JP2012117695A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012117695A
JP2012117695A JP2010265328A JP2010265328A JP2012117695A JP 2012117695 A JP2012117695 A JP 2012117695A JP 2010265328 A JP2010265328 A JP 2010265328A JP 2010265328 A JP2010265328 A JP 2010265328A JP 2012117695 A JP2012117695 A JP 2012117695A
Authority
JP
Japan
Prior art keywords
persons
people
maximum value
air conditioner
current number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010265328A
Other languages
Japanese (ja)
Other versions
JP5312434B2 (en
Inventor
Kiyoshi Yoshimura
潔 吉村
Kazuya Kubo
和也 久保
Hirokuni Shiba
広有 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010265328A priority Critical patent/JP5312434B2/en
Priority to FR1158950A priority patent/FR2968067B1/en
Priority to CN201110310639.6A priority patent/CN102478293B/en
Publication of JP2012117695A publication Critical patent/JP2012117695A/en
Application granted granted Critical
Publication of JP5312434B2 publication Critical patent/JP5312434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner for achieving an energy saving operation based on the number of persons in a room, by a simple equipment configuration and a control method.SOLUTION: In an air conditioner 100, when the current number of persons Nnow detected in every prescribed time is smaller than an initial maximum value Ndefault, "maximum number of persons Nmax=Ndefault" for control is calculated, and when the current number of persons Nnow becomes larger than an initial maximum value Ndefault, or when the current number of persons Nnow becomes larger than the previous maximum number of persons Nmax, it is updated to "Nmax=Nnow". When an operation time reaches a prescribed initialization time T1, "Nmax=Ndefault" is calculated, and "a room-presence rate α=Nnow/Nmax" is calculated. Then, the operation rotational frequency of a compressor is changed in accordance with the value of the room-presence rate α.

Description

本発明は空気調和機、特に、室内の人数を検知する人体検知手段を有する空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner having human body detection means for detecting the number of people in a room.

従来の空気調和機として、人数や位置等の人間状態および温度や輻射温度等の室内環境に対応した人の快適度を容易に直接算出する発明が開示されている(例えば、特許文献1参照)。   As a conventional air conditioner, an invention for easily and directly calculating a person's comfort level corresponding to a human state such as the number of people and positions and an indoor environment such as temperature and radiation temperature is disclosed (for example, see Patent Document 1). .

特許第2715844号公報(第4−13頁、図1)Japanese Patent No. 2715844 (page 4-13, FIG. 1)

特許文献1に開示された発明では、人数検出手段、人体位置検出手段、足元温度検出手段、床壁温度検出手段、吸い込み温度検出手段、風量記憶手段、運転モード記憶手段、輻射温度算出手段、人付近温度推測手段、快適度算出手段、代表快適度決定手段を有し、代表快適度決定手段では、人数信号と各々の人の快適度信号に対応した代表快適度算出式に基づいて代表快適度を算出し、代表快適度信号として空気調和機に出力される。
このため、各制御情報を検出するための検出手段が多数になると共に、制御が複雑になり、出力された代表快適度信号に基づいてどのように空気調和機を制御するのか明瞭でないという問題があった。
In the invention disclosed in Patent Document 1, the number of people detection means, the human body position detection means, the foot temperature detection means, the floor wall temperature detection means, the suction temperature detection means, the air volume storage means, the operation mode storage means, the radiation temperature calculation means, the person There is a neighborhood temperature estimation means, a comfort level calculation means, and a representative comfort level determination means. In the representative comfort level determination means, the representative comfort level is calculated based on the number of people signal and the representative comfort level calculation formula corresponding to each person's comfort level signal. Is output to the air conditioner as a representative comfort level signal.
For this reason, there are a large number of detection means for detecting each control information, the control becomes complicated, and it is not clear how to control the air conditioner based on the output representative comfort level signal. there were.

本発明は、前記のような問題を解決するためになされたもので、簡素な設備構成および制御方法によって、室内の人数に応じた省エネ運転を可能にする空気調和機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner that enables energy-saving operation according to the number of people in a room by a simple equipment configuration and control method. To do.

本発明に係る空気調和機は、
室内熱交換器を装備した室内機と、
前記室内熱交換器に接続されて冷凍サイクルを形成する圧縮機を装備した室外機と、
室内の人数を検知する人数検知手段と、
最大人数に対する前記人数検知手段が検知した人数である現在人数との割合を在室率として算出し、該算出された在室率に基づいて、前記圧縮機の運転周波数を変更する制御手段と、を有することを特徴とする。
The air conditioner according to the present invention is
An indoor unit equipped with an indoor heat exchanger;
An outdoor unit equipped with a compressor connected to the indoor heat exchanger to form a refrigeration cycle;
A number detection means for detecting the number of people in the room;
A control means for calculating the ratio of the current number of persons detected by the number-of-person detection means to the maximum number of persons as the occupancy rate, and changing the operating frequency of the compressor based on the calculated occupancy rate; It is characterized by having.

本発明は以上のように、制御のための最大人数(Nmax)に対する、人数検知手段が検知した人数である現在人数(Nnow)との割合を在室率(α=Nnow/Nmax)として算出し、該算出された在室率に基づいて、前記圧縮機の運転周波数を変更するから、簡素な設備構成でありながら、人数による室内負荷を早急に、しかも簡単に見積もることができるため、従来、温度情報で圧縮機の運転周波数を制御していた場合と比べ、より簡素な制御方法によって、より早く必要な冷暖房能力を提供することが可能になる。よって、冷暖房能力の過不足をいち早く解消するから、省エネを実現することができる。   As described above, according to the present invention, the ratio of the current number of persons (Nnow) detected by the number detection means to the maximum number of persons (Nmax) for control is calculated as the occupancy rate (α = Nnow / Nmax). Since the operating frequency of the compressor is changed based on the calculated occupancy rate, it is possible to quickly and easily estimate the indoor load due to the number of people while having a simple equipment configuration. Compared to the case where the operation frequency of the compressor is controlled by temperature information, it is possible to provide the necessary air conditioning capacity earlier by a simpler control method. Therefore, since the excess and deficiency of the cooling / heating capacity is quickly resolved, energy saving can be realized.

本発明の実施の形態1に係る空気調和機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機の外観を示す斜視図。The perspective view which shows the external appearance of the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention. 図2に示す室内機の側面を切断して示す断面図。Sectional drawing which cut | disconnects and shows the side surface of the indoor unit shown in FIG. 図2に示す室内機の設置形態を示す斜視図。The perspective view which shows the installation form of the indoor unit shown in FIG. 図1に示す空気調和機の制御方法を説明するフローチャート。The flowchart explaining the control method of the air conditioner shown in FIG. 図5に示すフローチャートにおける在室率の算出方法1を説明する相関図。FIG. 6 is a correlation diagram for explaining a occupancy rate calculation method 1 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける在室率の算出方法2を説明する相関図。FIG. 6 is a correlation diagram for explaining a occupancy rate calculation method 2 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける在室率の算出方法3を説明する相関図。FIG. 6 is a correlation diagram for explaining a occupancy rate calculation method 3 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける在室率の算出方法4を説明する相関図。FIG. 6 is a correlation diagram for explaining a occupancy rate calculation method 4 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける在室率の算出方法5を説明する相関図。FIG. 6 is a correlation diagram for explaining a occupancy rate calculation method 5 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける制御モード1を説明する相関図。FIG. 6 is a correlation diagram illustrating control mode 1 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける制御モード2を説明する相関図。FIG. 6 is a correlation diagram for explaining a control mode 2 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける制御モード3を説明する相関図。FIG. 6 is a correlation diagram for explaining a control mode 3 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける制御モード4を説明する相関図。FIG. 6 is a correlation diagram for explaining a control mode 4 in the flowchart shown in FIG. 5. 図5に示すフローチャートにおける制御モード5を説明する相関図。FIG. 6 is a correlation diagram illustrating control mode 5 in the flowchart shown in FIG. 5. 本発明の実施の形態2に係る空気調和機の制御方法における在室率の算出方法6を説明する相関図。The correlation diagram explaining the calculation method 6 of a occupancy rate in the control method of the air conditioner concerning Embodiment 2 of this invention.

[実施の形態1:空気調和機]
図1〜図15は本発明の実施の形態1に係る空気調和機を説明するものであって、図1は全体構成を示す模式図、図2は室内機の外観を示す斜視図、図3は室内機の側面を切断して示す断面図、図4は室内機の設置形態を示す斜視図、図5は制御方法を説明するフローチャート、図6〜図10は在室率の算出方法を説明する相関図、図11〜図15は制御モードを説明する相関図である。なお、各図は模式的に描いたものであって、本発明は図示された形態に限定されるものではない。
図1において、実施の形態1における空気調和機100は、室内制御部X1を搭載した室内機Xと、室外制御部Y1を搭載した室外機Yと、リモコンZと、を有している。
[Embodiment 1: Air conditioner]
1 to 15 illustrate an air conditioner according to Embodiment 1 of the present invention. FIG. 1 is a schematic diagram illustrating an overall configuration, FIG. 2 is a perspective view illustrating an appearance of an indoor unit, and FIG. FIG. 4 is a perspective view showing the installation form of the indoor unit, FIG. 5 is a flowchart for explaining the control method, and FIGS. 6 to 10 are for explaining the method for calculating the occupancy rate. FIG. 11 to FIG. 15 are correlation diagrams for explaining the control mode. In addition, each figure is drawn typically and this invention is not limited to the form shown in figure.
In FIG. 1, an air conditioner 100 according to Embodiment 1 includes an indoor unit X equipped with an indoor control unit X1, an outdoor unit Y equipped with an outdoor control unit Y1, and a remote controller Z.

そして、室内機Xと室外機Yを接続する液延長配管Aおよびガス延長配管Bと、リモコンZと室内機Xの室内制御部X1との間および室内制御部X1と室外機Yの室外制御部Y1との間にそれぞれ配線された通信線Cと、人体検知手段である例えば赤外線センサー5(図2参照)とが設けられている。
なお、室内機Xは、建物内の例えば天井90に埋め込まれて取り付けられている(図4参照)が、本発明はかかる設置形態に限定するものではない。また、リモコンZと室内制御部X1の間が通信線Cで接続されているとしたが、その間は無線通信で情報の送受信を行うようにしてもよい。赤外線センサー5は、後述するが、室内機Xの化粧パネル2に設けられている。
さらに、室内制御部X1と室外制御部Y1は、ぞれぞれ室内機Xと室外機Yに搭載されているが、本発明はこれに限定するものではなく、室内制御部X1の一部または全部を室外制御部Y1に搭載しても、あるいは、室外制御部Y1の一部または全部を室内制御部X1に搭載してもよい。
And the liquid extension piping A and gas extension piping B which connect the indoor unit X and the outdoor unit Y, between the remote control Z and the indoor control part X1 of the indoor unit X, and the outdoor control part of the indoor control part X1 and the outdoor unit Y A communication line C wired between Y1 and Y1, for example, an infrared sensor 5 (see FIG. 2), which is a human body detection means, is provided.
In addition, although the indoor unit X is embedded and attached, for example in the ceiling 90 in a building (refer FIG. 4), this invention is not limited to this installation form. In addition, although the remote control Z and the indoor control unit X1 are connected by the communication line C, information transmission / reception may be performed by wireless communication during that time. As will be described later, the infrared sensor 5 is provided on the decorative panel 2 of the indoor unit X.
Furthermore, the indoor control unit X1 and the outdoor control unit Y1 are mounted on the indoor unit X and the outdoor unit Y, respectively, but the present invention is not limited to this, and a part of the indoor control unit X1 or The whole may be mounted on the outdoor control unit Y1, or a part or all of the outdoor control unit Y1 may be mounted on the indoor control unit X1.

(室内制御部)
室内制御部X1は、リモコンZからの運転指令(運転モード、冷房運転、暖房運転、除湿運転など)を受信すると、その運転指令を室外機Yの室外制御部Y1に送信すると共に、室内機Xに設置されたファンモーター6(図3参照)をその運転指令に基づいて駆動する。
また、室内制御部X1は、赤外線センサー5から得られた室内の人数を元に、室外機Yに設置された圧縮機(図示しない)の運転周波数または、室内風速または室内風向を算出する。これらの算出方法は後述する。
(Indoor control unit)
When the indoor control unit X1 receives an operation command (operation mode, cooling operation, heating operation, dehumidification operation, etc.) from the remote controller Z, the indoor control unit X1 transmits the operation command to the outdoor control unit Y1 of the outdoor unit Y and The fan motor 6 (see FIG. 3) installed in is driven based on the operation command.
In addition, the indoor control unit X1 calculates the operating frequency, the indoor wind speed, or the indoor wind direction of a compressor (not shown) installed in the outdoor unit Y based on the number of people in the room obtained from the infrared sensor 5. These calculation methods will be described later.

(室外制御部)
室外制御部Y1は、リモコンZからの運転指令を室内制御部X1を介して受信したときには、その運転指令に応じた運転周波数で圧縮機を制御し、室内制御部X1により算出された運転周波数を受信したときには、その運転周波数に基づいて圧縮機を制御する。
つまり、運転周波数が高くなるにつれ圧縮機の回転数が上がり、運転周波数が低くなるにつれ圧縮機の回転数が下がる。
なお、室外機Yには、圧縮機の他に、室外熱交換器、膨張手段などが設けられている(何れも図示しない)。
(Outdoor control unit)
When the outdoor control unit Y1 receives an operation command from the remote controller Z via the indoor control unit X1, the outdoor control unit Y1 controls the compressor at an operation frequency corresponding to the operation command, and uses the operation frequency calculated by the indoor control unit X1. When received, the compressor is controlled based on the operating frequency.
That is, the rotational speed of the compressor increases as the operating frequency increases, and the rotational speed of the compressor decreases as the operating frequency decreases.
The outdoor unit Y is provided with an outdoor heat exchanger, expansion means, and the like in addition to the compressor (none of them are shown).

(室内機)
図2において、室内機Xの外観は、箱状のキャビネット10と、キャビネット10の下部に設けられた四辺形状の化粧パネル2と、化粧パネル2の中央に設けられた四辺形状の吸込口1と、化粧パネル2に吸込口1を囲むように設けられた4つの長方形状の吹出口3a、3b、3c、3d(以下、まとめて又はそれぞれを「吹出口3」と称す場合がある)と、吹出口3a、3b、3c、3dにそれぞれ設けられ風向を上下方向に可変するための風向フラップ4a、4b、4c、4d(以下、まとめて又はそれぞれを「風向フラップ4」と称す場合がある)とを有している。そして、化粧パネル2の一角の下面には、赤外線センサー5が取り付けられている。
(Indoor unit)
In FIG. 2, the exterior of the indoor unit X includes a box-shaped cabinet 10, a quadrilateral decorative panel 2 provided at the lower part of the cabinet 10, and a quadrilateral suction port 1 provided in the center of the decorative panel 2. , Four rectangular air outlets 3a, 3b, 3c, 3d (hereinafter collectively referred to as “air outlet 3”) provided so as to surround the inlet 1 in the decorative panel 2, Wind direction flaps 4a, 4b, 4c, and 4d that are respectively provided at the air outlets 3a, 3b, 3c, and 3d to change the wind direction in the vertical direction (hereinafter may be collectively referred to as “wind direction flap 4”). And have. An infrared sensor 5 is attached to the lower surface of the corner of the decorative panel 2.

図3において、室内機Xのキャビネット10内には、キャビネット10の天面中心に負荷軸を下方に向けて設置されたファンモーター6と、ファンモーター6の負荷軸に取り付けられたターボファン7と、ターボファン7を囲むように配置された室内熱交換器8と、室内熱交換器8を囲むように配置されたインナーカバー9と、室内熱交換器8の下部に設置され熱交換の際に発生する凝縮水を受けるドレインパン15と、吸込口1から吸い込まれた空気の温度を検出する温度センサー13とが設けられている。   In FIG. 3, in the cabinet 10 of the indoor unit X, a fan motor 6 installed at the center of the top surface of the cabinet 10 with the load shaft facing downward, and a turbo fan 7 attached to the load shaft of the fan motor 6 The indoor heat exchanger 8 disposed so as to surround the turbo fan 7, the inner cover 9 disposed so as to surround the indoor heat exchanger 8, and the lower part of the indoor heat exchanger 8 are installed at the time of heat exchange. A drain pan 15 for receiving the generated condensed water and a temperature sensor 13 for detecting the temperature of the air sucked from the suction port 1 are provided.

インナーカバー9は、室内熱交換器8により熱交換された空気と機外とを断熱するためのものであって、ドレインパン15と共に室内熱交換器8の外周に風路を構成している。その風路は吸込口1に連通し吹出口3a、3b、3c、3dに至っている。また、ドレインパン15の下部には、ターボファン7の吸込口に連通する開口部が設けられている。   The inner cover 9 serves to insulate the air heat-exchanged by the indoor heat exchanger 8 and the outside of the machine, and constitutes an air path on the outer periphery of the indoor heat exchanger 8 together with the drain pan 15. The air passage communicates with the suction port 1 and leads to the air outlets 3a, 3b, 3c, and 3d. In addition, an opening that communicates with the suction port of the turbofan 7 is provided below the drain pan 15.

化粧パネル2の吸込口1には、機内に塵埃等が侵入するのを防止するエアフィルター11と、エアフィルター11を支持しかつ目隠しとして機能するグリル12とが設けられている。さらに、エアフィルター11とターボファン7の間には、吸込んだ空気をターボファン7へスムーズに導入するためのベルマウス14が設けられている。   The suction port 1 of the decorative panel 2 is provided with an air filter 11 that prevents dust and the like from entering the machine, and a grill 12 that supports the air filter 11 and functions as a blindfold. Further, a bell mouth 14 for smoothly introducing the sucked air into the turbo fan 7 is provided between the air filter 11 and the turbo fan 7.

(室外機)
室外機Yは、冷媒を圧縮する圧縮機、室外熱交換器、膨張手段(何れも図示しない)と、前記圧縮機、前記室外熱交換器、前記膨張手段および室内熱交換器8とを連結し、冷凍サイクルを形成する冷媒配管(図示しない)と、冷媒の流れ方向を切り替える冷媒流れ切替手段(図示しない)と、を有している。
(Outdoor unit)
The outdoor unit Y connects a compressor for compressing refrigerant, an outdoor heat exchanger, expansion means (all not shown), and the compressor, the outdoor heat exchanger, the expansion means, and the indoor heat exchanger 8. And a refrigerant pipe (not shown) forming a refrigeration cycle and a refrigerant flow switching means (not shown) for switching the flow direction of the refrigerant.

(制御方法)
図5に示すフローチャートにおいて、空気調和機100の制御方法は、室内制御部X1が以下の制御をするものである。
すなわち、室内制御部X1は、運転を開始すると(S1)、所定時間毎に赤外線センサー5が室内の人数(室内機Xが設置された室の内部に居る人間の数)を検知する(S2)。
そして、室内制御部X1は、赤外線センサー5で検知された人数(以下、「現在人数Nnow」と称す)を受け取り、新たに検知された現在人数Nnowと、所定時間だけ前に検知された現在人数Nnowとを比較し(S3)、前者が後者よりも多くない場合、制御のための最大人数Nmaxを更新(変更)しないで、在室率αを算出する(S6)。
一方、前者が後者よりも多い場合、予め登録された制御方法(これについては、別途詳細に説明する)に基づいて、制御のための最大人数Nmaxを更新(変更)するか否か判断し(S4)、更新する場合には、予め登録された制御方法に基づいて最大人数Nmaxを更新(変更)する(S5)。
そして、在室率αを算出する(S6)。なお、制御のための最大人数Nmaxを更新して、在室率を算出する幾つかの方法については、別途詳細に説明する。
そこで、算出した在室率αに基づいて、圧縮機の運転周波数Hzmを演算し、演算された運転周波数Hzmにて圧縮機を運転する(S7)。
(Control method)
In the flowchart shown in FIG. 5, the control method of the air conditioner 100 is such that the indoor control unit X1 performs the following control.
That is, when the indoor control unit X1 starts operation (S1), the infrared sensor 5 detects the number of people in the room (the number of people in the room where the indoor unit X is installed) every predetermined time (S2). .
The indoor control unit X1 receives the number of people detected by the infrared sensor 5 (hereinafter referred to as “current number of people Nnow”), the newly detected number of people Nnow, and the number of current people detected a predetermined time ago. Compared to Nnow (S3), if the former is not more than the latter, the occupancy rate α is calculated without updating (changing) the maximum number Nmax for control (S6).
On the other hand, if the former is greater than the latter, it is determined whether or not to update (change) the maximum number Nmax for control based on a previously registered control method (this will be described in detail separately) ( S4) When updating, the maximum number of people Nmax is updated (changed) based on a previously registered control method (S5).
Then, the occupancy rate α is calculated (S6). Several methods for calculating the occupancy rate by updating the maximum number of persons Nmax for control will be described in detail separately.
Therefore, based on the calculated occupancy rate α, the operation frequency Hzm of the compressor is calculated, and the compressor is operated at the calculated operation frequency Hzm (S7).

さらに、設定温度を補正するか判断し(S8)、設定温度を補正する場合には補正し、該補正された設定温度に設定温度を変更する(S9、制御モード1、2)。
さらに、吸込み空気の温度である吸込み温度を補正するか判断し(S10)、吸込み温度を補正する場合には補正し、該補正された吸込み温度に吸込み温度を変更する(S11、制御モード3、4)。
Further, it is determined whether to correct the set temperature (S8). If the set temperature is to be corrected, the set temperature is corrected, and the set temperature is changed to the corrected set temperature (S9, control modes 1 and 2).
Further, it is determined whether or not the suction temperature, which is the temperature of the suction air, is corrected (S10). If the suction temperature is corrected, the suction temperature is corrected, and the suction temperature is changed to the corrected suction temperature (S11, control mode 3, 4).

さらに、ファンモーターの回転速度を補正するか判断し(S12)、ファンモーターの回転速度を補正する場合には補正し、該補正されたファンモーターの回転速度にファンモーターの回転速度を変更する(S13、制御モード5、6)。
さらに、風向フラップ角度を補正するか判断し(S14)、風向フラップ角度を補正する場合には補正し、該補正された風向フラップ角度に風向フラップ角度を変更する(S15、制御モード7)。
最後に、空気調和機100の運転を継続するか否かを判断し(S16)、運転を継続する場合には、所定時間毎に現在人数Nnowを検知する工程(S2)に戻り、運転を継続しない場合は、運転を停止する(S17)。
なお、制御モード1〜7については別途詳細に説明するが、まず、制御のための最大人数Nmaxを更新して、在室率αを算出する方法について詳細に説明する。
Further, it is determined whether to correct the rotational speed of the fan motor (S12). If the rotational speed of the fan motor is corrected, the rotational speed of the fan motor is corrected to the corrected rotational speed of the fan motor (S12). S13, control modes 5, 6).
Further, it is determined whether to correct the wind direction flap angle (S14). If the wind direction flap angle is corrected, the wind direction flap angle is corrected, and the wind direction flap angle is changed to the corrected wind direction flap angle (S15, control mode 7).
Finally, it is determined whether or not to continue the operation of the air conditioner 100 (S16). When the operation is continued, the process returns to the step (S2) of detecting the current number Nnow every predetermined time and the operation is continued. If not, the operation is stopped (S17).
The control modes 1 to 7 will be described in detail separately. First, a method for calculating the occupancy rate α by updating the maximum number of persons Nmax for control will be described in detail.

(在室率の算出方法1)
図6において、制御のための最大人数Nmaxを更新して、在室率αを算出する方法1(以下、「算出方法1」と称す)は、室内制御部X1が、新たに検知された現在人数Nnowが所定時間だけ前に検知された現在人数Nnowよりも多い場合には、制御のための最大人数Nmaxを現在人数Nnowに同じ(Nmax=Nnow)にする更新をして、「在室率α=Nnow/Nmax=Nnow/Nnow=1」を算出することで実行される(図6のイ、ロ参照)。
一方、新たに検知された現在人数Nnowが所定時間だけ前に検知された現在人数Nnowよりも少ない場合には、制御のための最大人数Nmaxは変更しないで、「在室率α=Nnow/Nmax<1」を算出する(図6のハ参照)。
その後、最大人数Nmaxよりも新たに検知された現在人数Nnowが少ない限り、前記に準じて「在室率α=Nnow/Nmax<1」として算出する(図6のニ、ホ参照)。
(Calculation method 1)
In FIG. 6, the method 1 for calculating the occupancy rate α by updating the maximum number of persons Nmax for control (hereinafter referred to as “calculation method 1”) is a method in which the indoor control unit X1 is newly detected. When the number of people Nnow is larger than the current number of people Nnow detected a predetermined time ago, the maximum number of people Nmax for control is updated to be the same as the current number of people Nnow (Nmax = Nnow), This is executed by calculating “α = Nnow / Nmax = Nnow / Nnow = 1” (see FIGS. 6A and 6B).
On the other hand, when the newly detected current number Nnow is smaller than the current number Nnow detected a predetermined time ago, the maximum number Nmax for control is not changed, and “the occupancy rate α = Nnow / Nmax” <1 ”is calculated (see C in FIG. 6).
Thereafter, as long as the current number of people Nnow newly detected is smaller than the maximum number of people Nmax, the occupancy rate α = Nnow / Nmax <1 is calculated in accordance with the above (see D and E in FIG. 6).

さらに、室内制御部X1は、新たに検知された現在人数Nnowが所定時間だけ前に検知された現在人数Nnowより多くなると、前記に準じて、制御のための最大人数Nmaxと現在人数Nnowとを同じ(Nmax=Nnow)に更新して、「在室率α=Nnow/Nmax=Nnow/Nnow=1」を算出する(図6のへ参照)。
その後は、前記に準じて在室率αを算出する。したがって、運転を継続する間、新たに検知された現在人数Nnowが直前(所定時間だけ前)の最大人数Nmaxよりも多い限り、最大人数Nmaxは更新され、増加することになる。
Furthermore, when the newly detected current number Nnow exceeds the current number Nnow detected a predetermined time ago, the indoor control unit X1 calculates the maximum number Nmax and the current number Nnow for control according to the above. Update to the same (Nmax = Nnow) to calculate “occupancy rate α = Nnow / Nmax = Nnow / Nnow = 1” (see FIG. 6).
Thereafter, the occupancy rate α is calculated according to the above. Therefore, as long as the current number of people Nnow newly detected is greater than the previous maximum number of people Nmax (predetermined by a predetermined time) while continuing driving, the maximum number of people Nmax is updated and increased.

(在室率の算出方法2)
図7において、制御のための最大人数Nmaxを更新して、在室率αを算出する方法2(以下、「算出方法2」と称す)は、予め定められた「初期最大値Ndefault」を有し、運転を開始した直後は、制御のための最大人数Nmaxを初期最大値Ndefaultに等しく(Nmax=Ndefaul)することで実行される。
すなわち、運転を開始した直後で、所定時間毎に検知される人数(以下、「現在人数Nnow」と称す)が、初期最大値Ndefaultよりも少ない場合、室内制御部X1は、制御のための最大人数Nmaxに対する現在人数Nnowの割合を「在室率α=Nnow/Nmax=Nnow/Ndefault<1」として算出する(図7のイ、ロ参照)。
そして、新たに検知された現在人数Nnowが初期最大値Ndefaultよりも多くなったとき、制御のための最大人数Nmaxを新たに検知された現在人数Nnowに同じ(Nmax=Nnow)に更新して、「在室率α=Nnow/Nmax=Nnow/Nnow=1」を算出する(図7のハ参照)。
(Calculation method 2)
In FIG. 7, the method 2 for calculating the occupancy rate α by updating the maximum number of persons Nmax for control (hereinafter referred to as “calculation method 2”) has a predetermined “initial maximum value Ndefault”. Immediately after the operation is started, the maximum number Nmax for control is made equal to the initial maximum value Ndefault (Nmax = Ndefault).
That is, immediately after the start of driving, when the number of people detected at predetermined time intervals (hereinafter referred to as “current number of people Nnow”) is smaller than the initial maximum value Ndefault, the indoor control unit X1 The ratio of the current number of people Nnow to the number of people Nmax is calculated as “room ratio α = Nnow / Nmax = Nnow / Ndefault <1” (see FIGS. 7A and 7B).
When the newly detected current number Nnow becomes larger than the initial maximum value Ndefault, the maximum number Nmax for control is updated to the same as the newly detected current number Nnow (Nmax = Nnow) The “occupancy rate α = Nnow / Nmax = Nnow / Nnow = 1” is calculated (see C in FIG. 7).

その後、新たに検知された現在人数Nnowが直前(所定時間だけ前)の最大人数Nmaxよりも少ない限り、「在室率α=Nnow/Nmax<1」を算出する(図7のニ、ホ参照)。
一方、室内制御部X1は、新たに検知された現在人数Nnowが所定時間だけ前に検知された現在人数Nnowより多くなると、前記に準じて、制御のための最大人数Nmaxを新たに検知された現在人数Nnowに同じ(Nmax=Nnow)にする更新をし、「在室率α=Nnow/Nmax=Nnow/Nnow=1」を算出する(図7のヘ参照)。
その後は、運転時間が所定の初期設定時間T1を経過するまでは、前記に準じて在室率αを算出する。そして、運転時間が所定の初期設定時間T1に到達したところで、新たに検知された現在人数Nnowが初期最大値Ndefaultよりも少ない場合、制御のための最大人数Nmaxを初期最大値Ndefaultに等しく(Nmax=Ndefault)する更新をして、「在室率α=Nnow/Nmax=Nnow/Ndefault<1」を算出する(図7のト参照)。
Thereafter, as long as the newly detected current number Nnow is smaller than the previous maximum number of people Nmax (predetermined by a predetermined time), “occupancy rate α = Nnow / Nmax <1” is calculated (see FIGS. 7D and 7D). ).
On the other hand, if the newly detected current number Nnow exceeds the current number Nnow detected a predetermined time ago, the indoor control unit X1 newly detects the maximum number Nmax for control according to the above. The current number of people Nnow is updated to be the same (Nmax = Nnow), and “occupancy rate α = Nnow / Nmax = Nnow / Nnow = 1” is calculated (see FIG. 7).
Thereafter, the occupancy rate α is calculated in accordance with the above until the operation time exceeds a predetermined initial set time T1. If the newly detected current number Nnow is less than the initial maximum value Ndefault when the operation time reaches a predetermined initial setting time T1, the maximum number Nmax for control is equal to the initial maximum value Ndefault (Nmax). = Ndefault), and “occupancy rate α = Nnow / Nmax = Nnow / Ndefault <1” is calculated (see FIG. 7G).

一方、運転時間が所定の初期設定時間T1に到達したところで、新たに検知された現在人数Nnowが初期最大値Ndefaultよりも多い場合、制御のための最大人数Nmaxを初期最大値Ndefaultに等しく(Nmax=Ndefault)すると共に、新たに検知された現在人数Nnowに初期最大値Ndefaultを等しく(Nnow=Ndefault)する更新をして、「在室率α=Nnow/Nmax=Ndefault/Ndefault=1」を算出する(図示しない)。   On the other hand, when the driving time reaches a predetermined initial setting time T1, if the newly detected current number Nnow is greater than the initial maximum value Ndefault, the maximum number Nmax for control is equal to the initial maximum value Ndefault (Nmax = Ndefault) and update to make the initial maximum value Ndefault equal to the newly detected current number Nnow (Nnow = Ndefault), and calculate “room ratio α = Nnow / Nmax = Ndefault / Ndefault = 1” (Not shown).

(在室率の算出方法3)
図8において、制御のための最大人数Nmaxを更新して、在室率αを算出する方法3(以下、「算出方法3」と称す)は、運転時間が所定の初期設定時間T1が経過するまでは算出方法2(図7)に同じである。
すなわち、運転時間が所定の初期設定時間T1に到達したところで、新たに検知された現在人数Nnowが初期最大値Ndefaultよりも少ない場合、制御のための最大人数Nmaxを「所定時間だけ前に検知された現在人数Nnowと初期最大値Ndefaultとの算術平均値」に等しく(Nmax=(所定時間だけ前に検知された現在人数Nnow+Ndefault)/2)に更新して、「在室率α=Nnow/Nmax<1」を算出する(図8のト参照)。
(Calculation method 3)
In FIG. 8, the method 3 (hereinafter referred to as “calculation method 3”) for calculating the occupancy rate α by updating the maximum number of persons Nmax for control passes a predetermined initial setting time T1. Up to this point is the same as the calculation method 2 (FIG. 7).
That is, when the driving time reaches a predetermined initial setting time T1, if the newly detected current number Nnow is less than the initial maximum value Ndefault, the maximum number Nmax for control is determined as “predetermined by a predetermined time”. The current number of people Nnow and the initial maximum value Ndefault ”are updated to be equal to (Nmax = (current number of people Nnow + Ndefault detected at a predetermined time before) / 2), and“ occupancy rate α = Nnow / Nmax ” <1 ”is calculated (refer to FIG. 8G).

一方、運転時間が所定の初期設定時間T1に到達したところで、新たに検知された現在人数Nnowが初期最大値Ndefaultよりも多い場合、制御のための最大人数Nmaxを変更しないで、直前の最大人数Nmaxのままで、「在室率α=Nnow/Nmax<1」を算出する(図示しない)。
なお、以上は、新たに検知された現在人数Nnowが初期最大値Ndefaultよりも少ない場合、制御のための最大人数Nmaxを「直前(所定時間だけ前)の最大人数Nmaxと初期最大値Ndefaultとの算術平均値」に等しくしているが、本発明はこれに限定するものではなく、制御のための最大人数Nmaxを「直前の最大人数Nmaxと初期最大値Ndefaultとの間の所定の割合の値(Nmax=Ndefault+(直前のNmax−Ndefault)*β、β<1.00)にしてもよい。
On the other hand, when the driving time reaches a predetermined initial setting time T1, if the newly detected current number Nnow is larger than the initial maximum value Ndefault, the maximum number of people immediately before is not changed without changing the maximum number Nmax for control. While Nmax is maintained, “occupancy rate α = Nnow / Nmax <1” is calculated (not shown).
In the above, when the newly detected current number Nnow is smaller than the initial maximum value Ndefault, the maximum number Nmax for control is set to “the maximum number Nmax immediately before (predetermined by a predetermined time) and the initial maximum value Ndefault”. Although the present invention is not limited to this, the maximum number of people Nmax for control is set to a value of a predetermined ratio between the previous maximum number of people Nmax and the initial maximum value Ndefault. (Nmax = Ndefault + (Previous Nmax−Ndefault) * β, β <1.00) may be used.

(在室率の算出方法4)
図9において、制御のための最大人数Nmaxを更新して、在室率αを算出する方法4(以下、「算出方法4」と称す)は、制御のための更新限度閾値Nthを設けたものであって、新たに検知された現在人数Nnowが更新限度閾値Nthよりも少ない範囲では、算出方法2(図7)に同じである。
図9において、新たに検知された現在人数Nnowが更新限度閾値Nthよりも多い場合、制御のための最大人数Nmaxを更新限度閾値Nthに等しく(Nmax=Nth)すると共に、新たに検知された現在人数Nnowを更新限度閾値Nthに等しく(Nnow=Nth)して、「在室率α=Nnow/Nmax=Nth/Nth=1」を算出する(図9のチ参照)。
そして、その後は、新たに検知された現在人数Nnowが更新限度閾値Nthよりも少ない限り、前記に準じて「在室率α=Nnow/Nmax=Nnow/Nth<1」として算出する(図9のリ参照)。
一方、新たに検知された現在人数Nnowが更新限度閾値Nthよりも再度、多い場合、前記に準じて「在室率α=Nnow/Nmax=Nth/Nth=1」として算出する(図9のチ参照)。
(Calculation method 4)
In FIG. 9, the method 4 for calculating the occupancy rate α by updating the maximum number of persons Nmax for control (hereinafter referred to as “calculation method 4”) is provided with an update limit threshold Nth for control. In the range where the newly detected current number Nnow is smaller than the update limit threshold Nth, the calculation method 2 (FIG. 7) is the same.
In FIG. 9, when the newly detected current number Nnow is larger than the update limit threshold Nth, the maximum number Nmax for control is made equal to the update limit threshold Nth (Nmax = Nth), and the newly detected current The number of persons Nnow is made equal to the update limit threshold value Nth (Nnow = Nth), and “occupancy rate α = Nnow / Nmax = Nth / Nth = 1” is calculated (see h in FIG. 9).
Thereafter, as long as the newly detected current number Nnow is smaller than the update limit threshold Nth, the occupancy rate α = Nnow / Nmax = Nnow / Nth <1 ”is calculated in accordance with the above (FIG. 9). See).
On the other hand, when the newly detected current number Nnow is again larger than the update limit threshold Nth, the occupancy rate α = Nnow / Nmax = Nth / Nth = 1 is calculated according to the above (see FIG. 9). reference).

(在室率の算出方法5)
図10において、制御のための最大人数Nmaxを更新して、在室率αを算出する方法5(以下、「算出方法5」と称す)は、前記算出方法4と同様に制御のための更新限度閾値Nthを設けたものであって、新たに検知された現在人数Nnowが更新限度閾値Nthよりも少ない範囲では、算出方法4(図9)に同じである。
図10において、新たに検知された現在人数Nnowが更新限度閾値Nthよりも多い場合、制御のための最大人数Nmaxを初期最大値Ndefaultに等しく(Nmax=Ndefault)する更新をすると共に、新たに検知された現在人数Nnowを初期最大値Ndefaultに等しく(Nnow=Ndefault)して、「在室率α=Nnow/Nmax=Ndefault/Ndefault=1」を算出する(図10のチ参照)。
(Calculation method 5)
In FIG. 10, the method 5 for calculating the occupancy rate α by updating the maximum number of persons Nmax for control (hereinafter referred to as “calculation method 5”) is the update for control similar to the calculation method 4 described above. In the range in which the limit threshold value Nth is provided and the newly detected current number Nnow is smaller than the update limit threshold value Nth, the calculation method 4 (FIG. 9) is the same.
In FIG. 10, when the newly detected current number Nnow is larger than the update limit threshold Nth, the maximum number Nmax for control is updated to be equal to the initial maximum value Ndefault (Nmax = Ndefault) and newly detected. The current number of persons Nnow is made equal to the initial maximum value Ndefault (Nnow = Ndefault) to calculate “room occupancy rate α = Nnow / Nmax = Ndefault / Ndefault = 1” (see FIG. 10B).

そして、その後は、新たに検知された現在人数Nnowが更新限度閾値Nthよりも少ない限り、前記に準じて「在室率α=Nnow/Nmax=Nnow/Nth<1」を算出する(図10のリ参照)。
一方、新たに検知された現在人数Nnowが更新限度閾値Nthよりも再度、多い場合、前記に準じて「在室率α=Nnow/Nmax=Nth/Ndefault<1」を算出する(図10のリ参照)。
一方、新たに検知された現在人数Nnowが更新限度閾値Nthよりも再度、多い場合、前記に準じて「在室率α=Nnow/Nmax=Nth/Nth=1」を算出する(図10のチ参照)。
After that, as long as the newly detected current number Nnow is smaller than the update limit threshold Nth, “occupancy rate α = Nnow / Nmax = Nnow / Nth <1” is calculated in accordance with the above (FIG. 10). See).
On the other hand, when the newly detected current number Nnow is again larger than the update limit threshold Nth, “occupancy rate α = Nnow / Nmax = Nth / Ndefault <1” is calculated in accordance with the above (see FIG. 10). reference).
On the other hand, when the newly detected current number Nnow is again larger than the update limit threshold value Nth, “occupancy rate α = Nnow / Nmax = Nth / Nth = 1” is calculated according to the above (see FIG. 10). reference).

以上、算出方法5として、新たに検知された現在人数Nnowが更新限度閾値Nthよりも多い場合、制御のための最大人数Nmaxを初期最大値Ndefaultに等しく(Nmax=Ndefault)する更新をしているが、前記算出方法3に準じて、最大人数Nmaxを「更新限度閾値Nthと初期最大値Ndefaultとの算術平均値((Nth+Ndefault)/2)」にしたり、「更新限度閾値Nthと初期最大値Ndefaultとの間の所定の値 (Ndefault+(Nth−Ndefault)*β β<1.00)」にしてもよい。   As described above, as the calculation method 5, when the newly detected current number Nnow is larger than the update limit threshold Nth, the maximum number Nmax for control is updated to be equal to the initial maximum value Ndefault (Nmax = Ndefault). In accordance with the calculation method 3, the maximum number Nmax is set to “the arithmetic average value of the update limit threshold Nth and the initial maximum value Ndefault ((Nth + Ndefault) / 2)” or “the update limit threshold Nth and the initial maximum value Ndefault”. (Ndefault + (Nth−Ndefault) * β β <1.00) ”.

(圧縮機の運転周波数の変更:制御モード1)
次に、算出された在室率αの値に基づいた圧縮機の運転周波数の変更(以下、「制御モード1」と称す)について説明する。
図11の(a)において、室内制御部X1は、算出された在室率αの値に対応した圧縮機の運転周波数Hzmを算出し、その運転周波数Hzmを室外制御部Y1に通信線Cを介して送信し、室外機Yの圧縮機を運転周波数Hzmで運転させる。
(Change of compressor operating frequency: Control mode 1)
Next, a change in the operating frequency of the compressor based on the calculated occupancy rate α (hereinafter referred to as “control mode 1”) will be described.
In FIG. 11 (a), the indoor control unit X1 calculates the operating frequency Hzm of the compressor corresponding to the calculated value of the occupancy rate α, and sends the communication line C to the outdoor control unit Y1. And the compressor of the outdoor unit Y is operated at the operating frequency Hzm.

なお、図11の(a)では在室率αと運転周波数Hzmとの関係を一次関数で定めているが、本発明はこれに限定するものではなく、図11の(b)に示すように、所定範囲の在室率αに対応した運転周波数Hzmを定めたステップ関数にしてもよい。図11の(b)では、在室率αが0〜20%、20〜50%、50〜100%の3段階に分け、それぞれの範囲における圧縮機の運転周波数Hzmを予め決めているが、2段階あるいは4段階以上に分けてもよい。さらに、在室率αと運転周波数Hzmとの関係を二次関数や指数関数等にしてもよい。   In FIG. 11 (a), the relationship between the occupancy rate α and the operating frequency Hzm is determined by a linear function. However, the present invention is not limited to this, and as shown in FIG. 11 (b). Alternatively, a step function that defines an operation frequency Hzm corresponding to the occupancy rate α in a predetermined range may be used. In FIG. 11B, the occupancy rate α is divided into three stages of 0 to 20%, 20 to 50%, and 50 to 100%, and the operating frequency Hzm of the compressor in each range is determined in advance. It may be divided into two stages or four or more stages. Furthermore, the relationship between the occupancy rate α and the operating frequency Hzm may be a quadratic function or an exponential function.

以上のように、在室する人数による室内負荷を、在室率αとして早急に見積もることができ、在室率αに対応した運転周波数Hzmでもって圧縮機を運転させるから、従来、温度情報に基づいて圧縮機の運転周波数を制御していた場合と比べ、より早く必要な冷暖房能力を提供することができると共に、冷暖房能力の過不足をいち早く解消することができ、省エネを実現することが可能になる。   As described above, the indoor load due to the number of people in the room can be quickly estimated as the occupancy rate α, and the compressor is operated at the operating frequency Hzm corresponding to the occupancy rate α. Compared to the case where the operating frequency of the compressor is controlled based on this, it is possible to provide the required air conditioning capacity more quickly, and it is possible to quickly eliminate the excess or deficiency of the air conditioning capacity, thereby realizing energy saving. become.

(設定温度の変更:制御モード2)
次に、さらに省エネを図るため、前記制御モード1(圧縮機の運転周波数の変更)と並行して、以下に説明する設定温度の変更(以下、「制御モード2」と称す)をしてもよい。
図12の(a)において、在室率αに対応した設定温度補正量を定め、在室率αの値によってリモコンZの設定温度を変更する。
例えば、冷房運転時、ユーザーが設定温度を27℃に設定していた場合、在室率αを算出し、在室率αが0%の場合は2℃増(29℃に設定)、在室率αが20%の場合は1℃増(28℃に設定)、在室率αが50%以上の場合はそのまま(27℃に設定のまま)とし、その結果を通信線Cを介して室外機Yの室外制御部Y1に送信する。
なお、在室率αと設定温度補正量との関係は図12の(a)に示すような一次関数であっても、図12の(b)に示すようなステップ関数であってもよく、さらに、二次関数や指数関数等であってもよい。
(Change of set temperature: Control mode 2)
Next, in order to further save energy, the set temperature described below (hereinafter referred to as “control mode 2”) is changed in parallel with the control mode 1 (change of the operating frequency of the compressor). Good.
In FIG. 12A, a set temperature correction amount corresponding to the occupancy rate α is determined, and the set temperature of the remote controller Z is changed according to the value of the occupancy rate α.
For example, if the user has set the set temperature to 27 ° C. during cooling operation, the occupancy rate α is calculated. If the occupancy rate α is 0%, the occupancy rate is increased by 2 ° C. When the rate α is 20%, the temperature is increased by 1 ° C. (set to 28 ° C.), and when the occupancy rate α is 50% or more, it is left as it is (set to 27 ° C.). It transmits to the outdoor control part Y1 of the machine Y.
The relationship between the occupancy rate α and the set temperature correction amount may be a linear function as shown in FIG. 12A or a step function as shown in FIG. Further, it may be a quadratic function or an exponential function.

(吸込み温度の変更:制御モード3)
次に、さらに省エネを図るため、前記制御モード1と並行して、あるいは前記制御モード1および制御モード2と並行した、以下に説明する吸込み温度の変更(以下、「制御モード3」と称す)をしてもよい。
図13の(a)において、在室率αに対応した室内空気の吸込み温度補正量を定め、在室率αの値によって、吸込み空気の温度に補正をかける。
例えば、冷房運転時、実際の室内空気の温度が25℃であるとした場合、在室率αを算出し、在室率αが0%の場合は2℃減(23℃に設定)、在室率αが20%の場合は1℃減(24℃に設定)、在室率αが50%以上の場合はそのまま(25℃に設定のまま)とし、その結果を通信線Cを介して室外機Yの室外制御部Y1に送信する。
(Change of suction temperature: control mode 3)
Next, in order to further save energy, a change in the suction temperature described below in parallel with the control mode 1 or in parallel with the control mode 1 and the control mode 2 (hereinafter referred to as “control mode 3”). You may do.
In FIG. 13 (a), a correction amount of the indoor air suction temperature corresponding to the occupancy rate α is determined, and the temperature of the intake air is corrected by the value of the occupancy rate α.
For example, if the actual indoor air temperature is 25 ° C. during cooling operation, the occupancy rate α is calculated. If the occupancy rate α is 0%, the decrease is 2 ° C. (set to 23 ° C.). If the room rate α is 20%, decrease by 1 ° C. (set to 24 ° C.), and if the occupancy rate α is 50% or more, leave it as it is (set to 25 ° C.). It transmits to the outdoor control part Y1 of the outdoor unit Y.

このような吸込み温度の変更により、冷房運転時には、実際の吸込み温度よりも低い数値を空気調和機に認識させることにより、省エネ運転が可能になる。
なお、在室率αと吸込み温度補正量との関係は図13の(a)に示すような一次関数であっても、図13の(b)に示すようなステップ関数であってもよく、さらに、二次関数や指数関数等であってもよい。
By changing the suction temperature, the air conditioner recognizes a numerical value lower than the actual suction temperature during the cooling operation, thereby enabling an energy saving operation.
The relationship between the occupancy rate α and the suction temperature correction amount may be a linear function as shown in FIG. 13A or a step function as shown in FIG. Further, it may be a quadratic function or an exponential function.

(ファンモーター回転速度の変更:制御モード4)
次に、さらに省エネを図るため、前記制御モード1と並行して、あるいは前記制御モード2および制御モード3の少なくとも一方と並行した、以下に説明するファンモーター回転速度の変更(以下、「制御モード4」と称す)をしてもよい。
図14の(a)において、在室率αに対応したファンモーター回転速度を定め、在室率αの値によって、ファンモーター回転速度に補正をかける。
例えば、在室率αが0%の場合は「弱風」、在室率αが20%の場合は「中風」、在室率αが50%以上の場合は「強風」、というように補正をかける。
なお、在室率αとファンモーター回転速度との関係は図14の(a)に示すような一次関数(無段階にファンモーター6の回転速度を可変できる場合)であっても、図14の(b)に示すようなステップ関数であってもよく、さらに、二次関数や指数関数等であってもよい。
(Change of fan motor speed: control mode 4)
Next, in order to further save energy, a change in the fan motor rotational speed described below (hereinafter referred to as “control mode”) is performed in parallel with the control mode 1 or in parallel with at least one of the control mode 2 and the control mode 3. 4 ”).
In FIG. 14A, the fan motor rotation speed corresponding to the occupancy rate α is determined, and the fan motor rotation speed is corrected according to the value of the occupancy rate α.
For example, when the occupancy rate α is 0%, “weak wind”, when the occupancy rate α is 20%, “medium wind”, when the occupancy rate α is 50% or more, “strong wind” is corrected. multiply.
The relationship between the occupancy rate α and the fan motor rotational speed is a linear function as shown in FIG. 14A (when the rotational speed of the fan motor 6 can be varied steplessly), as shown in FIG. It may be a step function as shown in (b), and may be a quadratic function or an exponential function.

(風向フラップ角度の変更:制御モード5)
次に、快適性を高めるため、前記制御モード1と並行して、あるいは前記制御モード2乃至4の何れか少なくとも一と並行した、以下に説明する風向フラップ角度の変更(以下、「制御モード5」と称す)をしてもよい。
例えば暖房時は、通常、暖気が部屋の上方にたまるため、風向フラップ4a、4b、4c、4dは下向きになるように運転されているとする。この場合、室内を暖房する効果は高まるが、そこに人がいた場合には、直接風があたり不快感を与えてしまう可能性がある。
図15において、、在室率αを用いて室内を暖房する必要性がないと判断した場合、例えば、在室率αが20%以下の場合は、風向フラップ4a、4b、4c、4dの角度を水平方向に変化させる。
(Change of wind direction flap angle: Control mode 5)
Next, in order to enhance comfort, a change in a wind direction flap angle described below (hereinafter referred to as “control mode 5”) in parallel with the control mode 1 or in parallel with at least one of the control modes 2 to 4 is performed. May be used).
For example, during heating, warm air normally accumulates above the room, so that the wind direction flaps 4a, 4b, 4c, and 4d are assumed to be operated downward. In this case, the effect of heating the room is enhanced, but if there is a person there, there is a possibility that the wind will hit directly and cause discomfort.
In FIG. 15, when it is determined that there is no need to heat the room using the occupancy rate α, for example, when the occupancy rate α is 20% or less, the angles of the wind direction flaps 4a, 4b, 4c, and 4d Is changed horizontally.

さらに、複数の吹出口3a、3b、3c、3dを有し、それぞれに独立した風向フラップ4a、4b、4c、4dの角度制御を行うことが可能であって、吹出口3a、3b、3c、3dのそれぞれの付近における人体の有無を検知することができる人体検知手段がある場合、例えば、吹出口3a付近にのみ(または、吹出口3a、3b付近にのみ)人体があると検知すると、風向フラップ4aのみ(または、風向フラップ4a、4b付近にのみ)を水平方向へ変化させるようにしてもよい。   Furthermore, it has a plurality of air outlets 3a, 3b, 3c, 3d, and can independently control the angle of the wind direction flaps 4a, 4b, 4c, 4d, and the air outlets 3a, 3b, 3c, When there is a human body detecting means capable of detecting the presence or absence of a human body in the vicinity of each of 3d, for example, if it is detected that there is a human body only in the vicinity of the air outlet 3a (or only in the vicinity of the air outlets 3a and 3b), the wind direction Only the flap 4a (or only near the wind direction flaps 4a and 4b) may be changed in the horizontal direction.

以上において、在室率の算出方法1〜5や制御モード1〜5の何れを選択するかは、空気調和機100の本体側において予め設定してもよいし、リモコンZ上でユーザーが選択した場合だけ有効としてもよい。このとき、制御モード1〜5は複数のモードが同時に動作してもよいし、制御モード1と並行に制御モード2〜5の何れか一つのモードの動作でもよい。   In the above, whether to select the occupancy rate calculation method 1 to 5 or the control mode 1 to 5 may be set in advance on the main body side of the air conditioner 100 or selected by the user on the remote control Z It may be valid only in some cases. At this time, the control modes 1 to 5 may operate in a plurality of modes simultaneously, or may operate in any one of the control modes 2 to 5 in parallel with the control mode 1.

なお、実施の形態1では、室内機に人数検知手段(赤外線センサー5)を有した例を記載したが、本発明はこれに限定されるものではなく、室内機Xとは別個(例えば、部屋の入口等)に人数検知手段を設置し、該人数検知手段の検知結果を室内制御部X1に入力するようにしてもよい。
なお、実施の形態1では、空気調和機100は、能力に合わせた最大人数の初期最大値Ndefaultを保有しているが、本発明はこれに限定するものではなく、ユーザーからの入力によって初期最大値Ndefaultを決定する「ユーザーからの入力方式」であってもよい。
In the first embodiment, the example in which the indoor unit has the number-of-people detection means (infrared sensor 5) is described, but the present invention is not limited to this, and is separate from the indoor unit X (for example, the room It is also possible to install a number detection means at the entrance, etc.) and input the detection result of the number detection means to the indoor control unit X1.
In the first embodiment, the air conditioner 100 has the initial maximum value Ndefault of the maximum number of people according to the capability, but the present invention is not limited to this, and the initial maximum is determined by input from the user. It may be an “input method from the user” for determining the value Ndefault.

[実施の形態2]
図16は本発明の実施の形態2に係る空気調和機の室内機を説明するものであって、在室率の算出方法を説明する相関図である。なお、室内機の構成は実施の形態1に同じであるから、説明を省略する。
図16において、在室率αを算出する方法6(以下、「算出方法6」と称す)は、予め定められた「初期最大値Ndefault」を有し、制御のための最大人数Nmaxを初期最大値Ndefaultに固定して更新しない(Nmax=Ndefault)ものである。
したがって、所定時間毎に検知される人数(以下、「現在人数Nnow」と称す)が、初期最大値Ndefaultよりも少ない場合は、あるいは多い場合の何れの場合も、制御のための最大人数Nmaxに対する現在人数Nnowの割合を「在室率α=Nnow/Nmax=Nnow/Ndefault」として算出する。
[Embodiment 2]
FIG. 16 illustrates an indoor unit of an air conditioner according to Embodiment 2 of the present invention, and is a correlation diagram illustrating a method for calculating the occupancy rate. Since the configuration of the indoor unit is the same as that in Embodiment 1, the description thereof is omitted.
In FIG. 16, a method 6 for calculating the occupancy rate α (hereinafter referred to as “calculation method 6”) has a predetermined “initial maximum value Ndefault”, and the maximum number Nmax for control is set to the initial maximum. It is fixed to the value Ndefault and is not updated (Nmax = Ndefault).
Accordingly, the number of persons detected at a predetermined time (hereinafter referred to as “current number of persons Nnow”) is less than the initial maximum value Ndefault or greater than the initial maximum value Ndefault. The ratio of the current number of people Nnow is calculated as “occupancy rate α = Nnow / Nmax = Nnow / Ndefault”.

したがって、前者の場合は「在室率α<1」となり、後者の場合は「在室率α>1.00」となる。そして、「在室率α<1」の場合は、実施の形態1における制御モード1〜5の何れかを実行して省エネを図る。一方、「在室率α>1」の場合は、省エネを運転を中止し、増エネ運転を実行する。例えば、在室率α=100%の場合には、通常運転に同じ「100%運転」をし、在室率α=60%の場合には、通常運転よりも省エネを図った「60%運転」をし、在室率α=150%の場合には、通常運転よりも増エネになる「150%運転」をする。
例えば、冷房運転時、在室人数が多くなって「在室率α>1」となった場合、人体のもつ熱負荷が多くなる。在室率αに応じて通常運転よりも圧縮機の運転周波数を増加させることで、大きくなった空間負荷をいち早く解消することができるため、在室するユーザーの快適性が向上する。
したがって、「在室率α<1」である場合は、実施の形態1と同様に省エネを図ることが可能となり、一方、「在室率α>1」である場合は、快適性の向上を図ることができる。すなわち、通常運転時よりも増エネになる「在室率α>1」となった場合にのみ、圧縮機の運転周波数を増加させたのでは、増エネになるだけで利点が少ないが、実施の形態1と同様に省エネ運転と組み合わせることで、省エネと快適性とを両立させた運転が可能になる。
Therefore, the occupancy rate α <1 in the former case and the occupancy rate α> 1.00 in the latter case. When “occupancy rate α <1”, energy saving is achieved by executing any one of control modes 1 to 5 in the first embodiment. On the other hand, when “occupancy rate α> 1”, the operation of energy saving is stopped and the energy increase operation is executed. For example, when the occupancy rate α = 100%, the same “100% operation” as the normal operation is performed, and when the occupancy rate α = 60%, the “60% operation” is intended to save energy than the normal operation. When the occupancy rate α = 150%, “150% operation” is performed, which increases energy compared to normal operation.
For example, when the number of people in the room increases and the occupancy rate α> 1 during the cooling operation, the heat load of the human body increases. By increasing the operating frequency of the compressor according to the occupancy rate α, the increased spatial load can be quickly eliminated, so that the comfort of the user in the room is improved.
Therefore, when “occupancy rate α <1”, energy saving can be achieved in the same manner as in the first embodiment. On the other hand, when “occupancy rate α> 1”, comfort is improved. Can be planned. In other words, if the operating frequency of the compressor is increased only when the occupancy rate α> 1, which increases the energy compared to the normal operation, there is less advantage just by increasing the energy. By combining with energy-saving operation in the same manner as in Embodiment 1, it is possible to perform operation that achieves both energy saving and comfort.

1:吸込口、2:化粧パネル、3:吹出口、3a〜3d:吹出口、4a〜4d:風向フラップ、4:風向フラップ、5:赤外線センサー、6:ファンモーター、7:ターボファン、8:室内熱交換器、9:インナーカバー、10:キャビネット、11:エアフィルター、12:グリル、13:温度センサー、14:ベルマウス、15:ドレインパン、90:天井、100:空気調和機、α:在室率、A:液延長配管、B:ガス延長配管、C:通信線、Hzm:運転周波数、Ndefault:初期最大値、Nmax:最大人数、Nnow:現在人数、Nth:更新限度閾値、T1:初期設定時間、X:室内機、X1:室内制御部、Y:室外機、Y1:室外制御部、Z:リモコン。   1: suction port, 2: decorative panel, 3: air outlet, 3a-3d: air outlet, 4a-4d: wind direction flap, 4: wind direction flap, 5: infrared sensor, 6: fan motor, 7: turbo fan, 8 : Indoor heat exchanger, 9: inner cover, 10: cabinet, 11: air filter, 12: grille, 13: temperature sensor, 14: bell mouth, 15: drain pan, 90: ceiling, 100: air conditioner, α : Occupancy rate, A: liquid extension piping, B: gas extension piping, C: communication line, Hzm: operating frequency, Ndefault: initial maximum value, Nmax: maximum number of people, Nnow: current number of people, Nth: renewal limit threshold, T1 : Initial setting time, X: indoor unit, X1: indoor control unit, Y: outdoor unit, Y1: outdoor control unit, Z: remote control.

Claims (13)

室内熱交換器を装備した室内機と、
前記室内熱交換器に接続されて冷凍サイクルを形成する圧縮機を装備した室外機と、
室内の人数を検知する人数検知手段と、
最大人数に対する前記人数検知手段が検知した人数である現在人数との割合を在室率として算出し、該算出された在室率に基づいて、前記圧縮機の運転周波数を変更する制御手段と、を有することを特徴とする空気調和機。
An indoor unit equipped with an indoor heat exchanger;
An outdoor unit equipped with a compressor connected to the indoor heat exchanger to form a refrigeration cycle;
A number detection means for detecting the number of people in the room;
A control means for calculating the ratio of the current number of persons detected by the number-of-person detection means to the maximum number of persons as the occupancy rate, and changing the operating frequency of the compressor based on the calculated occupancy rate; The air conditioner characterized by having.
前記制御手段は、新たに検知された現在人数が、所定時間だけ前に検知された現在人数より多い場合、前記最大人数を前記新たに検知された現在人数に等しくする更新をすることを特徴とする請求項1記載の空気調和機。   The control means updates the maximum number of people to be equal to the newly detected current number of people when the current number of newly detected people is greater than the current number of people detected previously by a predetermined time. The air conditioner according to claim 1. 前記制御手段は、前記最大人数を初期最大値として予め定めておき、新たに検知された現在人数が前記最大人数よりも多い場合は、前記最大人数を前記新たに検知された現在人数に等しくする更新をし、
検知を開始して所定の初期設定時間が経過する毎に、前記最大人数を前記初期最大値に等しくする更新をすることを特徴とする請求項1記載の空気調和機。
The control means predetermines the maximum number of persons as an initial maximum value, and when the newly detected current number is larger than the maximum number of persons, the maximum number of persons is made equal to the newly detected current number of persons. Update
2. The air conditioner according to claim 1, wherein each time a predetermined initial set time elapses after detection is started, the maximum number of persons is updated to be equal to the initial maximum value.
前記制御手段は、前記最大人数を初期最大値として予め定めておき、新たに検知された現在人数が前記最大人数よりも多い場合は、前記最大人数を前記新たに検知された現在人数に等しくする更新をし、
検知を開始して所定の初期設定時間が経過する毎に、当該初期設定時間が経過した際の最大人数と前記初期最大値との間の所定の値に、前記最大人数を等しくする更新をすることを特徴とする請求項1記載の空気調和機。
The control means predetermines the maximum number of persons as an initial maximum value, and when the newly detected current number is larger than the maximum number of persons, the maximum number of persons is made equal to the newly detected current number of persons. Update
Every time a predetermined initial setting time elapses after detection is started, the maximum number of people is updated to a predetermined value between the maximum number of people when the initial setting time has passed and the initial maximum value. The air conditioner according to claim 1.
前記制御手段は、初期最大値と該初期最大値よりも多い更新限度閾値とが予め定められ、前記最大人数を予め定められている初期最大値に等しくしておき、
新たに検知された現在人数が前記初期最大値よりも多く、かつ前記更新限度閾値よりも少ない場合、前記最大人数を前記新たに検知された現在人数に等しくする更新をし、
新たに検知された現在人数が前記更新限度閾値よりも多い場合、前記最大人数を前記更新限度閾値に等しくする更新をすることを特徴とする請求項1記載の空気調和機。
The control means is preset with an initial maximum value and an update limit threshold greater than the initial maximum value, and makes the maximum number of people equal to a predetermined initial maximum value,
If the newly detected current number is greater than the initial maximum value and less than the update limit threshold, an update is made to make the maximum number of persons equal to the newly detected current number of people,
2. The air conditioner according to claim 1, wherein when the current number of newly detected persons is greater than the update limit threshold, the update is performed so that the maximum number of persons is equal to the update limit threshold.
前記制御手段は、初期最大値と該初期最大値よりも多い更新限度閾値とが予め定められ、前記最大人数を予め定められている初期最大値に等しくしておき、
新たに検知された現在人数が前記初期最大値よりも多く、かつ前記更新限度閾値よりも少ない場合、前記最大人数を前記新たに検知された現在人数に等しくする更新をし、
新たに検知された現在人数が、前記更新限度閾値よりも多い場合、前記最大人数を前記初期最大値に等しくする更新をすることを特徴とする請求項1記載の空気調和機。
The control means is preset with an initial maximum value and an update limit threshold greater than the initial maximum value, and makes the maximum number of people equal to a predetermined initial maximum value,
If the newly detected current number is greater than the initial maximum value and less than the update limit threshold, an update is made to make the maximum number of persons equal to the newly detected current number of people,
2. The air conditioner according to claim 1, wherein when the newly detected current number is larger than the update limit threshold value, the maximum number of persons is updated to be equal to the initial maximum value.
前記制御手段は、初期最大値と該初期最大値よりも多い更新限度閾値が予め定められ、前記最大人数を予め定められている初期最大値に等しくしておき、
新たに検知された現在人数が前記初期最大値よりも多く、かつ前記更新限度閾値よりも少ない場合、前記最大人数を前記新たに検知された現在人数に等しくする更新をし、
新たに検知された現在人数が、前記更新限度閾値よりも多い場合、前記最大人数を前記更新限度閾値と前記初期最大値との間の所定の値に等しくする更新をすることを特徴とする請求項1記載の空気調和機。
The control means is preset with an initial maximum value and an update limit threshold greater than the initial maximum value, and makes the maximum number of people equal to a predetermined initial maximum value,
If the newly detected current number is greater than the initial maximum value and less than the update limit threshold, an update is made to make the maximum number of persons equal to the newly detected current number of people,
When the newly detected current number is larger than the update limit threshold, the update is performed so that the maximum number of persons is equal to a predetermined value between the update limit threshold and the initial maximum value. Item 1. An air conditioner according to item 1.
前記室内機は、回転速度を変更自在なファンモーターを有し、前記制御手段は前記在室率に基づいて前記ファンモーターの回転速度を変更することを特徴とする請求項1乃至7の何れかに記載の空気調和機。   The said indoor unit has a fan motor whose rotation speed is freely changeable, and the said control means changes the rotation speed of the said fan motor based on the said occupancy rate. Air conditioner as described in. 前記制御手段は、前記在室率に基づいて前記室内機の設定温度を変更することを特徴とする請求項1乃至8の何れかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 8, wherein the control means changes a set temperature of the indoor unit based on the occupancy rate. 前記制御手段は、前記在室率に基づいて前記室内機の吸込み温度を変更することを特徴とする請求項1乃至9の何れかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 9, wherein the control means changes a suction temperature of the indoor unit based on the occupancy rate. 前記室内機は傾動自在な風向フラップを有し、前記制御手段は前記在室率に基づいて前記風向フラップの傾動角度を変更することを特徴とする請求項1乃至10の何れかに記載の空気調和機。   The air according to any one of claims 1 to 10, wherein the indoor unit has a tiltable wind direction flap, and the control means changes a tilt angle of the wind direction flap based on the occupancy rate. Harmony machine. 前記人体検知手段は、前記室内機の化粧パネルに設置された赤外線センサーであることを特徴とする請求項1乃至11の何れかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 11, wherein the human body detection means is an infrared sensor installed on a decorative panel of the indoor unit. 前記人数検知手段は、前記室内機に替えて前記室内に設置され、前記制御手段に向けて検知結果を出力することができることを特徴とする請求項1乃至11の何れかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 11, wherein the number detection means is installed in the room instead of the indoor unit and can output a detection result to the control means. .
JP2010265328A 2010-11-29 2010-11-29 Air conditioner Expired - Fee Related JP5312434B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010265328A JP5312434B2 (en) 2010-11-29 2010-11-29 Air conditioner
FR1158950A FR2968067B1 (en) 2010-11-29 2011-10-04 AIR CONDITIONING UNIT
CN201110310639.6A CN102478293B (en) 2010-11-29 2011-10-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265328A JP5312434B2 (en) 2010-11-29 2010-11-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012117695A true JP2012117695A (en) 2012-06-21
JP5312434B2 JP5312434B2 (en) 2013-10-09

Family

ID=46052452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265328A Expired - Fee Related JP5312434B2 (en) 2010-11-29 2010-11-29 Air conditioner

Country Status (3)

Country Link
JP (1) JP5312434B2 (en)
CN (1) CN102478293B (en)
FR (1) FR2968067B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137793A (en) * 2014-01-22 2015-07-30 日立アプライアンス株式会社 Indoor unit of air-conditioner
CN107355871A (en) * 2017-08-21 2017-11-17 广东美的制冷设备有限公司 Air conditioner and scattered wind part
WO2018025321A1 (en) * 2016-08-02 2018-02-08 三菱電機株式会社 Indoor unit and air-conditioning system
CN108332370A (en) * 2018-01-11 2018-07-27 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
JP2020153589A (en) * 2019-03-20 2020-09-24 三菱電機株式会社 Air conditioning control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674500B (en) * 2016-02-22 2018-11-30 珠海格力电器股份有限公司 Air conditioner control system and control method and device thereof
CN109827309B (en) * 2019-01-11 2020-02-04 珠海格力电器股份有限公司 Load-based air conditioner control method and device and air conditioner system
CN115727506B (en) * 2022-11-21 2024-07-30 珠海格力电器股份有限公司 Adaptive control method for air conditioner, air conditioner and computer readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143644A (en) * 1984-12-18 1986-07-01 Mitsubishi Electric Corp Air conditioning device
JPH05254331A (en) * 1992-03-13 1993-10-05 Matsushita Electric Ind Co Ltd Air conditioner
JPH05264086A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Air conditioner and controller thereof
JPH06337154A (en) * 1993-05-27 1994-12-06 Hitachi Ltd Infrared rays source detector and dwelling environment control device using the detector
JP2001141281A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Air-conditioning system for shop
JP2001304662A (en) * 2000-04-17 2001-10-31 Matsushita Seiko Co Ltd Air-conditioning controller
JP2010038375A (en) * 2008-07-31 2010-02-18 Mitsubishi Electric Corp Air conditioning controller and air conditioning control method
JP2010117747A (en) * 2008-11-11 2010-05-27 Glory Ltd Automatic transaction management system and automatic transaction management method
JP2010257611A (en) * 2009-04-21 2010-11-11 Taisei Corp Energy load control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207518C (en) * 2003-05-22 2005-06-22 上海交通大学 Fresh air controller based on people number in room
CN201488140U (en) * 2009-08-22 2010-05-26 海尔集团公司 IFP air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143644A (en) * 1984-12-18 1986-07-01 Mitsubishi Electric Corp Air conditioning device
JPH05254331A (en) * 1992-03-13 1993-10-05 Matsushita Electric Ind Co Ltd Air conditioner
JPH05264086A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Air conditioner and controller thereof
JPH06337154A (en) * 1993-05-27 1994-12-06 Hitachi Ltd Infrared rays source detector and dwelling environment control device using the detector
JP2001141281A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Air-conditioning system for shop
JP2001304662A (en) * 2000-04-17 2001-10-31 Matsushita Seiko Co Ltd Air-conditioning controller
JP2010038375A (en) * 2008-07-31 2010-02-18 Mitsubishi Electric Corp Air conditioning controller and air conditioning control method
JP2010117747A (en) * 2008-11-11 2010-05-27 Glory Ltd Automatic transaction management system and automatic transaction management method
JP2010257611A (en) * 2009-04-21 2010-11-11 Taisei Corp Energy load control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137793A (en) * 2014-01-22 2015-07-30 日立アプライアンス株式会社 Indoor unit of air-conditioner
WO2018025321A1 (en) * 2016-08-02 2018-02-08 三菱電機株式会社 Indoor unit and air-conditioning system
CN107355871A (en) * 2017-08-21 2017-11-17 广东美的制冷设备有限公司 Air conditioner and scattered wind part
CN107355871B (en) * 2017-08-21 2024-03-08 广东美的制冷设备有限公司 Air conditioner and air dispersing component
CN108332370A (en) * 2018-01-11 2018-07-27 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
JP2020153589A (en) * 2019-03-20 2020-09-24 三菱電機株式会社 Air conditioning control device
JP7283157B2 (en) 2019-03-20 2023-05-30 三菱電機株式会社 Air conditioning controller

Also Published As

Publication number Publication date
CN102478293B (en) 2015-04-01
FR2968067B1 (en) 2022-03-18
FR2968067A1 (en) 2012-06-01
JP5312434B2 (en) 2013-10-09
CN102478293A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5312434B2 (en) Air conditioner
JP5250011B2 (en) Air conditioner
EP2395291B1 (en) Air conditioner
JP5312055B2 (en) Air conditioning system
JP6253774B2 (en) Air conditioning system
CN203771556U (en) Indoor machine and air conditioning device
JP6234569B2 (en) Air conditioning system
JP2013088087A (en) Air conditioner
JPH0650595A (en) Air conditioner
JP2013181671A (en) Air conditioner
JP6537705B2 (en) Control device, air conditioning system, air conditioning method and program
JP5562458B2 (en) Air conditioning system
JP5930909B2 (en) Air conditioner
EP3208550B1 (en) Air conditioning apparatus
JP2013088072A (en) Air conditioner
JP5460908B2 (en) Air conditioner
JP2020133931A (en) Humidification air conditioning system
JP5797146B2 (en) Air conditioning system
WO2023139736A1 (en) Ventilation assistance device, air conditioner, air-conditioning system, ventilation assistance method, and program
WO2021192262A1 (en) Ventilation/air conditioning system
WO2021192263A1 (en) Ventilation and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees