JP2012117152A - Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable using them - Google Patents

Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable using them Download PDF

Info

Publication number
JP2012117152A
JP2012117152A JP2012010159A JP2012010159A JP2012117152A JP 2012117152 A JP2012117152 A JP 2012117152A JP 2012010159 A JP2012010159 A JP 2012010159A JP 2012010159 A JP2012010159 A JP 2012010159A JP 2012117152 A JP2012117152 A JP 2012117152A
Authority
JP
Japan
Prior art keywords
copper
soft
wire
dilute
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012010159A
Other languages
Japanese (ja)
Other versions
JP5088449B2 (en
Inventor
Toru Washimi
亨 鷲見
Masayoshi Aoyama
正義 青山
Hiromitsu Kuroda
洋光 黒田
Hideyuki Sagawa
英之 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012010159A priority Critical patent/JP5088449B2/en
Publication of JP2012117152A publication Critical patent/JP2012117152A/en
Application granted granted Critical
Publication of JP5088449B2 publication Critical patent/JP5088449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a soft-dilute-copper-alloy material having high electrical conductivity and long bending life even in a soft copper material; a soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet and soft-dilute-copper-alloy stranded wire; and also to provide a cable, coaxial cable and composite cable using them.SOLUTION: The soft-dilute-copper-alloy wire contains Ti of 4-55 ppm by mass and the balance of Cu, and is characterized in that the average crystal grain size is 20 μm or less in the surface layer up to a depth of at least 50 μm from the surface.

Description

本発明は、高い導電性を備え、軟質材においても高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブルに関するものである。   The present invention relates to a soft dilute copper alloy material, a soft dilute copper alloy wire, a soft dilute copper alloy plate, a soft dilute copper alloy stranded wire, and a cable using these, which have high conductivity and have a high bending life even in a soft material. Is.

近年の科学技術においては、動力源としての電力や、電気信号など、あらゆる部分に電気が用いられており、それらを伝達するためにケーブルやリード線などの導線が用いられている。そして、その導線に用いられている素材としては、銅、銀などの導電率の高い金属が用いられ、とりわけ、コスト面などを考慮し、銅線が極めて多く用いられている。   In recent science and technology, electricity is used in all parts such as electric power as a power source and electric signals, and wires such as cables and lead wires are used to transmit them. And as a material used for the conducting wire, a metal having high conductivity such as copper and silver is used, and in particular, a copper wire is very often used in consideration of cost.

銅と一括りにする中にも、その分子の配列などに応じて、大きく分けて、硬質銅と軟質銅とに分けられる。そして利用目的に応じて所望の性質を有する種類の銅が用いられている。   The copper and lump can be broadly divided into hard copper and soft copper according to the molecular arrangement. And the kind of copper which has a desired property according to the utilization purpose is used.

電子部品用リード線には、硬質銅線が多く用いられ、例えば、医療機器、産業用ロボット、ノート型パソコンなどの電子機器などに用いられるケーブルは、過酷な曲げ、ねじれ、引張りなどが組み合わさった外力が繰り返し負荷される環境下で使用されているため、硬直な硬質銅線は不的確であり、軟質銅線が用いられている。   Hard lead wires are often used as lead wires for electronic parts. For example, cables used in electronic devices such as medical devices, industrial robots, and notebook computers are combined with severe bending, twisting, and tension. Since it is used in an environment where external force is repeatedly applied, rigid hard copper wire is inaccurate and soft copper wire is used.

このような用途に使用される導線には、導電性が良好(高導電率)で、かつ、屈曲特性が良好であるという相反する特性が求められるが、今日までに、高導電性および耐屈曲性を維持する銅材料の開発が進められている(特許文献1、特許文献2参照)。   Conductive wires used in such applications are required to have the opposite properties of good conductivity (high conductivity) and good bending properties. Development of a copper material that maintains its properties is underway (see Patent Document 1 and Patent Document 2).

例えば、特許文献1に係る発明は、引張強さ、伸び及び導電率が良好な耐屈曲ケーブル用導体に関する発明であり、特に純度99.99wt%以上の無酸素銅に、純度99.99wt%以上のインジウムを0.05〜0.70mass%、純度99.9wt%以上のPを0.0001〜0.003mass%の濃度範囲で含有させてなる銅合金を線材に形成した耐屈曲ケーブル用導体について記載されている。   For example, the invention according to Patent Document 1 is an invention related to a conductor for a bending-resistant cable having good tensile strength, elongation, and electrical conductivity. Particularly, oxygen-free copper having a purity of 99.99 wt% or more is more than 99.99 wt% in purity. Bending Resistant Cable Conductor Formed with a Copper Alloy Containing 0.05 to 0.70 Mass% P and Purity 99.9 wt% or More in a Concentration Range of 0.0001 to 0.003 Mass% Have been described.

また、特許文献2に係る発明には、インジウムが0.1〜1.0wt%、棚素が0.01〜0.1wt%、残部が銅である耐屈曲性銅合金線について記載されている。   In addition, the invention according to Patent Document 2 describes a bending-resistant copper alloy wire in which indium is 0.1 to 1.0 wt%, shelf is 0.01 to 0.1 wt%, and the balance is copper. .

特開2002−363668号公報JP 2002-363668 A 特開平9−256084号公報Japanese Patent Laid-Open No. 9-256084

しかしながら、特許文献1に係る発明は、あくまでも硬質銅線に関する発明であり、耐屈曲性に関する具体的な評価はされておらず、より耐屈曲性にすぐれる軟質銅線についての検討は何等なされていない。また、添加元素の量が多いため、導電性が低下してしまう。軟質銅線に関しては、まだまだ十分に検討がなされたとはいえない。また、特許文献2に係る発明は、軟質銅線に関する発明であるが、特許文献1に係る発明と同様に、添加元素の添加量が多いため、導電性が低下してしまう。   However, the invention according to Patent Document 1 is an invention related to a hard copper wire to the last, a specific evaluation regarding bending resistance has not been made, and a study on a soft copper wire with higher bending resistance has not been made. Absent. Moreover, since there is much quantity of an additional element, electroconductivity will fall. The soft copper wire has not been fully studied. Moreover, although the invention which concerns on patent document 2 is invention regarding a soft copper wire, since the addition amount of an additional element is large similarly to the invention which concerns on patent document 1, electroconductivity will fall.

一方で、原料となる銅材料として無酸素銅(OFC)などの高導電性銅材を選択することで高い導電性を確保することが考えられる。   On the other hand, it is conceivable to secure high conductivity by selecting a highly conductive copper material such as oxygen-free copper (OFC) as a copper material as a raw material.

しかしながら、この無酸素銅(OFC)を原料とし、導電性を維持すべく他の元素を添加せずに使用した場合には、銅荒引線の加工度をあげて伸線することにより無酸素銅線内部の結晶組織を細かくすることによって耐屈曲性を向上させるとする考え方も有効かもしれないが、この場合には、伸線加工による加工硬化により硬質線材としての用途には適しているが、軟質線材への適用ができないという問題がある。   However, when this oxygen-free copper (OFC) is used as a raw material and it is used without adding other elements in order to maintain conductivity, oxygen-free copper can be obtained by increasing the degree of processing of the copper rough drawing wire. The idea of improving the bending resistance by making the crystal structure inside the wire fine may be effective, but in this case, it is suitable for use as a hard wire by work hardening by wire drawing, There is a problem that it cannot be applied to soft wires.

したがって、本発明の目的は、高い導電性を備え、かつ軟質銅材においても高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブルを提供することにある。   Accordingly, an object of the present invention is to provide a soft dilute copper alloy material, a soft dilute copper alloy wire, a soft dilute copper alloy plate, a soft dilute copper alloy twisted wire having high conductivity and having a high bending life even in a soft copper material, and It is in providing the cable using these.

上記目的を達成するために請求項1の発明は、4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金線において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金線を提供するものである。 In order to achieve the above object, the invention of claim 1 is a soft dilute copper alloy wire containing 4 mass ppm to 55 mass ppm of Ti and the balance being copper, and the average grain size in the surface layer at least from the surface to a depth of 50 μm is 20 μm or less. A soft dilute copper alloy wire is provided.

請求項2の発明は、請求項1に記載の軟質希薄銅合金線であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金線である。   A second aspect of the present invention is the soft diluted copper alloy wire according to the first aspect, wherein the conductivity is 98% IACS or more.

請求項3の発明は、前記軟質希薄銅合金線の表面にめっき層を形成したことを特徴とする請求項1又は請求項2に記載の軟質希薄銅合金線である。   The invention according to claim 3 is the soft diluted copper alloy wire according to claim 1 or 2, wherein a plating layer is formed on a surface of the soft diluted copper alloy wire.

請求項4の発明は、請求項1乃至請求項3のいずれか1項に記載の軟質希薄銅合金線を複数本撚り合わせたことを特徴とする軟質希薄銅合金撚線である。   A fourth aspect of the present invention is a soft dilute copper alloy stranded wire obtained by twisting a plurality of soft dilute copper alloy wires according to any one of the first to third aspects.

請求項5の発明は、請求項1乃至請求項4のいずれか1項に記載の軟質希薄銅合金線又は軟質希薄銅合金撚線の周りに、絶縁層を設けたことを特徴とするケーブルである。   According to a fifth aspect of the present invention, there is provided a cable characterized in that an insulating layer is provided around the soft diluted copper alloy wire or the soft diluted copper alloy stranded wire according to any one of the first to fourth aspects. is there.

請求項6の発明は、4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金板において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金板である。   The invention of claim 6 is characterized in that, in a soft dilute copper alloy plate containing 4 massppm to 55 massppm of Ti and the balance being copper, the average grain size in the surface layer at least from the surface to a depth of 50 μm is 20 μm or less. It is a soft dilute copper alloy plate.

請求項7の発明は、請求項6記載の軟質希薄銅合金板であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金板である。   A seventh aspect of the present invention is the soft diluted copper alloy plate according to the sixth aspect, wherein the conductivity is 98% IACS or more.

請求項8の発明は、4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金材料において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金材料である。   The invention of claim 8 is characterized in that in the soft dilute copper alloy material containing 4 mass ppm to 55 mass ppm of Ti and the balance being copper, the average grain size in the surface layer at least from the surface to a depth of 50 μm is 20 μm or less. Soft dilute copper alloy material.

請求項9の発明は、請求項8記載の軟質希薄銅合金材料であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金材料である。   A ninth aspect of the present invention is the soft diluted copper alloy material according to the eighth aspect, wherein the conductivity is 98% IACS or more.

本発明によれば、高い導電性を備え、かつ軟質銅材においても高い屈曲寿命を有する軟質希薄銅合金材料、軟質希薄銅合金線、軟質希薄銅合金板、軟質希薄銅合金撚線およびこれらを用いたケーブルを提供できるという優れた効果を発揮するものである。   According to the present invention, a soft dilute copper alloy material, a soft dilute copper alloy wire, a soft dilute copper alloy plate, a soft dilute copper alloy twisted wire, and a soft dilute copper alloy wire having high conductivity and having a high bending life even in a soft copper material, and It exhibits an excellent effect that the used cable can be provided.

TiS粒子のSEM象を示す図である。It is a figure which shows the SEM elephant of TiS particle | grains. 図1の分析結果を示す図である。It is a figure which shows the analysis result of FIG. TiO2粒子のSEM像を示す図である。Is a view showing an SEM image of the TiO 2 particles. 図3の分析結果を示す図である。It is a figure which shows the analysis result of FIG. 本発明において、Ti―O―S粒子のSEM像を示す図である。In this invention, it is a figure which shows the SEM image of Ti-O-S particle | grains. 図5の分析結果を示す図である。It is a figure which shows the analysis result of FIG. 屈曲疲労試験の概略を示す図である。It is a figure which shows the outline of a bending fatigue test. 400℃で1時間の焼鈍処理を施した後の、無酸素銅線を用いた比較材13と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材7における屈曲寿命を測定したグラフである。The bending life was measured in the comparative material 13 using an oxygen-free copper wire and the implementation material 7 using a soft dilute copper alloy wire obtained by adding Ti to low oxygen copper after annealing at 400 ° C. for 1 hour. It is a graph. 600℃で1時間の焼鈍処理を施した後の、無酸素銅線を用いた比較材14と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材8における屈曲寿命を測定したグラフである。The bending life was measured in the comparative material 14 using an oxygen-free copper wire after annealing at 600 ° C. for 1 hour and the working material 8 using a soft dilute copper alloy wire obtained by adding Ti to low oxygen copper. It is a graph. 実施材8の幅方向の断面組織の写真を表したものである。2 shows a photograph of a cross-sectional structure in the width direction of the working material 8. 比較材14の試料の幅方向の断面組織の写真を表したものである。It shows a photograph of the cross-sectional structure in the width direction of the sample of the comparative material 14. 試料の表層における平均結晶粒サイズの測定方法について説明するための図面である。It is drawing for demonstrating the measuring method of the average grain size in the surface layer of a sample. 実施材9の幅方向の断面組織の写真を表したものである。2 shows a photograph of a cross-sectional structure in the width direction of the working material 9. 比較材15の試料の幅方向の断面組織の写真を表したものである。It shows a photograph of the cross-sectional structure in the width direction of the sample of the comparative material 15. 実施材9と比較材15の焼鈍温度と伸び(%)の関係を示す図である。It is a figure which shows the relationship between the annealing temperature of the implementation material 9 and the comparison material 15, and elongation (%). 焼鈍温度500℃における実施材9の断面写真である。It is a cross-sectional photograph of the implementation material 9 at an annealing temperature of 500 ° C. 焼鈍温度700℃における実施材9の断面写真である。It is a cross-sectional photograph of the implementation material 9 at an annealing temperature of 700 ° C. 比較材15の断面写真である。2 is a cross-sectional photograph of a comparative material 15.

以下、本発明の好適な一実施の形態を詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail.

先ず、本発明の目的は、導電率98%IACS(万国標準軟銅(InternationalAnneldCopperStandard)抵抗率1.7241×10-8Ωmを100%とした導電率)、100%IACS、更には102%IACSを満足する軟質型銅材としての軟質希薄銅合金材料を得ることにある。 First of all, the object of the present invention is to satisfy 98% IACS (conductivity with an international standard copper resistance of 1.7241 × 10 −8 Ωm as 100%), 100% IACS, and further 102% IACS. It is to obtain a soft dilute copper alloy material as a soft type copper material.

酸素濃度1〜2mass ppmの高純度銅(4N)を用い、実験室にて小型連続鋳造機(小型連鋳機)を用いて、溶湯にチタンを数mass ppm添加した溶湯から製造したφ8mmのワイヤロッドをφ2.6mm(加工度90%)にして軟化温度を測ると160〜168℃であり、これ以上低い軟化温度にはならない。また、導電率は、101.7%IACS程度である。よって、酸素濃度を低くして、Tiを添加しても、軟化温度を下げることができず、また高純度銅(6N)の導電率102.8%IACSよりも悪くなることがわかった。   A high-purity copper (4N) having an oxygen concentration of 1 to 2 mass ppm, and using a small continuous casting machine (small continuous casting machine) in a laboratory, a φ8 mm wire manufactured from a molten metal in which several mass ppm of titanium is added to the molten metal. When the softening temperature is measured with the rod φ2.6 mm (working degree 90%), it is 160 to 168 ° C., and the softening temperature is not lower than this. The conductivity is about 101.7% IACS. Therefore, it was found that even when Ti was added at a low oxygen concentration, the softening temperature could not be lowered, and the electrical conductivity of high purity copper (6N) was worse than 102.8% IACS.

この原因は、溶湯の製造中に不可避的不純物として、硫黄を数mass ppm以上含み、この硫黄とチタンとでTiS等の硫化物が十分形成されないために、軟化温度が下がらないものと推測される。   The reason for this is that sulfur is contained in several mass ppm or more as an unavoidable impurity during the production of molten metal, and sulphide such as TiS is not sufficiently formed between this sulfur and titanium, so that the softening temperature is not lowered. .

特に、半軟化温度を下げるためには、以下の方策を検討し、2つの効果を合わせることが好ましい。   In particular, in order to lower the semi-softening temperature, it is preferable to consider the following measures and combine the two effects.

(a)素材の酸素濃度を2mass ppmを超える量に増やしてチタンを添加する。これにより、先ず溶銅中ではTiSとチタン酸化物(TiO2)やTi−O−S粒子が形成されると考えられる(図1、図3のSEM像と図2、図4の分析結果参照)。なお、図2、図4、図6において、PtおよびPdは観察のための蒸着元素である。 (A) Increase the oxygen concentration of the material to an amount exceeding 2 mass ppm and add titanium. Thereby, it is considered that TiS, titanium oxide (TiO 2 ) and Ti—O—S particles are first formed in the molten copper (see the SEM images in FIGS. 1 and 3 and the analysis results in FIGS. 2 and 4). ). In FIGS. 2, 4, and 6, Pt and Pd are vapor deposition elements for observation.

(b)次に熟間圧延温度を、通常の銅の製造条件(950〜600℃)よりも低く設定(880〜550℃)することで、銅中に転位を導入し、Sが析出し易いようにする。これによって転位上へのSの析出又はチタンの酸化物(TiO2)を核としてSを析出させ、その一例として溶銅と同様Ti−O−S粒子等を形成させる(図5のSEM像と、図6の分析結果参照)。図1〜図6は、表1の実施例1の上から三段目に示す酸素濃度、硫黄濃度、Ti濃度をもつφ8mmの銅線(ワイヤロッド)の横断面をSEM観察及びEDX分析にて評価したものである。観察条件は、加速電圧15KeV、エミッション電流10μAとした。 (B) Next, by setting the aging rolling temperature lower (880 to 550 ° C.) than the normal copper production conditions (950 to 600 ° C.), dislocations are introduced into the copper and S is likely to precipitate. Like that. As a result, precipitation of S on the dislocations or precipitation of S using titanium oxide (TiO 2 ) as a nucleus forms Ti—O—S particles and the like as an example of molten copper (SEM image of FIG. 5 and FIG. 6 shows the analysis result). 1 to 6 are SEM observation and EDX analysis of a cross section of a φ8 mm copper wire (wire rod) having oxygen concentration, sulfur concentration, and Ti concentration shown in the third row from the top in Example 1 of Table 1. It has been evaluated. The observation conditions were an acceleration voltage of 15 KeV and an emission current of 10 μA.

(a)と(b)により、銅中の硫黄が晶出と析出を行い、冷間伸線加工後に軟化温度と導電率を満足する銅ワイヤロッドができる。   According to (a) and (b), sulfur in copper crystallizes and precipitates, and a copper wire rod that satisfies the softening temperature and conductivity after cold wire drawing can be obtained.

次に、本発明では、SCR連続鋳造圧延設備で製造条件の制限として(1)〜(3)を制限した。   Next, in this invention, (1)-(3) was restrict | limited as a restriction | limiting of manufacturing conditions with SCR continuous casting rolling equipment.

(1)組成について
添加元素として、Tiを選んだ理由は、これらの元素は他の元素と結合しやすい活性元素であり、Sと結合しやすいためSをトラップすることができ、銅母材(マトリクス)を高純度化することができるためである。添加元素は1種類以上含まれていてもよい。また、合金の性質に悪影響を及ぼすことのないその他の元素および不純物を合金に含有させることもできる。
(1) About composition The reason why Ti was selected as the additive element is that these elements are active elements that are easily bonded to other elements, and can easily trap S because they are easily bonded to S. This is because the matrix) can be highly purified. One or more additive elements may be included. Also, other elements and impurities that do not adversely affect the properties of the alloy can be included in the alloy.

また、以下に説明する好適な実施の形態においては、酸素含有量が2を超え30mass ppm以下が良好であることを説明しているが、添加元素の添加量およびSの含有量によっては、合金の性質を備える範囲において、2を超え400mass ppmを含むことができる。   Further, in the preferred embodiment described below, it is described that the oxygen content is more than 2 and not more than 30 mass ppm, but depending on the addition amount of the additive element and the S content, In the range having the property of, it is possible to include more than 2 and 400 mass ppm.

導電率が98%IACS以上の軟質銅材を得る場合、不可避的不純物を含む純銅(べ一ス素材)が、3〜12mass ppmの硫黄と、2mass ppmを超える量の酸素と、Tiを4〜55mass ppm含む軟質希薄銅合金材料でワイヤロッド(荒引き線)を製造することが好ましい。2mass ppmを超え30mass ppm以下の酸素を含有していることから、この実施の形態では、いわゆる低酸素銅(LOC)を対象としている。   When obtaining a soft copper material having an electrical conductivity of 98% IACS or higher, pure copper (base material) containing inevitable impurities is 3 to 12 mass ppm of sulfur, oxygen in an amount exceeding 2 mass ppm, and Ti to 4 to 4%. It is preferable to manufacture a wire rod (rough drawing wire) with a soft dilute copper alloy material containing 55 mass ppm. In this embodiment, so-called low oxygen copper (LOC) is targeted because it contains oxygen exceeding 2 mass ppm and not more than 30 mass ppm.

ここで、導電率が100%IACS以上の軟質銅材を得る場合には、不可避的不純物を含む純銅に2〜12mass ppmの硫黄と、2mass ppmを超える量の酸素とTiを4〜37mass ppm含む軟質希薄銅合金材料でワイヤロッドとすることが好ましい。   Here, when obtaining a soft copper material having an electrical conductivity of 100% IACS or more, pure copper containing inevitable impurities contains 2 to 12 mass ppm of sulfur, oxygen in an amount exceeding 2 mass ppm, and Ti to 4 to 37 mass ppm. The wire rod is preferably made of a soft dilute copper alloy material.

さらに、導電率が102%IACS以上の軟質銅材を得る場合、不可避的不純物を含む純銅に3〜12mass ppmの硫黄と、2mass ppmを超える量の酸素と、Tiを4〜25mass ppm含む軟質希薄銅合金材料でワイヤロッドとすることが好ましい。   Furthermore, when obtaining a soft copper material having an electrical conductivity of 102% IACS or more, a soft dilute material containing 3-12 mass ppm of sulfur, oxygen exceeding 2 mass ppm, and 4-25 mass ppm of Ti in pure copper containing inevitable impurities. The wire rod is preferably made of a copper alloy material.

通常、純銅の工業的製造において、電気銅を製造する際に、硫黄が銅中に取り込まれてしまうため、硫黄を3mass ppm以下とするのは難しい。半軟化温度を低減するために、汎用電気銅の硫黄濃度上限は12mass ppmとするのが好ましい。   Usually, in the industrial production of pure copper, sulfur is taken into copper when producing electrolytic copper, so it is difficult to make sulfur 3 mass ppm or less. In order to reduce the semi-softening temperature, it is preferable that the upper limit of the sulfur concentration of general-purpose electrolytic copper is 12 mass ppm.

制御する酸素は、上述したように、少ないと軟化温度が下がり難いので2mass ppmを超える量とする。また酸素が多すぎると、熱間圧延工程で、表面傷が出やすくなるので30mass ppm以下とするのが好ましい。   As described above, if the amount of oxygen to be controlled is small, the softening temperature is difficult to decrease, so the amount exceeds 2 mass ppm. Moreover, when there is too much oxygen, it becomes easy to produce a surface flaw in a hot rolling process, so it is preferable to make it 30 mass ppm or less.

(2)分散している物質について
分散粒子のサイズは小さく沢山分布することが望ましい。その理由は、硫黄の析出サイトとして働くためサイズが小さく数が多いことが要求される。
(2) About dispersed substances It is desirable that the size of dispersed particles be small and distributed. The reason is that the size is small and the number is large because it functions as a sulfur deposition site.

硫黄及びチタンは、TiO、TiO2、TiS、Ti−O−Sの形で化合物または、凝集物を形成し、残りのTiとSが固溶体の形で存在している。TiOのサイズが200nm以下、TiO2は1000nm以下、TiSは200nm以下、Ti−O−Sは300nm以下で結晶粒内に分布している軟質希薄銅合金材料とする。「結晶粒」とは、銅の結晶組織のことを意味する。 Sulfur and titanium form compounds or aggregates in the form of TiO, TiO 2 , TiS, and Ti—O—S, and the remaining Ti and S are present in the form of a solid solution. A soft dilute copper alloy material having a TiO size of 200 nm or less, TiO 2 of 1000 nm or less, TiS of 200 nm or less, and Ti—O—S of 300 nm or less is distributed in the crystal grains. “Crystal grains” means the crystal structure of copper.

但し、鋳造時の溶銅の保持時間や冷却状況により、形成される粒子サイズが変わるので鋳造条件の設定も必要である。   However, since the size of the formed particles changes depending on the holding time of the molten copper during casting and the cooling condition, it is necessary to set casting conditions.

(3)鋳造条件について
SCR連読鋳造圧延により、鋳塊ロッドの加工度が90%(30mm)〜99.8%(5mm)でワイヤロッドを造る、一例として、加工度99.3%でφ8mmワイヤロッドを造る方法を用いる。
(3) About casting conditions By SCR continuous reading casting rolling, a wire rod is manufactured with an ingot rod working degree of 90% (30 mm) to 99.8% (5 mm). As an example, φ8 mm with a working degree of 99.3% A method of making a wire rod is used.

(a)溶解炉内での溶銅温度は、1100℃以上1320℃以下とする。溶銅の温度が高いとブローホールが多くなり、傷が発生するとともに粒子サイズが大きくなる傾向にあるので1320℃以下とする。1100℃以上としたのは、銅が固まりやすく製造が安定しないためであるが、鋳造温度は、出来るだけ低い温度が望ましい。   (A) Molten copper temperature in a melting furnace shall be 1100 degreeC or more and 1320 degrees C or less. When the temperature of the molten copper is high, blowholes increase, scratches are generated, and the particle size tends to increase. The reason why the temperature is set to 1100 ° C. or higher is that copper is likely to solidify and the production is not stable, but the casting temperature is preferably as low as possible.

(b)熱間圧延温度は、最初の圧延ロールでの温度が880℃以下、最終圧延ロールでの温度が550℃以上とする。   (B) As for the hot rolling temperature, the temperature at the first rolling roll is 880 ° C. or lower, and the temperature at the final rolling roll is 550 ° C. or higher.

通常の純銅製造条件と異なり、溶銅中での硫黄の晶出と熱間圧延中の硫黄の析出が本発明の課題であるので、その駆動力である固溶限をより小さくするためには、溶銅温度と熱間圧延温度を(a)、(b)とするのがよい。   Unlike normal pure copper production conditions, crystallization of sulfur in molten copper and precipitation of sulfur during hot rolling are the subject of the present invention, so in order to reduce the solid solubility limit that is the driving force. The molten copper temperature and the hot rolling temperature are preferably (a) and (b).

通常の熱間圧延温度は、最初の圧延ロールでの温度が950℃以下、最終圧延ロールでの温度が600℃以上であるが、固溶限をより小さくするためには、本発明では、最初の圧延ロールでの温度が880℃以下、最終圧延ロールでの温度が550℃以上に設定する   The normal hot rolling temperature is such that the temperature at the first rolling roll is 950 ° C. or lower and the temperature at the final rolling roll is 600 ° C. or higher. In order to reduce the solid solution limit, Set the temperature at 980 ° C. or lower and the temperature at the final roll to 550 ° C. or higher.

(c)直径φ8mmサイズのワイヤロッドの導電率が98%IACS以上、100%IACS、更に102%IACS以上の軟質希薄銅合金線または板状材料を得ることができる。   (C) A soft dilute copper alloy wire or a plate-like material having a conductivity of 98% IACS or more, 100% IACS, or 102% IACS or more can be obtained.

工業的に使うためには、電気銅から製造した工業的に利用される純度の軟質銅線にて98%IACS以上必要である。   In order to use it industrially, it is necessary to use 98% IACS or more with a soft copper wire of industrially used purity manufactured from electrolytic copper.

導電率は、無酸素銅のレベルで101.7%IACS程度であり、高純度銅(6N)で102.8%IACSであるため、出来るだけ高純度銅(6N)に近い導電率であることが望ましい。   The conductivity is about 101.7% IACS at the level of oxygen-free copper, and 102.8% IACS for high-purity copper (6N), so that the conductivity is as close as possible to high-purity copper (6N). Is desirable.

ベース材の銅はシャフト炉で溶解の後、還元状態の樋になるように制御した、すなわち還元ガス(CO)雰囲気下で、希薄合金の構成元素の硫黄濃度、Ti濃度、酸素濃度を制御して鋳造し、圧延するワイヤロッドを安定して製造する方法がよい。銅酸化物の混入や粒子サイズが大きいので品質を低下させる。   After the base material copper was melted in the shaft furnace, it was controlled so as to be in a reduced state, that is, in a reducing gas (CO) atmosphere, the sulfur concentration, Ti concentration, and oxygen concentration of the constituent elements of the diluted alloy were controlled. A method of stably manufacturing a wire rod that is cast and rolled. Since the copper oxide is mixed and the particle size is large, the quality is lowered.

ここで、添加元素としてTiを選択した理由は次の通りである。   Here, the reason for selecting Ti as the additive element is as follows.

(a)Tiは溶融銅の中で硫黄と結合し化合物を造りやすいためである。   (A) Ti is easily bonded to sulfur in molten copper to form a compound.

(b)Zrなど他の添加元素に比べて加工でき扱いやすい。   (B) It can be processed and handled more easily than other additive elements such as Zr.

(c)Nbなどに比べて安価である。   (C) It is less expensive than Nb or the like.

(d)酸化物を核として析出しやすいからである。   (D) It is because it is easy to precipitate using an oxide as a nucleus.

以上により、本発明の軟質希薄銅合金材料は、溶融半田めっき材(線、板、箔)、エナメル線、軟質純銅、高導電率銅、焼鈍時のエネルギーを低減でき、やわらかい銅線として使用でき、生産性が高く、導電率、軟化温度、表面品質に優れた実用的な軟質希薄銅合金材料を得ることが可能となる。
また、本発明の軟質希薄銅合金線の表面にめっき層を形成してもよい。めっき層としては、例えば、錫、ニッケル、銀を主成分とするものを適用可能であり、いわゆるPbフリーめっきを用いてもよい。
また、本発明の軟質希薄銅合金線を複数本撚り合わせた軟質希薄銅合金撚線として使用することも可能である。
また、本発明の軟質希薄銅合金線又は軟質希薄銅合金撚線の周りに、絶縁層を設けたケーブルとして使用することもできる。
また、本発明の軟質希薄銅合金線を複数本撚り合わせて中心導体とし、中心導体の外周に絶縁体被覆を形成し、絶縁体被覆の外周に銅又は銅合金からなる外部導体を配置し、その外周にジャケット層を設けた同軸ケーブルとして使用することもできる。
また、この同軸ケーブルの複数本をシールド層内に配置し、前記シールド層の外周にシースを設けた複合ケーブルとして使用することもできる。
本発明の軟質希薄銅合金線の用途は、例えば、民生用太陽電池向け配線材、モーター用エナメル線用導体、200℃から700℃で使う高温用軟質銅材料、電源ケーブル用導体、信号線用導体、焼きなましが不要な溶融半田めっき材、FPC用の配線用導体、熱伝導に優れた銅材料、高純度銅代替え材料としての使用が挙げられ、これら幅広いニーズに応えるものである。また、形状は特に限定されず、断面丸形状の導体であっても、棒状のもの、平角導体であってもよい。
また、本発明の軟質希薄銅合金板の用途は、放熱板などに使用される銅板、リードフレームに使用される異形条銅材、配線基板に使用される銅箔など幅広い用途に適合しうるものである。
As described above, the soft dilute copper alloy material of the present invention can be used as a soft copper wire because it can reduce the energy during molten solder plating (wire, plate, foil), enameled wire, soft pure copper, high conductivity copper, and annealing. Thus, it is possible to obtain a practical soft dilute copper alloy material having high productivity and excellent conductivity, softening temperature, and surface quality.
Further, a plating layer may be formed on the surface of the soft diluted copper alloy wire of the present invention. As the plating layer, for example, a layer mainly composed of tin, nickel, and silver is applicable, and so-called Pb-free plating may be used.
Moreover, it is also possible to use it as a soft dilute copper alloy twisted wire obtained by twisting a plurality of soft dilute copper alloy wires of the present invention.
Moreover, it can also be used as a cable in which an insulating layer is provided around the soft diluted copper alloy wire or the soft diluted copper alloy twisted wire of the present invention.
Further, a plurality of soft diluted copper alloy wires of the present invention are twisted together to form a central conductor, an insulator coating is formed on the outer periphery of the central conductor, and an outer conductor made of copper or a copper alloy is disposed on the outer periphery of the insulator coating, It can also be used as a coaxial cable provided with a jacket layer on its outer periphery.
Further, a plurality of coaxial cables can be arranged in the shield layer and used as a composite cable in which a sheath is provided on the outer periphery of the shield layer.
Applications of the soft dilute copper alloy wire of the present invention include, for example, wiring materials for consumer solar cells, conductors for enamel wires for motors, soft copper materials for high temperatures used at 200 to 700 ° C., conductors for power cables, and signal wires It can be used as a conductor, a molten solder plating material that does not require annealing, a wiring conductor for FPC, a copper material excellent in heat conduction, and a high-purity copper replacement material. The shape is not particularly limited, and may be a conductor having a round cross section, a rod-shaped conductor, or a flat conductor.
In addition, the use of the soft dilute copper alloy plate of the present invention can be adapted to a wide range of uses such as copper plates used for heat sinks, deformed copper materials used for lead frames, copper foils used for wiring boards, etc. It is.

また、上述の実施の形態では、SCR連続鋳造圧延法によりワイヤロッドを作製し、熱間圧延にて軟質材を作製する例で説明したが、本発明は、双ロール式連続鋳造圧延法またはプロペルチ式連続鋳造圧延法により製造するようにしても良い。   In the above-described embodiment, the wire rod is manufactured by the SCR continuous casting rolling method, and the soft material is manufactured by hot rolling. However, the present invention is not limited to the twin roll continuous casting rolling method or the proper perch. You may make it manufacture by a type | formula continuous casting rolling method.

表1は実験条件と結果に関するものである。   Table 1 relates to experimental conditions and results.

先ず、実験材として、表1に示した酸素濃度、硫黄濃度、Ti濃度で、φ8mmの銅線(ワイヤロッド):加工度99.3%をそれぞれ作製した。φ8mmの銅線は、SCR連続鋳造圧延により、熱間圧延加工を施したものである。Tiは、シャフト炉で溶解された銅溶湯を還元ガス雰囲気で樋に流し、樋に流した銅溶湯を同じ還元ガス雰囲気の鋳造ポットに導き、この鋳造ポットにて、Tiを添加した後、これをノズルを通して鋳造輪と無端ベルトとの間に形成される鋳型にて鋳塊ロッドを作成した。この鋳塊ロッドを熱間圧延加工してφ8mmの銅線を作成したものである。その実験材を冷間伸線して、φ2.6mmのサイズにおける半軟化温度と導電率を測定し、またφ8mmの銅線における分散粒子サイズを評価した。   First, as an experimental material, φ8 mm copper wire (wire rod) with a processing degree of 99.3% was prepared with the oxygen concentration, sulfur concentration, and Ti concentration shown in Table 1, respectively. The φ8 mm copper wire is hot-rolled by SCR continuous casting and rolling. Ti flows the molten copper melted in the shaft furnace into the reed in the reducing gas atmosphere, guides the molten copper flowing in the reed to the casting pot of the same reducing gas atmosphere, and after adding Ti in this casting pot, An ingot rod was made with a mold formed between the cast ring and the endless belt through the nozzle. This ingot rod is hot-rolled to produce a φ8 mm copper wire. The experimental material was cold-drawn, the semi-softening temperature and conductivity at a size of φ2.6 mm were measured, and the dispersed particle size at a copper wire of φ8 mm was evaluated.

酸素濃度は、酸素分析器(レコ(Leco;商標)酸素分析器)で測定した。硫黄、Tiの各濃度はICP発光分光分析器で分析した結果である。   The oxygen concentration was measured with an oxygen analyzer (Leco ™ oxygen analyzer). Each concentration of sulfur and Ti is the result of analysis with an ICP emission spectroscopic analyzer.

φ2.6mmのサイズにおける半軟化温度の測定は、400℃以下で各温度1時間の保持後、水中急冷し、引張試験を実施しその結果から求めた。室温での引張試験の結果と400℃で1時間のオイルバス熱処理した軟質銅線の引張試験の結果を用いて求めた。この2つの引張試験の引張強さを足して2で割った値を示す強度に対応する温度を半軟化温度と定義し求めた。   The measurement of the semi-softening temperature in the size of φ2.6 mm was obtained from the result of quenching in water after holding each temperature at 400 ° C. or less for 1 hour and conducting a tensile test. It calculated | required using the result of the tensile test at room temperature, and the result of the tensile test of the soft copper wire which carried out the oil bath heat treatment for 1 hour at 400 degreeC. The temperature corresponding to the strength showing the value obtained by adding the tensile strengths of these two tensile tests and dividing by 2 was defined as the semi-softening temperature.

表1において、実施材10は、実験室でAr雰囲気において直径φ8mmの銅線を試作した結果であり、銅溶湯にTiを、0〜18mass ppm添加したものである。   In Table 1, the implementation material 10 is the result of trial production of a copper wire having a diameter of 8 mm in an Ar atmosphere in a laboratory, and Ti is added to 0 to 18 mass ppm of molten copper.

工業的に要望がある導電率は98%IACS以上であり満足しており、総合評価は○であった。   The industrially requested electrical conductivity was 98% IACS or higher and satisfied, and the overall evaluation was good.

そこで、次にSCR連続鋳造圧延法にて、酸素濃度を7〜8mass ppmに調整してφ8mm銅線(ワイヤロッド)の試作を行った。   Therefore, a Ø8 mm copper wire (wire rod) was prototyped by adjusting the oxygen concentration to 7 to 8 mass ppm by the SCR continuous casting and rolling method.

実施材11は、SCR連続鋳造圧延法で試作した中でTi濃度の少ないもの(0,2mass ppm)であり、導電率は102%IACS以上であり、総合評価で、○となった。   The execution material 11 was a material having a small Ti concentration (0.2 mass ppm) among the prototypes manufactured by the SCR continuous casting and rolling method, the electrical conductivity was 102% IACS or more, and the overall evaluation was good.

実施材1については、酸素濃度と硫黄が、ほぼ一定(7〜8mass ppm、5mass ppm)、Ti濃度の異なる(4〜55massppm)試作材の結果である。   About execution material 1, oxygen concentration and sulfur are the results of trial materials with almost constant (7-8 mass ppm, 5 mass ppm) and different Ti concentrations (4-55 massppm).

このTi濃度4〜55mass ppmの範囲では、導電率は98%IACS以上、102%IACS以上であり良好である。そしてワイヤロッドの表面もきれいであり、いずれも製品性能として満足している(総合評価○)。   In this Ti concentration range of 4 to 55 mass ppm, the electrical conductivity is 98% IACS or higher and 102% IACS or higher, which is favorable. And the surface of the wire rod is also clean, and all are satisfied as product performance (overall evaluation ○).

ここで、導電率100%IACS以上を満たすものは、Ti濃度が4〜37mass ppmのときであり、102%IACS以上を満たすものは、Ti濃度が4〜25mass ppmのときである。Ti濃度が13mass ppmのとき導電率が最大値である102.4%IACSを示し、この濃度の周辺では、導電率は、僅かに低い値であった。これは、Tiが13mass ppmのときに、銅中の硫黄分を化合物として捕捉することで、高純度銅(6N)に近い導電率を示したためである。   Here, the case where the electrical conductivity satisfies 100% IACS or higher is when the Ti concentration is 4 to 37 mass ppm, and the case where the electrical conductivity satisfies 102% IACS or higher is when the Ti concentration is 4 to 25 mass ppm. When the Ti concentration was 13 mass ppm, the maximum conductivity was 102.4% IACS, and the conductivity was slightly lower in the vicinity of this concentration. This is because when Ti is 13 mass ppm, the sulfur content in copper is captured as a compound, thereby showing conductivity close to that of high-purity copper (6N).

よって、酸素濃度を高くし、Tiを添加することで、半軟化温度と導電率の双方を満足させることができる。   Therefore, both the semi-softening temperature and the conductivity can be satisfied by increasing the oxygen concentration and adding Ti.

比較材3は、Ti濃度を60mass ppmと高くした試作材である。この比較材3は、導電率は要望を満足していない。   Comparative material 3 is a prototype material having a Ti concentration as high as 60 mass ppm. This comparative material 3 does not satisfy the demand for electrical conductivity.

次に実施材2については、硫黄濃度を5mass ppmとし、Ti濃度を13〜10mass ppmとし、酸素濃度を変えて、酸素濃度の影響を検討した試作材である。   Next, Example Material 2 is a prototype material in which the sulfur concentration is set to 5 mass ppm, the Ti concentration is set to 13 to 10 mass ppm, and the oxygen concentration is changed to examine the influence of the oxygen concentration.

酸素濃度に関しては、2mass ppmを超えて30mass ppm以下まで、大きく濃度が異なる試作材とした。但し、酸素が2mass ppm未満は、生産が難しく安定した製造できないため、総合評価は△とした。また酸素濃度を30mass ppmと高くしても半軟化温度と導電率の双方を満足することがわかった。   With respect to the oxygen concentration, prototype materials having greatly different concentrations from 2 mass ppm to 30 mass ppm or less were used. However, when oxygen is less than 2 mass ppm, production is difficult and stable production cannot be performed, so the overall evaluation is Δ. It was also found that even when the oxygen concentration was increased to 30 mass ppm, both the semi-softening temperature and the conductivity were satisfied.

また実施材12に示すように、酸素が40mass ppmの場合にも、導電率を満足していることがわかった。   Moreover, as shown in the implementation material 12, it was found that the conductivity was satisfied even when the oxygen was 40 mass ppm.

よって、酸素濃度が2mass ppmを超える量とすることで、導電率102%IACS以上の特性も満足させることができる。   Therefore, by setting the oxygen concentration to an amount exceeding 2 mass ppm, it is possible to satisfy the characteristics of conductivity 102% IACS or more.

次に実施材3は、それぞれ酸素濃度とTi濃度とを比較的同じ近い濃度とし、Ti濃度を4〜20mass ppmと変えた試作材の例である。この実施材3においては、硫黄が2mass ppmより少ない試作材は、その原料面から実現できなかったが、Tiと硫黄の濃度を制御することで、導電率を満足させることができる。   Next, the implementation material 3 is an example of a prototype material in which the oxygen concentration and the Ti concentration are relatively close to each other, and the Ti concentration is changed to 4 to 20 mass ppm. In this implementation material 3, the prototype material with less sulfur than 2 mass ppm could not be realized from the raw material side, but the conductivity can be satisfied by controlling the concentrations of Ti and sulfur.

比較材5の硫黄濃度が18mass ppmで、Ti濃度が13mass ppmの場合には、必要特性を満足していた。   When the sulfur concentration of the comparative material 5 was 18 mass ppm and the Ti concentration was 13 mass ppm, the required characteristics were satisfied.

以上より、硫黄濃度が2〜12mass ppmの場合には、導電率102%IACS以上の特性も満足することがわかった。   From the above, it was found that when the sulfur concentration was 2 to 12 mass ppm, the characteristics of conductivity 102% IACS or higher were also satisfied.

また比較材6として高純度銅(6N)を用いた検討結果を示したが、導電率も102.8%IACSであった。   Moreover, although the examination result using high purity copper (6N) as the comparative material 6 was shown, electrical conductivity was 102.8% IACS.

表2は、製造条件としての、溶融銅の温度と圧延温度を示したものである。   Table 2 shows the molten copper temperature and rolling temperature as the production conditions.

実施材4は、溶銅温度が1200〜1320℃で且つ圧延温度が低めの880〜550℃でφ8mmのワイヤロッドを試作した結果を示したものである。この実施材4については、導電率も良好で、総合評価は○であった。   The execution material 4 shows the result of trial manufacture of a φ8 mm wire rod at a molten copper temperature of 1200 to 1320 ° C. and a lower rolling temperature of 880 to 550 ° C. About this implementation material 4, electrical conductivity was also favorable and comprehensive evaluation was (circle).

[軟質希薄銅合金線の軟質特性]
表3は、無酸素銅線を用いた比較材11と低酸素銅に13mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材5とを試料とし、異なる焼鈍温度で1時間の焼鈍を施したもののビッカース硬さ(Hv)を検証した表である。
実施材5は、表1の実施材1に記載した合金組成と同じものを使用した。なお、試料としては、2.6mm径の試料を用いた。この表によると、焼鈍温度が400℃のときに比較材11と実施材5とのビッカース硬さ(Hv)は同等レベルとなり、焼鈍温度が600℃でも同等のビッカース硬さ(Hv)を示している。このことから、本発明の軟質希薄銅合金線は十分な軟質特性を有するとともに、無酸素銅線と比較しても、特に焼鈍温度が400℃を超える領域においては優れた軟質特性を備えていることがわかる。
[Soft characteristics of soft dilute copper alloy wire]
Table 3 shows a sample of the comparative material 11 using an oxygen-free copper wire and the embodiment material 5 using a soft dilute copper alloy wire containing 13 mass ppm Ti in low-oxygen copper, and annealing at different annealing temperatures for 1 hour. It is the table | surface which verified Vickers hardness (Hv) of what gave.
The implementation material 5 was the same as the alloy composition described in the implementation material 1 of Table 1. As a sample, a 2.6 mm diameter sample was used. According to this table, when the annealing temperature is 400 ° C., the Vickers hardness (Hv) of the comparative material 11 and the execution material 5 is equivalent, and even when the annealing temperature is 600 ° C., the equivalent Vickers hardness (Hv) is shown. Yes. From this, the soft dilute copper alloy wire of the present invention has sufficient soft properties and has excellent soft properties even in the region where the annealing temperature exceeds 400 ° C., even when compared with the oxygen-free copper wire. I understand that.

[軟質希薄銅合金線の耐力及び屈曲寿命についての検討]
表4は、無酸素銅線を用いた比較材12と低酸素銅に13mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材6を試料とし、異なる焼鈍温度で1時間の焼鈍を施したものの0.2%耐力値の推移を検証した表である。なお、試料としては、2.6mm径の試料を用いた。
この表によると、焼鈍温度が400℃のときに比較材12と実施材6の0.2%耐力値が同等レベルであり、焼鈍温度600℃では実施材6も比較材12もほぼ同等の0.2%耐力値となっていることがわかる。
[Study on yield strength and bending life of soft diluted copper alloy wire]
Table 4 shows a comparison material 12 using an oxygen-free copper wire and an embodiment material 6 using a soft dilute copper alloy wire containing 13 mass ppm Ti in low-oxygen copper, and annealed for 1 hour at different annealing temperatures. It is the table | surface which verified the transition of 0.2% proof stress value of what was given. As a sample, a 2.6 mm diameter sample was used.
According to this table, when the annealing temperature is 400 ° C., the 0.2% proof stress value of the comparative material 12 and the execution material 6 is the same level. It can be seen that the yield strength is 2%.

つぎに、本発明に係る軟質希薄銅合金線は、屈曲寿命の高さが要求されるが、無酸素銅線を用いた比較材13と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材7における屈曲寿命を測定した結果を図8に表す。ここでは試料としては、0.26mm径の線材に対して焼鈍温度400℃で1時間の焼鈍を施したものを用い、比較材13は比較材11と同様の成分組成であり、実施材7も実施材5と同様の成分組成のものを使用した。
ここに、屈曲寿命の測定方法は、屈曲疲労試験により行った。屈曲疲労試験は、荷重を負荷し、試料表面に引張と圧縮の繰返し曲げひずみを与える試験である。屈曲疲労試験は、図7に示す。試料は、(A)のように曲げ治具(図中リングと記載)の間にセットし荷重を負荷したまま、(B)のように治具が90度回転し曲げを与える。この操作で、曲げ治具に接している線材表面には、圧縮ひずみが、これに対応して反対側の表面には、引張ひずみが負荷される。その後、再び(A)の状態に戻る。次に(B)に示した向きと反対方向に90度回転し曲げを与える。この場合も、曲げ治具に接している線材表面には、圧縮ひずみが、これに対応して反対側の表面には、引張ひずみが負荷され(C)の状態になる。そして(C)から最初の状態(A)に戻る。この屈曲疲労1サイクル(A)(B)(A)(C)(A)に要する時間は4秒である。表面曲げ歪は以下の式により求めることができる。
表面曲げ歪(%)=r/(R+r)×100(%)、R:素線曲げ半径(30mm)、r=素線半径
図8の実験データによると、本発明に係る実施材7は比較材13に比して高い屈曲寿命を示した。
また、無酸素銅線を用いた比較材14と低酸素銅にTiを添加した軟質希薄銅合金線を用いた実施材8における屈曲寿命を測定した結果を図9に表す。ここでは試料としては、0.26mm径の線材に対して焼鈍温度600℃で1時間の焼鈍を施したものを用い、比較材14は比較材11と同様の成分組成であり、実施材8も実施材5と同様の成分組成のものを使用した。屈曲寿命の測定方法は、図8の測定方法と同様の条件により行った。この場合も、本発明に係る実施材8は比較材14に比して高い屈曲寿命を示した。
Next, the soft dilute copper alloy wire according to the present invention is required to have a high flex life, but the comparative material 13 using an oxygen-free copper wire and the soft dilute copper alloy wire obtained by adding Ti to low oxygen copper are used. The result of measuring the bending life of the used material 7 is shown in FIG. Here, as a sample, a 0.26 mm-diameter wire annealed at an annealing temperature of 400 ° C. for 1 hour is used, the comparative material 13 has the same component composition as the comparative material 11, and the implementation material 7 is also used. The component composition similar to that of Example Material 5 was used.
Here, the bending life was measured by a bending fatigue test. The bending fatigue test is a test in which a load is applied and repeated bending strain of tension and compression is applied to the sample surface. The bending fatigue test is shown in FIG. The sample is set between bending jigs (denoted as rings in the figure) as shown in (A), and the jig is rotated by 90 degrees and bent as shown in (B) while a load is applied. By this operation, a compressive strain is applied to the surface of the wire rod in contact with the bending jig, and a tensile strain is applied to the opposite surface correspondingly. Thereafter, the state returns to the state (A) again. Next, it is rotated 90 degrees in the direction opposite to the direction shown in FIG. Also in this case, a compressive strain is applied to the surface of the wire rod in contact with the bending jig, and a tensile strain is applied to the surface on the opposite side, corresponding to the state (C). And it returns to the first state (A) from (C). The time required for one cycle of bending fatigue (A), (B), (A), (C), and (A) is 4 seconds. The surface bending strain can be obtained by the following equation.
Surface bending strain (%) = r / (R + r) × 100 (%), R: wire bending radius (30 mm), r = wire radius According to the experimental data of FIG. The bending life was higher than that of the material 13.
Moreover, the result of having measured the bending life in the comparative material 14 using an oxygen free copper wire and the implementation material 8 using the soft dilute copper alloy wire which added Ti to low oxygen copper is shown in FIG. Here, a sample obtained by subjecting a 0.26 mm diameter wire to an annealing temperature of 600 ° C. for 1 hour is used, the comparative material 14 has the same composition as the comparative material 11, and the implementation material 8 is also used. The component composition similar to that of Example Material 5 was used. The measuring method of the bending life was performed under the same conditions as the measuring method of FIG. Also in this case, the working material 8 according to the present invention showed a higher bending life than the comparative material 14.

[軟質希薄銅合金線の結晶構造についての検討]
また、図10は、実施材8の試料の幅方向の断面組織の写真を表したものであり、図11は、比較材14の幅方向の断面組織の写真を表したものである。図11は、比較材14の結晶構造を示し、図10は実施材8の結晶構造を示す。これをみると、比較材14の結晶構造は、表面部から中央部にかけて全体的に大きさの等しい結晶粒が均一に並んでいることがわかる。これに対し、実施材8の結晶構造は、全体的に結晶粒の大きさがまばらであり、特筆すべきは、試料の断面方向の表面付近に薄く形成されている層における結晶粒サイズが内部の結晶粒サイズに比べて極めて小さくなっていることである。
発明者らは、比較材14には形成されていない、表層に現れた微細結晶粒層が実施材8の屈曲特性の向上に寄与しているものと考えている。
このことは、通常であれば、焼鈍温度600℃で1時間の焼鈍処理を行えば、比較材14のように再結晶により均一に粗大化した結晶粒が形成されるものであると理解されるが、本発明の場合には、焼鈍温度600℃で1時間の焼鈍処理を行ってもなお、その表層には微細結晶粒層が残存していることから、軟質銅材でありながら、屈曲特性の良好な軟質希薄銅合金材料が得られたものであると考えられる。
そして、図10および図11に示す結晶構造の断面写真をもとに、実施材8および比較材14の試料の表層における平均結晶粒サイズを測定した。ここに、表層における平均結晶粒サイズの測定方法は、図12に示すように、0.26mm径の幅方向断面の表面から深さ方向に10μm間隔で50μmの深さまでのところの長さ1mmの線上の範囲での結晶粒サイズを測定した夫々の実測値を平均した値を表層における平均結晶粒サイズとした。
測定の結果、比較材14の表層における平均結晶粒サイズは、50μmであったのに対し、実施材8の表層における平均結晶粒サイズは、10μmである点で大きく異なっていた。表層の平均結晶粒サイズが細かいことによって、屈曲疲労試験による亀裂の進展が抑制され、屈曲疲労寿命が延びたと考えられる(結晶粒サイズが大きいと結晶粒界に沿って亀裂が進展してしまうが、結晶粒サイズが小さいと亀裂の進展の方向が変わるため、進展が抑制される)。このことが、上述のとおり、比較材と実施材との屈曲特性の面で大きな相違を生じたものと考えられる。
また、2.6mm径である実施材6、比較材12の表層における平均結晶粒サイズは、2.6mm径の幅方向断面の表面から深さ方向に50μmの深さのところの長さ10mmの範囲での結晶粒サイズを測定した。
測定の結果、比較材12の表層における平均結晶粒サイズは、100μmであったのに対し、実施材6の表層における平均結晶粒サイズは、20μmであった。
本発明の効果を奏するものとして、表層の平均結晶粒サイズの上限値としては、20μm以下のものが好ましく、製造上の限界値から5μm以上のものが想定される。
[Examination of crystal structure of soft dilute copper alloy wire]
10 shows a photograph of the cross-sectional structure in the width direction of the sample of the embodiment material 8, and FIG. 11 shows a photograph of the cross-sectional structure in the width direction of the comparative material 14. FIG. 11 shows the crystal structure of the comparative material 14, and FIG. 10 shows the crystal structure of the working material 8. From this, it can be seen that the crystal structure of the comparative material 14 has uniform crystal grains of uniform size as a whole from the surface to the center. On the other hand, the crystal structure of the embodiment material 8 has a sparse crystal grain size as a whole, and it should be noted that the crystal grain size in the thin layer formed near the surface in the cross-sectional direction of the sample is internal. It is extremely small compared to the crystal grain size.
The inventors believe that the fine crystal grain layer that appears on the surface layer, which is not formed in the comparative material 14, contributes to the improvement of the bending characteristics of the working material 8.
This is understood that, if the annealing treatment is normally performed at an annealing temperature of 600 ° C. for 1 hour, crystal grains uniformly coarsened by recrystallization are formed as in the comparative material 14. However, in the case of the present invention, the fine crystal grain layer still remains on the surface layer even when the annealing treatment is performed at an annealing temperature of 600 ° C. for 1 hour. It is considered that a soft dilute copper alloy material having a good thickness was obtained.
And based on the cross-sectional photograph of the crystal structure shown to FIG. 10 and FIG. 11, the average crystal grain size in the surface layer of the sample of the implementation material 8 and the comparison material 14 was measured. Here, as shown in FIG. 12, the measurement method of the average crystal grain size in the surface layer is 1 mm in length from the surface of the cross section in the width direction of 0.26 mm diameter to the depth of 50 μm at 10 μm intervals in the depth direction. A value obtained by averaging the actually measured values of the crystal grain sizes in the range on the line was defined as the average crystal grain size in the surface layer.
As a result of the measurement, the average crystal grain size in the surface layer of the comparative material 14 was 50 μm, whereas the average crystal grain size in the surface layer of the example material 8 was greatly different in that it was 10 μm. It is considered that the growth of cracks in the bending fatigue test was suppressed by the fine average grain size of the surface layer, and the bending fatigue life was extended (if the grain size is large, cracks propagate along the grain boundaries). If the crystal grain size is small, the direction of crack growth changes, so the growth is suppressed). As described above, this is considered to have caused a great difference in the bending characteristics between the comparative material and the working material.
In addition, the average crystal grain size in the surface layer of the embodiment material 6 and the comparison material 12 having a diameter of 2.6 mm is 10 mm in length at a depth of 50 μm in the depth direction from the surface of the cross section in the width direction of 2.6 mm diameter. The grain size in the range was measured.
As a result of the measurement, the average crystal grain size in the surface layer of the comparative material 12 was 100 μm, whereas the average crystal grain size in the surface layer of the example material 6 was 20 μm.
As an effect of the present invention, the upper limit value of the average grain size of the surface layer is preferably 20 μm or less, and a value of 5 μm or more is assumed from the manufacturing limit value.

[軟質希薄銅合金材料の結晶構造についての検討]
図13は、実施材9の試料の幅方向の断面組織の写真を表したものであり、図14は、比較材15の幅方向の断面組織の写真を表したものである。図13は実施材9の結晶構造を示し、図14は、比較材15の結晶構造を示す。
[Examination of crystal structure of soft dilute copper alloy material]
FIG. 13 shows a photograph of the cross-sectional structure in the width direction of the sample of the embodiment material 9, and FIG. 14 shows a photograph of the cross-sectional structure in the width direction of the comparative material 15. FIG. 13 shows the crystal structure of Example Material 9, and FIG.

実施材9は、表1に示す実施材1の上から3番目の最も軟質材の導電率が高い0.26mm径の線材である。この実施材9は、焼鈍温度400℃で1時間の焼鈍処理を経て作製される。   The implementation material 9 is a 0.26 mm diameter wire having the highest conductivity of the third softest material from the top of the implementation material 1 shown in Table 1. This execution material 9 is produced through an annealing treatment at an annealing temperature of 400 ° C. for 1 hour.

比較材15は、無酸素銅(OFC)からなる0.26mm径の線材である。この比較材15は、焼鈍温度400℃で1時間の焼鈍処理を経て作製される。実施材9および比較材15の導電率を表5に示す。   The comparative material 15 is a 0.26 mm diameter wire made of oxygen-free copper (OFC). The comparative material 15 is manufactured through an annealing process at an annealing temperature of 400 ° C. for 1 hour. Table 5 shows the electrical conductivity of Example Material 9 and Comparative Material 15.

図13および図14に示すように、比較材15の結晶構造は、表面部から中央部にかけて全体的に大きさの等しい結晶粒が均一に並んでいることがわかる。これに対し、実施材9の結晶構造は、表層と内部とで結晶粒の大きさに差があり、表層における結晶粒サイズに比べて内部の結晶粒サイズが極めて大きくなっている。   As shown in FIG. 13 and FIG. 14, it can be seen that the crystal structure of the comparative material 15 has uniform crystal grains having the same overall size from the surface portion to the center portion. On the other hand, the crystal structure of the embodiment material 9 has a difference in crystal grain size between the surface layer and the inside, and the inside crystal grain size is extremely larger than the crystal grain size in the surface layer.

実施材9は、例えば、φ2.6mm、φ0.26mmとなるように加工した導体の銅中のSをTi−S、Ti−O−Sの形で捕捉している。また、銅中に含まれる酸素(O)は、例えば、TiO2のように、TixOyの形で存在しており、結晶粒内、結晶粒界に析出している。 For example, the execution material 9 captures S in the copper of the conductor processed so as to have φ2.6 mm and φ0.26 mm in the form of Ti—S and Ti—O—S. The oxygen contained in the copper (O), for example, as TiO 2, is present in the form of TixOy, the crystal grains are precipitated in the grain boundaries.

このため、銅を焼鈍して結晶組織を再結晶させたときには、実施材9は、再結晶化が進み易く内部の結晶粒が大きく成長する。このため、実施材9は、比較材15と比べて、電流を流したときに、電子の流れが妨げられることが少なく進むこととなり、電気抵抗が小さくなる。従って、実施材9は、比較材15と比べて導電率(%IACS)が大きくなる。   For this reason, when copper is annealed and the crystal structure is recrystallized, the recrystallized material 9 tends to proceed recrystallized, and the internal crystal grains grow greatly. For this reason, compared with the comparative material 15, the implementation material 9 progresses with less obstruction of the flow of electrons when a current is passed, and the electrical resistance is reduced. Therefore, the implementation material 9 has a higher conductivity (% IACS) than the comparison material 15.

以上の結果により、実施材9を用いた製品では、軟らかく、導電率が向上し、且つ屈曲特性を向上させることができる。従来の導体では、結晶組織を実施材9のような大きさに再結晶させるためには、高温の焼鈍処理が必要となる。しかし、焼鈍温度が高過ぎると、Sが再固溶してしまう。また、従来の導体では、再結晶させると、軟らかくなり、屈曲特性は低下する問題があった。上記に記載の実施材9では、焼鈍したときに双晶とならずに再結晶できるため、内部の結晶粒が大きくなり、軟らかくなるが、一方で表層は、微細結晶が残っているため、屈曲特性が低下しない特徴がある。   Based on the above results, the product using the embodiment material 9 is soft, has improved conductivity, and improved bending characteristics. In the conventional conductor, a high-temperature annealing process is required to recrystallize the crystal structure to the size of the embodiment material 9. However, if the annealing temperature is too high, S will be re-dissolved. Further, the conventional conductor has a problem that when it is recrystallized, it becomes soft and the bending property is lowered. In the embodiment material 9 described above, since it can be recrystallized without being twinned when annealed, the internal crystal grains become large and soft, but the surface layer is bent because fine crystals remain. There is a characteristic that the characteristics do not deteriorate.

[軟質希薄銅合金線の伸び特性と結晶構造との関係について]
図15は、2.6mm径の無酸素銅線を用いた比較材15と2.6mm径の低酸素銅に13mass ppmのTiを含有した軟質希薄銅合金線を用いた実施材9を試料とし、異なる焼鈍温度で1時間の焼鈍を施したものの伸び(%)の値の推移を検証したグラフである。図15に示す丸記号は、実施材9を示し、四角記号は、比較材15を示す。
この表によると、比較材15に比して実施材9の方が、焼鈍温度100℃を超え130℃付近から900℃の広い範囲で優れた伸び特性を示すことがわかる。
また、焼鈍温度500℃における実施材9の銅線の断面写真を示したのが図16である。この図16をみると、銅線の断面全体において微細な結晶組織が形成されており、この微細な結晶組織が伸び特性に寄与しているものと思われる。これに対し、焼鈍温度500℃における比較材15の断面組織は2次再結晶が進んでおり、図16の結晶組織に比して、断面組織中の結晶粒が粗大化しているため、伸び特性が低下したものと考えられる。
また、焼鈍温度700℃における実施材9の銅線の断面写真を示したのが図17である。銅線の断面における表層の結晶粒サイズが、内部における結晶粒サイズに比べて極めて小さくなっていることがわかる。内部における結晶組織は2次再結晶が進んでいるものの、外層における微細な結晶粒の層は残存している。実施材9は、内部の結晶組織が大きく成長するが、表層に微細結晶の層が残っているため、伸び特性を維持しているものと思われる。
これに対して図18に示す同じく焼鈍温度700℃における比較材15の断面組織は、表面から中央にかけて全体的に略等しい大きさの結晶粒が均一に並んでおり、断面組織全体において2次再結晶が進行しているため、実施材9に比して比較材15の600℃以上の高温領域における伸び特性は、低下しているものと考えられる。
このように、実施材9では、比較材15よりも伸び特性の点で優れているため、この導体を用いて撚線を製造するときの取り扱い性に優れ、耐屈曲特性に優れ、曲げやすさの点においてもケーブルの配策が容易になるという利点がある。
[Relationship between elongation characteristics and crystal structure of soft dilute copper alloy wire]
FIG. 15 shows, as a sample, a comparative material 15 using an oxygen-free copper wire having a diameter of 2.6 mm and an embodiment material 9 using a soft dilute copper alloy wire containing 13 mass ppm of Ti in low-oxygen copper having a diameter of 2.6 mm. It is the graph which verified the transition of the value of elongation (%) of what annealed for 1 hour at different annealing temperature. A circle symbol shown in FIG. 15 indicates the implementation material 9, and a square symbol indicates the comparison material 15.
According to this table, it can be seen that the embodiment material 9 exhibits excellent elongation characteristics over a wide range from about 130 ° C. to 900 ° C., compared to the comparative material 15, with the annealing temperature exceeding 100 ° C.
Further, FIG. 16 shows a cross-sectional photograph of the copper wire of the embodiment material 9 at an annealing temperature of 500 ° C. FIG. 16 shows that a fine crystal structure is formed in the entire cross section of the copper wire, and this fine crystal structure seems to contribute to the elongation characteristics. On the other hand, the cross-sectional structure of the comparative material 15 at the annealing temperature of 500 ° C. has undergone secondary recrystallization, and the crystal grains in the cross-sectional structure are coarser than the crystal structure of FIG. Is thought to have been reduced.
Further, FIG. 17 shows a cross-sectional photograph of the copper wire of Example Material 9 at an annealing temperature of 700 ° C. It turns out that the crystal grain size of the surface layer in the cross section of a copper wire is very small compared with the crystal grain size inside. Although the internal crystal structure is undergoing secondary recrystallization, a fine crystal grain layer in the outer layer remains. Although the inner crystal structure grows greatly in the execution material 9, since the fine crystal layer remains on the surface layer, it seems that the elongation characteristics are maintained.
On the other hand, in the cross-sectional structure of the comparative material 15 similarly at an annealing temperature of 700 ° C. shown in FIG. 18, crystal grains having substantially the same size are arranged uniformly from the surface to the center. Since the crystallization is progressing, it is considered that the elongation property of the comparative material 15 in the high temperature region of 600 ° C. or higher is lower than that of the embodiment material 9.
As described above, the embodiment material 9 is superior to the comparison material 15 in terms of elongation characteristics, and therefore, it is excellent in handling property when producing a stranded wire using this conductor, excellent in bending resistance characteristics, and easy to bend. Also in this point, there is an advantage that the cable arrangement becomes easy.

以上、本発明の実施の形態及びその変形例を説明したが、上記に記載した実施の形態及び変形例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び変形例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   As mentioned above, although embodiment of this invention and its modification were demonstrated, embodiment and modification which were described above do not limit the invention which concerns on a claim. In addition, it should be noted that not all combinations of features described in the embodiments and the modifications are necessarily essential to the means for solving the problems of the invention.

Claims (9)

4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金線において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金線。   A soft dilute copper alloy wire containing 4 massppm to 55 massppm of Ti and having a balance of copper, wherein the average crystal grain size in a surface layer at least from the surface to a depth of 50 m is 20 m or less. 請求項1に記載の軟質希薄銅合金線であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金線。   The soft diluted copper alloy wire according to claim 1, wherein the conductivity is 98% IACS or more. 前記軟質希薄銅合金線の表面にめっき層を形成したことを特徴とする請求項1又は請求項2に記載の軟質希薄銅合金線。   The soft diluted copper alloy wire according to claim 1 or 2, wherein a plating layer is formed on a surface of the soft diluted copper alloy wire. 請求項1乃至請求項3のいずれか1項に記載の軟質希薄銅合金線を複数本撚り合わせたことを特徴とする軟質希薄銅合金撚線。   A soft dilute copper alloy twisted wire comprising a plurality of soft dilute copper alloy wires according to any one of claims 1 to 3. 請求項1乃至請求項4のいずれか1項に記載の軟質希薄銅合金線又は軟質希薄銅合金撚線の周りに、絶縁層を設けたことを特徴とするケーブル。   A cable comprising an insulating layer around the soft dilute copper alloy wire or soft dilute copper alloy twisted wire according to any one of claims 1 to 4. 4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金板において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金板。 A soft dilute copper alloy plate containing 4 mass ppm to 55 massppm of Ti, the balance being copper, and an average crystal grain size in a surface layer at least from the surface to a depth of 50 μm is 20 μm or less. 請求項6記載の軟質希薄銅合金板であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金板。   7. The soft diluted copper alloy plate according to claim 6, wherein the electrical conductivity is 98% IACS or more. 4massppm〜55massppmのTiを含み、残部が銅である軟質希薄銅合金材料において、少なくとも表面から50μm深さまでの表層における平均結晶粒サイズが20μm以下であることを特徴とする軟質希薄銅合金材料。 A soft dilute copper alloy material containing 4 massppm to 55 massppm of Ti and having a balance of copper, wherein the average crystal grain size in a surface layer at least from the surface to a depth of 50 m is 20 m or less. 請求項8記載の軟質希薄銅合金材料であって、その導電率が98%IACS以上であることを特徴とする軟質希薄銅合金材料。   The soft diluted copper alloy material according to claim 8, wherein the electrical conductivity is 98% IACS or more.
JP2012010159A 2010-02-08 2012-01-20 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them Active JP5088449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010159A JP5088449B2 (en) 2010-02-08 2012-01-20 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010025353 2010-02-08
JP2010025353 2010-02-08
JP2012010159A JP5088449B2 (en) 2010-02-08 2012-01-20 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010235269A Division JP5077416B2 (en) 2010-02-08 2010-10-20 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these

Publications (2)

Publication Number Publication Date
JP2012117152A true JP2012117152A (en) 2012-06-21
JP5088449B2 JP5088449B2 (en) 2012-12-05

Family

ID=46493229

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012010160A Active JP5088450B2 (en) 2010-02-08 2012-01-20 Soft dilute copper alloy material, soft dilute copper alloy plate, soft dilute copper alloy wire, soft dilute copper alloy twisted wire, and cable using these
JP2012010159A Active JP5088449B2 (en) 2010-02-08 2012-01-20 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012010160A Active JP5088450B2 (en) 2010-02-08 2012-01-20 Soft dilute copper alloy material, soft dilute copper alloy plate, soft dilute copper alloy wire, soft dilute copper alloy twisted wire, and cable using these

Country Status (1)

Country Link
JP (2) JP5088450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087360A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Method of manufacturing insulated wire using dilute copper alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179110A (en) * 2010-02-08 2011-09-15 Hitachi Cable Ltd Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179110A (en) * 2010-02-08 2011-09-15 Hitachi Cable Ltd Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087360A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Method of manufacturing insulated wire using dilute copper alloy material

Also Published As

Publication number Publication date
JP5088450B2 (en) 2012-12-05
JP2012107340A (en) 2012-06-07
JP5088449B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5077416B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
JP5760544B2 (en) Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JP5589756B2 (en) Flexible flat cable and manufacturing method thereof
JP4709296B2 (en) Method for manufacturing diluted copper alloy material
JP5569330B2 (en) Cable for music / video
JP5732809B2 (en) Extruded product and manufacturing method thereof
JP4809934B2 (en) Dilute copper alloy wire, plated wire and stranded wire
JP5499330B2 (en) Solar cell bus bar
JP2012087377A (en) Winding for speaker voice coil, and method for producing the same
JP2012087365A (en) Dilute copper alloy material and method of manufacturing dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement
JP5652369B2 (en) Solar cell conductor
JP5617521B2 (en) Method for producing enameled wire using dilute copper alloy material
JP5088449B2 (en) Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cable using them
JP5609564B2 (en) Manufacturing method of molten solder plating wire
JP5672939B2 (en) Cable for movable part and manufacturing method thereof
JP2013040386A (en) Conductor for earphone cable, and earphone cable
JP5589755B2 (en) Cable for photovoltaic power generation system and manufacturing method thereof
JP2012087366A (en) Rolled copper foil and method for manufacturing the same
JP2014102996A (en) Method of joining soft dilute copper alloy wire to connection terminal
JP5601147B2 (en) Micro speaker voice coil winding and method of manufacturing the same
JP2012089686A (en) Three-dimentional wiring body and method for manufacturing three-dimentional wiring body
JP2013040384A (en) Wiring material and plate material using soft dilute copper alloy
JP5637435B2 (en) Coaxial cable and manufacturing method thereof
JP5783478B2 (en) Cable for music / video
JP2013221163A (en) Wiring material using soft dilute copper alloy and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350