値を算出するものであって、センサ部11a、11bから入力された画像信号に対して、品質評価値を算出するための基準を設定する前処理部8−1、設定された品質判定基準に基づいて、検出された画像から品質評価値を算出する評価値算出部8−2、外部から入力されるパラメータやデータなどを受け付け、前処理部8−1および評価値算出部8−2へセットするデータ教示部8−3を含んで構成される。そして、画像処理部3において例えばデータ教示部8−3はデータベース15を接続して構成される。   The image processing unit 3 calculates a quality evaluation value on the substrate 5 that is an object to be inspected, and a standard for calculating the quality evaluation value for the image signals input from the sensor units 11a and 11b. A pre-processing unit 8-1 that sets a quality evaluation value, an evaluation value calculation unit 8-2 that calculates a quality evaluation value from a detected image based on a set quality criterion, and accepts parameters and data input from the outside The data teaching unit 8-3 is set to the preprocessing unit 8-1 and the evaluation value calculation unit 8-2. In the image processing unit 3, for example, the data teaching unit 8-3 is configured by connecting the database 15.

全体制御部9は、各種制御を行うCPU(全体制御部9に内蔵)を備え、ユーザからのパラメータなどを受け付け、検出された基板の画像、品質評価値等を表示する表示手段と入力手段を持つユーザインターフェース部(GUI部)16及び画像処理部3で処理された基板の特徴量や画像、品質判定基準等を記憶する記憶装置17を適宜接続している。メカニカルコントローラ14は、全体制御部9からの制御指令に基づいてX−Y−Z−θステージ13を駆動する。尚、画像処理部3、検出光学系7a、7b等も全体制御部9からの指令により駆動される。   The overall control unit 9 includes a CPU (incorporated in the overall control unit 9) that performs various controls, receives display parameters and the like from the user, and displays display means and input means that display detected board images, quality evaluation values, and the like. A user interface unit (GUI unit) 16 and a substrate 17 processed by the image processing unit 3 and a storage device 17 for storing the feature amount, image, quality criterion, and the like are appropriately connected. The mechanical controller 14 drives the XYZ-θ stage 13 based on a control command from the overall control unit 9. The image processing unit 3 and the detection optical systems 7a and 7b are also driven by commands from the overall control unit 9.

被評価対象である基板5は、例えばガラス基板であって、表面に結晶シリコンが多数、規則的に形成されている。全体制御部9は基板5をX−Y−Z−θステージ13により連続的に移動させ、これに同期して、基板の像をセンサ部11a、11bより取り込み、得られた2種の散乱光(6a、6b)の画像各々に対し、各種の特徴を算出し、算出した特徴の値を事前に設定した判定基準と比較して品質評価値を算出する。   The substrate 5 to be evaluated is, for example, a glass substrate, and a large number of crystalline silicon is regularly formed on the surface. The overall control unit 9 continuously moves the substrate 5 by the XYZ-θ stage 13, and in synchronization with this, captures the image of the substrate from the sensor units 11a and 11b, and obtains two types of scattered light obtained. For each of the images (6a, 6b), various features are calculated, and a quality evaluation value is calculated by comparing the calculated feature value with a preset criterion.

図3Aには、ガラス基板300上に形成されたアモルファスシリコン薄膜310の一部がエキシマレーザでアニールされて結晶粒径がそろった多結晶シリコン薄膜320が形成された状態の基板300に、光源350から照明光351を入射角度θ1(基板300の法線方向に対する角度)で基板300に照射して、基板300の表面の側のθ2方向に1次回折光352が発生する状態を示している。   In FIG. 3A, a light source 350 is formed on a substrate 300 in a state where a part of an amorphous silicon thin film 310 formed on a glass substrate 300 is annealed with an excimer laser to form a polycrystalline silicon thin film 320 having a uniform crystal grain size. Illuminating light 351 is incident on the substrate 300 at an incident angle θ1 (an angle with respect to the normal direction of the substrate 300), and the first-order diffracted light 352 is generated in the θ2 direction on the surface side of the substrate 300.

このエキシマレーザアニールにより形成された多結晶シリコン薄膜320の粒径は、エキシマレーザの照射エネルギー(レーザのパワー密度と照射時間との積)に依存する。すなわち、アモルファスシリコン薄膜310に照射するレーザのパワーを上昇させていくと、図3Bに示すように、あるエネルギレベルを超えたところからアモルファスシリコン薄膜310の結晶化が進行し始め、多結晶シリコン薄膜320が成長する。そして、照射するレーザのパワーを更に上げていくと、多結晶シリコン薄膜320の粒径が更に大きく成長していく。   The grain size of the polycrystalline silicon thin film 320 formed by this excimer laser annealing depends on the irradiation energy of the excimer laser (the product of the laser power density and the irradiation time). That is, when the power of the laser irradiating the amorphous silicon thin film 310 is increased, as shown in FIG. 3B, the crystallization of the amorphous silicon thin film 310 starts to progress from a certain energy level, and the polycrystalline silicon thin film 320 grows. As the power of the irradiated laser is further increased, the grain size of the polycrystalline silicon thin film 320 grows larger.

ここで、多結晶シリコン薄膜320の粒径がそろった状態になると多結晶シリコン薄膜320の表面には、結晶の粒径に応じてほぼ一定のピッチPで突起が形成される(図3Aの図面に直角な方向にも一定のピッチで突起が形成されている)。この膜表面の突起のピッチPは、多結晶シリコン薄膜320の結晶粒径によって変わる。   Here, when the polycrystalline silicon thin film 320 has a uniform grain size, protrusions are formed on the surface of the polycrystalline silicon thin film 320 at a substantially constant pitch P in accordance with the crystal grain size (FIG. 3A drawing). Projections are formed at a constant pitch in a direction perpendicular to the surface). The pitch P of the protrusions on the film surface varies depending on the crystal grain size of the polycrystalline silicon thin film 320.

一方、図3Aに示した構成において、光源350から発射された波長がλの照明光の基板300への入射角度θ1と、多結晶シリコン薄膜320が形成された基板300から発生する1次回折光の出射角度θ2、多結晶シリコン薄膜320の表面の突起のピッチPとの間には、   On the other hand, in the configuration shown in FIG. 3A, the incident angle θ1 of the illumination light emitted from the light source 350 with the wavelength λ to the substrate 300 and the first-order diffracted light generated from the substrate 300 on which the polycrystalline silicon thin film 320 is formed. Between the emission angle θ2 and the pitch P of the protrusions on the surface of the polycrystalline silicon thin film 320,

Figure 2012119512
Figure 2012119512

で表される関係が成り立つ。 The relationship expressed by

すなわち、アモルファスシリコン薄膜310をアニールする時のエキシマレーザのパワーにばらつき(空間的な分布)や変動(経時的な変化)があると、多結晶シリコン薄膜320の粒径が変化する。その結果、θ1の方向から照射された基板300から発生する1次回折光の出射角度θ2が変化することになる。従って、1次回折光352を検出してその角度θ2を求めることにより、多結晶シリコン薄膜320の粒径を推定することができる。   That is, if there is variation (spatial distribution) or variation (time-dependent change) in the power of the excimer laser when annealing the amorphous silicon thin film 310, the grain size of the polycrystalline silicon thin film 320 changes. As a result, the emission angle θ2 of the first-order diffracted light generated from the substrate 300 irradiated from the direction of θ1 changes. Accordingly, the grain size of the polycrystalline silicon thin film 320 can be estimated by detecting the first-order diffracted light 352 and obtaining the angle θ2.

次に、画像処理部3の基板の品質評価値算出部8−2の処理の流れの一例を説明する。図4は、図1に示した、基板5に対し、ステージ13の走査によりセンサ部11aから得られる1次回折光分布の画像から品質評価値を算出する処理の流れの概要を示す。評価値算出部8−2には、事前に設定された判定基準410とセンサ部11aで検出された基板5の画像420が入力される。評価値算出部8−2では、まず品質を左右する特徴を顕在化するため、評価の妨げになるノイズを除去する(S401)。ノイズの例としては、センサの電気ノイズ、検出仰角に依存して生じる輝度シェーディング、照明むらなどがある。ノイズの除去方法としては、平滑化、特定周波数帯域の除去などがある。次に、ノイズを除去した基板の画像について、1つ又は複数の特徴量を演算する(S402)。
ここで、対象が結晶シリコンである場合、パルスエキシマレーザの照射エネルギーの変動を起因としたストライプ状のむら、基板内の輝度分布などが品質を左右する特徴の例となる。そこでこれらを定量化する特徴量の例として、
特徴(1):ストライプ状のむらのある方向の輝度投影から算出するコントラスト
特徴(2):画像内の各画素について、輝度勾配強度の画像内分布
等がある。図6はその例を示す。61は結晶シリコンが形成された基板の画像である。エキシマレーザアニール装置で表面にアモルファスシリコンの薄膜が形成された基板に照射する一方向に長く成形したレーザの長手方向がX方向、スキャン方向(送り方向)がY方向とする。照射レーザエネルギーの変動や一方向に長く成形したレーザの長手方向のエネルギの分布などにより、レーザアニールにより形成される多結晶シリコンの品質が劣化すると、61のように、X方向に沿ったストライプ状のむらが顕著になる。このため、検出画像の各点の輝度値をf(x、y)とすると、特徴(1)は、X方向に各画素の投影輝度平均を(数2)の通りに算出し、投影輝度平均のY方向の変化量(数3)をコントラストとする。
Next, an example of the processing flow of the board quality evaluation value calculation unit 8-2 of the image processing unit 3 will be described. FIG. 4 shows an outline of the flow of processing for calculating the quality evaluation value from the image of the first-order diffracted light distribution obtained from the sensor unit 11a by scanning the stage 13 with respect to the substrate 5 shown in FIG. The evaluation value calculation unit 8-2 receives the determination criterion 410 set in advance and the image 420 of the substrate 5 detected by the sensor unit 11a. In the evaluation value calculation unit 8-2, first, noise that hinders evaluation is removed in order to reveal features that affect quality (S401). Examples of noise include electrical noise of the sensor, luminance shading that occurs depending on the detected elevation angle, and uneven illumination. Noise removal methods include smoothing and removal of a specific frequency band. Next, one or a plurality of feature amounts are calculated for the substrate image from which noise has been removed (S402).
Here, when the target is crystalline silicon, stripe-shaped unevenness due to fluctuations in the irradiation energy of the pulse excimer laser, luminance distribution in the substrate, and the like are examples of characteristics that affect quality. Therefore, as an example of the feature value to quantify these,
Feature (1): Contrast feature calculated from luminance projection in a striped uneven direction (2): For each pixel in the image, there is a distribution in the image of the luminance gradient intensity. FIG. 6 shows an example. 61 is an image of a substrate on which crystalline silicon is formed. The longitudinal direction of the laser formed long in one direction to irradiate the substrate having the amorphous silicon thin film formed on the surface by the excimer laser annealing apparatus is the X direction, and the scanning direction (feeding direction) is the Y direction. If the quality of the polycrystalline silicon formed by laser annealing deteriorates due to fluctuations in the irradiation laser energy or the distribution of energy in the longitudinal direction of the laser formed long in one direction, the stripe shape along the X direction as indicated by 61 Unevenness becomes noticeable. Therefore, assuming that the luminance value of each point of the detected image is f (x, y), the feature (1) calculates the average projection luminance of each pixel in the X direction as in (Equation 2), and calculates the average projection luminance. The amount of change in the Y direction (Equation 3) is taken as the contrast.

Figure 2012119512
Figure 2012119512

Figure 2012119512
Figure 2012119512

特徴(2)は、各画素に対して、(数4)の通りに輝度勾配強度を演算し、そのヒストグラムを対象領域内で求め、特徴とするものである。   The feature (2) is a feature in which the luminance gradient intensity is calculated for each pixel as in (Equation 4), and the histogram is obtained in the target region.

Figure 2012119512
Figure 2012119512

特徴(1)と(2)は特徴量の一例であって、それ以外でも基板の特徴を表すものであればよい。そして、複数の特徴量のうちの全て、あるいはいくつかを、事前に設定してある判定基準と比較し(S403)、判定基準に基づいて基板の品質評価値を決定する(S404)。次に、この品質評価値に基づいてレーザアニール装置のレーザ照射条件の良否を判定する(S405)し、その結果を出力する(S406)。   Features (1) and (2) are examples of feature amounts, and any other feature may be used as long as it represents the features of the substrate. Then, all or some of the plurality of feature quantities are compared with a predetermined determination criterion (S403), and a board quality evaluation value is determined based on the determination criterion (S404). Next, the quality of the laser irradiation condition of the laser annealing apparatus is judged based on the quality evaluation value (S405), and the result is output (S406).

図5は、S404において基板の品質評価値を決定するその具体的な概念図である。510、520はそれぞれ異なる基板について、同一の検出条件で取得した画像である。このような基板5の画像が画像処理部3に入力されると、まず、基板5の画像各々について、特徴量A、B、・・・を演算する。ここでは、2つの特徴量A、Bを使って品質評価値を算出する例を示す。本発明では、前処理部8−1にて事前に特徴量A、Bを用いた判定基準を決定しておく。   FIG. 5 is a specific conceptual diagram for determining the quality evaluation value of the substrate in S404. 510 and 520 are images acquired under the same detection conditions for different substrates. When such an image of the substrate 5 is input to the image processing unit 3, first, feature amounts A, B,... Are calculated for each image of the substrate 5. Here, an example in which a quality evaluation value is calculated using two feature amounts A and B is shown. In the present invention, the determination criterion using the feature amounts A and B is determined in advance by the preprocessing unit 8-1.

図5の530は判定基準を示す特徴空間の例である。すなわち、特徴A、特徴Bを軸とする2次元の特徴空間において、各品質評価値の取り得る範囲を設定する。530は、
If 「ThA1<特徴A≦ThA2」 and 「ThB1<特徴B≦ThB2」 Then Level1
といったように、しきい値で評価値の範囲が決定可能となるように、各評価値の範囲を軸に平行になるように矩形で区切った判定基準の例である。そして、この各評価値の範囲(図中530のLevel1〜Level4)が設定された特徴空間上で、評価対象基板の画像から算出した特徴量がどこにプロットされるかで、品質評価値を決定する。
Reference numeral 530 in FIG. 5 is an example of a feature space indicating a determination criterion. That is, a range that each quality evaluation value can take is set in a two-dimensional feature space with the features A and B as axes. 530 is
If “ThA1 <feature A ≦ ThA2” and “ThB1 <feature B ≦ ThB2” Then Level1
As described above, this is an example of a determination criterion in which each evaluation value range is divided by a rectangle so as to be parallel to the axis so that the evaluation value range can be determined by a threshold value. Then, the quality evaluation value is determined depending on where the feature amount calculated from the image of the evaluation target board is plotted on the feature space in which the range of each evaluation value (Level 1 to Level 4 of 530 in the figure) is set. .

図5の特徴空間530においては、基板510の画像から算出した特徴量はLevel1の領域内にプロットされ、基板520の画像から算出した特徴量はLevel3にプロットされたことを示しており、それぞれの評価値は、Level1、Level3に決定される(S404)。図5では、特徴空間530における判定基準を特徴軸に平行な直線で区切った矩形領域で示したが、特徴軸に対して、傾きをもった直線で区切ることも可能である。また、直線ではなく、特徴空間上で各評価値の領域を曲線で区切ることも可能である。   In the feature space 530 of FIG. 5, the feature amount calculated from the image of the substrate 510 is plotted in the Level 1 region, and the feature amount calculated from the image of the substrate 520 is plotted in Level 3. Evaluation values are determined as Level 1 and Level 3 (S404). In FIG. 5, the determination criterion in the feature space 530 is indicated by a rectangular area divided by a straight line parallel to the feature axis. However, it is also possible to divide by a straight line having an inclination with respect to the feature axis. Further, instead of a straight line, it is also possible to divide each evaluation value area with a curve in the feature space.

領域の設定は、
If 「ThA1<特徴A≦ThA2」 and 「ThB1<特徴B≦ThB2」 Then Level1
といったしきい値(ThA1,ThA2,ThB1,ThB2)をユーザが設定することができる。また、530のような特徴空間をユーザインターフェース部16に表示し、GUI上で各評価値の範囲を直接、ユーザが設定することもできる。
The area setting is
If “ThA1 <feature A ≦ ThA2” and “ThB1 <feature B ≦ ThB2” Then Level1
Such a threshold (ThA1, ThA2, ThB1, ThB2) can be set by the user. Also, a feature space such as 530 can be displayed on the user interface unit 16, and the range of each evaluation value can be directly set by the user on the GUI.

本実施例において、品質評価値を決定する判定基準は、図5に示した2次元の特徴空間530での設定にとどまるのではなく、より高次元の特徴空間においても設定可能である。例えば、3種の特徴量を用いた3次元の特徴空間においては、品質判定基準は、平面、曲面で設定可能である。さらに、より高次元の特徴空間においては、品質判定基準は、超平面、超曲面となる。この場合、ユーザが複数の特徴軸に対してしきい値を設定するのは困難である。そのため、本発明では、教師あり学習による判定基準設定機能を持つ。   In this embodiment, the criterion for determining the quality evaluation value is not limited to the setting in the two-dimensional feature space 530 shown in FIG. 5, but can be set in a higher-dimensional feature space. For example, in a three-dimensional feature space that uses three types of feature quantities, the quality criterion can be set as a plane or a curved surface. Furthermore, in a higher-dimensional feature space, the quality criterion is a hyperplane or a hypersurface. In this case, it is difficult for the user to set threshold values for a plurality of feature axes. Therefore, the present invention has a determination criterion setting function based on supervised learning.

図7は、判定基準410をユーザの観点で設定する場合の処理フローの例である。まず、ユーザは基板5を目視で観察し(S701)、基板5に品質評価値を設定する(S702)。これを繰返し、品質評価値を網羅する基板5と評価値をセットで準備する。次に、評価した基板5の画像を光学系1にて取得する(S703)。ユーザは、得られた基板5の画像とユーザにより設定されたその基板5の評価値をセットとし、これらを各評価値を網羅するように複数セット揃えて、画像処理部3に入力する。画像処理部3に基板5の画像と評価値の複数セットが入力されると、前処理部8−1において、S702で評価値が設定された評価値が既知、すなわち教師付きの基板の画像について、ノイズの除去を行い(S704)、特徴量を算出する(S705)。特徴量は、8−2の評価値算出部で算出するものと同じである。そして、画像から算出された特徴量とその画像の評価値の全セットを学習させて(S706)、判定基準710を出力する。   FIG. 7 is an example of a processing flow when the determination criterion 410 is set from the viewpoint of the user. First, the user visually observes the substrate 5 (S701), and sets a quality evaluation value on the substrate 5 (S702). This is repeated, and the substrate 5 covering the quality evaluation value and the evaluation value are prepared as a set. Next, an image of the evaluated substrate 5 is acquired by the optical system 1 (S703). The user sets the obtained image of the substrate 5 and the evaluation value of the substrate 5 set by the user as a set, and prepares a plurality of sets so as to cover each evaluation value, and inputs them to the image processing unit 3. When a plurality of images of the substrate 5 and a plurality of evaluation values are input to the image processing unit 3, the evaluation values set in S702 in the preprocessing unit 8-1 are known, that is, for the supervised substrate image. Then, noise is removed (S704), and a feature amount is calculated (S705). The feature amount is the same as that calculated by the evaluation value calculation unit 8-2. Then, the feature amount calculated from the image and the entire set of evaluation values of the image are learned (S706), and the determination criterion 710 is output.

S706で実行する学習は、パラメトリックな手法、ノンパラメトリックな手法など各種の一般的な識別器を使う。その一例としては、特徴空間にプロットされる各評価値の分布は正規分布に従うと仮定し、各画像の特徴量から算出され、特徴空間にプロットされた点が教師として入力された評価値の分布に入る確率を求めて判定基準を算出する方法がある。これは、ある評価値となるn個の画像から算出した特徴量をx1,x2,‥,xnとすると、それが正しい評価値とされるための識別関数φは、(数5)、(数6)で与えられる。   The learning executed in S706 uses various general classifiers such as a parametric method and a nonparametric method. As an example, assuming that the distribution of each evaluation value plotted in the feature space follows a normal distribution, the distribution of evaluation values calculated from the feature values of each image and the points plotted in the feature space are input as teachers There is a method of calculating a determination criterion by obtaining a probability of entering the image. This is because, if the feature quantities calculated from n images that are certain evaluation values are x1, x2,..., Xn, the discriminant function φ for making them the correct evaluation values is as follows: It is given in 6).

Figure 2012119512
Figure 2012119512

Figure 2012119512
Figure 2012119512

なお、ユーザがセットした各基板の評価値は基板そのものの観察結果から決定した例を述べたが、703にて検出した画像をユーザが観察して、教師としての評価値を与えてもよい。いずれにせよ、基板の画像に、ユーザの基準が入った評価値を教師として与え、識別器を用いて学習し、判定基準を生成することで、実際の検査員による目視評価結果と整合のとれた品質評価値を出力することが本発明の範囲である。この前処理部8−1で作成された判定基準710が、図4の処理フローで説明した品質評価値算出部8−2に入力される判定基準410として用いられる。   Although the example in which the evaluation value of each substrate set by the user is determined from the observation result of the substrate itself has been described, the user may observe the image detected in 703 and give the evaluation value as a teacher. In any case, an evaluation value that includes the user's criteria is given to the board image as a teacher, learning is performed using a discriminator, and a determination criterion is generated, so that it matches the result of visual evaluation by an actual inspector. It is within the scope of the present invention to output a quality evaluation value. The determination criterion 710 created by the preprocessing unit 8-1 is used as the determination criterion 410 input to the quality evaluation value calculation unit 8-2 described in the processing flow of FIG.

前処理部8−1で行う判定基準710の設定は、S702で設定されるユーザの評価基準を教師として与えることだけに限らない。図8はその例である。まず、結晶シリコンが形成された基板を目視で観察する。(S801)一方、基板5を光学系1で撮像して基板5の画像を取得して(S803)記憶する。さらにこの目視観察した基板が各製造工程を経た後の最終点灯検査時の品質評価値を、取得した画像とセットとし(S802)、これらを各評価値を網羅するように複数セット揃えて、画像処理3に入力する。以後の処理を図7と同様に、前処理部8−1において基板の画像についてノイズの除去を行い(S704)、特徴量を算出し(S705)、画像から算出された特徴量とその画像の最終点灯評価値の全セットを学習させて(S706)、判定基準810を出力する。   The setting of the determination criterion 710 performed by the preprocessing unit 8-1 is not limited to providing the user evaluation criterion set in S702 as a teacher. FIG. 8 shows an example. First, the substrate on which the crystalline silicon is formed is visually observed. (S801) On the other hand, the substrate 5 is imaged by the optical system 1 to obtain an image of the substrate 5 (S803) and stored. Furthermore, the quality evaluation value at the final lighting inspection after the visually observed substrate has undergone each manufacturing process is set as a set with the acquired image (S802), and a plurality of sets are prepared so as to cover each evaluation value. Input to process 3. In the subsequent processing, as in FIG. 7, the preprocessing unit 8-1 removes noise from the substrate image (S704), calculates the feature amount (S705), and calculates the feature amount calculated from the image and the image. The entire set of final lighting evaluation values is learned (S706), and the determination criterion 810 is output.

本例では、基板の画像に、最終点灯検査時の基準が入った評価値を教師として与え、識別器を用いて学習し、判定基準を生成することで、最終品質と整合のとれた品質評価値を出力する。なお、学習のために教師として与える評価値は、他に電子顕微鏡(SEM)により観察して得たものなど、整合をとりたい評価値でよい。   In this example, the evaluation value containing the criteria for the final lighting test is given to the image of the board as a teacher, learning is performed using a discriminator, and a determination criterion is generated, so that quality evaluation that is consistent with the final quality is achieved. Output the value. In addition, the evaluation value given as a teacher for learning may be an evaluation value desired to be matched, such as an evaluation value obtained by observation with an electron microscope (SEM).

以上に説明したように、図2に示した構成を実現する具体的な品質評価装置の形態の例を図1に従い説明したが、光学系1の別の形態の品質評価装置900の例を図9に示す。即ち、本実施例に係る品質評価装置の別の形態として、図9に示すような光学系91を備えた構成について説明する。光学系91では、多結晶シリコンが形成されたガラス基板95に対し、照明部94を裏面に配置し、照射する構成とした。この場合、検出光学系(一次回折光検出系)97aでは、ガラス基板95上に形成された多結晶シリコン膜の規則的な突起状のパターンからの反射光による1次回折光を結像させてセンサ部911aでその像を検出し、1次回折光の画像を得る。一方、検出光学系(ガラス基板透過光近傍の散乱光検出系)97bでは、ガラス基板透過光を遮光してその近傍の散乱光を結像させてセンサ部911bでその像を検出し、ガラス基板透過光の近傍の散乱光の画像を得る。   As described above, the example of the form of the specific quality evaluation apparatus that realizes the configuration shown in FIG. 2 has been described according to FIG. 1, but the example of the quality evaluation apparatus 900 of another form of the optical system 1 is illustrated. 9 shows. That is, a configuration provided with an optical system 91 as shown in FIG. 9 will be described as another form of the quality evaluation apparatus according to the present embodiment. The optical system 91 is configured to irradiate the glass substrate 95 on which polycrystalline silicon is formed with the illumination unit 94 disposed on the back surface. In this case, in the detection optical system (first-order diffracted light detection system) 97a, the first-order diffracted light by the reflected light from the regular projection-like pattern of the polycrystalline silicon film formed on the glass substrate 95 is imaged. The image is detected by the unit 911a to obtain an image of the first-order diffracted light. On the other hand, in the detection optical system (scattered light detection system in the vicinity of the light transmitted through the glass substrate) 97b, the light transmitted through the glass substrate is shielded to form an image of the scattered light in the vicinity, and the image is detected by the sensor unit 911b. An image of scattered light near the transmitted light is obtained.

照明部94の構成は図1で説明した照明部4の構成と同じであり、照明光原941、コリメートレンズ942、光学フィルタ943、シリンドリカルレンズ944を備えている。1次回折光を検出する検出光学系97aの構成は図1で説明した1次回折光検出系7aの構成と同じであり、対物レンズ972a、光学フィルタ973a、結像レンズ974aを備えており、センサ部911aに集光、結像される。ガラス基板95を透過した透過光の近傍の散乱光を検出する検出光学系97bの構成は図1で説明した正反射光近傍散乱光検出系7bの構成と同じであり、ガラス基板95を透過した透過光を遮光するための遮光フィルタ971b、対物レンズ972b、光学フィルタ973b、結像レンズ974bを備えており、センサ部911bに集光、結像される。ガラス基板95を裏面から照射するメリットとしては、例えば図1の照明部4と1次回折光検出系7aの配置関係について、構造物が互いに干渉しないように、制約をつける必要があったのに比べ、制約を受けずに1次回折光検出系97aと照明部91とを配置することができる。図9に示した構成において、1次回折光検出系97aと透過光の近傍の散乱光を検出する検出光学系97bとが干渉する場合には、透過光の近傍の散乱光を検出する検出光学系97bの光軸をガラス基板95を透過した透過光の光軸に対して傾けて設置するようにしても良い。この場合、検出光学系97bの光軸に対してずれているガラス基板95を透過した透過光はセンサ部911bに就航されないために、遮光フィルタ971bは不要となる。   The configuration of the illumination unit 94 is the same as the configuration of the illumination unit 4 described in FIG. 1, and includes an illumination light source 941, a collimating lens 942, an optical filter 943, and a cylindrical lens 944. The configuration of the detection optical system 97a for detecting the first-order diffracted light is the same as that of the first-order diffracted light detection system 7a described with reference to FIG. 1, and includes an objective lens 972a, an optical filter 973a, and an imaging lens 974a. Condensed and imaged on 911a. The configuration of the detection optical system 97b that detects the scattered light in the vicinity of the transmitted light that has passed through the glass substrate 95 is the same as that of the regular reflected light vicinity scattered light detection system 7b described in FIG. A light blocking filter 971b for blocking transmitted light, an objective lens 972b, an optical filter 973b, and an imaging lens 974b are provided, and condensed and imaged on the sensor unit 911b. As an advantage of irradiating the glass substrate 95 from the back surface, for example, the arrangement relationship between the illuminating unit 4 and the first-order diffracted light detection system 7a in FIG. 1 must be limited so that the structures do not interfere with each other. The first-order diffracted light detection system 97a and the illumination unit 91 can be arranged without restriction. In the configuration shown in FIG. 9, when the first-order diffracted light detection system 97a interferes with the detection optical system 97b that detects scattered light in the vicinity of the transmitted light, the detection optical system that detects scattered light in the vicinity of the transmitted light. The optical axis 97b may be installed so as to be inclined with respect to the optical axis of the transmitted light transmitted through the glass substrate 95. In this case, since the transmitted light transmitted through the glass substrate 95 that is shifted with respect to the optical axis of the detection optical system 97b is not put into the sensor unit 911b, the light shielding filter 971b is unnecessary.

ここで、複数の検出系をもつことで、様々な検出仰角による回折光、散乱光の画象を得ることができるが、これによって、より正確な基板の品質評価値を得ることができる。その例を説明する。まず、一方の検出系(例えば、1次回折光検出系7a)は高い解像度で基板5からの散乱光による画像を得ることができる。これにより、ELA工程における、エキシマレーザの照射パワーの過不足を起因とした多結晶シリコン膜の結晶粒径の大小が評価可能となる(品質評価値A)。他方の検出系(例えば、正反射光又は基板透過光の光軸近傍の散乱光検出系7b)は低い解像度で基板5からの結晶粒径に応じた強度の散乱光信号を得ることができる。これにより、パルスエキシマレーザのパルス抜けやレーザショットの安定性などを起因とした結晶シリコンの不均一性などが評価可能となる(品質評価値B)。品質評価値Aによって、ELA工程においてエキシマレーザアニール装置で設定されたレーザパワーの良し悪しの評価や、最適パワー値の設定などが可能となる。また、品質評価値Bによって、全数を対象とした、結晶シリコンの出来栄えが評価可能となる。学習時の教示データを最終点灯検査時の品質として、判定基準を作ることで、ELA工程後の各基板の最終的な画質が事前に予測でき、品質不良の未然防止になる。
以上に説明したように、異なる検出系から得られた複数の画像から、それぞれの評価値を算出するのではなく、複数の異なる検出系から得られた複数の画像の情報を統合して、1つの品質評価値を算出することも可能である。
Here, by having a plurality of detection systems, it is possible to obtain images of diffracted light and scattered light at various detection elevation angles, and this makes it possible to obtain a more accurate quality evaluation value of the substrate. An example will be described. First, one detection system (for example, the first-order diffracted light detection system 7a) can obtain an image of scattered light from the substrate 5 with high resolution. This makes it possible to evaluate the crystal grain size of the polycrystalline silicon film due to the excess or deficiency of the excimer laser irradiation power in the ELA process (quality evaluation value A). The other detection system (for example, the scattered light detection system 7b in the vicinity of the optical axis of specular reflection light or substrate transmission light) can obtain a scattered light signal having an intensity corresponding to the crystal grain size from the substrate 5 at a low resolution. Thereby, it is possible to evaluate the non-uniformity of the crystalline silicon due to the missing pulse of the pulse excimer laser or the stability of the laser shot (quality evaluation value B). The quality evaluation value A makes it possible to evaluate whether the laser power set by the excimer laser annealing apparatus in the ELA process is good or bad, and to set an optimum power value. Further, the quality evaluation value B makes it possible to evaluate the quality of the crystalline silicon for all the products. By making the judgment data based on the teaching data at the time of learning as the quality at the time of final lighting inspection, the final image quality of each substrate after the ELA process can be predicted in advance, and quality defects can be prevented.
As described above, instead of calculating each evaluation value from a plurality of images obtained from different detection systems, information of a plurality of images obtained from a plurality of different detection systems is integrated to obtain 1 It is also possible to calculate one quality evaluation value.

図10にその手順の一例を示す。まず、1つの基板100に対する画像取得条件が異なる条件で検出して複数の基板100の画像(例えば、1次回折光による画像100a、正反射光又は基板透過光の光軸近傍の散乱光による画像100b)を取得し(S1001)、この画像を取得した基板上に形成された多結晶シリコン膜の評価値102(ユーザ観点のもの、SEM観察結果をもとにしたもの、などいずれでもよい)を設定する(S1002)。これらの基板100の複数の画像100aおよび100bと設定された評価値のデータは関連付けてセットとして画像処理部3に入力される。画像処理部3に基板の画像と評価値の複数セットが入力されると、前処理部8−1において、それぞれの画像(100a,100b)に、ノイズの除去処理S1003a及びS1003bを行い、特徴量を算出する(S1004a,S1004b)。ノイズの除去処理S1003aとS1003bとは異なる処理であってもよい。また、特徴量算出S1004aとS1004bで算出される特徴量は同じで種類のものあっても異なる種類のものであってもよい。そして、1つの基板に対して複数の画像から算出された特徴量とその基板の評価値の全セットを学習させて(S1005)、判定基準を出力する(S1006)。
図11は、図10で算出した判定基準を用いて基板の品質評価値を算出する処理の流れの概要を示す。評価値算出部8−2には、図10の処理フローに従って事前に設定された判定基準1101とセンサ部11aとセンサ部11b(又はセンサ部911aとセンサ部911b)の両者で検出された基板の画像1100a,1100bが入力される(S1101,S1100a,S1100b)。評価値算出部8−2では、画像1100a,1100bの各々にノイズ除去処理を行う(S1102a,S1102b)。ノイズの除去方法はそれぞれ別のものでも構わない。次にノイズを除去した基板の画像各々について、複数の特徴量を演算して求める(1103a,1103b)。特徴量演算ステップS1103a及びS1103bで算出する特徴量は同じ種類のものであっても、異なっていてもよい。そして、特徴量演算ステップS1103a及びS1103bで個々に算出された複数の特徴量のうちの全て、あるいはいくつかを、図10の通りに事前に設定してある判定基準1101と比較し(S1104)、判定基準に基づいて基板の品質評価値を決定する(S1105)。これにより、異なる光学条件で検出された複数の画像から基板の品質評価値を決定できる。次に、この品質評価値に基づいてレーザアニール装置のレーザ照射条件の良否を判定し(S1106)、その結果(評価値)を出力する(S1107)。
本発明により、検査員が基板を目視により直接観察するのと同様の画像を得、かつ、その画像に対し、人間の評価結果を既知の品質評価値として学習させて判定基準を生成することで、人間による判定と整合のとれた品質評価値を出力することが可能となる。
更に、最終点灯検査結果を既知の品質評価値として学習させて判定基準を生成することで、ELA工程後の基板に対して、最終品質の事前予測が可能となる。
これにより、ELA装置の最適条件を定量的な評価値から決定でき、基板の品質の安定化を実現する。また、基板全数の定量的な評価値から、品質の管理、ELA装置の不具合検出、品質不良の未然防止が実現できる。
FIG. 10 shows an example of the procedure. First, detection is performed under different image acquisition conditions for one substrate 100, and images of a plurality of substrates 100 (for example, an image 100a by first-order diffracted light, an image 100b by regular reflected light or scattered light near the optical axis of transmitted light from the substrate, and so on). ) Is set (S1001), and the evaluation value 102 of the polycrystalline silicon film formed on the substrate from which this image has been acquired (any one from the user's viewpoint, based on the SEM observation result, etc.) is set. (S1002). The plurality of images 100 a and 100 b of the substrate 100 and the set evaluation value data are input to the image processing unit 3 as a set in association with each other. When a plurality of sets of board images and evaluation values are input to the image processing unit 3, the preprocessing unit 8-1 performs noise removal processing S1003a and S1003b on the respective images (100a, 100b), and features Is calculated (S1004a, S1004b). The noise removal processing S1003a and S1003b may be different processing. Also, the feature amounts calculated in the feature amount calculation S1004a and S1004b may be the same and of different types or different types. Then, all the sets of feature amounts calculated from a plurality of images and evaluation values of the substrate are learned for one substrate (S1005), and a criterion is output (S1006).
FIG. 11 shows an outline of the flow of processing for calculating the quality evaluation value of the substrate using the determination criterion calculated in FIG. In the evaluation value calculation unit 8-2, the determination criteria 1101 and the sensor unit 11a and the sensor unit 11b (or the sensor unit 911a and the sensor unit 911b) set in advance according to the processing flow of FIG. Images 1100a and 1100b are input (S1101, S1100a, S1100b). The evaluation value calculation unit 8-2 performs noise removal processing on each of the images 1100a and 1100b (S1102a and S1102b). Different methods for removing noise may be used. Next, a plurality of feature amounts are calculated for each of the board images from which noise has been removed (1103a, 1103b). The feature amounts calculated in the feature amount calculation steps S1103a and S1103b may be the same type or different. Then, all or some of the plurality of feature amounts individually calculated in the feature amount calculation steps S1103a and S1103b are compared with the criterion 1101 set in advance as shown in FIG. 10 (S1104), A quality evaluation value of the substrate is determined based on the determination criterion (S1105). Thereby, the quality evaluation value of a board | substrate can be determined from the some image detected on different optical conditions. Next, the quality of the laser irradiation condition of the laser annealing apparatus is determined based on the quality evaluation value (S1106), and the result (evaluation value) is output (S1107).
According to the present invention, it is possible to obtain an image similar to an inspector directly observing a substrate visually, and to generate a determination criterion by learning a human evaluation result as a known quality evaluation value for the image. It is possible to output a quality evaluation value that is consistent with human judgment.
Furthermore, by learning the final lighting inspection result as a known quality evaluation value and generating a determination criterion, it is possible to predict the final quality in advance for the substrate after the ELA process.
As a result, the optimum conditions of the ELA apparatus can be determined from the quantitative evaluation values, and the substrate quality can be stabilized. In addition, quality control, ELA device defect detection, and prevention of quality defects can be realized from the quantitative evaluation values of the total number of substrates.

以上、本発明の一実施例を、基板上に形成された結晶シリコンを対象とした品質評価を例にとって説明したが、TFT液晶パネルや有機ELパネルなど、フラットパネルの画質検査にも適用可能である。また、評価対象はフラットパネルのガラス基板や点灯時の画質に限られるわけではなく、品質を定量化するものであれば、例えば半導体ウェハの出来栄え検査等でも適用可能である。   As described above, the embodiment of the present invention has been described by taking the quality evaluation for the crystalline silicon formed on the substrate as an example, but it can also be applied to image quality inspection of flat panels such as TFT liquid crystal panels and organic EL panels. is there. Further, the object of evaluation is not limited to the flat panel glass substrate and the image quality at the time of lighting, and can be applied to, for example, a quality inspection of a semiconductor wafer as long as the quality is quantified.

1・・・光学系 2・・・A/D変換部 3・・・画像処理部 4a、4b・・・照明部 5・・・基板 7a、7b・・・検出部 8−1・・・前処理部8−2・・・評価値算出部 11a、11b・・・センサ部 9・・・全体制御部 13・・・ステージ。   DESCRIPTION OF SYMBOLS 1 ... Optical system 2 ... A / D conversion part 3 ... Image processing part 4a, 4b ... Illumination part 5 ... Board | substrate 7a, 7b ... Detection part 8-1 ... Before Processing unit 8-2 ... Evaluation value calculation unit 11a, 11b ... Sensor unit 9 ... Overall control unit 13 ... Stage.

Claims (10)

基板上に形成された多結晶シリコン薄膜の品質を評価する装置であって、
評価対象となる基板を載置して少なくとも一方向に連続的に移動可能なテーブル手段と、
該テーブル手段に載置された前記基板に斜め方向から光を照射して前記基板上に形成された多結晶シリコン薄膜により発生する1次回折光による像を撮像して1次回折光像を取得すると共に、前記基板からの正反射光又は透過光の光軸近傍の散乱光の像を撮像して光軸近傍の散乱光像を取得する画像取得手段と、
該画像取得手段で取得した前記1次回折光像の画像と前記光軸近傍の散乱光像の画像を処理して複数の特徴を抽出する特徴抽出手段と、
該特徴抽出手段で抽出した該複数の特徴のうち、少なくとも1つ以上の特徴を用いて事前に設定した評価基準に従って該基板上に形成された多結晶シリコン薄膜の品質評価値を算出する品質評価値算出手段と
を備えたことを特徴とする基板の品質評価装置。
An apparatus for evaluating the quality of a polycrystalline silicon thin film formed on a substrate,
A table means for placing a substrate to be evaluated and continuously moving in at least one direction;
The substrate placed on the table means is irradiated with light from an oblique direction, and an image of the first-order diffracted light generated by the polycrystalline silicon thin film formed on the substrate is taken to obtain a first-order diffracted light image. Image acquisition means for capturing an image of scattered light near the optical axis of specularly reflected light or transmitted light from the substrate and acquiring a scattered light image near the optical axis;
Feature extraction means for processing the image of the first-order diffracted light image acquired by the image acquisition means and the image of the scattered light image near the optical axis to extract a plurality of features;
Quality evaluation for calculating a quality evaluation value of a polycrystalline silicon thin film formed on the substrate according to an evaluation criterion set in advance using at least one or more of the plurality of features extracted by the feature extraction means A board quality evaluation apparatus comprising: a value calculation means.
前記事前に設定する評価基準を、前記画像取得手段で取得した前記多結晶シリコン薄膜が形成された基板の画像を用いて学習により作成する判定基準設定手段を更に備えることを特徴とする請求項1記載の基板の品質評価装置。   The evaluation criterion to be set in advance is further provided with determination criterion setting means for creating by learning using an image of the substrate on which the polycrystalline silicon thin film obtained by the image acquisition means is formed. 1. The board quality evaluation apparatus according to 1. 前記判定基準設定手段は、前記基板の画像に対して設定された評価値を前記基板の画像の特徴量に関連付けて学習することにより前記判定基準を作成することを特徴とする請求項2に記載の基板の品質評価装置。   The determination criterion setting unit creates the determination criterion by learning an evaluation value set for the image of the board in association with a feature amount of the image of the board. Board quality evaluation equipment. 前記品質評価値算出手段で算出した前記基板上に形成された多結晶シリコン薄膜の品質評価値に基づいて前記多結晶シリコン薄膜を形成したレーザアニール装置のレーザ照射条件の良否を判定するレーザ照射条件良否判定手段を更に備えることを特徴とする請求項1乃至3の何れかに記載の基板の品質評価装置。   Laser irradiation conditions for determining the quality of the laser irradiation conditions of the laser annealing apparatus formed with the polycrystalline silicon thin film based on the quality evaluation values of the polycrystalline silicon thin film formed on the substrate calculated by the quality evaluation value calculating means 4. The board quality evaluation apparatus according to claim 1, further comprising pass / fail judgment means. 前記画像取得手段は、前記基板からの正反射光又は透過光の光軸近傍の散乱光の像を撮像することを、前記基板からの正反射光又は透過光を遮光板で遮光し、該遮光板で遮光されなかった散乱光による像を撮像することを特徴とする請求項1乃至4の何れかに記載の基板の品質評価装置。   The image acquisition means captures an image of scattered light near the optical axis of specularly reflected light or transmitted light from the substrate, and shields the specularly reflected light or transmitted light from the substrate with a light shielding plate. 5. The substrate quality evaluation apparatus according to claim 1, wherein an image of scattered light not shielded by the plate is captured. 基板上に形成された多結晶シリコン薄膜の品質を評価する方法であって、
評価対象となる基板を一方向に連続的に移動させながら前記基板に斜め方向から光を照射して前記基板上に形成された多結晶シリコン薄膜により発生する1次回折光による像を撮像して1次回折光像を取得すると共に、前記基板からの正反射光又は透過光の光軸近傍の散乱光の像を撮像して光軸近傍の散乱光像を取得し、
該取得した1次回折光像の画像と前記光軸近傍の散乱光像の画像を処理して複数の特徴を抽出し、
該抽出した複数の特徴のうち、少なくとも1つ以上の特徴を用いて、事前に設定した評価基準に従って前記基板上に形成された多結晶シリコン薄膜の品質評価値を算出する
ことを特徴とする基板の品質評価方法。
A method for evaluating the quality of a polycrystalline silicon thin film formed on a substrate,
While the substrate to be evaluated is continuously moved in one direction, the substrate is irradiated with light from an oblique direction, and an image of the first-order diffracted light generated by the polycrystalline silicon thin film formed on the substrate is captured. While acquiring the next diffracted light image, capturing the image of the scattered light near the optical axis of the specularly reflected light or transmitted light from the substrate to obtain the scattered light image near the optical axis,
A plurality of features are extracted by processing the acquired image of the first-order diffracted light image and the image of the scattered light image near the optical axis,
A substrate characterized in that a quality evaluation value of a polycrystalline silicon thin film formed on the substrate is calculated according to an evaluation criterion set in advance using at least one or more of the extracted features. Quality evaluation method.
前記事前に評価基準を設定することが、前記取得した多結晶シリコン薄膜が形成された基板の画像を用いて学習により作成して設定することであることを特徴とする請求項6記載の基板の品質評価方法。   7. The substrate according to claim 6, wherein the setting of the evaluation criterion in advance is creation and setting by learning using an image of the substrate on which the obtained polycrystalline silicon thin film is formed. Quality evaluation method. 前記事前に評価基準を設定することが、前記取得した多結晶シリコン薄膜が形成された基板の画像に対して設定された評価値を前記基板の画像の特徴量に関連付けて学習することにより前記判定基準を作成することを特徴とする請求項6又は7に記載の基板の品質評価方法。   Setting the evaluation criterion in advance includes learning the evaluation value set for the acquired image of the substrate on which the polycrystalline silicon thin film is formed in association with the feature amount of the image of the substrate. 8. The substrate quality evaluation method according to claim 6, wherein a determination criterion is created. 前記算出した基板上に形成された多結晶シリコン薄膜の品質評価値に基づいて前記多結晶シリコン薄膜を形成したレーザアニール装置のレーザ照射条件の良否を判定することを特徴とする請求項6乃至8の何れかに記載の基板の品質評価方法。   9. The quality of laser irradiation conditions of a laser annealing apparatus in which the polycrystalline silicon thin film is formed is determined based on the calculated quality evaluation value of the polycrystalline silicon thin film formed on the substrate. A method for evaluating the quality of a substrate according to any one of the above. 前記基板からの正反射光又は透過光の光軸近傍の散乱光の像を撮像することを、前記基板からの正反射光又は透過光を遮光板で遮光し、該遮光板で遮光されなかった散乱光による像を撮像することを特徴とする請求項6乃至9の何れかに記載の基板の品質評価方法。   Taking an image of scattered light near the optical axis of specularly reflected light or transmitted light from the substrate, the specularly reflected light or transmitted light from the substrate was shielded by a light shielding plate, and was not shielded by the light shielding plate The substrate quality evaluation method according to claim 6, wherein an image of scattered light is captured.
JP2010268339A 2010-12-01 2010-12-01 Substrate quality evaluation method and apparatus therefor Pending JP2012119512A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010268339A JP2012119512A (en) 2010-12-01 2010-12-01 Substrate quality evaluation method and apparatus therefor
TW100140415A TW201229493A (en) 2010-12-01 2011-11-04 Substrate quality assessment method and apparatus thereof
KR1020110126910A KR101295463B1 (en) 2010-12-01 2011-11-30 Method of evaluating substrate quality and apparatus thereof
CN2011103937328A CN102543789A (en) 2010-12-01 2011-12-01 Method and apparatus for evaluating substrate quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268339A JP2012119512A (en) 2010-12-01 2010-12-01 Substrate quality evaluation method and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2012119512A true JP2012119512A (en) 2012-06-21

Family

ID=46350357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268339A Pending JP2012119512A (en) 2010-12-01 2010-12-01 Substrate quality evaluation method and apparatus therefor

Country Status (4)

Country Link
JP (1) JP2012119512A (en)
KR (1) KR101295463B1 (en)
CN (1) CN102543789A (en)
TW (1) TW201229493A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018154A (en) * 2012-12-05 2013-04-03 中国电子科技集团公司第四十五研究所 Multi-region image detection method for traversing irregular regions of crystalline grains
JP2015219143A (en) * 2014-05-19 2015-12-07 コニカミノルタ株式会社 Optical device inspection apparatus and optical device inspection method
JP2018116482A (en) * 2017-01-18 2018-07-26 株式会社東芝 Logistics management apparatus, logistics management method, and program
CN108519266A (en) * 2018-04-16 2018-09-11 江苏美科硅能源有限公司 A kind of stage division of the efficient silicon ingot of fine melt
CN111512424A (en) * 2017-12-25 2020-08-07 环球晶圆日本股份有限公司 Evaluation method of silicon wafer
WO2022168157A1 (en) * 2021-02-02 2022-08-11 国立大学法人九州大学 Machine learning method, laser annealing system, and laser annealing method
WO2023013145A1 (en) * 2021-08-04 2023-02-09 Jswアクティナシステム株式会社 Laser irradiation device, information processing method, program, and method for generating trained model
CN116337879A (en) * 2023-05-23 2023-06-27 青岛豪迈电缆集团有限公司 Rapid detection method for abrasion defect of cable insulation skin

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140101612A (en) 2013-02-12 2014-08-20 삼성디스플레이 주식회사 Crystallization inspecting apparatus and method for inspecting crystallization
DE112014000895B4 (en) * 2013-02-19 2023-04-20 AGC Inc. Method of selecting and method of using a glass plate
CN105738379B (en) * 2014-12-12 2018-10-19 上海和辉光电有限公司 A kind of detection device and detection method of polysilicon membrane
CN105785604A (en) * 2014-12-24 2016-07-20 台湾动力检测科技股份有限公司 Defect detection method for optical layer element of display device
KR102250032B1 (en) * 2014-12-29 2021-05-12 삼성디스플레이 주식회사 Detecting device of display device and detecting method of display device
JP6424143B2 (en) * 2015-04-17 2018-11-14 株式会社ニューフレアテクノロジー Inspection methods and templates
KR101877274B1 (en) * 2015-05-29 2018-07-12 에이피시스템 주식회사 Mura quantifying system by Laser crystallization facility using UV and Mura quantifying method by Laser crystallization facility using UV
US9784570B2 (en) * 2015-06-15 2017-10-10 Ultratech, Inc. Polarization-based coherent gradient sensing systems and methods
WO2017078127A1 (en) * 2015-11-05 2017-05-11 有限会社ビジョンサイテック Method comprising evaluating substrate by using polarized parallel light
KR101862312B1 (en) * 2016-01-13 2018-05-29 에이피시스템 주식회사 substrate analysis device and the treatment apparatus having it, substrate analysis method
EP3433601A4 (en) * 2016-05-11 2019-11-20 IPG Photonics Corporation Process and system for measuring morphological characteristics of fiber laser annealed polycrystalline silicon films for flat panel display
TWI612293B (en) 2016-11-18 2018-01-21 財團法人工業技術研究院 Detecting device for crystalline quality of ltps backplane and method thereof
CN107677686B (en) * 2017-09-28 2021-01-26 京东方科技集团股份有限公司 Light transmission window integrated device and equipment adopting same
CN113056742B (en) * 2018-11-06 2022-06-07 三菱电机株式会社 Design support device, design support method, and machine learning device
WO2023215046A1 (en) * 2022-05-03 2023-11-09 Veeco Instruments Inc. Scatter melt detection systems and methods of using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483948B2 (en) * 1994-09-01 2004-01-06 オリンパス株式会社 Defect detection device
JPH08226900A (en) * 1995-10-25 1996-09-03 Canon Inc Inspecting method of state of surface
KR100374762B1 (en) * 1998-07-28 2003-03-04 히다치 덴시 엔지니어링 가부시키 가이샤 Apparatus for inspecting defects and method thereof
CN1397089A (en) * 2000-02-15 2003-02-12 松下电器产业株式会社 Non-single crystal film, substrate with non-single crystal film, method and apparatus for producing the same, method and apparatus for inspecting the same, thin film transistor, thin film transistor
TWI254792B (en) * 2003-07-01 2006-05-11 Au Optronics Corp Detecting method and device of laser crystalline silicon
JP4537131B2 (en) 2004-06-30 2010-09-01 友達光電股▲ふん▼有限公司 Laser crystal silicon inspection method and apparatus
JP4869129B2 (en) * 2007-03-30 2012-02-08 Hoya株式会社 Pattern defect inspection method
CN102396058B (en) * 2009-02-13 2014-08-20 恪纳腾公司 Detecting defects on a wafer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018154A (en) * 2012-12-05 2013-04-03 中国电子科技集团公司第四十五研究所 Multi-region image detection method for traversing irregular regions of crystalline grains
JP2015219143A (en) * 2014-05-19 2015-12-07 コニカミノルタ株式会社 Optical device inspection apparatus and optical device inspection method
JP2018116482A (en) * 2017-01-18 2018-07-26 株式会社東芝 Logistics management apparatus, logistics management method, and program
WO2018135040A1 (en) * 2017-01-18 2018-07-26 株式会社東芝 Distribution management device, distribution management method, and program
CN111512424A (en) * 2017-12-25 2020-08-07 环球晶圆日本股份有限公司 Evaluation method of silicon wafer
CN108519266A (en) * 2018-04-16 2018-09-11 江苏美科硅能源有限公司 A kind of stage division of the efficient silicon ingot of fine melt
WO2022168157A1 (en) * 2021-02-02 2022-08-11 国立大学法人九州大学 Machine learning method, laser annealing system, and laser annealing method
WO2023013145A1 (en) * 2021-08-04 2023-02-09 Jswアクティナシステム株式会社 Laser irradiation device, information processing method, program, and method for generating trained model
CN116337879A (en) * 2023-05-23 2023-06-27 青岛豪迈电缆集团有限公司 Rapid detection method for abrasion defect of cable insulation skin
CN116337879B (en) * 2023-05-23 2023-08-04 青岛豪迈电缆集团有限公司 Rapid detection method for abrasion defect of cable insulation skin

Also Published As

Publication number Publication date
KR101295463B1 (en) 2013-08-16
KR20120060162A (en) 2012-06-11
CN102543789A (en) 2012-07-04
TW201229493A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP2012119512A (en) Substrate quality evaluation method and apparatus therefor
JP4009409B2 (en) Pattern defect inspection method and apparatus
JP5553716B2 (en) Defect inspection method and apparatus
US9182359B2 (en) Apparatus and method for inspecting pattern defect
JP5712079B2 (en) Defect inspection apparatus and defect inspection method
CN111819596B (en) Method and system for combined simulation and optical microscopy to determine inspection mode
JP2006220644A (en) Method and apparatus for inspecting pattern
US8830465B2 (en) Defect inspecting apparatus and defect inspecting method
US8629979B2 (en) Inspection system, inspection method, and program
WO2010024064A1 (en) Defect check method and device thereof
WO2007145223A1 (en) Undulation inspection device, unduation inspecting method, control program for unduation inspection device, and recording medium
US9036895B2 (en) Method of inspecting wafer
KR101302881B1 (en) Testing method and apparatus of polycrystalline silicon thin film
JP2010151824A (en) Method and apparatus for inspecting pattern
TW201730549A (en) Mura quantifying system by laser crystallization facility and Mura quantifying method by laser crystallization facility
JP2001209798A (en) Method and device for inspecting outward appearance
JP2004301847A (en) Defects inspection apparatus and method
JP2010230611A (en) Pattern defect inspecting device and method
CN107064166B (en) Treatment object analysis device, processing device, and treatment object analysis method
TWI697663B (en) Mura quantifying system by laser crystallization facility using uv and mura quantifying method by laser crystallization facility using uv
JP2009222611A (en) Inspection apparatus and inspection method
JP2004063504A (en) Inspection method and inspection apparatus for crystal film
JP2021110690A (en) Inspection method, inspection apparatus and control method of rolling apparatus
CN117581093A (en) Laser annealing pattern suppression