JP2012117032A - Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same - Google Patents

Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same Download PDF

Info

Publication number
JP2012117032A
JP2012117032A JP2011118872A JP2011118872A JP2012117032A JP 2012117032 A JP2012117032 A JP 2012117032A JP 2011118872 A JP2011118872 A JP 2011118872A JP 2011118872 A JP2011118872 A JP 2011118872A JP 2012117032 A JP2012117032 A JP 2012117032A
Authority
JP
Japan
Prior art keywords
group
atom
methyl
titanium dichloride
addition polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011118872A
Other languages
Japanese (ja)
Inventor
Naoko Ochi
直子 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011118872A priority Critical patent/JP2012117032A/en
Publication of JP2012117032A publication Critical patent/JP2012117032A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor that can suppress fouling in the reactor even when conducting chemical reactions in the reactor, and to provide an addition polymerization method.SOLUTION: This invention relates to a method for coating the inner peripheral surface of the reactor with a compound expressed by general formula [1]: (RCOO)RmM, wherein Rrepresents 1-20C hydrocarbyl group which may have a substituent, provided that if a plurality of Rexist, they may be same or different from each other; Rrepresents a hydrogen atom, hydroxy group or 1-20C hydrocarbyl group which may have a substituent, provided that if a plurality of Rexist, they may be same or different from each other; Mrepresents a metal atom selected from the group consisting of groups 1, 2, 8, 9, 10, 11, 12 and 13 of the periodic table; l denotes a number of 1 or more; and m denotes a number of 0 or more, provided that l and m are numbers satisfying 1≤l+m≤n, and n denotes a number equivalent to atomic valency of M.

Description

本発明は、反応器のコーティング方法、コーティング済反応器、付加重合方法、予備重合方法、予備重合済付加重合触媒成分およびそれを用いる付加重合体の製造方法に関する。   The present invention relates to a coating method for a reactor, a coated reactor, an addition polymerization method, a prepolymerization method, a prepolymerized addition polymerization catalyst component, and a method for producing an addition polymer using the same.

化学反応を反応器中で行う場合、反応生成物が反応器の壁面に付着するファウリング現象が起こることがある。ファウリングが発生すると、反応器壁面からの除熱が困難になるため、反応温度の制御が難しくなり、最も深刻な事態としては暴走反応を招くことがある。また、ファウリングが発生すると、運転を継続しながらファウリングを除去することは困難であるため、反応器を開放して掃除を行う必要があり、生産性の低下を招くことがある。 When a chemical reaction is performed in a reactor, a fouling phenomenon in which a reaction product adheres to the reactor wall surface may occur. When fouling occurs, it becomes difficult to remove heat from the reactor wall surface, so it becomes difficult to control the reaction temperature, and as a most serious situation, a runaway reaction may occur. Further, when fouling occurs, it is difficult to remove the fouling while continuing the operation. Therefore, it is necessary to open the reactor for cleaning, which may lead to a decrease in productivity.

ファウリングは特に重合反応で顕著な問題となる。重合反応でのファウリングを抑える方法として、特許文献1の方法が知られている。これらの公知技術はいずれもファウリングを抑制するための特定の化合物を反応系に添加する必要があり、それらの化合物が反応生成物にも混入するため、反応生成物の品質の観点から満足できるものではなかった。 Fouling is a significant problem especially in polymerization reactions. As a method for suppressing fouling in a polymerization reaction, the method of Patent Document 1 is known. All of these known techniques are satisfactory from the viewpoint of the quality of the reaction product because it is necessary to add a specific compound for suppressing fouling to the reaction system, and these compounds are also mixed into the reaction product. It was not a thing.

特開2005−89583号公報JP 2005-89583 A

本発明の目的は、化学反応を反応器中で行っても反応器内のファウリングを抑制することができる反応器、および付加重合方法を提供することである。   An object of the present invention is to provide a reactor capable of suppressing fouling in the reactor even when a chemical reaction is performed in the reactor, and an addition polymerization method.

本発明の第一は、下記一般式[1]で表される化合物で反応器の内壁面をコーティングする方法にかかるものである。
(RCOO) [1]
(上記一般式[1]において、Rは置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表し、Rが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Rは水素原子、ヒドロキシ基、または、置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表し、Rが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Mは周期律表第1族、第2族、第8族、第9族、第10族、第11族、第12族、および、第13族からなる群より選ばれる金属原子を表す。lは1以上の数を、mは0以上の数を表す。ただし、lおよびmは1≦l+m≦nを満足する数であり、nはMの原子価に相当する数を表す。)
The first of the present invention relates to a method of coating the inner wall surface of a reactor with a compound represented by the following general formula [1].
(R 1 COO) l R 2 m M 1 [1]
(In the above general formula [1], R 1 represents an optionally substituted hydrocarbyl group having 1 to 20 carbon atoms, and when a plurality of R 1 are present, they are the same as each other. R 2 represents a hydrogen atom, a hydroxy group, or a hydrocarbyl group having 1 to 20 carbon atoms which may have a substituent, and when there are a plurality of R 2 , M 1 may be the same as or different from each other, and M 1 represents groups 1, 2, 8, 9, 10, 11, 12, and 12 in the periodic table. Represents a metal atom selected from the group consisting of Group 13. l represents a number of 1 or more, m represents a number of 0 or more, provided that l and m are numbers satisfying 1 ≦ l + m ≦ n, and n is Represents the number corresponding to the valence of M 1 )

本発明の第二は、前記コーティング済反応器にかかるものである。   The second of the present invention relates to the coated reactor.

本発明の第三は、前記反応器で行う付加重合方法であって、下記一般式[2]で表される遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、活性化剤(B)と、必要に応じて有機アルミニウム化合物(C)と、を接触して得られる1次触媒を用いて付加重合可能なモノマーを付加重合させる付加重合方法にかかるものである。
1 a1 b [2]
(式中、Mは周期律表第4族の遷移金属原子である。L1はシクロペンタジエン形アニオン骨格を有する基またはヘテロ原子を含有する基であり、複数のL1は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、ハイドロカルビル基(但し、シクロペンタジエン形アニオン骨格を有する基を除く。)またはハイドロカルビルオキシ基である。aは0<a≦3を満足する数を、bは0<b≦3を満足する数を表す。)
A third aspect of the present invention is an addition polymerization method carried out in the reactor, wherein the transition metal compound (A) represented by the following general formula [2] or a μ-oxo type transition metal compound dimer (A ′), An activator (B), and an organoaluminum compound (C) as required, and an addition polymerization method in which an addition-polymerizable monomer is added using a primary catalyst obtained by contact. Is.
L 1 a M 2 X 1 b [2]
(In the formula, M 2 is a transition metal atom of Group 4 of the periodic table. L 1 is a group having a cyclopentadiene-type anion skeleton or a group containing a hetero atom, and a plurality of L 1 are directly connected to each other. Or may be linked via a residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom, wherein X 1 is a halogen atom, a hydrocarbyl group (provided that (Excluding a group having a cyclopentadiene type anion skeleton) or a hydrocarbyloxy group, a represents a number satisfying 0 <a ≦ 3, and b represents a number satisfying 0 <b ≦ 3.)

本発明の第四は、前期付加重合が予備重合である付加重合方法にかかるものである。   A fourth aspect of the present invention relates to an addition polymerization method in which the previous addition polymerization is a preliminary polymerization.

本発明の第五は、前記予備重合方法により得られる予備重合済付加重合触媒成分にかかるものである。   The fifth of the present invention relates to a prepolymerized addition polymerization catalyst component obtained by the prepolymerization method.

本発明の第六は、前記予備重合済付加重合触媒成分と、必要に応じて有機アルミニウム化合物(C)とを用いることを特徴とする、付加重合体の製造方法にかかるものである。   A sixth aspect of the present invention relates to a method for producing an addition polymer, characterized by using the prepolymerized addition polymerization catalyst component and, if necessary, an organoaluminum compound (C).

本発明の第七は、一般式[2]で表される遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、活性化剤(B)と、を接触して得られる1次触媒を用い、付加重合可能なモノマーを予備重合させて予備重合済付加重合触媒成分を得、請求項3に記載のコーティング済反応器内で前記予備重合済付加重合触媒成分の存在下、付加重合可能なモノマーを付加重合させる付加重合体の製造方法にかかるものである。   A seventh aspect of the present invention includes a transition metal compound (A) represented by the general formula [2] or a μ-oxo type transition metal compound dimer (A ′) thereof, and an activator (B). A prepolymerized addition polymerization catalyst component is obtained by prepolymerizing a monomer capable of addition polymerization using a primary catalyst obtained by contact, and the prepolymerized addition polymerization catalyst in the coated reactor according to claim 3. The present invention relates to a method for producing an addition polymer in which addition-polymerizable monomers are addition-polymerized in the presence of a component.

本発明の方法によれば、化学反応を反応器中で行っても反応器内のファウリングを抑制することができる。特に、重合反応を反応器内で連続的に行っても、ファウリングによる重合反応器の伝熱効率の低下を防き、重合を安定して連続運転することが可能となる。   According to the method of the present invention, fouling in the reactor can be suppressed even when the chemical reaction is performed in the reactor. In particular, even if the polymerization reaction is continuously performed in the reactor, it is possible to prevent the heat transfer efficiency of the polymerization reactor from being lowered due to fouling and to stably perform the polymerization continuously.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

コーティング用化合物
本発明に用いられるオレフィン反応器の内壁面をコーティングするための化合物は、下記一般式[1]で表される化合物である。
(RCOO) [1]
(上記一般式[1]において、Rは置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表しRが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Rは水素原子、ヒドロキシ基、または、置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表し、Rが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Mは周期律表第1族、第2族、第8族、第9族、第10族、第11族、第12族、および、第13族からなる群より選ばれる金属原子を表す。lは1以上の数を、mは0以上の数を表す。ただし、l、mは1≦l+m≦nを満足する数であり、nはMの原子価に相当する数を表す。)
Compound for Coating The compound for coating the inner wall surface of the olefin reactor used in the present invention is a compound represented by the following general formula [1].
(R 1 COO) l R 2 m M 1 [1]
(In the above general formula [1], R 1 represents an optionally substituted hydrocarbyl group having 1 to 20 carbon atoms, and when a plurality of R 1 are present, they may be the same as each other. R 2 represents a hydrogen atom, a hydroxy group, or a hydrocarbyl group having 1 to 20 carbon atoms which may have a substituent, and when a plurality of R 2 are present, they are M 1 may be the same as or different from each other, and M 1 represents groups 1, 2, 8, 9, 10, 11, 12, and 13 in the periodic table. Represents a metal atom selected from the group consisting of groups, wherein l is a number of 1 or more and m is a number of 0 or more, where l and m are numbers satisfying 1 ≦ l + m ≦ n, and n is M Represents the number corresponding to the valence of 1. )

式[1]のRの置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基としては、置換基を有していてもよい炭素原子数1〜20のアルキル基、置換基を有していてもよい炭素原子数7〜20のアラルキル基、置換基を有していてもよい炭素原子数6〜20のアリール基などがあげられる。 As the hydrocarbyl group having 1 to 20 carbon atoms which may have a substituent of R 1 in the formula [1], an alkyl group having 1 to 20 carbon atoms which may have a substituent, Examples thereof include an aralkyl group having 7 to 20 carbon atoms which may have a substituent and an aryl group having 6 to 20 carbon atoms which may have a substituent.

置換基を有していてもよい炭素原子数1〜20のアルキル基としては、炭素原子数1〜20のアルキル基、ハロゲン原子を置換基として有する炭素原子数1〜20のアルキル基、置換シリル基を置換基として有する炭素原子数1〜20のアルキル基、置換アミノ基を置換基として有する炭素原子数1〜20のアルキル基、ハイドロカルビルオキシ基を置換基として有する炭素原子数1〜20のアルキル基などがあげられる。   Examples of the optionally substituted alkyl group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms having a halogen atom as a substituent, and substituted silyl An alkyl group having 1 to 20 carbon atoms having a group as a substituent, an alkyl group having 1 to 20 carbon atoms having a substituted amino group as a substituent, and 1 to 20 carbon atoms having a hydrocarbyloxy group as a substituent And the like.

炭素原子数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、イソペンチル基、n−ヘキシル基、n−へプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基などがあげられる。   Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, and neopentyl group. , Isopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, Examples thereof include n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like.

ハロゲン原子を置換基として有する炭素原子数1〜20のアルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、ヨードメチル基、ジヨードメチル基、トリヨードメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、テトラクロロエチル基、ペンタクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、テトラブロモエチル基、ペンタブロモエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロペンタデシル基、パーフルオロエイコシル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘキシル基、パークロロオクチル基、パークロロドデシル基、パークロロペンタデシル基、パークロロエイコシル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘキシル基、パーブロモオクチル基、パーブロモドデシル基、パーブロモペンタデシル基、パーブロモエイコシル基などがあげられる。   Examples of the alkyl group having 1 to 20 carbon atoms having a halogen atom as a substituent include, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloromethyl group, dichloromethyl group, trichloromethyl group, bromomethyl group, dibromo Methyl group, tribromomethyl group, iodomethyl group, diiodomethyl group, triiodomethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, tetrafluoroethyl group, pentafluoroethyl group, chloroethyl group, dichloroethyl group, trichloro Ethyl group, tetrachloroethyl group, pentachloroethyl group, bromoethyl group, dibromoethyl group, tribromoethyl group, tetrabromoethyl group, pentabromoethyl group, perfluoropropyl group, perfluorobutyl group, perfluorope group Til group, perfluorohexyl group, perfluorooctyl group, perfluorododecyl group, perfluoropentadecyl group, perfluoroeicosyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchlorohexyl group, Perchlorooctyl group, perchlorododecyl group, perchloropentadecyl group, perchloroeicosyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromohexyl group, perbromooctyl group, perbromododecyl group Group, perbromopentadecyl group, perbromoeicosyl group and the like.

置換シリル基を置換基として有する炭素原子数1〜20のアルキル基としては、例えば、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、トリフェニルシリルメチル基などがあげられる。   Examples of the alkyl group having 1 to 20 carbon atoms having a substituted silyl group as a substituent include, for example, trimethylsilylmethyl group, trimethylsilylethyl group, trimethylsilylpropyl group, trimethylsilylbutyl group, bis (trimethylsilyl) methyl group, and bis (trimethylsilyl) ethyl. Group, bis (trimethylsilyl) propyl group, bis (trimethylsilyl) butyl group, triphenylsilylmethyl group and the like.

置換アミノ基を置換基として有する炭素原子数1〜20のアルキル基としては、例えば、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、フェニルアミノメチル基、ジフェニルアミノメチル基などがあげられる。   Examples of the alkyl group having 1 to 20 carbon atoms having a substituted amino group as a substituent include, for example, a dimethylaminomethyl group, a dimethylaminoethyl group, a dimethylaminopropyl group, a dimethylaminobutyl group, a bis (dimethylamino) methyl group, Examples thereof include bis (dimethylamino) ethyl group, bis (dimethylamino) propyl group, bis (dimethylamino) butyl group, phenylaminomethyl group, diphenylaminomethyl group and the like.

ハイドロカルビルオキシ基を置換基として有する炭素原子数1〜20のアルキル基としては、例えば、メトキシメチル基、エトキシメチル基、n−プロポキシメチル基、イソプロポキシメチル基、n−ブトキシメチル基、sec−ブトキシメチル基、tert−ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、n−プロポキシエチル基、イソプロポキシエチル基、n−ブトキシエチル基、sec−ブトキシエチル基、tert−ブトキシエチル基、フェノキシエチル基、メトキシ−n−プロピル基、エトキシ−n−プロピル基、n−プロポキシ−n−プロピル基、イソプロポキシ−n−プロピル基、n−ブトキシ−n−プロピル基、sec−ブトキシ−n−プロピル基、tert−ブトキシ−n−プロピル基、フェノキシ−n−プロピル基、メトキシイソプロピル基、エトキシイソプロピル基、n−プロポキシイソプロピル基、イソプロポキシイソプロピル基、n−ブトキシイソプロピル基、sec−ブトキシイソプロピル基、tert−ブトキシイソプロピル基、フェノキシイソプロピル基などがあげられる。   Examples of the alkyl group having 1 to 20 carbon atoms having a hydrocarbyloxy group as a substituent include, for example, a methoxymethyl group, an ethoxymethyl group, an n-propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, sec -Butoxymethyl group, tert-butoxymethyl group, phenoxymethyl group, methoxyethyl group, ethoxyethyl group, n-propoxyethyl group, isopropoxyethyl group, n-butoxyethyl group, sec-butoxyethyl group, tert-butoxyethyl Group, phenoxyethyl group, methoxy-n-propyl group, ethoxy-n-propyl group, n-propoxy-n-propyl group, isopropoxy-n-propyl group, n-butoxy-n-propyl group, sec-butoxy- n-propyl group, tert-butoxy-n-propyl group Phenoxy-n-propyl group, methoxyisopropyl group, ethoxyisopropyl group, n-propoxyisopropyl group, isopropoxyisopropyl group, n-butoxyisopropyl group, sec-butoxyisopropyl group, tert-butoxyisopropyl group, phenoxyisopropyl group, etc. It is done.

置換基を有していてもよい炭素原子数7〜20のアラルキル基としては、炭素原子数7〜20のアラルキル基、ハロゲン原子を置換基として有する炭素原子数7〜20のアラルキル基などがあげられる。   Examples of the aralkyl group having 7 to 20 carbon atoms which may have a substituent include an aralkyl group having 7 to 20 carbon atoms and an aralkyl group having 7 to 20 carbon atoms having a halogen atom as a substituent. It is done.

炭素原子数7〜20のアラルキル基としては、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(4,6−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−テトラデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基などがあげられる。   Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, and (2,3-dimethyl). (Phenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, 4,6-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) methyl group, 3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3, , 6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (Isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group , (N-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-decylphenyl) methyl group, (n-tetradecylphenyl) methyl group, naphthylmethyl group , Anthracenylmethyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, diphth Nirumechiru group, diphenylethyl group, diphenylpropyl group, diphenylbutyl group.

ハロゲン原子を置換基として有する炭素原子数7〜20のアラルキル基としては、例えば、2−フロオロベンジル基、3−フルオロベンジル基、4−フルオロベンジル基、2−クロロベンジル基、3−クロロベンジル基、4−クロロベンジル基、2−ブロモベンジル基、3−ブロモベンジル基、4−ブロモベンジル基、2−ヨードベンジル基、3−ヨードベンジル基、4−ヨードベンジル基などがあげられる。   Examples of the aralkyl group having 7 to 20 carbon atoms having a halogen atom as a substituent include, for example, 2-fluorobenzyl group, 3-fluorobenzyl group, 4-fluorobenzyl group, 2-chlorobenzyl group, 3-chlorobenzyl. Group, 4-chlorobenzyl group, 2-bromobenzyl group, 3-bromobenzyl group, 4-bromobenzyl group, 2-iodobenzyl group, 3-iodobenzyl group, 4-iodobenzyl group and the like.

置換基を有していてもよい炭素原子数6〜20のアリール基としては、炭素原子数6〜20のアリール基、ハロゲン原子を置換基として有する炭素原子数6〜20のアリール基などがあげられる。   Examples of the aryl group having 6 to 20 carbon atoms which may have a substituent include an aryl group having 6 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms having a halogen atom as a substituent. It is done.

炭素原子数6〜20のアリール基としては、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、およびアントラセニル基などがあげられる。   Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5- Xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6- Trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert-butyl Enyl, n-pentylphenyl, neopentylphenyl, n-hexylphenyl, n-octylphenyl, n-decylphenyl, n-dodecylphenyl, n-tetradecylphenyl, naphthyl, and anthracenyl Group.

ハロゲン原子を置換基として有する炭素原子数6〜20のアリール基としては、例えば、2−フロオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基などがあげられる。   Examples of the aryl group having 6 to 20 carbon atoms having a halogen atom as a substituent include, for example, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, Examples include 4-chlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2-iodophenyl group, 3-iodophenyl group, 4-iodophenyl group and the like.

として好ましくは、炭素原子数1〜20のアルキル基である。 R 1 is preferably an alkyl group having 1 to 20 carbon atoms.

式[1]のRは水素原子、ヒドロキシ基、または、置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表す。 R 2 in the formula [1] represents a hydrogen atom, a hydroxy group, or a hydrocarbyl group having 1 to 20 carbon atoms which may have a substituent.

の置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基としては、R として説明したと同様のハイドロカルビル基が用いられる。 As the hydrocarbyl group having 1 to 20 carbon atoms which may have a substituent of R 2 , the same hydrocarbyl group as described for R 1 is used.

として好ましくは、ヒドロキシ基、または、炭素原子数1〜20のアルキル基である。 R 2 is preferably a hydroxy group or an alkyl group having 1 to 20 carbon atoms.

式[1]のMは周期律表第1族、第2族、第8族、第9族、第10族、第11族、第12族、および、第13族からなる群より選ばれる金属原子を表す。 M 1 in the formula [1] is selected from the group consisting of Group 1, Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, and Group 13 of the Periodic Table Represents a metal atom.

の金属原子として好ましくは、周期律表第1族、第2族、第12族、および、第13族からなる群より選ばれる金属原子であり、より好ましくは、周期律表第1族の金属原子であり、さらに好ましくは、ナトリウム原子またはカリウム原子である。 The metal atom of M 1 is preferably a metal atom selected from the group consisting of Group 1, Group 2, Group 12, and Group 13 of the Periodic Table, and more preferably Group 1 of the Periodic Table And more preferably a sodium atom or a potassium atom.

一般式[1]で表される化合物として好ましくは、酢酸ナトリウム、プロピオン酸ナトリウム、酪酸ナトリウム、イソ酪酸ナトリウム、吉草酸ナトリウム、イソ吉草酸ナトリウム、カプロン酸ナトリウム、エナント酸ナトリウム、カプリル酸ナトリウム、ペラルゴン酸ナトリウム、カプリン酸ナトリウム、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、ペンタデシル酸ナトリウム、パルチミン酸ナトリウム、ステアリン酸ナトリウム、アラキジン酸ナトリウム、酢酸カリウム、プロピオン酸カリウム、酪酸カリウム、イソ酪酸カリウム、吉草酸カリウム、イソ吉草酸カリウム、カプロン酸カリウム、エナント酸カリウム、カプリル酸カリウム、ペラルゴン酸カリウム、カプリン酸カリウム、ラウリン酸カリウム、ミリスチン酸カリウム、ペンタデシル酸カリウム、パルチミン酸カリウム、ステアリン酸カリウム、アラキジン酸カリウム、酢酸カルシウム、プロピオン酸カルシウム、酪酸カルシウム、イソ酪酸カルシウム、吉草酸カルシウム、イソ吉草酸カルシウム、カプロン酸カルシウム、エナント酸カルシウム、カプリル酸カルシウム、ペラルゴン酸カルシウム、カプリン酸カルシウム、ラウリン酸カルシウム、ミリスチン酸カルシウム、ペンタデシル酸カルシウム、パルチミン酸カルシウム、ステアリン酸カルシウム、アラキジン酸カルシウム、酢酸鉄、プロピオン酸鉄、酪酸鉄、イソ酪酸鉄、吉草酸鉄、イソ吉草酸鉄、カプロン酸鉄、エナント酸鉄、カプリル酸鉄、ペラルゴン酸鉄、カプリン酸鉄、ラウリン酸鉄、ミリスチン酸鉄、ペンタデシル酸鉄、パルチミン酸鉄、ステアリン酸鉄、アラキジン酸鉄、酢酸コバルト、プロピオン酸コバルト、酪酸コバルト、イソ酪酸コバルト、吉草酸コバルト、イソ吉草酸コバルト、カプロン酸コバルト、エナント酸コバルト、カプリル酸コバルト、ペラルゴン酸コバルト、カプリン酸コバルト、ラウリン酸コバルト、ミリスチン酸コバルト、ペンタデシル酸コバルト、パルチミン酸コバルト、ステアリン酸コバルト、アラキジン酸コバルト、酢酸ニッケル、プロピオン酸ニッケル、酪酸ニッケル、イソ酪酸ニッケル、吉草酸ニッケル、イソ吉草酸ニッケル、カプロン酸ニッケル、エナント酸ニッケル、カプリル酸ニッケル、ペラルゴン酸ニッケル、カプリン酸ニッケル、ラウリン酸ニッケル、ミリスチン酸ニッケル、ペンタデシル酸ニッケル、パルチミン酸ニッケル、ステアリン酸ニッケル、アラキジン酸ニッケル、酢酸銅、プロピオン酸銅、酪酸銅、イソ酪酸銅、吉草酸銅、イソ吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ラウリン酸銅、ミリスチン酸銅、ペンタデシル酸銅、パルチミン酸銅、ステアリン酸銅、アラキジン酸銅、酢酸亜鉛、プロピオン酸亜鉛、酪酸亜鉛、イソ酪酸亜鉛、吉草酸亜鉛、イソ吉草酸亜鉛、カプロン酸亜鉛、エナント酸亜鉛、カプリル酸亜鉛、ペラルゴン酸亜鉛、カプリン酸亜鉛、ラウリン酸亜鉛、ミリスチン酸亜鉛、ペンタデシル酸亜鉛、パルチミン酸亜鉛、ステアリン酸亜鉛、アラキジン酸亜鉛、モノ酢酸アルミニウム、ジ酢酸アルミニウム、トリ酢酸アルミニウム、モノプロピオン酸アルミニウム、ジプロピオン酸アルミニウム、トリプロピオン酸アルミニウム、モノ酪酸アルミニウム、ジ酪酸アルミニウム、トリ酪酸アルミニウム、モノイソ酪酸アルミニウム、ジイソ酪酸アルミニウム、トリイソ酪酸アルミニウム、モノ吉草酸アルミニウム、ジ吉草酸アルミニウム、トリ吉草酸アルミニウム、モノイソ吉草酸アルミニウム、ジイソ吉草酸アルミニウム、トリイソ吉草酸アルミニウム、モノカプロン酸アルミニウム、ジカプロン酸アルミニウム、トリカプロン酸アルミニウム、モノエナント酸アルミニウム、ジエナント酸アルミニウム、トリエナント酸アルミニウム、モノカプリル酸アルミニウム、ジカプリル酸アルミニウム、トリカプリル酸アルミニウム、モノペラルゴン酸アルミニウム、ジペラルゴン酸アルミニウム、トリペラルゴン酸アルミニウム、モノカプリン酸アルミニウム、ジカプリン酸アルミニウム、トリカプリン酸アルミニウム、モノラウリン酸アルミニウム、ジラウリン酸アルミニウム、トリラウリン酸アルミニウム、モノミリスチン酸アルミニウム、ジミリスチン酸アルミニウム、トリミリスチン酸アルミニウム、モノペンタデシル酸アルミニウム、ジペンタデシル酸アルミニウム、トリペンタデシル酸アルミニウム、モノパルチミン酸アルミニウム、ジパルチミン酸アルミニウム、トリパルチミン酸アルミニウム、モノステアリン酸アルミニウム、ジステアリン酸アルミニウム、トリステアリン酸アルミニウム、モノアラキジン酸アルミニウム、ジアラキジン酸アルミニウム、トリアラキジン酸アルミニウム、であり、さらに好ましくは、酢酸ナトリウム、プロピオン酸ナトリウム、酪酸ナトリウム、イソ酪酸ナトリウム、吉草酸ナトリウム、イソ吉草酸ナトリウム、カプロン酸ナトリウム、エナント酸ナトリウム、カプリル酸ナトリウム、ペラルゴン酸ナトリウム、カプリン酸ナトリウム、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、ペンタデシル酸ナトリウム、パルチミン酸ナトリウム、ステアリン酸ナトリウム、アラキジン酸ナトリウム、である。   The compound represented by the general formula [1] is preferably sodium acetate, sodium propionate, sodium butyrate, sodium isobutyrate, sodium valerate, sodium isovalerate, sodium caproate, sodium enanthate, sodium caprylate, pelargon Sodium, sodium caprate, sodium laurate, sodium myristate, sodium pentadecylate, sodium palmitate, sodium stearate, sodium arachidate, potassium acetate, potassium propionate, potassium butyrate, potassium isobutyrate, potassium valerate, iso Potassium valerate, potassium caproate, potassium enanthate, potassium caprylate, potassium pelargonate, potassium caprate, potassium laurate, potassium myristate, Potassium ntadecylate, potassium palmitate, potassium stearate, potassium arachidate, calcium acetate, calcium propionate, calcium butyrate, calcium isobutyrate, calcium valerate, calcium isovalerate, calcium caproate, calcium enanthate, calcium caprylate , Calcium pelargonate, calcium caprate, calcium laurate, calcium myristate, calcium pentadecylate, calcium palmitate, calcium stearate, calcium arachidate, iron acetate, iron propionate, iron butyrate, iron isobutyrate, iron valerate, isoyoshichi Iron valerate, iron caproate, iron enanthate, iron caprylate, iron pelargonate, iron caprate, iron laurate, iron myristate, iron pentadecylate, iron palmitate, Iron teaate, iron arachidate, cobalt acetate, cobalt propionate, cobalt butyrate, cobalt isobutyrate, cobalt valerate, cobalt isovalerate, cobalt caproate, cobalt enanthate, cobalt caprylate, cobalt pelargonate, cobalt caprate , Cobalt laurate, cobalt myristate, cobalt pentadecylate, cobalt palmitate, cobalt stearate, cobalt arachidate, nickel acetate, nickel propionate, nickel butyrate, nickel isobutyrate, nickel valerate, nickel isovalerate, caproic acid Nickel, nickel enanthate, nickel caprylate, nickel pelargonate, nickel caprate, nickel laurate, nickel myristate, nickel pentadecylate, nickel palmitate, Nickel allate, nickel arachidate, copper acetate, copper propionate, copper butyrate, copper isobutyrate, copper valerate, copper isovalerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper caprate , Copper laurate, copper myristate, copper pentadecylate, copper palmitate, copper stearate, copper arachidate, zinc acetate, zinc propionate, zinc butyrate, zinc isobutyrate, zinc valerate, zinc isovalerate, caproic acid Zinc, zinc enanthate, zinc caprylate, zinc pelargonate, zinc caprate, zinc laurate, zinc myristate, zinc pentadecylate, zinc palmitate, zinc stearate, zinc arachidate, aluminum monoacetate, aluminum diacetate, Aluminum triacetate, aluminum monopropionate, aluminum dipropionate Aluminum tripropionate, aluminum monobutyrate, aluminum dibutyrate, aluminum tributyrate, aluminum monoisobutyrate, aluminum diisobutyrate, aluminum triisobutyrate, aluminum monovalerate, aluminum divalerate, aluminum trivalerate, aluminum monoisovalerate, diiso Aluminum valerate, aluminum triisovalerate, aluminum monocaproate, aluminum dicaproate, aluminum tricaproate, aluminum monoenanthate, aluminum dienanthate, aluminum trienanthate, aluminum monocaprylate, aluminum dicaprylate, aluminum tricaprylate, aluminum monopelargonate , Aluminum dipelargonate, aluminum tripelargonate, monocap Aluminum phosphate, aluminum dicaprate, aluminum tricaprate, aluminum monolaurate, aluminum dilaurate, aluminum trilaurate, aluminum monomyristate, aluminum dimyristate, aluminum trimyristate, aluminum monopentadecylate, aluminum tripentadecylate Aluminum pentadecylate, aluminum monopaltimate, aluminum dipalmitate, aluminum tripartitate, aluminum monostearate, aluminum distearate, aluminum tristearate, aluminum monoarachidate, aluminum diarachidate, aluminum triarachidate, and more preferably Is sodium acetate, sodium propionate, Sodium butyrate, sodium isobutyrate, sodium valerate, sodium isovalerate, sodium caproate, sodium enanthate, sodium caprylate, sodium pelargonate, sodium caprate, sodium laurate, sodium myristate, sodium pentadecylate, palmitic acid Sodium, sodium stearate, sodium arachidate.

コーティング方法
本発明のコーティング方法としては、コーティング液を反応器の内壁面に付着させ溶媒を除去する方法、または、コーティング液を別途用意したプレート上に塗布、乾燥して予めフィルムを作製しておき、これを反応器の内壁面に貼り付る方法などが利用できる。
Coating method As the coating method of the present invention, a coating liquid is attached to the inner wall surface of the reactor to remove the solvent, or a coating liquid is applied on a separately prepared plate and dried to prepare a film in advance. A method of attaching this to the inner wall surface of the reactor can be used.

コーティング液を反応器の内壁面に付着させ溶媒を除去する方法において、特にコーティング液を反応器の内壁面に付着させる方法としては、各種方法で行うことができる。例えば、コーティング液中を、スプレーガンにて霧化し反応器の内壁面に吹き付ける方法(スプレーコート)、コーティング液を、刷毛、ローラー、さらし等に含ませて、反応器の内壁面に塗布する方法、反応器をコーティング液で満たし、所定時間経過後コーティング液を抜き出す方法、ピペット、シリンジ、スポイト等を用いて、反応器の内壁に、コーティング液を流し掛ける等の方法が、好適に使用可能である。   In the method of attaching the coating liquid to the inner wall surface of the reactor and removing the solvent, in particular, as the method of attaching the coating liquid to the inner wall surface of the reactor, various methods can be used. For example, the coating liquid is atomized with a spray gun and sprayed onto the inner wall surface of the reactor (spray coating), and the coating liquid is applied to the inner wall surface of the reactor by including it in a brush, roller, exposed surface, etc. The method of filling the reactor with the coating liquid and extracting the coating liquid after a predetermined time has passed, and the method of pouring the coating liquid on the inner wall of the reactor using a pipette, syringe, dropper, etc. can be suitably used. is there.

コーティング液は、前記コーティング化合物と溶媒とを含む液状の組成物である。ここで、溶媒としては、水、脂肪族ハイドロカルビル溶媒、芳香族ハイドロカルビル溶媒等の非極性溶媒、ハロゲン化物溶媒、エーテル系溶媒、アルコール系溶媒、フェノール系溶媒、カルボニル系溶媒、リン酸誘導体、ニトリル系溶媒、ニトロ化合物、アミン系溶媒、および硫黄化合物等の極性溶媒が挙げられ、好ましくは、水、アルコール系溶媒であり、特に好ましくはアルコール系溶媒である。希釈液の濃度としては、通常0.01wt%〜10wt%であり、好ましくは0.05wt%〜1wt%である。溶媒を除去する方法としては、通常、室温〜200℃の温度範囲、10分〜20時間の時間範囲で保持することにより溶媒を乾燥蒸発させることができる。残留溶媒は、必要により加熱条件下、減圧乾燥または窒素などの不活性ガスで掃引することにより除去することが好ましい。
コーティング済反応器におけるコーティング層の厚みは、通常5mm以下であり、好ましくは1mm以下である。
反応器の内壁面積に対するコーティング化合物の量として、好ましくは0.01〜50g/mであり、より好ましくは0.1〜5g/mである。
The coating liquid is a liquid composition containing the coating compound and a solvent. Here, as the solvent, water, non-polar solvents such as aliphatic hydrocarbyl solvents, aromatic hydrocarbyl solvents, halide solvents, ether solvents, alcohol solvents, phenol solvents, carbonyl solvents, phosphoric acid Examples include polar solvents such as derivatives, nitrile solvents, nitro compounds, amine solvents, and sulfur compounds, preferably water and alcohol solvents, and particularly preferably alcohol solvents. The concentration of the diluent is usually 0.01 wt% to 10 wt%, preferably 0.05 wt% to 1 wt%. As a method for removing the solvent, the solvent can be dried and evaporated usually by maintaining the temperature in a temperature range of room temperature to 200 ° C. and a time range of 10 minutes to 20 hours. The residual solvent is preferably removed by drying under reduced pressure or sweeping with an inert gas such as nitrogen under heating conditions as necessary.
The thickness of the coating layer in the coated reactor is usually 5 mm or less, preferably 1 mm or less.
The amount of the coating compound with respect to the inner wall area of the reactor is preferably 0.01 to 50 g / m 2 , more preferably 0.1 to 5 g / m 2 .

本発明のコーティング済反応器は、様々の化学反応用に用いることができるが、好ましい用途としては、付加重合用途である。 The coated reactor of the present invention can be used for various chemical reactions, but a preferred application is an addition polymerization application.

遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)
本発明に用いられる遷移金属化合物(A)またはそのμ―オキソタイプの遷移金属化合物二量体(A’)としては、活性化剤(B)と合わせて用いることにより、あるいは必要に応じて有機アルミニウム化合物(C)と合わせて用いることにより付加重合活性を示す遷移金属化合物であれば特に限定されないが、通常、メタロセン錯体等の遷移金属化合物が使用される。 なお、本発明の遷移金属化合物は、従来の三塩化チタンや四塩化チタンを用いる固体触媒(通常、チーグラー・ナッタ触媒と呼ばれる触媒)と区別される触媒であって、メタロセン錯体等の遷移金属化合物を用いる触媒を意味する。
Transition metal compound (A) or its μ-oxo type transition metal compound dimer (A ′)
The transition metal compound (A) or its μ-oxo type transition metal compound dimer (A ′) used in the present invention can be used together with the activator (B), or organically as necessary. Although it will not specifically limit if it is a transition metal compound which shows addition polymerization activity by using together with an aluminum compound (C), Usually, transition metal compounds, such as a metallocene complex, are used. The transition metal compound of the present invention is a catalyst that is distinguished from conventional solid catalysts (typically called Ziegler-Natta catalysts) using titanium trichloride or titanium tetrachloride, and is a transition metal compound such as a metallocene complex. Means a catalyst using

かかる遷移金属化合物としては、具体的には下記式[2]で表される遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物の二量体(A’)が例示される。
1 a1 b [2]
(式中、Mは周期律表第4族の遷移金属原子である。L1はシクロペンタジエン形アニオン骨格を有する基またはヘテロ原子を含有する基であり、複数のL1は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、ハイドロカルビル基(但し、シクロペンタジエン形アニオン骨格を有する基を除く。)またはハイドロカルビルオキシ基である。aは0<a≦3を満足する数を、bは0<b≦3を満足する数を表す。)
Specific examples of such a transition metal compound include a transition metal compound (A) represented by the following formula [2] or a dimer (A ′) of the μ-oxo type transition metal compound.
L 1 a M 2 X 1 b [2]
(In the formula, M 2 is a transition metal atom of Group 4 of the periodic table. L 1 is a group having a cyclopentadiene-type anion skeleton or a group containing a hetero atom, and a plurality of L 1 are directly connected to each other. Or may be linked via a residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom, wherein X 1 is a halogen atom, a hydrocarbyl group (provided that (Excluding a group having a cyclopentadiene type anion skeleton) or a hydrocarbyloxy group, a represents a number satisfying 0 <a ≦ 3, and b represents a number satisfying 0 <b ≦ 3.)

式[2]のMとしては、チタン原子、ジルコニウム原子、ハフニウム原子であり、より好ましくはジルコニウム原子である。 M 2 in the formula [2] is a titanium atom, a zirconium atom, or a hafnium atom, and more preferably a zirconium atom.

式[2]のL1のシクロペンタジエン形アニオン骨格を有する基としては、例えば、(置換)シクロペンタジエニル基、(置換)インデニル基および(置換)フルオレニル基を挙げることができる。具体的には、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、n−ブチルシクロペンタジエニル基、tert−ブチルシクロペンタジエニル基、1,2−ジメチルシクロペンタジエニル基、1,3−ジメチルシクロペンタジエニル基、1−メチル−2−エチルシクロペンタジエニル基、1−メチル−3−エチルシクロペンタジエニル基、1−tert−ブチル−2−メチルシクロペンタジエニル基、1−tert−ブチル−3−メチルシクロペンタジエニル基、1−メチル−2−イソプロピルシクロペンタジエニル基、1−メチル−3−イソプロピルシクロペンタジエニル基、1−メチル−2−n−ブチルシクロペンタジエニル基、1−メチル−3−n−ブチルシクロペンタジエニル基、η5−1,2,3−トリメチルシクロペンタジエニル基、η5−1,2,4−トリメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基、インデニル基、4,5,6,7−テトラヒドロインデニル基、2−メチルインデニル基、3−メチルインデニル基、4−メチルインデニル基、5−メチルインデニル基、6−メチルインデニル基、7−メチルインデニル基、2−tert−ブチルインデニル基、3−tert−ブチルインデニル基、4−tert−ブチルインデニル基、5−tert−ブチルインデニル基、6−tert−ブチルインデニル基、7−tert−ブチルインデニル基、2,3−ジメチルインデニル基、4,7−ジメチルインデニル基、2,4,7−トリメチルインデニル基、2−メチル−4−イソプロピルインデニル基、4,5−ベンズインデニル基、2−メチル−4,5−ベンズインデニル基、4−フェニルインデニル基、2−メチル−5−フェニルインデニル基、2−メチル−4−フェニルインデニル基、2−メチル−4−ナフチルインデニル基、フルオレニル基、2,7−ジメチルフルオレニル基および2,7−ジ−tert−ブチルフルオレニル基を例示することができる。 Examples of the group having a cyclopentadiene-type anion skeleton of L 1 in the formula [2] include (substituted) cyclopentadienyl group, (substituted) indenyl group, and (substituted) fluorenyl group. Specifically, cyclopentadienyl group, methylcyclopentadienyl group, ethylcyclopentadienyl group, n-butylcyclopentadienyl group, tert-butylcyclopentadienyl group, 1,2-dimethylcyclopenta Dienyl group, 1,3-dimethylcyclopentadienyl group, 1-methyl-2-ethylcyclopentadienyl group, 1-methyl-3-ethylcyclopentadienyl group, 1-tert-butyl-2-methyl Cyclopentadienyl group, 1-tert-butyl-3-methylcyclopentadienyl group, 1-methyl-2-isopropylcyclopentadienyl group, 1-methyl-3-isopropylcyclopentadienyl group, 1-methyl -2-n-butylcyclopentadienyl group, 1-methyl -3-n-butylcyclopentadienyl group, eta 5 -1 2,3-trimethyl cyclopentadienyl group, eta 5-1,2,4-trimethyl cyclopentadienyl group, tetramethylcyclopentadienyl group, pentamethylcyclopentadienyl group, indenyl group, 4,5, 6,7-tetrahydroindenyl group, 2-methylindenyl group, 3-methylindenyl group, 4-methylindenyl group, 5-methylindenyl group, 6-methylindenyl group, 7-methylindenyl group 2-tert-butylindenyl group, 3-tert-butylindenyl group, 4-tert-butylindenyl group, 5-tert-butylindenyl group, 6-tert-butylindenyl group, 7-tert- Butyl indenyl group, 2,3-dimethyl indenyl group, 4,7-dimethyl indenyl group, 2,4,7-trimethyl indenyl group, -Methyl-4-isopropylindenyl group, 4,5-benzindenyl group, 2-methyl-4,5-benzindenyl group, 4-phenylindenyl group, 2-methyl-5-phenylindenyl group, 2-methyl- Examples thereof include 4-phenylindenyl group, 2-methyl-4-naphthylindenyl group, fluorenyl group, 2,7-dimethylfluorenyl group and 2,7-di-tert-butylfluorenyl group. .

式[2]のL1に用いられるシクロペンタジエン型アニオン骨格を有する基の多座性ηは特に限定されなく、シクロペンタジエン型アニオン骨格を有する基のとりうるいずれの値でもよい。例えば、5座、4座、3座、2座、単座が挙げられ、好ましくは5座、3座または単座であり、より好ましくは5座または3座である。 The polydentate η of the group having a cyclopentadiene type anion skeleton used for L 1 in the formula [2] is not particularly limited, and may be any value that can be taken by the group having a cyclopentadiene type anion skeleton. For example, 5 seats, 4 seats, 3 seats, 2 seats and single seats are mentioned, preferably 5 seats, 3 seats or single seats, more preferably 5 seats or 3 seats.

式[2]におけるL1のヘテロ原子を含有する基におけるヘテロ原子としては、例えば、酸素原子、硫黄原子、窒素原子、リン原子を挙げることができ、かかる基としては、アルコキシ基、アリールオキシ基、チオアルコキシ基、チオアリールオキシ基、アルキルアミノ基、アリールアミノ基、アルキルホスフィノ基、アリールホスフィノ基、キレート性配位子、あるいは酸素原子、硫黄原子、窒素原子および/またはリン原子を環内に有する芳香族複素環基もしくは脂肪族複素環基が好ましい。 Examples of the hetero atom in the group containing the hetero atom of L 1 in the formula [2] include an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. Examples of such a group include an alkoxy group and an aryloxy group. , A thioalkoxy group, a thioaryloxy group, an alkylamino group, an arylamino group, an alkylphosphino group, an arylphosphino group, a chelating ligand, or a ring of oxygen, sulfur, nitrogen and / or phosphorus atoms An aromatic heterocyclic group or an aliphatic heterocyclic group is preferable.

式[2]におけるL1のヘテロ原子を含有する基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、2−メチルフェノキシ基,2,6−ジメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、2−エチルフェノキシ基、4−n−プロピルフェノキシ基、2−イソプロピルフェノキシ基、2,6−ジイソプロピルフェノキシ基、4−sec−ブチルフェノキシ基、4−tert−ブチルフェノキシ基、2,6−ジ−sec−ブチルフェノキシ基、2−tert−ブチル−4−メチルフェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、4−メトキシフェノキシ基、2,6−ジメトキシフェノキシ基、3,5−ジメトキシフェノキシ基、2−クロロフェノキシ基、4−ニトロソフェノキシ基、4−ニトロフェノキシ基、2−アミノフェノキシ基、3−アミノフェノキシ基、4−アミノチオフェノキシ基、2,3,6−トリクロロフェノキシ基、2,4,6−トリフルオロフェノキシ基、チオメトキシ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジフェニルアミノ基、イソプロピルアミノ基、tert−ブチルアミノ基、ピロリル基、ジメチルホスフィノ基、2−(2−オキシ−1−プロピル)フェノキシ基、カテコール、レゾルシノール、4−イソプロピルカテコール、3−メトキシカテコール、1,8−ジヒドロキシナフチル基、1,2−ジヒドロキシナフチル基、2,2’−ビフエニルジオール基、1,1’−ビ−2−ナフトール基、2,2’−ジヒドロキシ−6,6’−ジメチルビフェニル基、4,4’,6,6’−テトラ−tert−ブチル−2,2’メチレンジフェノキシ基、および4,4’,6,6’−テトラメチル−2,2’−イソブチリデンジフェノキシ基を挙げることができる。 Examples of the group containing a hetero atom of L 1 in the formula [2] include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a phenoxy group, a 2-methylphenoxy group, a 2,6-dimethylphenoxy group, 2, 4,6-trimethylphenoxy group, 2-ethylphenoxy group, 4-n-propylphenoxy group, 2-isopropylphenoxy group, 2,6-diisopropylphenoxy group, 4-sec-butylphenoxy group, 4-tert-butylphenoxy group Group, 2,6-di-sec-butylphenoxy group, 2-tert-butyl-4-methylphenoxy group, 2,6-di-tert-butylphenoxy group, 4-methoxyphenoxy group, 2,6-dimethoxyphenoxy group Group, 3,5-dimethoxyphenoxy group, 2-chlorophenoxy group, 4-nitrosophenoxy group 4-nitrophenoxy group, 2-aminophenoxy group, 3-aminophenoxy group, 4-aminothiophenoxy group, 2,3,6-trichlorophenoxy group, 2,4,6-trifluorophenoxy group, thiomethoxy group, Dimethylamino group, diethylamino group, dipropylamino group, diphenylamino group, isopropylamino group, tert-butylamino group, pyrrolyl group, dimethylphosphino group, 2- (2-oxy-1-propyl) phenoxy group, catechol, Resorcinol, 4-isopropylcatechol, 3-methoxycatechol, 1,8-dihydroxynaphthyl group, 1,2-dihydroxynaphthyl group, 2,2′-biphenyldiol group, 1,1′-bi-2-naphthol group, 2,2′-dihydroxy-6,6′-dimethylbiphenyl group, 4,4 ′, 6 6'-tetra -tert- butyl 2,2 'methylenedianiline phenoxy group, and 4,4', mention may be made of 6,6'-tetramethyl-2,2'-isobutenyl dust Denji phenoxy group.

また、上記ヘテロ原子を含有する基としては、例えば、下記式[6]で表される基も挙げることができる。
3P=N− [6]
(式中、Rはそれぞれ独立に水素原子、ハロゲン原子またはハイドロカルビル基を表し、複数のRは互いに同じであっても異なっていてもよく、複数のRのうち、任意の2つ以上が互いに結合していてもよく、環構造を形成していてもよい。)
Moreover, as group containing the said hetero atom, group represented by following formula [6] can also be mentioned, for example.
R 5 3 P = N- [6]
(In the formula, each R 5 independently represents a hydrogen atom, a halogen atom or a hydrocarbyl group, and the plurality of R 5 may be the same or different from each other, and any two of the plurality of R 5 may be selected. Two or more may be bonded to each other and may form a ring structure.)

前記式[6]におけるRの具体例としては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基、シクロプロピル基、シクロブチル基、シクロへプチル基、シクロヘキシル基、フェニル基、1−ナフチル基、2−ナフチル基、およびベンジル基を例示することができる。 Specific examples of R 5 in the formula [6] include hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert- Examples thereof include a butyl group, a cyclopropyl group, a cyclobutyl group, a cycloheptyl group, a cyclohexyl group, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and a benzyl group.

更に前記ヘテロ原子を含有する基としては下記式[7]で表される基も例示することができる。   Further, examples of the group containing a hetero atom include a group represented by the following formula [7].

Figure 2012117032
Figure 2012117032

(式中、Rはそれぞれ独立に、水素原子、ハロゲン原子、ハイドロカルビル基、ハロゲン化ハイドロカルビル基、ハイドロカルビルオキシ基、シリル基またはアミノ基を表し、複数のRは互いに同じであっても異なっていてもよく、複数のRのうち、任意の2つ以上が互いに結合していてもよく、環構造を形成していてもよい。) (In the formula, each R 6 independently represents a hydrogen atom, a halogen atom, a hydrocarbyl group, a halogenated hydrocarbyl group, a hydrocarbyloxy group, a silyl group, or an amino group, and the plurality of R 6 are the same as each other. Or any two or more of R 6 may be bonded to each other and may form a ring structure.)

上記式[7]におけるRの具体例として、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、フェニル基、1−ナフチル基、2−ナフチル基、tert−ブチル基、2,6−ジメチルフェニル基、2−フルオレニル基、2−メチルフェニル基、4−トリフルオロメチルフェニル基、4−メトキシフェニル基、4−ピリジル基、シクロヘキシル基、2−イソプロピルフェニル基、ベンジル基、メチル基、トリエチルシリル基、ジフェニルメチルシリル基、1−メチル−1−フェニルエチル基、1,1−ジメチルプロピル基、2−クロロフェニル基、およびペンタフルオロフェニル基を例示することができる。 Specific examples of R 6 in the above formula [7] include hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, phenyl group, 1-naphthyl group, 2-naphthyl group, tert-butyl group, 2,6- Dimethylphenyl group, 2-fluorenyl group, 2-methylphenyl group, 4-trifluoromethylphenyl group, 4-methoxyphenyl group, 4-pyridyl group, cyclohexyl group, 2-isopropylphenyl group, benzyl group, methyl group, triethyl Examples include a silyl group, a diphenylmethylsilyl group, a 1-methyl-1-phenylethyl group, a 1,1-dimethylpropyl group, a 2-chlorophenyl group, and a pentafluorophenyl group.

前記式[2]におけるL1のキレート性配位子とは、複数の配位部位を有する配位子を指し、その配位子としては、例えば、アセチルアセトナート、ジイミン、オキサゾリン、ビスオキサゾリン、テルピリジン、アシルヒドラゾン、ジエチレントリアミン、トリエチレンテトラミン、ポルフィリン、クラウンエーテル、およびクリプタートを挙げることができる。 The chelating ligand of L 1 in the formula [2] refers to a ligand having a plurality of coordination sites. Examples of the ligand include acetylacetonate, diimine, oxazoline, bisoxazoline, Mention may be made of terpyridine, acyl hydrazones, diethylenetriamine, triethylenetetramine, porphyrin, crown ether, and cryptate.

前記式[2]におけるL1の複素環基としては、例えば、ピリジル基、N−置換イミダゾリル基およびN−置換インダゾリル基を挙げることができ、なかでも、好ましくはピリジル基である。 Examples of the heterocyclic group represented by L 1 in the formula [2] include a pyridyl group, an N-substituted imidazolyl group, and an N-substituted indazolyl group, and among them, a pyridyl group is preferable.

前記式[2]において、複数のL1が、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子またはリン原子を含有する残基を介して連結されている場合(すなわち、シクロペンタジエン形アニオン骨格を有する基同士がその残基を介して連結されている場合、ヘテロ原子を含有する基同士がその残基を介して連結されている場合、またはシクロペンタジエン形アニオン骨格を有する基とヘテロ原子を含有する基とがその残基を介して連結されている場合)、その残基として好ましくは、2つのL1と結合する原子が炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子またはリン原子であって、2つのL1を結合させる最小原子数が3以下の2価の残基である。その残基として、メチレン基、エチレン基およびプロピレン基等のアルキレン基;ジメチルメチレン基(イソプロピリデン基)およびジフェニルメチレン基等の置換アルキレン基;シリレン基、ジメチルシリレン基、ジエチルシリレン基、ジフェニルシリレン基、テトラメチルジシリレン基、およびジメトキシシリレン基等の置換シリレン基;窒素原子、酸素原子、硫黄原子、およびリン原子等のヘテロ原子を例示することができる。なかでも、特に好ましくは、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、ジフェニルメチレン基、ジメチルシリレン基、ジエチルシリレン基、ジフェニルシリレン基またはジメトキシシリレン基である。 In the formula [2], when a plurality of L 1 are linked via a residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom (that is, a cyclopentadiene anion When a group having a skeleton is linked via its residue, a group containing a hetero atom is linked via its residue, or a group having a cyclopentadiene-type anion skeleton and a hetero atom A group containing a hydrogen atom), and as the residue, preferably the two atoms bonded to L 1 are a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or It is a phosphorus atom and is a divalent residue having a minimum atomic number of 3 or less for bonding two L 1 . As the residue, alkylene groups such as methylene group, ethylene group and propylene group; substituted alkylene groups such as dimethylmethylene group (isopropylidene group) and diphenylmethylene group; silylene group, dimethylsilylene group, diethylsilylene group, diphenylsilylene group And substituted silylene groups such as tetramethyldisilene group and dimethoxysilylene group; and heteroatoms such as nitrogen atom, oxygen atom, sulfur atom and phosphorus atom. Among these, a methylene group, an ethylene group, a dimethylmethylene group (isopropylidene group), a diphenylmethylene group, a dimethylsilylene group, a diethylsilylene group, a diphenylsilylene group, or a dimethoxysilylene group is particularly preferable.

前記式[2]におけるX1のハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、およびヨウ素原子を挙げることができる。X1のハイドロカルビル基としては、例えば、アルキル基、アラルキル基、アリール基、およびアルケニル基を挙げることができ、なかでも、好ましくは、炭素原子数1〜20のアルキル基、炭素原子数7〜20のアラルキル基、炭素原子数6〜20のアリール基または炭素原子数3〜20のアルケニル基である。 Examples of the halogen atom for X 1 in the formula [2] include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the hydrocarbyl group represented by X 1 include an alkyl group, an aralkyl group, an aryl group, and an alkenyl group. Among them, an alkyl group having 1 to 20 carbon atoms, preferably 7 carbon atoms is preferable. An aralkyl group having 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkenyl group having 3 to 20 carbon atoms.

炭素原子数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、アミル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、およびn−エイコシル基を挙げることができ、なかでも、より好ましくはメチル基、エチル基、イソプロピル基、tert−ブチル基、イソブチル基またはアミル基である。これらのアルキル基はいずれも、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等のハロゲン原子で置換されていてもよい。ハロゲン原子で置換されたアルキル基としては、例えば、フルオロメチル基、トリフルオロメチル基、クロロメチル基、トリクロロメチル基、フルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パークロロプロピル基、パークロロブチル基、およびパーブロモプロピル基を挙げることができる。またこれらのアルキル基は、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, and n-pentyl group. , Neopentyl group, amyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, and n-eicosyl group, and more preferably methyl. Group, ethyl group, isopropyl group, tert-butyl group, isobutyl group or amyl group. Any of these alkyl groups may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl group substituted with a halogen atom include a fluoromethyl group, a trifluoromethyl group, a chloromethyl group, a trichloromethyl group, a fluoroethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, and a perfluorobutyl group. Mention may be made of fluorohexyl, perfluorooctyl, perchloropropyl, perchlorobutyl and perbromopropyl groups. These alkyl groups may be substituted with an alkoxy group such as a methoxy group and an ethoxy group, an aryloxy group such as a phenoxy group, or an aralkyloxy group such as a benzyloxy group.

炭素原子数7〜20のアラルキル基としては、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(3,5−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−ドデシルフェニル)メチル基、ナフチルメチル基、およびアントラセニルメチル基を挙げることができ、より好ましくはベンジル基である。これらのアラルキル基は、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, and (2,3-dimethyl). (Phenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, 3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) methyl group, 3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3, , 6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (Isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group , (N-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-dodecylphenyl) methyl group, naphthylmethyl group, and anthracenylmethyl group More preferably, it is a benzyl group. These aralkyl groups include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as methoxy group and ethoxy group, aryloxy groups such as phenoxy group, and aralkyloxy groups such as benzyloxy group. May be substituted.

炭素原子数6〜20のアリール基としては、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、およびアントラセニル基を挙げることができ、より好ましくはフェニル基である。これらのアリール基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5- Xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6- Trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, sec-butylphenyl group, tert-butyl Nenyl, n-pentylphenyl, neopentylphenyl, n-hexylphenyl, n-octylphenyl, n-decylphenyl, n-dodecylphenyl, n-tetradecylphenyl, naphthyl, and anthracenyl Group, and more preferably a phenyl group. These aryl groups include fluorine atoms, chlorine atoms, bromine atoms, halogen atoms such as iodine atoms, alkoxy groups such as methoxy and ethoxy groups, aryloxy groups such as phenoxy groups, and aralkyloxy groups such as benzyloxy groups. May be substituted.

炭素原子数3〜20のアルケニル基としては、例えば、アリル基、メタリル基、クロチル基、1,3−ジフェニル−2−プロペニル基を挙げることができ、なかでも、より好ましくはアリル基またはメタリル基である。   Examples of the alkenyl group having 3 to 20 carbon atoms include an allyl group, a methallyl group, a crotyl group, and a 1,3-diphenyl-2-propenyl group, and more preferably an allyl group or a methallyl group. It is.

一般式[2]におけるX1のハイドロカルビルオキシ基としては、例えば、アルコキシ基、アラルキルオキシ基およびアリールオキシ基を挙げることができ、なかでも、好ましくは、炭素原子数1〜20のアルコキシ基、炭素原子数7〜20のアラルキルオキシ基または炭素原子数6〜20のアリールオキシ基である。 Examples of the hydrocarbyloxy group represented by X 1 in the general formula [2] include an alkoxy group, an aralkyloxy group, and an aryloxy group. Among them, an alkoxy group having 1 to 20 carbon atoms is preferable. , An aralkyloxy group having 7 to 20 carbon atoms or an aryloxy group having 6 to 20 carbon atoms.

炭素原子数1〜20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、およびn−イコソキシ基を挙げることができ、なかでも、好ましくはメトキシ基、エトキシ基、イソプロポキシ基、またはtert−ブトキシ基である。これらのアルコキシ基は、フッ素原子、塩素原子、臭素原子およびヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentoxy, and neopentoxy. Group, n-hexoxy group, n-octoxy group, n-dodesoxy group, n-pentadesoxy group, and n-icosoxy group, and among them, preferably methoxy group, ethoxy group, isopropoxy group, or tert. -Butoxy group. These alkoxy groups are fluorine atoms, chlorine atoms, halogen atoms such as bromine atoms and iodine atoms, alkoxy groups such as methoxy groups and ethoxy groups, aryloxy groups such as phenoxy groups, and aralkyloxy groups such as benzyloxy groups. May be substituted.

炭素原子数7〜20のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2、3−ジメチルフェニル)メトキシ基、(2、4−ジメチルフェニル)メトキシ基、(2、5−ジメチルフェニル)メトキシ基、(2、6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、ナフチルメトキシ基、およびアントラセニルメトキシ基を挙げることができ、なかでも、より好ましくはベンジルオキシ基である。これらのアラルキルオキシ基は、フッ素原子、塩素原子、臭素原子およびヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   Examples of the aralkyloxy group having 7 to 20 carbon atoms include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4-methylphenyl) methoxy group, (2,3 -Dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group, (3,4-dimethylphenyl) methoxy group , (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, (2,3,6-trimethylphenyl) methoxy group , (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) methoxy group, (3,4,5-trimethyl) Ruphenyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) Methoxy group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (sec-butylphenyl) methoxy Group, (tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group, naphthylmethoxy group, and anthracenylmethoxy group Among them, a benzyloxy group is more preferable. These aralkyloxy groups include fluorine atoms, chlorine atoms, halogen atoms such as bromine atoms and iodine atoms, alkoxy groups such as methoxy groups and ethoxy groups, aryloxy groups such as phenoxy groups, and aralkyloxy groups such as benzyloxy groups. May be substituted.

炭素原子数6〜20のアリールオキシ基としては、例えば、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2、3−ジメチルフェノキシ基、2、4−ジメチルフェノキシ基、2、5−ジメチルフェノキシ基、2、6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4−メチルフェノキシ基、2−tert−ブチル−5−メチルフェノキシ基、2−tert−ブチル−6−メチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、2−tert−ブチル−3,4−ジメチルフェノキシ基、2−tert−ブチル−3,5−ジメチルフェノキシ基、2−tert−ブチル−3,6−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−3−メチルフェノキシ基、2−tert−ブチル−4,5−ジメチルフェノキシ基、2,6−ジ−tert−ブチル−4−メチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2−tert−ブチル−3,4,5−トリメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2−tert−ブチル−3,4,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,4−ジメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、2−tert−ブチル−3,5,6−トリメチルフェノキシ基、2,6−ジ−tert−ブチル−3,5−ジメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、およびアントラセノキシ基を挙げることができる。これらのアリールオキシ基は、フッ素原子、塩素原子、臭素原子およびヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,3-dimethylphenoxy group, and 2,4-dimethylphenoxy group. Group, 2,5-dimethylphenoxy group, 2,6-dimethylphenoxy group, 3,4-dimethylphenoxy group, 3,5-dimethylphenoxy group, 2-tert-butyl-3-methylphenoxy group, 2-tert- Butyl-4-methylphenoxy group, 2-tert-butyl-5-methylphenoxy group, 2-tert-butyl-6-methylphenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy Group, 2,3,6-trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 2,4,6-trimethyl Ruphenoxy group, 2-tert-butyl-3,4-dimethylphenoxy group, 2-tert-butyl-3,5-dimethylphenoxy group, 2-tert-butyl-3,6-dimethylphenoxy group, 2,6- Di-tert-butyl-3-methylphenoxy group, 2-tert-butyl-4,5-dimethylphenoxy group, 2,6-di-tert-butyl-4-methylphenoxy group, 3,4,5-trimethylphenoxy group Group, 2,3,4,5-tetramethylphenoxy group, 2-tert-butyl-3,4,5-trimethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2-tert-butyl- 3,4,6-trimethylphenoxy group, 2,6-di-tert-butyl-3,4-dimethylphenoxy group, 2,3,5,6-tetramethylphenoxy group Group, 2-tert-butyl-3,5,6-trimethylphenoxy group, 2,6-di-tert-butyl-3,5-dimethylphenoxy group, pentamethylphenoxy group, ethylphenoxy group, n-propylphenoxy group , Isopropylphenoxy group, n-butylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group, n-hexylphenoxy group, n-octylphenoxy group, n-decylphenoxy group, n-tetradecylphenoxy group, naphthoxy group And anthracenoxy group. These aryloxy groups include fluorine atoms, chlorine atoms, halogen atoms such as bromine atoms and iodine atoms, alkoxy groups such as methoxy groups and ethoxy groups, aryloxy groups such as phenoxy groups, and aralkyloxy groups such as benzyloxy groups. May be substituted.

式[2]におけるX1として、より好ましくは塩素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、トリフルオロメトキシ基、フェニル基、フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、3,4,5−トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシ基またはベンジル基である。 X 1 in the formula [2] is more preferably a chlorine atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n -Butoxy group, trifluoromethoxy group, phenyl group, phenoxy group, 2,6-di-tert-butylphenoxy group, 3,4,5-trifluorophenoxy group, pentafluorophenoxy group, 2,3,5,6 -Tetrafluoro-4-pentafluorophenylphenoxy group or benzyl group.

式[2]におけるaは0<a≦3を満たす数であり、bは0<b≦3を満たす数であり、Mの価数に応じて適宜選択される。Mがチタン原子、ジルコニウム原子またはハフ
ニウム原子である場合、aは2であることが好ましく、bも2であることが好ましい。
A number that satisfies a is 0 <a ≦ 3 in the formula [2], b is 0 <a number satisfying b ≦ 3, are appropriately selected depending on the valence of M 2. When M 2 is a titanium atom, a zirconium atom or a hafnium atom, a is preferably 2, and b is also preferably 2.

式[2]で表される、遷移金属原子がチタン原子、ジルコニウム原子またはハフニウム原子である化合物としては、例えば、ビス(シクロペンタジエニル)チタンジクロライド、ビス(メチルシクロペンタジエニル)チタンジクロライド、ビス(エチルシクロペンタジエニル)チタンジクロライド、ビス(n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(tert−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1,2−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1,3−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−2−メチルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−3−メチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,3−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,4−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(テトラメチルシクロペンタジエニル)チタンジクロライド、ビス(ペンタメチルシクロペンタジエニル)チタンジクロライド、ビス(インデニル)チタンジクロライド、ビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、ビス(フルオレニル)チタンジクロライド、ビス(2−フェニルインデニル)チタンジクロライド、 式[1]で表される、遷移金属原子がチタン原子、ジルコニウム原子またはハフニウム原子である化合物としては、例えば、ビス(シクロペンタジエニル)チタンジクロライド、ビス(メチルシクロペンタジエニル)チタンジクロライド、ビス(エチルシクロペンタジエニル)チタンジクロライド、ビス(n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(tert−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1,2−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1,3−ジメチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−エチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−n−ブチルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−2−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−メチル−3−イソプロピルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−2−メチルシクロペンタジエニル)チタンジクロライド、ビス(1−tert−ブチル−3−メチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,3−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(1,2,4−トリメチルシクロペンタジエニル)チタンジクロライド、ビス(テトラメチルシクロペンタジエニル)チタンジクロライド、ビス(ペンタメチルシクロペンタジエニル)チタンジクロライド、ビス(インデニル)チタンジクロライド、ビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、ビス(フルオレニル)チタンジクロライド、ビス(2−フェニルインデニル)チタンジクロライド、   Examples of the compound represented by the formula [2] in which the transition metal atom is a titanium atom, a zirconium atom or a hafnium atom include bis (cyclopentadienyl) titanium dichloride, bis (methylcyclopentadienyl) titanium dichloride, Bis (ethylcyclopentadienyl) titanium dichloride, bis (n-butylcyclopentadienyl) titanium dichloride, bis (tert-butylcyclopentadienyl) titanium dichloride, bis (1,2-dimethylcyclopentadienyl) titanium Dichloride, bis (1,3-dimethylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-ethylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-ethylcyclopentadienyl) titanium dichloride , Screw (1 Methyl-2-n-butylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-n-butylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-isopropylcyclopentadienyl) titanium dichloride Bis (1-methyl-3-isopropylcyclopentadienyl) titanium dichloride, bis (1-tert-butyl-2-methylcyclopentadienyl) titanium dichloride, bis (1-tert-butyl-3-methylcyclopenta) Dienyl) titanium dichloride, bis (1,2,3-trimethylcyclopentadienyl) titanium dichloride, bis (1,2,4-trimethylcyclopentadienyl) titanium dichloride, bis (tetramethylcyclopentadienyl) titanium Dichloride, bis (pentameth Lucyclopentadienyl) titanium dichloride, bis (indenyl) titanium dichloride, bis (4,5,6,7-tetrahydroindenyl) titanium dichloride, bis (fluorenyl) titanium dichloride, bis (2-phenylindenyl) titanium dichloride Examples of the compound represented by the formula [1] in which the transition metal atom is a titanium atom, a zirconium atom or a hafnium atom include bis (cyclopentadienyl) titanium dichloride and bis (methylcyclopentadienyl) titanium dichloride. Bis (ethylcyclopentadienyl) titanium dichloride, bis (n-butylcyclopentadienyl) titanium dichloride, bis (tert-butylcyclopentadienyl) titanium dichloride, bis (1,2-dimethylcyclopentadiene) Nyl) titanium dichloride, bis (1,3-dimethylcyclopentadienyl) titanium dichloride, bis (1-methyl-2-ethylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-ethylcyclopentadienyl) ) Titanium dichloride, bis (1-methyl-2-n-butylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-n-butylcyclopentadienyl) titanium dichloride, bis (1-methyl-2- Isopropylcyclopentadienyl) titanium dichloride, bis (1-methyl-3-isopropylcyclopentadienyl) titanium dichloride, bis (1-tert-butyl-2-methylcyclopentadienyl) titanium dichloride, bis (1-tert -Butyl-3-methylcyclopentadie L) Titanium dichloride, bis (1,2,3-trimethylcyclopentadienyl) titanium dichloride, bis (1,2,4-trimethylcyclopentadienyl) titanium dichloride, bis (tetramethylcyclopentadienyl) titanium dichloride Bis (pentamethylcyclopentadienyl) titanium dichloride, bis (indenyl) titanium dichloride, bis (4,5,6,7-tetrahydroindenyl) titanium dichloride, bis (fluorenyl) titanium dichloride, bis (2-phenylindene) Nil) titanium dichloride,

ビス[2−(ビス−3,5−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−tert−ブチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−トリフルオロメチルフェニル)インデニル]チタンジクロライド、ビス[2−(4−メチルフェニル)インデニル]チタンジクロライド、ビス[2−(3,5−ジメチルフェニル)インデニル]チタンジクロライド、ビス[2−(ペンタフルオロフェニル)インデニル]チタンジクロライド、シクロペンタジエニル(ペンタメチルシクロペンタジエニル)チタンジクロライド、シクロペンタジエニル(インデニル)チタンジクロライド、シクロペンタジエニル(フルオレニル)チタンジクロライド、インデニル(フルオレニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(インデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(フルオレニル)チタンジクロライド、シクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2−フェニルインデニル)チタンジクロライド、 Bis [2- (bis-3,5-trifluoromethylphenyl) indenyl] titanium dichloride, bis [2- (4-tert-butylphenyl) indenyl] titanium dichloride, bis [2- (4-trifluoromethylphenyl) Indenyl] titanium dichloride, bis [2- (4-methylphenyl) indenyl] titanium dichloride, bis [2- (3,5-dimethylphenyl) indenyl] titanium dichloride, bis [2- (pentafluorophenyl) indenyl] titanium dichloride , Cyclopentadienyl (pentamethylcyclopentadienyl) titanium dichloride, cyclopentadienyl (indenyl) titanium dichloride, cyclopentadienyl (fluorenyl) titanium dichloride, indenyl (fluorenyl) titanium dichloride , Pentamethylcyclopentadienyl (indenyl) titanium dichloride, pentamethylcyclopentadienyl (fluorenyl) titanium dichloride, cyclopentadienyl (2-phenylindenyl) titanium dichloride, pentamethylcyclopentadienyl (2-phenylindene) Nil) titanium dichloride,

ジメチルシリレンビス(シクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−メチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3−n−ブチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,4−ジメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,4−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(3,5−エチルメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,4−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(2,3,5−トリメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレンビス(テトラメチルシクロペンタジエニル)チタンジクロライド、 Dimethylsilylene bis (cyclopentadienyl) titanium dichloride, dimethylsilylene bis (2-methylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (3-methylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2-n- Butylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (3-n-butylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,3-dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,4 -Dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (2,5-dimethylcyclopentadienyl) titanium dichloride, dimethylsilylenebis (3,4-dimethylcyclopentadienyl) Titanium dichloride, dimethylsilylene bis (2,3-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,4-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,5-ethylmethylcyclo) Pentadienyl) titanium dichloride, dimethylsilylene bis (3,5-ethylmethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2,3,4-trimethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (2, 3,5-trimethylcyclopentadienyl) titanium dichloride, dimethylsilylene bis (tetramethylcyclopentadienyl) titanium dichloride,

ジメチルシリレンビス(インデニル)チタンジクロライド、ジメチルシリレンビス(2−メチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−tert−ブチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,3−ジメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2,4,7−トリメチルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−イソプロピルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4,5−ベンズインデニル)チタンジクロライド、ジメチルシリレンビス(2−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−5−フェニルインデニル)チタンジクロライド、ジメチルシリレンビス(2−メチル−4−ナフチルインデニル)チタンジクロライド、ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)チタンジクロライド、 Dimethylsilylenebis (indenyl) titanium dichloride, dimethylsilylenebis (2-methylindenyl) titanium dichloride, dimethylsilylenebis (2-tert-butylindenyl) titanium dichloride, dimethylsilylenebis (2,3-dimethylindenyl) titanium Dichloride, dimethylsilylene bis (2,4,7-trimethylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-isopropylindenyl) titanium dichloride, dimethylsilylene bis (4,5-benzindenyl) titanium dichloride, dimethyl Silylene bis (2-methyl-4,5-benzindenyl) titanium dichloride, dimethylsilylene bis (2-phenylindenyl) titanium dichloride, dimethylsilylene bis (4-phenyl) Indenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-5-phenylindenyl) titanium dichloride, dimethylsilylene bis (2-methyl-4-naphthyl) Indenyl) titanium dichloride, dimethylsilylenebis (4,5,6,7-tetrahydroindenyl) titanium dichloride,

ジメチルシリレン(シクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(インデニル)チタンジクロライド、ジメチルシリレン(インデニル)(フルオレニル)チタンジクロライド、ジメチルシリレンビス(フルオレニル)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(テトラメチルシクロペンタジエニル)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(フルオレニル)チタンジクロライド、 Dimethylsilylene (cyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (tetra Methylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilylene (cyclopentadienyl) (fluorenyl) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (fluorenyl) titanium dichloride, dimethylsilylene (n-butylcyclopentadiene) Enyl) (fluorenyl) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (indenyl) titanium dichloride, dimethylsilyl (Indenyl) (fluorenyl) titanium dichloride, dimethylsilylene bis (fluorenyl) titanium dichloride, dimethylsilylene (cyclopentadienyl) (tetramethylcyclopentadienyl) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (fluorenyl) ) Titanium dichloride,

シクロペンタジエニルチタントリクロライド、ペンタメチルシクロペンタジエニルチタントリクロライド、シクロペンタジエニル(ジメチルアミド)チタンジクロライド、シクロペンタジエニル(フェノキシ)チタンジクロライド、シクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、シクロペンタジエニル(2,6−ジ−tert−ブチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジメチルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−ジイソプロピルフェニル)チタンジクロライド、ペンタメチルシクロペンタジエニル(2,6−tert−ブチルフェニル)チタンジクロライド、インデニル(2,6−ジイソプロピルフェニル)チタンジクロライド、フルオレニル(2,6−ジイソプロピルフェニル)チタンジクロライド、 Cyclopentadienyl titanium trichloride, pentamethylcyclopentadienyl titanium trichloride, cyclopentadienyl (dimethylamido) titanium dichloride, cyclopentadienyl (phenoxy) titanium dichloride, cyclopentadienyl (2,6-dimethylphenyl) ) Titanium dichloride, cyclopentadienyl (2,6-diisopropylphenyl) titanium dichloride, cyclopentadienyl (2,6-di-tert-butylphenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-dimethyl) Phenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-diisopropylphenyl) titanium dichloride, pentamethylcyclopentadienyl (2,6-tert-butylphenyl) thi Njikuroraido, indenyl (2,6-diisopropylphenyl) titanium dichloride, fluorenyl (2,6-diisopropylphenyl) titanium dichloride,

ジメチルシリレン(シクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(シクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (cyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-dimethyl -2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methyl-2) -Phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (5-methyl-3-phenyl-2) -Phenoxy Titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (5-methyl-3-trimethylsilyl-2- Phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-tert-butyl-5-chloro-) 2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (cyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride Id, dimethylsilylene (cyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(メチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(メチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (methylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3 5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl- 5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) 5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopenta Dienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3-tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (methyl) Cyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilyl Down (methylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (methylcyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(n−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(n−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (n-butylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopenta) Dienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopenta) Dienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, Dimethylsilylene (n- Tilcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2-phenoxy) Titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) ( 3,5-diamil- -Phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (n-butylcyclopentadienyl) (1-naphthoxy-2-yl) titanium Dichloride,

ジメチルシリレン(tert−ブチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(tert−ブチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (tert-butylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopenta) Dienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopenta) Dienyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium Chloride, dimethylsilylene (tert-butylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyldimethylsilyl-5) -Methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3 -Tert-butyl-5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethyl Lucylylene (tert-butylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (tert-butylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene ( tert-butylcyclopentadienyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(テトラメチルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(テトラメチルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (tetramethylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3 -Tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium dichloride, dimethyl Len (tetramethylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2- Phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadieni) ) (3,5-Diamyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (tetramethylcyclopentadienyl) (1- Naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(トリメチルシリルシクロペンタジエニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (trimethylsilylcyclopentadienyl) (2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3 5-dimethyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl- 5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3,5-di-tert-butyl-2-phenoxy) titanium Chloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyldimethylsilyl-5-methyl-2) -Phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-5-methoxy) -2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethyl Lucylylene (trimethylsilylcyclopentadienyl) (3,5-diamil-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadienyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (trimethylsilylcyclopentadi) Enyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(インデニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(インデニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (indenyl) (2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethyl Silylene (indenyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5 -Di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl) Rudimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5- Methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (3,5-diamil-2-phenoxy) titanium dichloride Dimethylsilylene (indenyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (indenyl) (1-naphthoxy-2-yl) titanium dichloride,

ジメチルシリレン(フルオレニル)(2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジメチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジ−tert−ブチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチルジメチルシリル−5−メチル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(5−メチル−3−トリメチルシリル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−メトキシ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−tert−ブチル−5−クロロ−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3,5−ジアミル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(3−フェニル−2−フェノキシ)チタンジクロライド、ジメチルシリレン(フルオレニル)(1−ナフトキシ−2−イル)チタンジクロライド、 Dimethylsilylene (fluorenyl) (2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5-dimethyl-2-phenoxy) titanium dichloride, dimethyl Silylene (fluorenyl) (3-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5 -Di-tert-butyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (5-methyl-3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) ( -Tert-butyldimethylsilyl-5-methyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (5-methyl-3-trimethylsilyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl -5-methoxy-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3-tert-butyl-5-chloro-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (3,5-diamil-2-phenoxy) ) Titanium dichloride, dimethylsilylene (fluorenyl) (3-phenyl-2-phenoxy) titanium dichloride, dimethylsilylene (fluorenyl) (1-naphthoxy-2-yl) titanium dichloride,

(tert−ブチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(メチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(エチルアミド)テトラメチルシクロペンタジエニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(ベンジルアミド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(フェニルフォスファイド)テトラメチルシクロペンタジエニルジメチルシランチタンジクロライド、(tert−ブチルアミド)インデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)フルオレニル−1,2−エタンジイルチタンジクロライド、(tert−ブチルアミド)インデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)テトラヒドロインデニルジメチルシランチタンジクロライド、(tert−ブチルアミド)フルオレニルジメチルシランチタンジクロライド、 (Tert-Butylamide) tetramethylcyclopentadienyl-1,2-ethanediyltitanium dichloride, (methylamido) tetramethylcyclopentadienyl-1,2-ethanediyltitanium dichloride, (ethylamido) tetramethylcyclopentadienyl- 1,2-ethanediyltitanium dichloride, (tert-butylamide) tetramethylcyclopentadienyldimethylsilane titanium dichloride, (benzylamido) tetramethylcyclopentadienyldimethylsilane titanium dichloride, (phenylphosphide) tetramethylcyclopentadi Enyldimethylsilane titanium dichloride, (tert-butylamido) indenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) tetrahydroyl Denenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) fluorenyl-1,2-ethanediyl titanium dichloride, (tert-butylamido) indenyldimethylsilane titanium dichloride, (tert-butylamido) tetrahydroindenyldimethylsilane titanium Dichloride, (tert-butylamido) fluorenyldimethylsilane titanium dichloride,

(ジメチルアミノメチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノエチル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(ジメチルアミノプロピル)テトラメチルシクロペンタジエニルチタン(III)ジクロライド、(N−ピロリジニルエチル)テトラメチルシクロペンタジエニルチタンジクロライド、(B−ジメチルアミノボラベンゼン)シクロペンタジエニルチタンジクロライド、シクロペンタジエニル(9−メシチルボラアントラセニル)チタンジクロライド、 (Dimethylaminomethyl) tetramethylcyclopentadienyl titanium (III) dichloride, (dimethylaminoethyl) tetramethylcyclopentadienyl titanium (III) dichloride, (dimethylaminopropyl) tetramethylcyclopentadienyl titanium (III) dichloride (N-pyrrolidinylethyl) tetramethylcyclopentadienyl titanium dichloride, (B-dimethylaminoborabenzene) cyclopentadienyl titanium dichloride, cyclopentadienyl (9-mesitylboraanthracenyl) titanium dichloride,

2,2’−チオビス[4−メチル−6−tert−ブチルフェノキシ]チタンジクロライド、2,2’−チオビス[4−メチル−6−(1−メチルエチル)フェノキシ]チタンジクロライド、2,2’−チオビス(4,6−ジメチルフェノキシ)チタンジクロライド、2,2’−チオビス(4−メチル−6−tert−ブチルフェノキシ)チタンジクロライド、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)チタンジクロライド、2,2’−エチレンビス(4−メチル−6−tert−ブチルフェノキシ)チタンジクロライド、2,2’−スルフィニルビス(4−メチル−6−tert−ブチルフェノキシ)チタンジクロライド、2,2’−(4,4’,6,6’−テトラ−tert−ブチル−1,1’ビフェノキシ)チタンジクロライド、(ジ−tert−ブチル−1,3−プロパンジアミド)チタンジクロライド、(ジシクロヘキシル−1,3−プロパンジアミド)チタンジクロライド、 2,2′-thiobis [4-methyl-6-tert-butylphenoxy] titanium dichloride, 2,2′-thiobis [4-methyl-6- (1-methylethyl) phenoxy] titanium dichloride, 2,2′- Thiobis (4,6-dimethylphenoxy) titanium dichloride, 2,2'-thiobis (4-methyl-6-tert-butylphenoxy) titanium dichloride, 2,2'-methylenebis (4-methyl-6-tert-butylphenoxy) ) Titanium dichloride, 2,2'-ethylenebis (4-methyl-6-tert-butylphenoxy) titanium dichloride, 2,2'-sulfinylbis (4-methyl-6-tert-butylphenoxy) titanium dichloride, 2, 2 ′-(4,4 ′, 6,6′-tetra-tert-butyl-1,1 ′ biphenol Shi) titanium dichloride, (di -tert- butyl-1,3-propane diamide) titanium dichloride, (dicyclohexyl-1,3-propane diamide) titanium dichloride,

[ビス(トリメチルシリル)−1,3−プロパンジアミド]チタンジクロライド、[ビス(tert−ブチルジメチルシリル)−1,3−プロパンジアミド]チタンジクロライド、[ビス(2,6−ジメチルフェニル)−1,3−プロパンジアミド]チタンジクロライド、[ビス(2,6−ジイソプロピルフェニル)−1,3−プロパンジアミド]チタンジクロライド、[ビス(2,6−ジ−tert−ブチルフェニル)−1,3−プロパンジアミド]チタンジクロライド、[ビス(トリイソプロピルシリル)ナフタレンジアミド]チタンジクロライド、[ビス(トリメチルシリル)ナフタレンジアミド]チタンジクロライド、[ビス(tert−ブチルジメチルシリル)ナフタレンジアミド]チタンジクロライド、[ヒドロトリス(3,5−ジメチルピラゾリル)ボレート]チタントリクロライド、[ヒドロトリス(3,5−ジエチルピラゾリル)ボレート]チタントリクロライド、[ヒドロトリス(3,5−ジ−tert−ブチルピラゾリル)ボレート]チタントリクロライド、[トリス(3,5−ジメチルピラゾリル)メチル]チタントリクロライド、[トリス(3,5−ジエチルピラゾリル)メチル]チタントリクロライド、および[トリス(3,5−ジ−tert−ブチルピラゾリル)メチル]チタントリクロライドや、これらの化合物の「チタン」を「ジルコニウム」または「ハフニウム」に置き換えた化合物、「(2−フェノキシ)」を「(3−フェニル−2−フェノキシ)」、「(3−トリメチルシリル−2−フェノキシ)」、または「(3−tert−ブチルジメチルシリル−2−フェノキシ)」に置き換えた化合物、「ジメチルシリレン」を「メチレン」、「エチレン」、「ジメチルメチレン(イソプロピリデン)」、「ジフェニルメチレン」、「ジエチルシリレン」、「ジフェニルシリレン」、または「ジメトキシシリレン」に置き換えた化合物、「ジクロライド」を「ジフルオライド」、「ジブロマイド」、「ジアイオダイド」、「ジメチル、「ジエチル」、「ジイソプロピル」、「ジフェニル」、「ジベンジル」、「ジメトキシド」、「ジエトキシド」、「ジ(n−プロポキシド)」、「ジ(イソプロポキシド)」、「ジフェノキシド」、または「ジ(ペンタフルオロフェノキシド)」に置き換えた化合物、ならびに「トリクロライド」を「トリフルオライド」、「トリブロマイド」、「トリアイオダイド」、「トリメチル」、「トリエチル」、「トリイソプロピル」、「トリフェニル」、「トリベンジル」、「トリメトキシド」、「トリエトキシド」、「トリ(n−プロポキシド)」、「トリ(イソプロポキシド)」、「トリフェノキシド」、または「トリ(ペンタフルオロフェノキシド)」に置き換えた化合物、を挙げることができる。 [Bis (trimethylsilyl) -1,3-propanediamide] titanium dichloride, [bis (tert-butyldimethylsilyl) -1,3-propanediamide] titanium dichloride, [bis (2,6-dimethylphenyl) -1,3 -Propanediamide] titanium dichloride, [bis (2,6-diisopropylphenyl) -1,3-propanediamide] titanium dichloride, [bis (2,6-di-tert-butylphenyl) -1,3-propanediamide] Titanium dichloride, [bis (triisopropylsilyl) naphthalenediamide] titanium dichloride, [bis (trimethylsilyl) naphthalenediamide] titanium dichloride, [bis (tert-butyldimethylsilyl) naphthalenediamide] titanium dichloride, [hydrotris (3,5 Dimethylpyrazolyl) borate] titanium trichloride, [hydrotris (3,5-diethylpyrazolyl) borate] titanium trichloride, [hydrotris (3,5-di-tert-butylpyrazolyl) borate] titanium trichloride, [tris (3 5-dimethylpyrazolyl) methyl] titanium trichloride, [tris (3,5-diethylpyrazolyl) methyl] titanium trichloride, and [tris (3,5-di-tert-butylpyrazolyl) methyl] titanium trichloride, and these A compound in which “titanium” is replaced with “zirconium” or “hafnium”, “(2-phenoxy)” is “(3-phenyl-2-phenoxy)”, “(3-trimethylsilyl-2-phenoxy)” Or “(3-tert-butyldi Compound substituted with “methylsilyl-2-phenoxy)”, “dimethylsilylene” with “methylene”, “ethylene”, “dimethylmethylene (isopropylidene)”, “diphenylmethylene”, “diethylsilylene”, “diphenylsilylene”, or "Dimethoxysilylene" is a compound that replaces "dichloride", "difluoride", "dibromide", "diaiodide", "dimethyl," diethyl "," diisopropyl "," diphenyl "," dibenzyl "," dimethoxide "," “Diethoxide”, “di (n-propoxide)”, “di (isopropoxide)”, “diphenoxide” or “di (pentafluorophenoxide)” as well as “trichloride” as “trifluoride” ”,“ Tribromide ”,“ Tria “Iodide”, “Trimethyl”, “Triethyl”, “Triisopropyl”, “Triphenyl”, “Tribenzyl”, “Trimethoxide”, “Triethoxide”, “Tri (n-propoxide)”, “Tri (isopropoxide)” , “Triphenoxide”, or “tri (pentafluorophenoxide)”.

これらの遷移金属化合物は一種類のみを用いても、二種類以上を組み合わせて用いてもよい。   These transition metal compounds may be used alone or in combination of two or more.

以上に例示した遷移金属化合物のうち、本発明で用いる遷移金属化合物(A)として好ましくは、上記の式[2]で表される遷移金属化合物である。なかでも、上記式[2]におけるMがジルコニウム化合物が好ましく、特に式[2]におけるL1としてシクロペンタジエン形アニオン骨格を有する基を少なくとも一つ有する遷移金属化合物が好ましい。なかでも、式[2]におけるL1としてシクロペンタジエン形アニオン骨格を有する基を2つ有し、L1が互いに炭素原子、ケイ素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されているジルコニウム化合物が特に好ましい。 Of the transition metal compounds exemplified above, the transition metal compound (A) used in the present invention is preferably a transition metal compound represented by the above formula [2]. Among these, M 2 in the above formula [2] is preferably a zirconium compound, and particularly a transition metal compound having at least one group having a cyclopentadiene type anion skeleton as L 1 in the formula [2] is preferable. Among them, L 1 in the formula [2] has two groups having a cyclopentadiene type anion skeleton, and L 1 is bonded to each other through a residue containing a carbon atom, a silicon atom, an oxygen atom, a sulfur atom or a phosphorus atom. Particularly preferred are zirconium compounds linked together.

式[2]で表される遷移金属化合物は、特開平6−340684号公報、特開平7−258321号公報、国際特許公開第95/00562号明細書などに記載の製造方法によって製造することが可能である。   The transition metal compound represented by the formula [2] can be produced by a production method described in JP-A-6-340684, JP-A-7-258321, International Patent Publication No. 95/00562, and the like. Is possible.

活性化剤(B)
本発明に用いられる活性化剤(B)は前記の遷移金属化合物(A)またはそのμ―オキソタイプの遷移金属化合物二量体(A’)を活性化できるものであればいずれでもよく、また、生成する付加重合体粒子の形成を伴う重合(例えばスラリー重合、気相重合、バルク重合等)に適用する場合、特定の粒子を触媒成分のひとつとして用いて、生成する付加重合体の形状を定形にすることが好ましく、下記(I)、下記(II)および下記(III)の改質された粒子を好適に用いることができる。
Activator (B)
The activator (B) used in the present invention may be any as long as it can activate the transition metal compound (A) or its μ-oxo type transition metal compound dimer (A ′), , When applied to the polymerization accompanying the formation of the generated addition polymer particles (for example, slurry polymerization, gas phase polymerization, bulk polymerization, etc.), the specific particles are used as one of the catalyst components to change the shape of the generated addition polymer. It is preferable to use a fixed shape, and the modified particles (I), (II) and (III) below can be suitably used.

(I):下記(a)、下記(b)、下記(c)および下記(d)を接触させて得られる改質された粒子
(a):下記一般式[3]で表される化合物
2 [3]
(b):下記一般式[4]で表される化合物
t-1TH [4]
(c):下記一般式[5]で表される化合物
t-2TH2 [5]
(d):無機酸化物粒子または有機ポリマー粒子
(上記一般式[3]〜[5]においてそれぞれ、M は周期律表第12族の典型金属原子を表す。L は水素原子、ハロゲン原子またはハイドロカルビル基を表し、L が複数存在する場合はそれらは互いに同じであっても異なっていてもよい。R は電子吸引性基または電子吸引性基を含有する基を表し、R が複数存在する場合はそれらは互いに同じであっても異なっていてもよい。R はハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。Tはそれぞれ独立に周期律表の第15族または第16族の原子を表し、tはそれぞれの化合物のTの原子価を表す。)
(I): Modified particles obtained by contacting the following (a), (b), (c) and (d) below (a): a compound represented by the following general formula [3] M 3 L 2 2 [3]
(B): Compound represented by the following general formula [4] R 3 t-1 TH [4]
(C): Compound represented by the following general formula [5] R 4 t-2 TH 2 [5]
(D): Inorganic oxide particles or organic polymer particles (in the above general formulas [3] to [5], M 3 represents a typical metal atom of Group 12 of the periodic table. L 2 represents a hydrogen atom or a halogen atom. Or a hydrocarbyl group, and when a plurality of L 2 are present, they may be the same or different from each other, R 3 represents an electron-withdrawing group or a group containing an electron-withdrawing group, and R 3 When a plurality of 3 are present, they may be the same or different from each other, R 4 represents a hydrocarbyl group or a halogenated hydrocarbyl group, and each T independently represents group 15 of the periodic table. Or represents a Group 16 atom, and t represents the valence of T of each compound.)

(II):無機酸化物粒子または有機ポリマー粒子(d)と、アルミノキサン(e)とを接触させて得られる改質された粒子 (II): Modified particles obtained by bringing inorganic oxide particles or organic polymer particles (d) into contact with aluminoxane (e)

(III):無機酸化物粒子または有機ポリマー粒子(d)と、アルミノキサン(e)と、遷移金属化合物とを接触させて得られる改質された粒子
以下、これらにつき順次さらに説明する。
(III): Modified particles obtained by bringing inorganic oxide particles or organic polymer particles (d), aluminoxane (e), and a transition metal compound into contact with each other.

上記一般式[3]におけるM は、元素の周期律表(IUPAC無機化学命名法改訂版1989)第12族の典型金属原子を表す。その具体例としては、亜鉛原子、カドミウム原子、水銀原子が挙げられる。M として特に好ましくは亜鉛原子である。 M 3 in the above general formula [3] represents a typical metal atom of Group 12 of the Periodic Table of Elements (IUPAC Inorganic Chemical Nomenclature Revised Edition 1989). Specific examples thereof include a zinc atom, a cadmium atom, and a mercury atom. M 3 is particularly preferably a zinc atom.

上記一般式[3]において、Lは水素原子、ハロゲン原子またはハイドロカルビル基である。Lのハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、およびヨウ素原子が挙げられる。Lのハイドロカルビル基として好ましくは、アルキル基、アリール基、またはアラルキル基である。 In the general formula [3], L 2 represents a hydrogen atom, a halogen atom or a hydrocarbyl group. Examples of the halogen atom for L 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The hydrocarbyl group for L 2 is preferably an alkyl group, an aryl group, or an aralkyl group.

のハイドロカルビル基のアルキル基として好ましくは、炭素原子数1〜20のアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、およびn−エイコシル基が挙げられ、より好ましくはメチル基、エチル基、イソプロピル基、tert−ブチル基またはイソブチル基である。 The alkyl group of the hydrocarbyl group of L 2 is preferably an alkyl group having 1 to 20 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl. Group, tert-butyl group, isobutyl group, n-pentyl group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, and n -An eicosyl group is mentioned, More preferably, they are a methyl group, an ethyl group, an isopropyl group, a tert- butyl group, or an isobutyl group.

これらのアルキル基はいずれも、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等のハロゲン原子で置換されていてもよい。ハロゲン原子で置換された炭素原子数1〜20のアルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロペンタデシル基、パーフルオロエイコシル基、1H,1H−パーフルオロプロピル基、1H,1H−パーフルオロブチル基、1H,1H−パーフルオロペンチル基、1H,1H−パーフルオロヘキシル基、1H,1H−パーフルオロオクチル基、1H,1H−パーフルオロドデシル基、1H,1H−パーフルオロペンタデシル基、1H,1H−パーフルオロエイコシル基、および、これらのアルキル基の「フルオロ」を「クロロ」、「ブロモ」または「ヨード」に置き換えたアルキル基を挙げることができる。これらのアルキル基はいずれも、メトキシ基、およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、またはベンジルオキシ基等のアラルキルオキシ基で置換されていてもよい。   Any of these alkyl groups may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkyl group having 1 to 20 carbon atoms substituted with a halogen atom include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a difluoroethyl group, a trifluoroethyl group, and a tetrafluoroethyl group. , Pentafluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluorooctyl group, perfluorododecyl group, perfluoropentadecyl group, perfluoroeicosyl group, 1H, 1H-perfluoropropyl group, 1H, 1H-perfluorobutyl group, 1H, 1H-perfluoropentyl group, 1H, 1H-perfluorohexyl group, 1H, 1H-perfluorooctyl group, 1H, 1H-perfluorododecyl 1H, 1H-par Le Oro pentadecyl group, IH, 1H-perfluoro eicosyl group, and "chloro" to "fluoro" in these alkyl group include an alkyl group is replaced with "bromo" or "iodo". Any of these alkyl groups may be substituted with an alkoxy group such as a methoxy group and an ethoxy group, an aryloxy group such as a phenoxy group, or an aralkyloxy group such as a benzyloxy group.

のハイドロカルビル基のアリール基として好ましくは、炭素原子数6〜20のアリール基であり、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、イソブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、およびアントラセニル基が挙げられ、より好ましくはフェニル基である。これらのアリール基はいずれも、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。 The aryl group of the hydrocarbyl group of L 2 is preferably an aryl group having 6 to 20 carbon atoms, such as a phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3- Xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2, 3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butyl group Enyl group, sec-butylphenyl group, tert-butylphenyl group, isobutylphenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n- A dodecylphenyl group, n-tetradecylphenyl group, a naphthyl group, and an anthracenyl group are mentioned, More preferably, it is a phenyl group. These aryl groups are all halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as methoxy group and ethoxy group, aryloxy groups such as phenoxy group or aralkyloxy groups such as benzyloxy group. It may be substituted with a group or the like.

上記アラルキル基としては、炭素原子数7〜20のアラルキル基が好ましく、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(3,5−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(イソブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、ナフチルメチル基、およびアントラセニルメチル基を挙げることができ、なかでも、より好ましくはベンジル基である。これらのアラルキル基はいずれも、フッ素原子、塩素原子、臭素原子、およびヨウ素原子等のハロゲン原子、メトキシ基およびエトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基またはベンジルオキシ基等のアラルキルオキシ基等で置換されていてもよい。   The aralkyl group is preferably an aralkyl group having 7 to 20 carbon atoms, such as a benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethyl) Phenyl) methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethyl) Phenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) Nyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl Group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (isobutylphenyl) methyl Group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, naphthylmethyl group, And anthracenylmethyl group. Among them, a benzyl group is more preferable. All of these aralkyl groups are halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as methoxy group and ethoxy group, aryloxy groups such as phenoxy group or aralkyloxy groups such as benzyloxy group. It may be substituted with a group or the like.

式[3]のLとして好ましくは、水素原子、アルキル基またはアリール基であり、更に好ましくは水素原子またはアルキル基であり、特に好ましくはアルキル基である。 L 2 in Formula [3] is preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably an alkyl group.

上記一般式[4]または[5]におけるTはそれぞれ独立に、元素の周期律表(IUPAC無機化学命名法改訂版1989)の第15族または第16族の原子を表す。一般式[4]におけるTと一般式[5]におけるTとは同じであっても異なっていてもよい。第15族原子の具体例としては、窒素原子、リン原子などが、第16族原子の具体例としては、酸素原子、硫黄原子などが挙げられる。Tとして好ましくは、それぞれ独立に窒素原子または酸素原子であり、特に好ましくはTは酸素原子である。
上記一般式[4]または[5]におけるtはそれぞれのTの原子価を表し、Tが第15族原子の場合はtは3であり、Tが第16族原子の場合はtは2である。
T in the general formula [4] or [5] independently represents an atom of Group 15 or Group 16 of the Periodic Table of Elements (IUPAC Inorganic Chemical Nomenclature Revised Edition 1989). T in the general formula [4] and T in the general formula [5] may be the same or different. Specific examples of the Group 15 atom include a nitrogen atom and a phosphorus atom, and specific examples of the Group 16 atom include an oxygen atom and a sulfur atom. T is preferably each independently a nitrogen atom or an oxygen atom, and particularly preferably T is an oxygen atom.
In the general formula [4] or [5], t represents the valence of each T. When T is a Group 15 atom, t is 3, and when T is a Group 16 atom, t is 2. is there.

上記一般式[4]におけるR は、電子吸引性基または電子吸引性基を含有する基を表し、R が複数存在する場合はそれらは互いに同じであっても異なっていてもよい。電子吸引性の指標としては、ハメット則の置換基定数σ等が知られており、ハメット則の置換基定数σが正である官能基が電子吸引性基として挙げられる。 R 3 in the general formula [4] represents an electron-withdrawing group or a group containing an electron-withdrawing group, and when a plurality of R 3 are present, they may be the same or different from each other. As an index of electron withdrawing property, Hammett's rule substituent constant σ and the like are known, and functional groups having positive Hammett's rule constant σ are listed as electron withdrawing groups.

電子吸引性基の具体例として、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、カルボニル基、スルホン基、フェニル基等が挙げられる。電子吸引性基を含有する基としてはハロゲン化アルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基、シアノ化アリール基、ニトロ化アリール基、エステル基(アルコキシカルボニル基、アラルキルオキシカルボニル基やアリールオキシカルボニル基)等が挙げられる。   Specific examples of the electron withdrawing group include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a carbonyl group, a sulfone group, and a phenyl group. Examples of the group containing an electron-withdrawing group include a halogenated alkyl group, a halogenated aryl group, a (halogenated alkyl) aryl group, a cyanated aryl group, a nitrated aryl group, an ester group (an alkoxycarbonyl group, an aralkyloxycarbonyl group, Aryloxycarbonyl group) and the like.

ハロゲン化アルキル基の具体例としては、フルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、ジヨードメチル基トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、トリヨードメチル基、2,2,2−トリフルオロエチル基、2,2,2−トリクロロエチル基、2,2,2−トリブロモエチル基、2,2,2−トリヨードエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,3,3,3−ペンタクロロプロピル基、2,2,3,3,3−ペンタブロモプロピル基、2,2,3,3,3−ペンタヨードプロピル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基、2,2,2−トリクロロ−1−トリクロロメチルエチル基、2,2,2−トリブロモ−1−トリブロモメチルエチル基、2,2,2−トリヨード−1−トリヨードメチルエチル基、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基 、1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル基 、1,1−ビス(トリブロモメチル)−2,2,2−トリブロモエチル基 、1,1−ビス(トリヨードメチル)−2,2,2−トリヨードエチル基等が挙げられる。   Specific examples of the halogenated alkyl group include a fluoromethyl group, a chloromethyl group, a bromomethyl group, an iodomethyl group, a difluoromethyl group, a dichloromethyl group, a dibromomethyl group, a diiodomethyl group, a trifluoromethyl group, a trichloromethyl group, and a tribromomethyl group. Group, triiodomethyl group, 2,2,2-trifluoroethyl group, 2,2,2-trichloroethyl group, 2,2,2-tribromoethyl group, 2,2,2-triiodoethyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2,3,3,3-pentachloropropyl group, 2,2,3,3,3-pentabromopropyl group, 2,2,3 , 3,3-pentaiodopropyl group, 2,2,2-trifluoro-1-trifluoromethylethyl group, 2,2,2-trichloro-1-trichloromethyl Ethyl group, 2,2,2-tribromo-1-tribromomethylethyl group, 2,2,2-triiodo-1-triiodomethylethyl group, 1,1-bis (trifluoromethyl) -2,2, 2-trifluoroethyl group, 1,1-bis (trichloromethyl) -2,2,2-trichloroethyl group, 1,1-bis (tribromomethyl) -2,2,2-tribromoethyl group, 1 , 1-bis (triiodomethyl) -2,2,2-triiodoethyl group and the like.

ハロゲン化アリール基の具体例としては、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、3,4,5−トリフルオロフェニル基、2,3,5,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニル基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェニル基、パーフルオロ−1−ナフチル基、パーフルオロ−2−ナフチル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2,4−ジクロロフェニル基、2,6−ジクロロフェニル基、3,4−ジクロロフェニル基、3,5−ジクロロフェニル基、2,4,6−トリクロロフェニル基、3,4,5−トリクロロフェニル基、2,3,5,6−テトラクロロフェニル基、ペンタクロロフェニル基、2,3,5,6−テトラクロロ−4−トリクロロメチルフェニル基、2,3,5,6−テトラクロロ−4−ペンタクロロフェニルフェニル基、パークロロ−1−ナフチル基、パークロロ−2−ナフチル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2,4−ジブロモフェニル基、2,6−ジブロモフェニル基、3,4−ジブロモフェニル基、3,5−ジブロモフェニル基、2,4,6−トリブロモフェニル基、3,4,5−トリブロモフェニル基、2,3,5,6−テトラブロモフェニル基、ペンタブロモフェニル基、2,3,5,6−テトラブロモ−4−トリブロモメチルフェニル基、2,3,5,6−テトラブロモ−4−ペンタブロモフェニルフェニル基、パーブロモ−1−ナフチル基、パーブロモ−2−ナフチル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基、2,4−ジヨードフェニル基、2,6−ジヨードフェニル基、3,4−ジヨードフェニル基、3,5−ジヨードフェニル基、2,4,6−トリヨードフェニル基、3,4,5−トリヨードフェニル基、2,3,5,6−テトラヨードフェニル基、ペンタヨードフェニル基、2,3,5,6−テトラヨード−4−トリヨードメチルフェニル基、2,3,5,6−テトラヨード−4−ペンタヨードフェニルフェニル基、パーヨード−1−ナフチル基、パーヨード−2−ナフチル基等が挙げられる。   Specific examples of the halogenated aryl group include 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl. Group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, 3,4,5-trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, pentafluorophenyl group, 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group, 2,3,5,6-tetrafluoro-4-pentafluorophenylphenyl group, perfluoro-1-naphthyl group, perfluoro-2 -Naphthyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,4-dichlorophenyl group, 2,6 Dichlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2,4,6-trichlorophenyl group, 3,4,5-trichlorophenyl group, 2,3,5,6-tetrachlorophenyl group, penta Chlorophenyl group, 2,3,5,6-tetrachloro-4-trichloromethylphenyl group, 2,3,5,6-tetrachloro-4-pentachlorophenylphenyl group, perchloro-1-naphthyl group, perchloro-2- Naphtyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2,4-dibromophenyl group, 2,6-dibromophenyl group, 3,4-dibromophenyl group, 3,5-dibromo Phenyl group, 2,4,6-tribromophenyl group, 3,4,5-tribromophenyl group, 2,3,5,6-tetrabromide Phenyl group, pentabromophenyl group, 2,3,5,6-tetrabromo-4-tribromomethylphenyl group, 2,3,5,6-tetrabromo-4-pentabromophenylphenyl group, perbromo-1-naphthyl group Perbromo-2-naphthyl group, 2-iodophenyl group, 3-iodophenyl group, 4-iodophenyl group, 2,4-diiodophenyl group, 2,6-diiodophenyl group, 3,4-diiodo Phenyl group, 3,5-diiodophenyl group, 2,4,6-triiodophenyl group, 3,4,5-triiodophenyl group, 2,3,5,6-tetraiodophenyl group, pentaiodophenyl Group, 2,3,5,6-tetraiodo-4-triiodomethylphenyl group, 2,3,5,6-tetraiodo-4-pentaiodophenylphenyl group, A do-1-naphthyl group, a periodo-2-naphthyl group, etc. are mentioned.

(ハロゲン化アルキル)アリール基の具体例としては、2−(トリフルオロメチル)フェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、2,6−ビス(トリフルオロメチル)フェニル基、3,5−ビス(トリフルオロメチル)フェニル基、2,4,6−トリス(トリフルオロメチル)フェニル基、3,4,5−トリス(トリフルオロメチル)フェニル基等が挙げられる。   Specific examples of the (halogenated alkyl) aryl group include 2- (trifluoromethyl) phenyl group, 3- (trifluoromethyl) phenyl group, 4- (trifluoromethyl) phenyl group, 2,6-bis (tri Fluoromethyl) phenyl group, 3,5-bis (trifluoromethyl) phenyl group, 2,4,6-tris (trifluoromethyl) phenyl group, 3,4,5-tris (trifluoromethyl) phenyl group, etc. Can be mentioned.

シアノ化アリール基の具体例としては、2−シアノフェニル基、3−シアノフェニル基、4−シアノフェニル基等が挙げられる。   Specific examples of the cyanated aryl group include 2-cyanophenyl group, 3-cyanophenyl group, 4-cyanophenyl group and the like.

ニトロ化アリール基の具体例としては、2−ニトロフェニル基、3−ニトロフェニル基、4−ニトロフェニル基等が挙げられる。   Specific examples of the nitrated aryl group include 2-nitrophenyl group, 3-nitrophenyl group, 4-nitrophenyl group and the like.

エステル基の具体例としては、メトキシカルボニル基、エトキシカルボニル基、ノルマルプロポキシカルボニル基、イソプロポキシカルボニル基、フェノキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロフェノキシカルボニル基等が挙げられる。   Specific examples of the ester group include methoxycarbonyl group, ethoxycarbonyl group, normal propoxycarbonyl group, isopropoxycarbonyl group, phenoxycarbonyl group, trifluoromethoxycarbonyl group, pentafluorophenoxycarbonyl group and the like.

として好ましくはハロゲン化ハイドロカルビル基であり、より好ましくはハロゲン化アルキル基またはハロゲン化アリール基である。さらに好ましくは、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基 、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、3,4,5−トリフルオロフェニル基、2,3,5,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニル基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェニル基、パーフルオロ−1−ナフチル基、パーフルオロ−2−ナフチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、2,2,2−トリクロロエチル基、2,2,3,3,3−ペンタクロロプロピル基、2,2,2−トリクロロ−1−トリクロロメチルエチル基、1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル基 、4−クロロフェニル基、2,6−ジクロロフェニル基、3.5−ジクロロフェニル基、2,4,6−トリクロロフェニル基、3,4,5−トリクロロフェニル基、またはペンタクロロフェニル基であり、特に好ましくは、フルオロアルキル基またはフルオロアリール基であり、最も好ましくは、トリフルオロメチル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基、3,5−ジフルオロフェニル基、3,4,5−トリフルオロフェニル基またはペンタフルオロフェニル基である。 R 3 is preferably a halogenated hydrocarbyl group, more preferably a halogenated alkyl group or a halogenated aryl group. More preferably, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2,2-trimethyl Fluoro-1-trifluoromethylethyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, 3,4,5-tri Fluorophenyl group, 2,3,5,6-tetrafluorophenyl group, pentafluorophenyl group, 2,3,5,6-tetrafluoro-4-trifluoro Methylphenyl group, 2,3,5,6-tetrafluoro-4-pentafluorophenylphenyl group, perfluoro-1-naphthyl group, perfluoro-2-naphthyl group, chloromethyl group, dichloromethyl group, trichloromethyl group 2,2,2-trichloroethyl group, 2,2,3,3,3-pentachloropropyl group, 2,2,2-trichloro-1-trichloromethylethyl group, 1,1-bis (trichloromethyl) -2,2,2-trichloroethyl group, 4-chlorophenyl group, 2,6-dichlorophenyl group, 3.5-dichlorophenyl group, 2,4,6-trichlorophenyl group, 3,4,5-trichlorophenyl group, Or a pentachlorophenyl group, particularly preferably a fluoroalkyl group or a fluoroaryl group, and most preferably a trialkyl group. Fluoromethyl group, 2,2,2-trifluoro-1-trifluoromethylethyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl group, 3,5-difluorophenyl group , 3,4,5-trifluorophenyl group or pentafluorophenyl group.

上記一般式[5]におけるR はハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。R におけるハイドロカルビル基としては、アルキル基、アリール基、またはアラルキル基が好ましく、一般式[3]におけるL として説明したと同様のハイドロカルビル基が用いられる。R におけるハロゲン化ハイドロカルビル基としては、ハロゲン化アルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基等が挙げられ、上記一般式[4]のR における電子吸引性基の具体例として挙げたものと同様のハロゲン化アルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基が用いられる。 R 4 in the general formula [5] represents a hydrocarbyl group or a halogenated hydrocarbyl group. The hydrocarbyl group in R 4 is preferably an alkyl group, an aryl group, or an aralkyl group, and the same hydrocarbyl group as described for L 2 in the general formula [3] is used. Examples of the halogenated hydrocarbyl group in R 4 include a halogenated alkyl group, a halogenated aryl group, and a (halogenated alkyl) aryl group. Specific examples of the electron-withdrawing group in R 3 of the above general formula [4] The same halogenated alkyl group, halogenated aryl group, and (halogenated alkyl) aryl group as those mentioned as examples are used.

上記一般式[5]におけるR として好ましくはハロゲン化ハイドロカルビル基であり、さらに好ましくはフッ素化ハイドロカルビル基である。 R 4 in the general formula [5] is preferably a halogenated hydrocarbyl group, and more preferably a fluorinated hydrocarbyl group.

改質された粒子(I)に用いられる化合物(a)としては、Mが亜鉛原子の場合、例えば、ジメチル亜鉛、ジエチル亜鉛、ジプロピル亜鉛、ジ−n−ブチル亜鉛、ジイソブチル亜鉛、ジ−n−ヘキシル亜鉛等のジアルキル亜鉛、ジフェニル亜鉛、ジナフチル亜鉛、およびビス(ペンタフルオロフェニル)亜鉛等のジアリール亜鉛、ジアリル亜鉛等のジアルケニル亜鉛、ビス(シクロペンタジエニル)亜鉛、塩化メチル亜鉛、塩化エチル亜鉛、塩化プロピル亜鉛、塩化n−ブチル亜鉛、塩化イソブチル亜鉛、塩化n−ヘキシル亜鉛、臭化メチル亜鉛、臭化エチル亜鉛、臭化プロピル亜鉛、臭化n−ブチル亜鉛、臭化イソブチル亜鉛、臭化n−ヘキシル亜鉛、ヨウ化メチル亜鉛、ヨウ化エチル亜鉛、ヨウ化プロピル亜鉛、ヨウ化n−ブチル亜鉛、ヨウ化イソブチル亜鉛、およびヨウ化n−ヘキシル亜鉛等のハロゲン化アルキル亜鉛、フッ化亜鉛、塩化亜鉛、臭化亜鉛、およびヨウ化亜鉛等のハロゲン化亜鉛が挙げられる。 As the compound (a) used for the modified particles (I), when M 2 is a zinc atom, for example, dimethyl zinc, diethyl zinc, dipropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-n -Dialkyl zinc such as hexyl zinc, diphenyl zinc, dinaphthyl zinc, diaryl zinc such as bis (pentafluorophenyl) zinc, dialkenyl zinc such as diallyl zinc, bis (cyclopentadienyl) zinc, methyl zinc chloride, ethyl zinc chloride , Propyl zinc chloride, n-butyl zinc chloride, isobutyl zinc chloride, n-hexyl chloride, methyl zinc bromide, ethyl zinc bromide, propyl zinc bromide, n-butyl zinc bromide, isobutyl zinc bromide, bromide n-hexyl zinc, methyl zinc iodide, ethyl zinc iodide, propyl zinc iodide, n-butyl zinc iodide And zinc halides such as zinc halides such as isobutylzinc iodide, and n-hexylzinc iodide, zinc fluoride, zinc chloride, zinc bromide, and zinc iodide.

化合物(a)として好ましくは、ジアルキル亜鉛であり、更に好ましくは、ジメチル亜鉛、ジエチル亜鉛、ジプロピル亜鉛、ジn−ブチル亜鉛、ジイソブチル亜鉛またはジn−ヘキシル亜鉛であり、特に好ましくはジメチル亜鉛またはジエチル亜鉛である。   The compound (a) is preferably dialkyl zinc, more preferably dimethyl zinc, diethyl zinc, dipropyl zinc, di n-butyl zinc, diisobutyl zinc or di n-hexyl zinc, particularly preferably dimethyl zinc or diethyl. Zinc.

化合物(b)を具体例に例示すると、アミン類としては、ジ(フルオロメチル)アミン、ジ(クロロメチル)アミン、ジ(ブロモメチル)アミン、ジ(ヨードメチル)アミン、ビス(ジフルオロメチル)アミン、ビス(ジクロロメチル)アミン、ビス(ジブロモメチル)アミン、ビス(ジヨードメチル)アミン、ビス(トリフルオロメチル)アミン、ビス(トリクロロメチル)アミン、ビス(トリブロモメチル)アミン、ビス(トリヨードメチル)アミン、ビス(2,2,2−トリフルオロエチル)アミン、ビス(2,2,2−トリクロロエチル)アミン、ビス(2,2,2−トリブロモエチル)アミン、ビス(2,2,2−トリヨードエチル)アミン、ビス(2,2,3,3,3−ペンタフルオロプロピル)アミン、ビス(2,2,3,3,3−ペンタクロロプロピル)アミン、ビス(2,2,3,3,3−ペンタブロモプロピル)アミン、ビス(2,2,3,3,3−ペンタヨードプロピル)アミン、ビス(2,2,2−トリフルオロ−1−トリフルオロメチルエチル)アミン、ビス(2,2,2−トリクロロ−1−トリクロロメチルエチル)アミン、ビス(2,2,2−トリブロモ−1−トリブロモメチルエチル)アミン、ビス(2,2,2−トリヨード−1−トリヨードメチルエチル)アミン、ビス(1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル)アミン、ビス(1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル)アミン、ビス(1,1−ビス(トリブロモメチル)−2,2,2−トリブロモエチル)アミン、ビス(1,1−ビス(トリヨードメチル)−2,2,2−トリヨードエチル)アミン、ビス(2−フルオロフェニル)アミン、ビス(3−フルオロフェニル)アミン、ビス(4−フルオロフェニル)アミン、ビス(2−クロロフェニル)アミン、ビス(3−クロロフェニル)アミン、ビス(4−クロロフェニル)アミン、ビス(2−ブロモフェニル)アミン、ビス(3−ブロモフェニル)アミン、ビス(4−ブロモフェニル)アミン、ビス(2−ヨードフェニル)アミン、ビス(3−ヨードフェニル)アミン、ビス(4−ヨードフェニル)アミン、ビス(2,6−ジフルオロフェニル)アミン、ビス(3,5−ジフルオロフェニル)アミン、ビス(2,6−ジクロロフェニル)アミン、ビス(3,5−ジクロロフェニル)アミン、ビス(2,6−ジブロモフェニル)アミン、ビス(3,5−ジブロモフェニル)アミン、ビス(2,6−ジヨードフェニル)アミン、ビス(3,5−ジヨードフェニル)アミン、ビス(2,4,6−トリフルオロフェニル)アミン、ビス(2,4,6−トリクロロフェニル)アミン、ビス(2,4,6−トリブロモフェニル)アミン、ビス(2,4,6−トリヨードフェニル)アミン、ビス(3,4,5−トリフルオロフェニル)アミン、ビス(3,4,5−トリクロロフェニル)アミン、ビス(3,4,5−トリブロモフェニル)アミン、ビス(3,4,5−トリヨードフェニル)アミン、ビス(ペンタフルオロフェニル)アミン、ビス(ペンタクロロフェニル)アミン、ビス(ペンタブロモフェニル)アミン、ビス(ペンタヨードフェニル)アミン、ビス(2−(トリフルオロメチル)フェニル)アミン、ビス(3−(トリフルオロメチル)フェニル)アミン、ビス(4−(トリフルオロメチル)フェニル)アミン、ビス(2,6−ジ(トリフルオロメチル)フェニル)アミン、ビス(3,5−ジ(トリフルオロメチル)フェニル)アミン、ビス(2,4,6−トリ(トリフルオロメチル)フェニル)アミン、ビス(3,4,5−トリ(トリフルオロメチル)フェニル)アミン、ビス(2−シアノフェニル)アミン、(3−シアノフェニル)アミン、ビス(4−シアノフェニル)アミン、ビス(2−ニトロフェニル)アミン、ビス(3−ニトロフェニル)アミン、ビス(4−ニトロフェニル)アミン等が挙げられる。また、窒素原子がリン原子に置換されたホスフィン化合物も同様に例示することができる。それらホスフィン化合物は、上述の具体例のアミンをホスフィンに書き換えることによって表される化合物等である。   Specific examples of the compound (b) include amines such as di (fluoromethyl) amine, di (chloromethyl) amine, di (bromomethyl) amine, di (iodomethyl) amine, bis (difluoromethyl) amine, bis (Dichloromethyl) amine, bis (dibromomethyl) amine, bis (diiodomethyl) amine, bis (trifluoromethyl) amine, bis (trichloromethyl) amine, bis (tribromomethyl) amine, bis (triiodomethyl) amine, Bis (2,2,2-trifluoroethyl) amine, bis (2,2,2-trichloroethyl) amine, bis (2,2,2-tribromoethyl) amine, bis (2,2,2-trimethyl) Iodoethyl) amine, bis (2,2,3,3,3-pentafluoropropyl) amine, bis (2,2,3,3) 3-pentachloropropyl) amine, bis (2,2,3,3,3-pentabromopropyl) amine, bis (2,2,3,3,3-pentaiodopropyl) amine, bis (2,2, 2-trifluoro-1-trifluoromethylethyl) amine, bis (2,2,2-trichloro-1-trichloromethylethyl) amine, bis (2,2,2-tribromo-1-tribromomethylethyl) amine Bis (2,2,2-triiodo-1-triiodomethylethyl) amine, bis (1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl) amine, bis (1,1 -Bis (trichloromethyl) -2,2,2-trichloroethyl) amine, bis (1,1-bis (tribromomethyl) -2,2,2-tribromoethyl) amine, bis (1,1 Bis (triiodomethyl) -2,2,2-triiodoethyl) amine, bis (2-fluorophenyl) amine, bis (3-fluorophenyl) amine, bis (4-fluorophenyl) amine, bis (2- Chlorophenyl) amine, bis (3-chlorophenyl) amine, bis (4-chlorophenyl) amine, bis (2-bromophenyl) amine, bis (3-bromophenyl) amine, bis (4-bromophenyl) amine, bis (2 -Iodophenyl) amine, bis (3-iodophenyl) amine, bis (4-iodophenyl) amine, bis (2,6-difluorophenyl) amine, bis (3,5-difluorophenyl) amine, bis (2, 6-dichlorophenyl) amine, bis (3,5-dichlorophenyl) amine, bis (2,6-dibromophenyl) Enyl) amine, bis (3,5-dibromophenyl) amine, bis (2,6-diiodophenyl) amine, bis (3,5-diiodophenyl) amine, bis (2,4,6-trifluorophenyl) ) Amine, bis (2,4,6-trichlorophenyl) amine, bis (2,4,6-tribromophenyl) amine, bis (2,4,6-triiodophenyl) amine, bis (3,4, 5-trifluorophenyl) amine, bis (3,4,5-trichlorophenyl) amine, bis (3,4,5-tribromophenyl) amine, bis (3,4,5-triiodophenyl) amine, bis (Pentafluorophenyl) amine, bis (pentachlorophenyl) amine, bis (pentabromophenyl) amine, bis (pentaiodophenyl) amine, bis (2- ( Trifluoromethyl) phenyl) amine, bis (3- (trifluoromethyl) phenyl) amine, bis (4- (trifluoromethyl) phenyl) amine, bis (2,6-di (trifluoromethyl) phenyl) amine, Bis (3,5-di (trifluoromethyl) phenyl) amine, bis (2,4,6-tri (trifluoromethyl) phenyl) amine, bis (3,4,5-tri (trifluoromethyl) phenyl) Amine, bis (2-cyanophenyl) amine, (3-cyanophenyl) amine, bis (4-cyanophenyl) amine, bis (2-nitrophenyl) amine, bis (3-nitrophenyl) amine, bis (4- Nitrophenyl) amine and the like. Moreover, the phosphine compound by which the nitrogen atom was substituted by the phosphorus atom can be illustrated similarly. These phosphine compounds are compounds represented by rewriting the amine of the above-mentioned specific examples to phosphine.

また化合物(b)の具体例としてアルコール類としては、フルオロメタノール、クロロメタノール、ブロモメタノール、ヨードメタノール、ジフルオロメタノール、ジクロロメタノール、ジブロモメタノール、ジヨードメタノール、トリフルオロメタノール、トリクロロメタノール、トリブロモメタノール、トリヨードメタノール、2,2,2−トリフルオロエタノール、2,2,2−トリクロロエタノール、2,2,2−トリブロモエタノール、2,2,2−トリヨードエタノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,3,3,3−ペンタクロロプロパノール、2,2,3,3,3−ペンタブロモプロパノール、2,2,3,3,3−ペンタヨードプロパノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、2,2,2−トリクロロ−1−トリクロロメチルエタノール、2,2,2−トリブロモ−1−トリブロモメチルエタノール、2,2,2−トリヨード−1−トリヨードメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエタノール、1,1−ビス(トリブロモメチル)−2,2,2−トリブロモエタノール、1,1−ビス(トリヨードメチル)−2,2,2−トリヨードエタノール等が挙げられる。また、酸素原子が硫黄原子に置換されたチオール化合物も同様に例示することができる。それらチオール化合物は、上述の具体例のメタノールをメタンチオールに、エタノールをエタンチオールに、プロパノールをプロパンチオールに書き換えることによって表される化合物等である。   Specific examples of the compound (b) include alcohols such as fluoromethanol, chloromethanol, bromomethanol, iodomethanol, difluoromethanol, dichloromethanol, dibromomethanol, diiodethanol, trifluoromethanol, trichloromethanol, tribromomethanol, Triiodomethanol, 2,2,2-trifluoroethanol, 2,2,2-trichloroethanol, 2,2,2-tribromoethanol, 2,2,2-triiodoethanol, 2,2,3,3 , 3-pentafluoropropanol, 2,2,3,3,3-pentachloropropanol, 2,2,3,3,3-pentabromopropanol, 2,2,3,3,3-pentaiodopropanol, 2, , 2,2-trifluoro-1-trifluorome Ethanol, 2,2,2-trichloro-1-trichloromethylethanol, 2,2,2-tribromo-1-tribromomethylethanol, 2,2,2-triiodo-1-triiodomethylethanol, 1,1 -Bis (trifluoromethyl) -2,2,2-trifluoroethanol, 1,1-bis (trichloromethyl) -2,2,2-trichloroethanol, 1,1-bis (tribromomethyl) -2, Examples include 2,2-tribromoethanol and 1,1-bis (triiodomethyl) -2,2,2-triiodoethanol. Moreover, the thiol compound by which the oxygen atom was substituted by the sulfur atom can be illustrated similarly. These thiol compounds are compounds represented by rewriting methanol in the above specific examples to methanethiol, ethanol to ethanethiol, and propanol to propanethiol.

化合物(b)の具体例としてフェノール類としては、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,4−ジフルオロフェノール、2,6−ジフルオロフェノール、3,4−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、2,3,5,6−テトラフルオロフェノール、ペンタフルオロフェノール、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェノール、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノール、パーフルオロ−1−ナフトール、パーフルオロ−2−ナフトール、2−クロロフェノール、3−クロロフェノール、4−クロロフェノール、2,4−ジクロロフェノール、2,6−ジクロロフェノール、3,4−ジクロロフェノール、3,5−ジクロロフェノール、2,4,6−トリクロロフェノール、3,4,5−トリクロロフェノール、2,3,5,6−テトラクロロフェノール、ペンタクロロフェノール、2,3,5,6−テトラクロロ−4−トリクロロメチルフェノール、2,3,5,6−テトラクロロ−4−ペンタクロロフェニルフェノール、パークロロ−1−ナフトール、パークロロ−2−ナフトール、2−ブロモフェノール、3−ブロモフェノール、4−ブロモフェノール、2,4−ジブロモフェノール、2,6−ジブロモフェノール、3,4−ジブロモフェノール、3,5−ジブロモフェノール、2,4,6−トリブロモフェノール、3,4,5−トリブロモフェノール、2,3,5,6−テトラブロモフェノール、ペンタブロモフェノール、2,3,5,6−テトラブロモ−4−トリブロモメチルフェノール、2,3,5,6−テトラブロモ−4−ペンタブロモフェニルフェノール、パーブロモ−1−ナフトール、パーブロモ−2−ナフトール、2−ヨードフェノール、3−ヨードフェノール、4−ヨードフェノール、2,4−ジヨードフェノール、2,6−ジヨードフェノール、3,4−ジヨードフェノール、3,5−ジヨードフェノール、2,4,6−トリヨードフェノール、3,4,5−トリヨードフェノール、2,3,5,6−テトラヨードフェノール、ペンタヨードフェノール、2,3,5,6−テトラヨード−4−トリヨードメチルフェノール、2,3,5,6−テトラヨード−4−ペンタヨードフェニルフェノール、パーヨード−1−ナフトール、パーヨード−2−ナフトール、2−(トリフルオロメチル)フェノール、3−(トリフルオロメチル)フェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、3,5−ビス(トリフルオロメチル)フェノール、2,4,6−トリス(トリフルオロメチル)フェノール、3,4,5−トリス(トリフルオロメチル)フェノール、2−シアノフェノール、3−シアノフェノール、4−シアノフェノール、2−ニトロフェノール、3−ニトロフェノール、4−ニトロフェノール等が挙げられる。また、酸素原子が硫黄原子に置換されたチオフェノール化合物も同様に例示することができる。それらチオフェノール化合物は、上述の具体例のフェノールをチオフェノールに書き換えることによって表される化合物等である。   Specific examples of the compound (b) include phenols such as 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,4-difluorophenol, 2,6-difluorophenol, 3,4-difluorophenol, 3 , 5-difluorophenol, 2,4,6-trifluorophenol, 3,4,5-trifluorophenol, 2,3,5,6-tetrafluorophenol, pentafluorophenol, 2,3,5,6- Tetrafluoro-4-trifluoromethylphenol, 2,3,5,6-tetrafluoro-4-pentafluorophenylphenol, perfluoro-1-naphthol, perfluoro-2-naphthol, 2-chlorophenol, 3-chloro Phenol, 4-chlorophenol, 2,4-dichloropheno 2,6-dichlorophenol, 3,4-dichlorophenol, 3,5-dichlorophenol, 2,4,6-trichlorophenol, 3,4,5-trichlorophenol, 2,3,5,6-tetrachloro Phenol, pentachlorophenol, 2,3,5,6-tetrachloro-4-trichloromethylphenol, 2,3,5,6-tetrachloro-4-pentachlorophenylphenol, perchloro-1-naphthol, perchloro-2- Naphthol, 2-bromophenol, 3-bromophenol, 4-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, 3,4-dibromophenol, 3,5-dibromophenol, 2,4,6 -Tribromophenol, 3,4,5-tribromophenol, 2,3,5,6- Trabromophenol, pentabromophenol, 2,3,5,6-tetrabromo-4-tribromomethylphenol, 2,3,5,6-tetrabromo-4-pentabromophenylphenol, perbromo-1-naphthol, perbromo- 2-naphthol, 2-iodophenol, 3-iodophenol, 4-iodophenol, 2,4-diiodophenol, 2,6-diiodophenol, 3,4-diiodophenol, 3,5-diiodophenol 2,4,6-triiodophenol, 3,4,5-triiodophenol, 2,3,5,6-tetraiodophenol, pentaiodophenol, 2,3,5,6-tetraiodo-4-tri Iodomethylphenol, 2,3,5,6-tetraiodo-4-pentaiodophenylphenol , Period-1-naphthol, period-2-naphthol, 2- (trifluoromethyl) phenol, 3- (trifluoromethyl) phenol, 4- (trifluoromethyl) phenol, 2,6-bis (trifluoromethyl) Phenol, 3,5-bis (trifluoromethyl) phenol, 2,4,6-tris (trifluoromethyl) phenol, 3,4,5-tris (trifluoromethyl) phenol, 2-cyanophenol, 3-cyano Phenol, 4-cyanophenol, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and the like can be mentioned. Moreover, the thiophenol compound by which the oxygen atom was substituted by the sulfur atom can be illustrated similarly. These thiophenol compounds are compounds represented by rewriting phenol of the above-mentioned specific examples with thiophenol.

化合物(b)として好ましくは、アミン類としては、ビス(トリフルオロメチル)アミン、ビス(2,2,2−トリフルオロエチル)アミン、ビス(2,2,3,3,3−ペンタフルオロプロピル)アミン、ビス(2,2,2−トリフルオロ−1−トリフルオロメチルエチル)アミン、ビス(1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル)アミン、またはビス(ペンタフルオロフェニル)アミン、アルコール類としては、トリフルオロメタノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、または1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、フェノール類としては、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、2−(トリフルオロメチル)フェノール、3−(トリフルオロメチル)フェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、3,5−ビス(トリフルオロメチル)フェノール、2,4,6−トリス(トリフルオロメチル)フェノール、または3,4,5−トリス(トリフルオロメチル)フェノールである。   The compound (b) is preferably a bis (trifluoromethyl) amine, bis (2,2,2-trifluoroethyl) amine, bis (2,2,3,3,3-pentafluoropropyl) amine. ) Amine, bis (2,2,2-trifluoro-1-trifluoromethylethyl) amine, bis (1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl) amine, or bis (Pentafluorophenyl) amine and alcohols include trifluoromethanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoropropanol, 2,2,2-trifluoro-1 -Trifluoromethylethanol, or 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol, phenols Are 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,6-difluorophenol, 3,5-difluorophenol, 2,4,6-trifluorophenol, 3,4,5-trifluorophenol , Pentafluorophenol, 2- (trifluoromethyl) phenol, 3- (trifluoromethyl) phenol, 4- (trifluoromethyl) phenol, 2,6-bis (trifluoromethyl) phenol, 3,5-bis ( Trifluoromethyl) phenol, 2,4,6-tris (trifluoromethyl) phenol, or 3,4,5-tris (trifluoromethyl) phenol.

化合物(b)としてより好ましくは、ビス(トリフルオロメチル)アミン、ビス(ペンタフルオロフェニル)アミン、トリフルオロメタノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、または2,4,6−トリス(トリフルオロメチル)フェノールであり、さらに好ましくは、3,5−ジフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、または1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノールである。   More preferably, the compound (b) is bis (trifluoromethyl) amine, bis (pentafluorophenyl) amine, trifluoromethanol, 2,2,2-trifluoro-1-trifluoromethylethanol, 1,1-bis. (Trifluoromethyl) -2,2,2-trifluoroethanol, 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,6-difluorophenol, 3,5-difluorophenol, 2,4,6 -Trifluorophenol, 3,4,5-trifluorophenol, pentafluorophenol, 4- (trifluoromethyl) phenol, 2,6-bis (trifluoromethyl) phenol, or 2,4,6-tris (tri Fluoromethyl) phenol, more preferably 3,5- Fluoro phenol, 3,4,5-fluorophenol, pentafluorophenol or 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol.

化合物(c)としては、例えば、水、硫化水素、アミン、およびアニリン化合物が挙げられる。アミンとしては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソブチルアミン、n−ペンチルアミン、ネオペンチルアミン、イソペンチルアミン、n−ヘキシルアミン、n−オクチルアミン、n−デシルアミン、n−ドデシルアミン、n−ペンタデシルアミン、およびn−エイコシルアミン等のアルキルアミン、アリルアミン、シクロペンタジエニルアミン、およびベンジルアミン等のアラルキルアミン、フルオロメチルアミン、ジフルオロメチルアミン、トリフルオロメチルアミン、2,2,2−トリフルオロエチルアミン、2,2,3,3,3−ペンタフルオロプロピルアミン、2,2,2−トリフルオロ−1−トリフルオロメチルエチルアミン、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチルアミン、パーフルオロプロピルアミン、パーフルオロブチルアミン、パーフルオロペンチルアミン、パーフルオロヘキシルアミン、パーフルオロオクチルアミン、パーフルオロドデシルアミン、パーフルオロペンタデシルアミン、パーフルオロエイコシルアミン、および、これらのアミンの「フルオロ」を「クロロ」、「ブロモ」または「ヨード」に置き換えたハロゲン化アルキルアミンが挙げられる。   Examples of the compound (c) include water, hydrogen sulfide, amine, and aniline compounds. Examples of the amine include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, tert-butylamine, isobutylamine, n-pentylamine, neopentylamine, isopentylamine, and n-hexyl. Alkylamines such as amine, n-octylamine, n-decylamine, n-dodecylamine, n-pentadecylamine, and n-eicosylamine, aralkylamines such as allylamine, cyclopentadienylamine, and benzylamine, fluoro Methylamine, difluoromethylamine, trifluoromethylamine, 2,2,2-trifluoroethylamine, 2,2,3,3,3-pentafluoropropylamine, 2,2,2-trifluoro-1-trifluoro Methylethylamine, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethylamine, perfluoropropylamine, perfluorobutylamine, perfluoropentylamine, perfluorohexylamine, perfluorooctylamine, perfluoro Dodecylamine, perfluoropentadecylamine, perfluoroeicosylamine, and halogenated alkylamines in which “fluoro” of these amines is replaced with “chloro”, “bromo”, or “iodo”.

化合物(c)のアニリン化合物としては、例えば、アニリン、ナフチルアミン、アントラセニルアミン、2−トリルアミン、3−トリルアミン、4−トリルアミン、2,3−キシリルアミン、2,4−キシリルアミン、2,5−キシリルアミン、2,6−キシリルアミン、3,4−キシリルアミン、3,5−キシリルアミン、2,3,4−トリメチルアニリン、2,3,5−トリメチルアニリン、2,3,6−トリメチルアニリン、2,4,6−トリメチルアニリン、3,4,5−トリメチルアニリン、2,3,4,5−テトラメチルアニリン、2,3,4,6−テトラメチルアニリン、2,3,5,6−テトラメチルアニリン、ペンタメチルアニリン、2−エチルアニリン、3−エチルアニリン、4−エチルアニリン、2,3−ジエチルアニリン、2,4−ジエチルアニリン、2,5−ジエチルアニリン、2,6−ジエチルアニリン、3,4−ジエチルアニリン、3,5−ジエチルアニリン、2,3,4−トリエチルアニリン、2,3,5−トリエチルアニリン、2,3,6−トリエチルアニリン、2,4,6−トリエチルアニリン、3,4,5−トリエチルアニリン、2,3,4,5−テトラエチルアニリン、2,3,4,6−テトラエチルアニリン、2,3,5,6−テトラエチルアニリン、ペンタエチルアニリン、および、これらの「エチル」を「n−プロピル」、「イソプロピル」、「n−ブチル」、「sec−ブチル」、「tert−ブチル」、「n−ペンチル」、「ネオペンチル」、「n−ヘキシル」、「n−オクチル」、「n−デシル」、「n−ドデシル」、または「n−テトラデシル」に置き換えたアルキルアニリン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、およびペンタフルオロアニリン等のハロゲン化アニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ジ(トリフルオロメチル)アニリン、3,5−ジ(トリフルオロメチル)アニリン、2,4,6−トリ(トリフルオロメチル)アニリン、および、これらの「フルオロ」を「クロロ」、「ブロモ」または「ヨード」に置き換えた(ハロゲン化アルキル)アニリンが挙げられる。   Examples of the aniline compound of compound (c) include aniline, naphthylamine, anthracenylamine, 2-tolylamine, 3-tolylamine, 4-tolylamine, 2,3-xylylamine, 2,4-xylylamine, 2,5-xylylamine, 2,6-xylylamine, 3,4-xylylamine, 3,5-xylylamine, 2,3,4-trimethylaniline, 2,3,5-trimethylaniline, 2,3,6-trimethylaniline, 2,4,6 -Trimethylaniline, 3,4,5-trimethylaniline, 2,3,4,5-tetramethylaniline, 2,3,4,6-tetramethylaniline, 2,3,5,6-tetramethylaniline, penta Methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3-diethylaline Phosphorus, 2,4-diethylaniline, 2,5-diethylaniline, 2,6-diethylaniline, 3,4-diethylaniline, 3,5-diethylaniline, 2,3,4-triethylaniline, 2,3, 5-triethylaniline, 2,3,6-triethylaniline, 2,4,6-triethylaniline, 3,4,5-triethylaniline, 2,3,4,5-tetraethylaniline, 2,3,4,6 -Tetraethylaniline, 2,3,5,6-tetraethylaniline, pentaethylaniline, and their "ethyl" are "n-propyl", "isopropyl", "n-butyl", "sec-butyl", " tert-butyl, n-pentyl, neopentyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, Alkylaniline substituted with “n-tetradecyl”, 2-fluoroaniline, 3-fluoroaniline, 4-fluoroaniline, 2,6-difluoroaniline, 3,5-difluoroaniline, 2,4,6-trifluoroaniline, Halogenated anilines such as 3,4,5-trifluoroaniline and pentafluoroaniline, 2- (trifluoromethyl) aniline, 3- (trifluoromethyl) aniline, 4- (trifluoromethyl) aniline, 2,6 -Di (trifluoromethyl) aniline, 3,5-di (trifluoromethyl) aniline, 2,4,6-tri (trifluoromethyl) aniline, and their “fluoro” are “chloro”, “bromo” Or (halogenated alkyl) aniline substituted with “iodo”.

化合物(c)として好ましくは、水、硫化水素、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソブチルアミン、n−オクチルアミン、アニリン、2,6−キシリルアミン、2,4,6−トリメチルアニリン、ナフチルアミン、アントラセニルアミン、ベンジルアミン、トリフルオロメチルアミン、ペンタフルオロエチルアミン、パーフルオロプロピルアミン、パーフルオロブチルアミン、パーフルオロペンチルアミン、パーフルオロヘキシルアミン、パーフルオロオクチルアミン、パーフルオロドデシルアミン、パーフルオロペンタデシルアミン、パーフルオロエイコシルアミン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリンまたは2,4,6−トリス(トリフルオロメチル)アニリンであり、特に好ましくは、水、トリフルオロメチルアミン、パーフルオロブチルアミン、パーフルオロオクチルアミン、パーフルオロペンタデシルアミン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリン、または2,4,6−トリス(トリフルオロメチル)アニリンであり、最も好ましくは水またはペンタフルオロアニリンである。   The compound (c) is preferably water, hydrogen sulfide, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, tert-butylamine, isobutylamine, n-octylamine, aniline, 2, 6-xylylamine, 2,4,6-trimethylaniline, naphthylamine, anthracenylamine, benzylamine, trifluoromethylamine, pentafluoroethylamine, perfluoropropylamine, perfluorobutylamine, perfluoropentylamine, perfluorohexylamine, Perfluorooctylamine, perfluorododecylamine, perfluoropentadecylamine, perfluoroeicosylamine, 2-fluoroaniline, 3-fluoroaniline, 4-fluoro Oroaniline, 2,6-difluoroaniline, 3,5-difluoroaniline, 2,4,6-trifluoroaniline, 3,4,5-trifluoroaniline, pentafluoroaniline, 2- (trifluoromethyl) aniline, 3 -(Trifluoromethyl) aniline, 4- (trifluoromethyl) aniline, 2,6-bis (trifluoromethyl) aniline, 3,5-bis (trifluoromethyl) aniline or 2,4,6-tris (tri Fluoromethyl) aniline, particularly preferably water, trifluoromethylamine, perfluorobutylamine, perfluorooctylamine, perfluoropentadecylamine, 2-fluoroaniline, 3-fluoroaniline, 4-fluoroaniline, 2, 6-difluoroaniline, 3,5-difluoroa Phosphorus, 2,4,6-trifluoroaniline, 3,4,5-trifluoroaniline, pentafluoroaniline, 2- (trifluoromethyl) aniline, 3- (trifluoromethyl) aniline, 4- (trifluoromethyl) ) Aniline, 2,6-bis (trifluoromethyl) aniline, 3,5-bis (trifluoromethyl) aniline, or 2,4,6-tris (trifluoromethyl) aniline, most preferably water or penta Fluoroaniline.

(d)としては、無機酸化物粒子や有機ポリマー粒子が挙げられるが、それらの中で、好ましくは、一般に担体として用いられている粒径の整った、多孔質の粒子である。(d)の粒径分布としては、得られる付加重合体の粒径分布の観点から、好ましくは、(d)の粒径の体積基準の幾何標準偏差が2.5以下であり、より好ましくは2.0以下であり、さらに好ましくは1.7以下である。   Examples of (d) include inorganic oxide particles and organic polymer particles. Among them, porous particles having a uniform particle diameter generally used as a carrier are preferable. As the particle size distribution of (d), from the viewpoint of the particle size distribution of the resulting addition polymer, the volume standard geometric standard deviation of the particle size of (d) is preferably 2.5 or less, more preferably It is 2.0 or less, More preferably, it is 1.7 or less.

(d)の無機酸化物粒子としては、どのような無機酸化物を用いてもよく、複数の無機物質を混合して用いてもよい。無機酸化物としては、例えば、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、およびThO2、ならびにこれらの混合物、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、およびSiO2−TiO2−MgOが挙げられる。これらの無機酸化物として好ましくは、SiO2および/またはAl23であり、特に好ましくはSiO2(即ちシリカ)である。上記無機酸化物は、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO43、BaSO4、KNO3、Mg(NO32、Al(NO33、Na2O、K2O、Li2O等の炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していてもよい。 As the inorganic oxide particles (d), any inorganic oxide may be used, and a plurality of inorganic substances may be mixed and used. As the inorganic oxide, e.g., SiO 2, Al 2 O 3 , MgO, ZrO 2, TiO 2, B 2 O 3, CaO, ZnO, BaO, and ThO 2, and mixtures thereof, SiO 2 -MgO, SiO 2 -Al 2 O 3, SiO 2 -TiO 2, SiO 2 -V 2 O 5, SiO 2 -Cr 2 O 3, and SiO 2 -TiO 2 -MgO and the like. These inorganic oxides are preferably SiO 2 and / or Al 2 O 3 , and particularly preferably SiO 2 (ie, silica). The inorganic oxide includes a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ) 2 , Carbonic acid salts such as Al (NO 3 ) 3 , Na 2 O, K 2 O, and Li 2 O, sulfates, nitrates, and oxide components may be contained.

無機酸化物は、乾燥され、実質的に水分が除去されていることが好ましく、乾燥方法として好ましくは加熱乾燥である。乾燥温度は、目視で水分を確認できない無機酸化物については、通常温度100〜1500℃であり、好ましくは100〜1000℃であり、更に好ましくは200〜800℃である。乾燥時間は特に限定されないが、好ましくは10分間〜50時間、より好ましくは1時間〜30時間である。加熱乾燥の方法としては、例えば、加熱中に乾燥した不活性ガス(例えば、窒素またはアルゴン等)を一定の流速で流通させて乾燥する方法、または、減圧下で加熱乾燥する方法等が挙げられる。   The inorganic oxide is preferably dried to substantially remove moisture, and the drying method is preferably heat drying. The drying temperature is usually 100 to 1500 ° C., preferably 100 to 1000 ° C., more preferably 200 to 800 ° C. for inorganic oxides whose moisture cannot be visually confirmed. The drying time is not particularly limited, but is preferably 10 minutes to 50 hours, more preferably 1 hour to 30 hours. Examples of the heat drying method include a method in which an inert gas (eg, nitrogen or argon) dried during heating is circulated and dried at a constant flow rate, or a method in which heat drying is performed under reduced pressure. .

無機酸化物には通常、表面にヒドロキシ基が生成し存在しているが、無機酸化物として、表面ヒドロキシ基の活性水素を種々の置換基で置換した、改質無機酸化物を使用してもよい。改質無機酸化物としては、例えば、トリメチルクロロシラン、tert−ブチルジメチルクロロシラン等のトリアルキルクロロシラン、トリフェニルクロロシラン等のトリアリールクロロシラン、ジメチルジクロロシラン等のジアルキルジクロロシラン、ジフェニルジクロロシラン等のジアリールジクロロシラン、メチルトリクロロシラン等のアルキルトリクロロシラン、フェニルトリクロロシラン等のアリールトリクロロシラン、トリメチルメトキシシラン等のトリアルキルアルコキシシラン、トリフェニルメトキシシラン等のトリアリールアルコシキシランおよびジメチルジメトキシシラン等のジアルキルジアルコキシシラン、ジフェニルジメトキシシラン等のジアリールジアルコキシシラン、メチルトリメトキシシラン等のアルキルトリアルコキシシラン、フェニルトリメトキシシラン等のアリールトリアルコキシシラン、テトラメトキシシラン等のテトラアルコキシシラン、1,1,1,3,3,3−ヘキサメチルジシラザン等のアルキルジシラザン、テトラクロロシラン、メタノールおよびエタノール等のアルコール、フェノール、ジブチルマグネシウム、ブチルエチルマグネシウム、ブチルオクチルマグネシウム等のジアルキルマグネシウム、ブチルリチウム等のアルキルリチウムで接触処理された無機酸化物が挙げられる。   Inorganic oxides usually have hydroxy groups formed on the surface, but modified inorganic oxides in which active hydrogen of surface hydroxy groups are substituted with various substituents can be used as inorganic oxides. Good. Examples of the modified inorganic oxide include trialkylchlorosilanes such as trimethylchlorosilane and tert-butyldimethylchlorosilane, triarylchlorosilanes such as triphenylchlorosilane, dialkyldichlorosilanes such as dimethyldichlorosilane, and diaryldichlorosilanes such as diphenyldichlorosilane. Alkyltrichlorosilanes such as methyltrichlorosilane, aryltrichlorosilanes such as phenyltrichlorosilane, trialkylalkoxysilanes such as trimethylmethoxysilane, triarylalkoxysilanes such as triphenylmethoxysilane, and dialkyldialkoxysilanes such as dimethyldimethoxysilane , Diaryldialkoxysilanes such as diphenyldimethoxysilane, and alkyltols such as methyltrimethoxysilane Alkoxysilane, aryltrialkoxysilane such as phenyltrimethoxysilane, tetraalkoxysilane such as tetramethoxysilane, alkyldisilazane such as 1,1,1,3,3,3-hexamethyldisilazane, tetrachlorosilane, methanol and Inorganic oxides contact-treated with alcohols such as ethanol, dialkylmagnesium such as phenol, dibutylmagnesium, butylethylmagnesium and butyloctylmagnesium, and alkyllithiums such as butyllithium.

更に、トリアルキルアルミニウムと接触後、ジエチルアミン、ジフェニルアミン等のジアルキルアミン、メタノール、エタノール等のアルコール、フェノールで接触処理された無機酸化物が挙げられる。   Furthermore, after contact with trialkylaluminum, there can be mentioned dialkylamines such as diethylamine and diphenylamine, alcohols such as methanol and ethanol, and inorganic oxides contacted with phenol.

無機酸化物はヒドロキシ基同士が水素結合することにより無機酸化物自体の強度が高まっていることがある。その場合、仮に表面ヒドロキシ基の活性水素すべてについて種々の置換基で置換してしまうと、粒子強度の低下等をまねく場合がある。よって、無機酸化物の表面ヒドロキシ基の活性水素は必ずしもすべて置換する必要はなく、表面ヒドロキシ基の置換率は適宜決めればよい。表面ヒドロキシ基の置換率を変化させる方法は特に限定されない。その方法としては、例えば、接触処理に使用する化合物の使用量を変化させる方法が挙げられる。   Inorganic oxides may have increased strength due to hydrogen bonding between hydroxy groups. In that case, if all the active hydrogens of the surface hydroxy group are substituted with various substituents, the particle strength may be lowered. Therefore, it is not always necessary to replace all active hydrogens on the surface hydroxy groups of the inorganic oxide, and the substitution rate of the surface hydroxy groups may be determined as appropriate. The method for changing the substitution rate of the surface hydroxy group is not particularly limited. Examples of the method include a method of changing the amount of the compound used for the contact treatment.

無機酸化物粒子の平均粒子径は特に限定されないが、通常1〜5000μmであり、好ましくは5〜1000μmであり、より好ましくは10〜500μmであり、更に好ましくは10〜100μmである。細孔容量として好ましくは、0.1ml/g以上であり、より好ましくは0.3〜10ml/gである。比表面積はとして好ましくは、10〜1000m2/gであり、より好ましくは100〜500m2/gである。 The average particle diameter of the inorganic oxide particles is not particularly limited, but is usually 1 to 5000 μm, preferably 5 to 1000 μm, more preferably 10 to 500 μm, and still more preferably 10 to 100 μm. The pore volume is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g. Preferably by the specific surface area and a 10 to 1000 m 2 / g, more preferably 100 to 500 m 2 / g.

(d)の有機ポリマー粒子は、どのような有機ポリマーを用いてもよく、また複数種の有機ポリマーの混合物を用いてもよい。有機ポリマーとして好ましくは、活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基を有する重合体である。   Any organic polymer may be used for the organic polymer particles of (d), and a mixture of plural kinds of organic polymers may be used. The organic polymer is preferably a polymer having a functional group having active hydrogen or a non-proton-donating Lewis basic functional group.

活性水素を有する官能基としては、活性水素を有していれば特に限定されない。その官能基としては、例えば、1級アミノ基、2級アミノ基、イミノ基、アミド基、ヒドラジド基、アミジノ基、ヒドロキシ基、ヒドロペルオキシ基、カルボキシル基、ホルミル基、カルバモイル基、スルホン酸基、スルフィン酸基、スルフェン酸基、チオール基、チオホルミル基、ピロリル基、イミダゾリル基、ピペリジル基、インダゾリル基、およびカルバゾリル基が挙げられる。好ましくは、1級アミノ基、2級アミノ基、イミノ基、アミド基、イミド基、ヒドロキシ基、ホルミル基、カルボキシル基、スルホン酸基またはチオール基であり、特に好ましくは、1級アミノ基、2級アミノ基、アミド基またはヒドロキシ基である。これらの基はハロゲン原子や炭素原子数1〜20のハイドロカルビル基で置換されていてもよい。   The functional group having active hydrogen is not particularly limited as long as it has active hydrogen. Examples of the functional group include primary amino group, secondary amino group, imino group, amide group, hydrazide group, amidino group, hydroxy group, hydroperoxy group, carboxyl group, formyl group, carbamoyl group, sulfonic acid group, Examples thereof include a sulfinic acid group, a sulfenic acid group, a thiol group, a thioformyl group, a pyrrolyl group, an imidazolyl group, a piperidyl group, an indazolyl group, and a carbazolyl group. Preferred are primary amino group, secondary amino group, imino group, amide group, imide group, hydroxy group, formyl group, carboxyl group, sulfonic acid group or thiol group, and particularly preferred are primary amino group, 2 A primary amino group, an amide group or a hydroxy group. These groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.

非プロトン供与性のルイス塩基性官能基としては、活性水素原子を有しないルイス塩基部分を有する官能基であれば特に限定されない。その官能基としては、例えば、ピリジル基、N−置換イミダゾリル基、N−置換インダゾリル基、ニトリル基、アジド基、N−置換イミノ基、N,N−置換アミノ基、N,N−置換アミノオキシ基、N,N,N−置換ヒドラジノ基、ニトロソ基、ニトロ基、ニトロオキシ基、フリル基、カルボニル基、チオカルボニル基、アルコキシ基、アルキルオキシカルボニル基、N,N−置換カルバモイル基、チオアルコキシ基、置換スルフィニル基、置換スルホニル基、および置換スルホン酸基が挙げられる。好ましくは複素環基であり、更に好ましくは、酸素原子および/または窒素原子を環内に有する芳香族複素環基である。特に好ましくは、ピリジル基、N−置換イミダゾリル基、N−置換インダゾリル基であり、最も好ましくはピリジル基である。これらの基はハロゲン原子や炭素原子数1〜20のハイドロカルビル基で置換されていてもよい。   The non-proton-donating Lewis basic functional group is not particularly limited as long as it is a functional group having a Lewis base portion having no active hydrogen atom. Examples of the functional group include pyridyl group, N-substituted imidazolyl group, N-substituted indazolyl group, nitrile group, azide group, N-substituted imino group, N, N-substituted amino group, and N, N-substituted aminooxy. Group, N, N, N-substituted hydrazino group, nitroso group, nitro group, nitrooxy group, furyl group, carbonyl group, thiocarbonyl group, alkoxy group, alkyloxycarbonyl group, N, N-substituted carbamoyl group, thioalkoxy group , Substituted sulfinyl group, substituted sulfonyl group, and substituted sulfonic acid group. A heterocyclic group is preferable, and an aromatic heterocyclic group having an oxygen atom and / or a nitrogen atom in the ring is more preferable. Particularly preferred are a pyridyl group, an N-substituted imidazolyl group, and an N-substituted indazolyl group, and most preferred is a pyridyl group. These groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.

有機ポリマー中の活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基の含有量は特に限定されない。その含有量は、好ましくは、重合体の単位グラム当りの官能基のモル量として0.01〜50mmol/gであり、より好ましくは0.1〜20mmol/gである。   The content of the functional group having active hydrogen or the non-proton donating Lewis basic functional group in the organic polymer is not particularly limited. The content is preferably 0.01 to 50 mmol / g, more preferably 0.1 to 20 mmol / g, as the molar amount of the functional group per unit gram of the polymer.

活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基を有する有機ポリマーの製造方法としては、例えば、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーを単独重合させる方法、またはそのモノマーと重合性不飽和基を有する他のモノマーとを共重合させる方法が挙げられる。このとき更に2個以上の重合性不飽和基を有する架橋重合性モノマーをも一緒に共重合することが好ましい。   Examples of the method for producing an organic polymer having a functional group having active hydrogen or a non-proton-donating Lewis basic functional group include, for example, a functional group having active hydrogen or a non-proton-donating Lewis basic functional group and one or more. And a method of homopolymerizing a monomer having a polymerizable unsaturated group, or a method of copolymerizing the monomer with another monomer having a polymerizable unsaturated group. At this time, it is preferable to copolymerize together a crosslinking polymerizable monomer having two or more polymerizable unsaturated groups.

重合性不飽和基としては、例えば、ビニル基、アリル基等のアルケニル基、エチン基等のアルキニル基が挙げられる。活性水素を有する官能基と1個以上の重合性不飽和基を有するモノマーとしては、例えば、ビニル基含有1級アミン、ビニル基含有2級アミン、ビニル基含有アミド化合物、およびビニル基含有ヒドロキシ化合物が挙げられる。そのモノマーとしては、例えば、N−(1−エテニル)アミン、N−(2−プロペニル)アミン、N−(1−エテニル)−N−メチルアミン、N−(2−プロペニル)−N−メチルアミン、1−エテニルアミド、2−プロペニルアミド、N−メチル−(1−エテニル)アミド、N−メチル−(2−プロペニル)アミド、ビニルアルコール、2−プロペン−1−オール、3−ブテン−1−オールが挙げられる。活性水素原子を有しないルイス塩基部分を有する官能基と1個以上の重合性不飽和基を有するモノマーとしては、例えば、ビニルピリジン、ビニル(N−置換)イミダゾール、およびビニル(N−置換)インダゾールが挙げられる。   Examples of the polymerizable unsaturated group include alkenyl groups such as vinyl group and allyl group, and alkynyl groups such as ethyne group. Examples of monomers having a functional group having active hydrogen and one or more polymerizable unsaturated groups include vinyl group-containing primary amines, vinyl group-containing secondary amines, vinyl group-containing amide compounds, and vinyl group-containing hydroxy compounds. Is mentioned. Examples of the monomer include N- (1-ethenyl) amine, N- (2-propenyl) amine, N- (1-ethenyl) -N-methylamine, and N- (2-propenyl) -N-methylamine. 1-ethenylamide, 2-propenylamide, N-methyl- (1-ethenyl) amide, N-methyl- (2-propenyl) amide, vinyl alcohol, 2-propen-1-ol, 3-buten-1-ol Is mentioned. Examples of monomers having a functional group having a Lewis base having no active hydrogen atom and one or more polymerizable unsaturated groups include vinyl pyridine, vinyl (N-substituted) imidazole, and vinyl (N-substituted) indazole. Is mentioned.

重合性不飽和基を有する他のモノマーとしては、例えば、エチレン、α−オレフィン、芳香族ビニル化合物および環状オレフィン化合物を挙げることができる。そのモノマーとしては、例えば、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、スチレン、ノルボルネン、ジシクロペンタジエンが挙げられる。好ましくはエチレンまたはスチレンである。これらのモノマーは2種以上を用いてもよい。上記2個以上の重合性不飽和基を有する架橋重合性モノマーとしては、例えば、ジビニルベンゼン等を挙げることができる。   Examples of the other monomer having a polymerizable unsaturated group include ethylene, α-olefin, aromatic vinyl compound and cyclic olefin compound. Examples of the monomer include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, styrene, norbornene, and dicyclopentadiene. Preferred is ethylene or styrene. Two or more of these monomers may be used. Examples of the crosslinkable polymerizable monomer having two or more polymerizable unsaturated groups include divinylbenzene.

有機ポリマー粒子の平均粒子径は特に限定されないが、通常1〜5000μmであり、好ましくは5〜1000μmであり、より好ましくは10〜500μmである。細孔容量としては特に限定されないが、好ましくは0.1ml/g以上であり、より好ましくは0.3〜10ml/gである。比表面積としては特に限定されないが、好ましくは10〜1000m2/gであり、より好ましくは50〜500m2/gである。 The average particle diameter of the organic polymer particles is not particularly limited, but is usually 1 to 5000 μm, preferably 5 to 1000 μm, and more preferably 10 to 500 μm. Although it does not specifically limit as pore volume, Preferably it is 0.1 ml / g or more, More preferably, it is 0.3-10 ml / g. Although it does not specifically limit as a specific surface area, Preferably it is 10-1000 m < 2 > / g, More preferably, it is 50-500 m < 2 > / g.

これらの有機ポリマー粒子は、乾燥され、実質的に水分が除去されていることが好ましく、加熱乾燥により乾燥されたものが好ましい。乾燥温度は通常、目視で水分を確認できない有機ポリマーについては30〜400℃であり、好ましくは50〜200℃であり、更に好ましくは70〜150℃である。加熱時間は特に限定されないが、好ましくは10分間〜50時間であり、より好ましくは1時間〜30時間である。加熱乾燥の方法としては、例えば、加熱中に乾燥した不活性ガス(例えば、窒素またはアルゴン等)を一定の流速で流通させて乾燥する方法、または、減圧下で加熱乾燥する方法等が挙げられる。   These organic polymer particles are preferably dried and substantially free of moisture, and those dried by heat drying are preferred. The drying temperature is usually 30 to 400 ° C., preferably 50 to 200 ° C., more preferably 70 to 150 ° C. for an organic polymer whose moisture cannot be visually confirmed. The heating time is not particularly limited, but is preferably 10 minutes to 50 hours, and more preferably 1 hour to 30 hours. Examples of the heat drying method include a method in which an inert gas (eg, nitrogen or argon) dried during heating is circulated and dried at a constant flow rate, or a method in which heat drying is performed under reduced pressure. .

本発明の改質された粒子(I)を得るために、上記の成分(a)、(b)、(c)および(d)を接触させる順序は、特に限定されることはなく、例えば、以下の順序を挙げることができる。
<1>(a)と(b)との接触物と、(c)とを接触させて得られる接触物と(d)とを接触させる。
<2>(a)と(b)との接触物と、(d)とを接触させて得られる接触物と(c)とを接触させる。
<3>(a)と(c)との接触物と、(b)とを接触させて得られる接触物と(d)とを接触させる。
<4>(a)と(c)との接触物と、(d)とを接触させて得られる接触物と(b)とを接触させる。
<5>(a)と(d)との接触物と、(b)とを接触させて得られる接触物と(c)とを接触させる。
<6>(a)と(d)との接触物と、(c)とを接触させて得られる接触物と(b)とを接触させる。
<7>(b)と(c)との接触物と、(a)とを接触させて得られる接触物と(d)とを接触させる。
<8>(b)と(c)との接触物と、(d)とを接触させて得られる接触物と(a)とを接触させる。
<9>(b)と(d)との接触物と、(a)とを接触させて得られる接触物と(c)とを接触させる。
<10>(b)と(d)との接触物と、(c)とを接触させて得られる接触物と(a)とを接触させる。
<11>(c)と(d)との接触物と、(a)とを接触させて得られる接触物と(b)とを接触させる。
<12>(c)と(d)との接触物と、(b)とを接触させて得られる接触物と(a)とを接触させる。
接触順序として、好ましくは、上記の<1>、<2>、<3>、<5>、<11>または<12>である。特に好ましくは、<2>または<5>である。
In order to obtain the modified particles (I) of the present invention, the order in which the above components (a), (b), (c) and (d) are contacted is not particularly limited. The following order can be given.
<1> A contact object obtained by contacting (a) and (b) with (c) and a contact object obtained by bringing (c) into contact with each other.
<2> A contact object obtained by bringing (a) and (b) into contact with each other and a contact object obtained by bringing (d) into contact with each other.
<3> A contact object obtained by bringing (a) and (c) a contact object into contact with (b) is brought into contact with (d).
<4> A contact object obtained by bringing (a) and (c) into contact with each other and (d) in contact with (b).
<5> A contact product obtained by contacting (b) with a contact product between (a) and (d) and (c) are brought into contact with each other.
<6> A contact object obtained by bringing (a) and (d) into contact with each other and (c) with the contact object obtained in contact with (b).
<7> A contact product obtained by contacting (b) with the contact product between (b) and (c) is brought into contact with (d).
<8> A contact product obtained by contacting (b) with the contact product between (b) and (c) and (a) are brought into contact with each other.
<9> A contact product obtained by contacting (b) with the contact product between (b) and (d) and (c) are brought into contact with each other.
<10> The contact product obtained by bringing (b) and (d) into contact with each other and (c) with the contact product are brought into contact with each other.
<11> A contact object obtained by contacting (a) with a contact object between (c) and (d) and (b) are brought into contact with each other.
<12> A contact product obtained by contacting (b) with a contact product between (c) and (d) and (a) are contacted.
The contact order is preferably <1>, <2>, <3>, <5>, <11> or <12>. Particularly preferred is <2> or <5>.

このような接触処理は不活性気体雰囲気下で行うことが好ましい。処理温度は通常−100〜300℃であり、好ましくは−80〜200℃である。処理時間は通常1分間〜200時間であり、好ましくは10分間〜100時間である。また、このような処理は溶媒を用いてもよく、または溶媒を用いることなくこれらの化合物を直接接触処理してもよい。   Such contact treatment is preferably performed in an inert gas atmosphere. The treatment temperature is usually −100 to 300 ° C., preferably −80 to 200 ° C. The treatment time is usually 1 minute to 200 hours, preferably 10 minutes to 100 hours. Such treatment may use a solvent, or may directly contact these compounds without using a solvent.

溶媒としては、上記化合物(a)、(b)、(c)、(d)、およびそれらの接触物に対して不活性な溶媒が用いられる。しかしながら、上述のように、段階的に各化合物を接触させる場合には、ある段階においてある化合物と反応する溶媒であっても、その溶媒が他の段階において各化合物と反応しない溶媒であれば、その溶媒を他の段階で用いることができる。つまり、各段階における溶媒は相互に、同じかまたは異なる。その溶媒としては、例えば、脂肪族ハイドロカルビル溶媒、芳香族ハイドロカルビル溶媒等の非極性溶媒、ハロゲン化物溶媒、エーテル系溶媒、アルコール系溶媒、フェノール系溶媒、カルボニル系溶媒、リン酸誘導体、ニトリル系溶媒、ニトロ化合物、アミン系溶媒、および硫黄化合物等の極性溶媒が挙げられる。例えば、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、2,2,4−トリメチルペンタン、シクロヘキサン等の脂肪族ハイドロカルビル溶媒、ベンゼン、トルエン、キシレン等の芳香族ハイドロカルビル溶媒、ジクロロメタン、ジフルオロメタン、クロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン等のハロゲン化物溶媒、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチル−エーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコール、グリセリン等のアルコール系溶媒、フェノール、p−クレゾール等のフェノール系溶媒、アセトン、エチルメチルケトン、シクロヘキサノン、無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のカルボニル系溶媒、ヘキサメチルリン酸トリアミド、リン酸トリエチル等のリン酸誘導体、アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリル等のニトリル系溶媒、ニトロメタン、ニトロベンゼン等のニトロ化合物、ピリジン、ピペリジン、モルホリン等のアミン系溶媒、ジメチルスルホキシド、スルホラン等の硫黄化合物が挙げられる。   As the solvent, a solvent inert to the above-mentioned compounds (a), (b), (c), (d) and their contact products is used. However, as described above, when each compound is brought into contact in stages, even if the solvent reacts with a compound at one stage, the solvent is not a solvent that reacts with each compound at another stage. The solvent can be used at other stages. That is, the solvents in each stage are the same or different from each other. Examples of the solvent include non-polar solvents such as aliphatic hydrocarbyl solvents and aromatic hydrocarbyl solvents, halide solvents, ether solvents, alcohol solvents, phenol solvents, carbonyl solvents, phosphoric acid derivatives, Examples include polar solvents such as nitrile solvents, nitro compounds, amine solvents, and sulfur compounds. For example, aliphatic hydrocarbyl solvents such as butane, pentane, hexane, heptane, octane, 2,2,4-trimethylpentane, cyclohexane, aromatic hydrocarbyl solvents such as benzene, toluene, xylene, dichloromethane, difluoromethane, Halide solvents such as chloroform, 1,2-dichloroethane, 1,2-dibromoethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethylene, chlorobenzene, bromobenzene, o-dichlorobenzene, Dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, tetrahydride Ether solvents such as furan and tetrahydropyran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, cyclohexanol, benzyl Alcohol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, diethylene glycol, triethylene glycol, alcohol solvents such as glycerin, phenol solvents such as phenol and p-cresol, acetone, ethyl methyl ketone, cyclohexanone, Carbonyl such as acetic anhydride, ethyl acetate, butyl acetate, ethylene carbonate, propylene carbonate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone Solvents, phosphoric acid derivatives such as hexamethyl phosphate triamide, triethyl phosphate, nitrile solvents such as acetonitrile, propionitrile, succinonitrile, benzonitrile, nitro compounds such as nitromethane, nitrobenzene, pyridine, piperidine, morpholine, etc. Sulfur compounds such as amine solvents, dimethyl sulfoxide, sulfolane and the like can be mentioned.

化合物(a)、(b)および(c)を接触させて得られる接触生成物(e)と、粒子(d)とを接触させる場合、つまり上記の<1>、<3>、<7>の各方法において、接触生成物(e)を製造する場合の溶媒(s1)として好ましくは、上記の脂肪族ハイドロカルビル溶媒、芳香族ハイドロカルビル溶媒またはエーテル系溶媒である。   When the contact product (e) obtained by bringing the compounds (a), (b) and (c) into contact with the particles (d), that is, the above <1>, <3>, <7> In each of the above methods, the solvent (s1) for producing the contact product (e) is preferably the above aliphatic hydrocarbyl solvent, aromatic hydrocarbyl solvent or ether solvent.

接触生成物(e)と粒子(d)とを接触させる場合の溶媒(s2)としては極性溶媒が好ましい。溶媒の極性を表す指標としては、ETN値(C.Reichardt,“Solvents and Solvents Effects in Organic Chemistry”, 2nd ed., VCH Verlag (1988).)等が知られており、0.8≧ETN≧0.1なる範囲を満足する溶媒が特に好ましい。かかる極性溶媒としては、例えば、ジクロロメタン、ジクロロジフルオロメタンクロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコール、アセトン、エチルメチルケトン、シクロヘキサノン、無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルリン酸トリアミド、リン酸トリエチル、アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリル、ニトロメタン、ニトロベンゼン、エチレンジアミン、ピリジン、ピペリジン、モルホリン、ジメチルスルホキシド、およびスルホランを挙げることができる。溶媒(s2)として更に好ましくは、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコールまたはトリエチレングリコールであり、特に好ましくはジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、1,4−ジオキサン、テトラヒドロフラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノールまたはシクロヘキサノールであり、最も好ましくはテトラヒドロフラン、メタノール、エタノール、1−プロパノールまたは2−プロパノールである。   A polar solvent is preferable as the solvent (s2) when the contact product (e) and the particles (d) are brought into contact with each other. As an index representing the polarity of a solvent, an ETN value (C. Reichardt, “Solvents and Solvents Effects in Organic Chemistry”, 2nd ed., VCH Verlag (1988)) is known, and 0.8 ≧ ETN ≧ A solvent satisfying the range of 0.1 is particularly preferable. Examples of the polar solvent include dichloromethane, dichlorodifluoromethane chloroform, 1,2-dichloroethane, 1,2-dibromoethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethylene, chlorobenzene, Bromobenzene, o-dichlorobenzene, dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl-tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) Ether, tetrahydrofuran, tetrahydropyran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol Cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, diethylene glycol, triethylene glycol, acetone, ethyl methyl ketone, cyclohexanone, acetic anhydride, ethyl acetate, butyl acetate, ethylene carbonate, propylene carbonate N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, hexamethylphosphoric triamide, triethyl phosphate, acetonitrile, propionitrile, succinonitrile, benzonitrile, nitromethane, nitrobenzene, Mention may be made of ethylenediamine, pyridine, piperidine, morpholine, dimethyl sulfoxide and sulfolane. More preferably, the solvent (s2) is dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl-tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl). ) Ether, tetrahydrofuran, tetrahydropyran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, cyclohexanol, benzyl alcohol, Ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, diethylene glycol or triethylene glycol, particularly preferably di-n-butyl ether, methyl tert-butyl ether, 1,4-dioxane, tetrahydrofuran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol or cyclohexanol Most preferably, it is tetrahydrofuran, methanol, ethanol, 1-propanol or 2-propanol.

また、前記溶媒(s2)としては、これら極性溶媒とハイドロカルビル溶媒との混合溶媒を用いることもできる。ハイドロカルビル溶媒としては上に例示した脂肪族ハイドロカルビル溶媒や芳香族ハイドロカルビル溶媒が用いられる。極性溶媒とハイドロカルビル溶媒との混合溶媒としては、例えば、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、ヘキサン/1−プロパノール混合溶媒、ヘキサン/2−プロパノール混合溶媒、ヘプタン/メタノール混合溶媒、ヘプタン/エタノール混合溶媒、ヘプタン/1−プロパノール混合溶媒、ヘプタン/2−プロパノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒、トルエン/1−プロパノール混合溶媒、トルエン/2−プロパノール混合溶媒、キシレン/メタノール混合溶媒、キシレン/エタノール混合溶媒、キシレン/1−プロパノール混合溶媒、およびキシレン/2−プロパノール混合溶媒を挙げることができる。好ましくはヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、ヘプタン/メタノール混合溶媒、ヘプタン/エタノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒、キシレン/メタノール混合溶媒、キシレン/エタノール混合溶媒である。更に好ましくはヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、トルエン/メタノール混合溶媒またはトルエン/エタノール混合溶媒である。最も好ましくはトルエン/エタノール混合溶媒である。トルエン/エタノール混合溶媒における、エタノール分率の好ましい範囲は10〜50体積%であり、更に好ましくは15〜30体積%である。   Moreover, as said solvent (s2), the mixed solvent of these polar solvents and hydrocarbyl solvents can also be used. As the hydrocarbyl solvent, the aliphatic hydrocarbyl solvent and aromatic hydrocarbyl solvent exemplified above are used. As a mixed solvent of a polar solvent and a hydrocarbyl solvent, for example, a hexane / methanol mixed solvent, a hexane / ethanol mixed solvent, a hexane / 1-propanol mixed solvent, a hexane / 2-propanol mixed solvent, a heptane / methanol mixed solvent, Heptane / ethanol mixed solvent, heptane / 1-propanol mixed solvent, heptane / 2-propanol mixed solvent, toluene / methanol mixed solvent, toluene / ethanol mixed solvent, toluene / 1-propanol mixed solvent, toluene / 2-propanol mixed solvent, Mention may be made of a xylene / methanol mixed solvent, a xylene / ethanol mixed solvent, a xylene / 1-propanol mixed solvent and a xylene / 2-propanol mixed solvent. Preferably in hexane / methanol mixed solvent, hexane / ethanol mixed solvent, heptane / methanol mixed solvent, heptane / ethanol mixed solvent, toluene / methanol mixed solvent, toluene / ethanol mixed solvent, xylene / methanol mixed solvent, xylene / ethanol mixed solvent is there. More preferred are a hexane / methanol mixed solvent, a hexane / ethanol mixed solvent, a toluene / methanol mixed solvent or a toluene / ethanol mixed solvent. Most preferred is a toluene / ethanol mixed solvent. The preferable range of the ethanol fraction in the toluene / ethanol mixed solvent is 10 to 50% by volume, more preferably 15 to 30% by volume.

化合物(a)、(b)および(c)を接触させて得られる接触生成物(e)と、(d)とを接触させる方法、つまり上記の<1>、<3>、<7>の各方法において、溶媒(s1)および溶媒(s2)として、共にハイドロカルビル溶媒を用いることもできる。この場合は、化合物(a)、(b)および(c)を接触させた後、得られた接触生成物(e)と粒子(d)とを接触させるまでの時間は短い方が好ましい。時間として好ましくは0〜5時間であり、更に好ましくは0〜3時間であり、最も好ましくは0〜1時間である。また、接触生成物(e)と粒子(d)とを接触させる場合の温度は、通常−100℃〜40℃であり、好ましくは−20℃〜20℃であり、最も好ましくは−10℃〜10℃である。   A method of contacting a contact product (e) obtained by contacting the compounds (a), (b) and (c) with (d), that is, according to the above <1>, <3>, <7> In each method, a hydrocarbyl solvent can be used as the solvent (s1) and the solvent (s2). In this case, after the compounds (a), (b) and (c) are brought into contact, it is preferable that the time until the obtained contact product (e) is brought into contact with the particles (d) is shorter. The time is preferably 0 to 5 hours, more preferably 0 to 3 hours, and most preferably 0 to 1 hour. Moreover, the temperature in the case of bringing the contact product (e) into contact with the particles (d) is usually −100 ° C. to 40 ° C., preferably −20 ° C. to 20 ° C., and most preferably −10 ° C. to 10 ° C.

上記の<2>、<5>、<6>、<8>、<9>、<10>、<11>、<12>の場合、上記の非極性溶媒、極性溶媒いずれも使用することができる。好ましくは、非極性溶媒である。なぜならば、(a)と(c)との接触生成物や、(a)と(b)との接触生成物と(c)とが接触した接触生成物は一般的に非極性溶媒に対し溶解性が低いので、これら接触物が生成する時に反応系内に(d)が存在する場合、生成した接触生成物が(d)の表面に析出し、より固定化されやすい、と考えられるからである。   In the case of <2>, <5>, <6>, <8>, <9>, <10>, <11>, <12>, any of the above nonpolar solvents and polar solvents may be used. it can. Preferably, it is a nonpolar solvent. This is because the contact product of (a) and (c) and the contact product of (a) and (b) and the contact product of (c) are generally dissolved in a nonpolar solvent. This is because it is considered that the contact product produced is deposited on the surface of (d) and is more easily immobilized when (d) is present in the reaction system when these contact products are produced. is there.

上記(a)、(b)、(c)各化合物の使用量は特に制限はないが、各化合物の使用量のモル比率を(a):(b):(c)=1:y:zのモル比率とすると、yおよびzが下記式(1)を実質的に満足することが好ましい。
|m−y−2z|<1 (1)
(上記式(1)において、mはMの原子価を表す。)
上記式(1)におけるyとして好ましくは0.01〜1.99の数であり、より好ましくは0.10〜1.80の数であり、さらに好ましくは0.20〜1.50の数であり、最も好ましくは0.30〜1.00の数であり、また上記式(1)におけるzの同様の好ましい範囲は、m、yおよび上記式(1)によって決定される。
The amount of each compound (a), (b), (c) used is not particularly limited, but the molar ratio of the amount of each compound used is (a) :( b) :( c) = 1: y: z It is preferable that y and z substantially satisfy the following formula (1).
| My-2z | <1 (1)
(In the above formula (1), m represents the valence of M 3. )
In the above formula (1), y is preferably a number of 0.01 to 1.99, more preferably a number of 0.10 to 1.80, and still more preferably a number of 0.20 to 1.50. Yes, most preferably a number from 0.30 to 1.00, and the same preferred range of z in the above formula (1) is determined by m, y and the above formula (1).

化合物(a)および(d)の使用量は、改質された粒子(I)に含まれる化合物(a)に由来する典型金属原子が、得られる粒子1gに含まれる典型金属原子のモル数にして、0.05mmol以上となる量であることが好ましく、0.1〜20mmolとなる量であることがより好ましい。   The amount of the compounds (a) and (d) used is such that the typical metal atom derived from the compound (a) contained in the modified particle (I) is the number of moles of the typical metal atom contained in 1 g of the obtained particle. Thus, the amount is preferably 0.05 mmol or more, and more preferably 0.1 to 20 mmol.

反応をより速く進行させるため、上記のような接触処理の後に、より高い温度での加熱工程を付加することが好ましい。加熱工程では、より高温とするために、沸点の高い溶媒を使用することが好ましく、加熱工程を行う際に、接触工程で用いた溶媒を他のより沸点の高い溶媒に置き換えてもよい。   In order to make the reaction proceed faster, it is preferable to add a heating step at a higher temperature after the contact treatment as described above. In the heating step, it is preferable to use a solvent having a high boiling point in order to obtain a higher temperature. When performing the heating step, the solvent used in the contact step may be replaced with another solvent having a higher boiling point.

改質された粒子(I)は、このような接触処理の結果、原料である化合物(a)、(b)、(c)および/または(d)が未反応物として残存していてもよい。しかし、予め未反応物を除去する洗浄処理を行った方が好ましい。その際の溶媒は、接触時の溶媒と同じでも異なっていてもよい。このような洗浄処理は不活性気体雰囲気下で実施するのが好ましい。処理温度は通常−100〜300℃であり、好ましくは−80〜200℃である。処理時間は通常1分間〜200時間であり、好ましくは10分間〜100時間である。   In the modified particles (I), as a result of such contact treatment, the starting compounds (a), (b), (c) and / or (d) may remain as unreacted substances. . However, it is preferable to carry out a washing treatment to remove unreacted substances in advance. The solvent at that time may be the same as or different from the solvent at the time of contact. Such cleaning treatment is preferably carried out in an inert gas atmosphere. The treatment temperature is usually −100 to 300 ° C., preferably −80 to 200 ° C. The treatment time is usually 1 minute to 200 hours, preferably 10 minutes to 100 hours.

また、上記の洗浄処理の際に、改質された粒子(I)を沈降させ不定形や微粉粒子がスラリー上部で浮遊している状態で、上部の溶媒を除去することは粒径や形状の整った改質された粒子(I)を得るために好ましい。   In addition, in the above washing process, the modified particles (I) are allowed to settle, and indefinite or fine particles are floating above the slurry. Preference is given to obtaining ordered and modified particles (I).

また、このような接触処理や洗浄処理の後、生成物から溶媒を留去し、その後0℃以上の温度で減圧下1時間〜24時間乾燥を行うことが好ましい。より好ましくは0℃〜200℃の温度で1時間〜24時間であり、更に好ましくは10℃〜200℃の温度で1時間〜24時間であり、特に好ましくは10℃〜160℃の温度で2時間〜18時間であり、最も好ましくは15℃〜160℃の温度で4時間〜18時間である。   Further, after such contact treatment or washing treatment, it is preferable to distill off the solvent from the product, and then to dry under reduced pressure for 1 to 24 hours at a temperature of 0 ° C. or higher. More preferably, it is 1 hour to 24 hours at a temperature of 0 ° C. to 200 ° C., more preferably 1 hour to 24 hours at a temperature of 10 ° C. to 200 ° C., and particularly preferably 2 at a temperature of 10 ° C. to 160 ° C. Time to 18 hours, most preferably 4 to 18 hours at a temperature of 15 ° C to 160 ° C.

改質された粒子(I)の製造方法の具体例を、M が亜鉛原子であり、化合物(b)が3,4,5−トリフルオロフェノールであり、化合物(c)が水であり、(d)がシリカである場合についてさらに詳細に以下に示す。テトラヒドロフランを溶媒とし、そこへジエチル亜鉛のヘキサン溶液を加え、3℃に冷却し、そこへジエチル亜鉛に対して等モル量の3,4,5−トリフルオロフェノールを滴下し室温にて10分間〜24時間攪拌を行った後、さらにジエチル亜鉛に対して0.5倍モル量の水を滴下し室温にて10分間〜24時間撹袢する。その後、溶媒を留去し、120℃で減圧下8時間乾燥を行う。以上の操作によって得られた固体成分に、テトラヒドロフラン、シリカを加え、40℃で2時間攪拌する。固体成分をテトラヒドロフランで洗浄した後、120℃で減圧下8時間乾燥を行う。かくして本発明の改質された粒子(I)を製造することができる。 Specific examples of the method for producing the modified particles (I) are as follows: M 3 is a zinc atom, compound (b) is 3,4,5-trifluorophenol, and compound (c) is water, The case where (d) is silica will be described in more detail below. Tetrahydrofuran is used as a solvent, and a hexane solution of diethylzinc is added thereto, followed by cooling to 3 ° C., and an equimolar amount of 3,4,5-trifluorophenol is added dropwise thereto relative to diethylzinc for 10 minutes at room temperature. After stirring for 24 hours, 0.5 times molar amount of water is further added dropwise to diethyl zinc, and the mixture is stirred at room temperature for 10 minutes to 24 hours. Thereafter, the solvent is distilled off, followed by drying at 120 ° C. under reduced pressure for 8 hours. Tetrahydrofuran and silica are added to the solid component obtained by the above operation, and the mixture is stirred at 40 ° C. for 2 hours. The solid component is washed with tetrahydrofuran and then dried at 120 ° C. under reduced pressure for 8 hours. Thus, the modified particles (I) of the present invention can be produced.

改質された粒子(II)の調製に用いられるアルミノキサン(e)としては、一般式{−Al(E2)−O−}bで示される構造を有する環状のアルミノキサンおよび/または一般式 E3{−Al(E3)−O−}cAlE3 2で示される構造を有する線状のアルミノキサンが好ましく用いられる。
(但し、E1、E2、およびE3は、それぞれハイドロカルビル基であり、全てのE1、全てのE2および全てのE3は同じであっても異なっていてもよい。Zは水素原子またはハロゲン原子を表し、全てのZは同じであっても異なっていてもよい。aは0<a≦3を満足する数を、bは2以上の数を、cは1以上の数を表す。)
1、E2、またはE3におけるハイドロカルビル基としては、炭素数1〜8のハイドロカルビル基が好ましく、アルキル基がより好ましい。
As the aluminoxane (e) used for the preparation of the modified particles (II), a cyclic aluminoxane having a structure represented by the general formula {—Al (E 2 ) —O—} b and / or the general formula E 3 {-Al (E 3 ) —O—} c Linear aluminoxane having a structure represented by AlE 3 2 is preferably used.
(However, E 1 , E 2 , and E 3 are each a hydrocarbyl group, and all E 1 , all E 2, and all E 3 may be the same or different. Z is Represents a hydrogen atom or a halogen atom, and all Zs may be the same or different, a is a number satisfying 0 <a ≦ 3, b is a number of 2 or more, and c is a number of 1 or more. Represents.)
The hydrocarbyl group in E 1, E 2 or E 3,, preferably hydrocarbyl groups of 1 to 8 carbon atoms, the alkyl group is more preferable.

上記E2、E3の具体例としては、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ノルマルペンチル基、ネオペンチル基等のアルキル基を例示することができる。bは2以上の数であり、cは1以上の数である。好ましくは、E2およびE3はメチル基、またはイソブチル基であり、bは2〜40、cは1〜40である。 Specific examples of E 2 and E 3 include alkyl groups such as methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, normal pentyl group, and neopentyl group. b is a number of 2 or more, and c is a number of 1 or more. Preferably, E 2 and E 3 are a methyl group or an isobutyl group, b is 2 to 40, and c is 1 to 40.

上記のアルミノキサンは各種の方法で作られる。その方法については特に制限はなく、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を適当な有機溶剤(ベンゼン、脂肪族ハイドロカルビルなど)に溶かした溶液を水と接触させて作る。また、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)に結晶水を含んでいる金属塩(例えば、硫酸銅水和物など)を接触させて作る方法が例示できる。このような方法で得られたアルミノキサンは通常、環状のアルミノキサンと線状のアルミノキサンとの混合物となっていると考えられる。   The above aluminoxane can be made by various methods. There is no restriction | limiting in particular about the method, What is necessary is just to make according to a well-known method. For example, a solution obtained by dissolving a trialkylaluminum (for example, trimethylaluminum) in an appropriate organic solvent (benzene, aliphatic hydrocarbyl, etc.) is made to contact with water. Moreover, the method of making the metal salt (for example, copper sulfate hydrate etc.) containing crystal water contact the trialkylaluminum (for example, trimethylaluminum etc.) can be illustrated. The aluminoxane obtained by such a method is usually considered to be a mixture of a cyclic aluminoxane and a linear aluminoxane.

改質された粒子(II)に用いられる粒子(d)は、改質された粒子(I)に用いられる(d)と同様な粒子を用いることができる。   As the particles (d) used for the modified particles (II), the same particles as (d) used for the modified particles (I) can be used.

アルモキサン(e)と粒子(d)は任意の方法により接触させ改質された粒子(II)を製造することができる。具体的には粒子(d)を溶媒中に分散させ、そこへアルミノキサン(e)を添加することにより製造される。
この場合の溶媒は、改質された粒子(I)で記載のいずれの溶媒も用いることができ、アルミノキサン(e)と反応しないものが好ましく、アルミノキサン(e)を溶解させる溶媒がより好ましい。具体的にはトルエンやキシレンなどの芳香族ハイドロカルビル溶媒またはヘキサン、ヘプタン、オクタンなどの脂肪族ハイドロカルビル溶媒が好ましく、トルエンまたはキシレンが更に好ましい。
Alumoxane (e) and particles (d) can be contacted by any method to produce modified particles (II). Specifically, it is produced by dispersing particles (d) in a solvent and adding aluminoxane (e) thereto.
As the solvent in this case, any of the solvents described in the modified particles (I) can be used, and those that do not react with the aluminoxane (e) are preferable, and solvents that dissolve the aluminoxane (e) are more preferable. Specifically, an aromatic hydrocarbyl solvent such as toluene or xylene or an aliphatic hydrocarbyl solvent such as hexane, heptane, or octane is preferable, and toluene or xylene is more preferable.

接触させる温度、時間は任意に取ることが出来るが、温度は通常−100℃〜200℃、好ましくは−50℃〜150℃、更に好ましくは−20℃〜120℃である。特に反応初期は発熱を抑えるために低温で反応させるのが好ましい。接触させる量は、任意に選ぶことが出来るが、粒子(d)の単位グラム当たりアルミノキサン(e)をアルミニウム原子換算で通常0.01〜100mmol、好ましくは0.1〜20mmol、更に好ましくは1〜10mmolである。   Although the temperature and time to contact can be taken arbitrarily, the temperature is usually -100 ° C to 200 ° C, preferably -50 ° C to 150 ° C, more preferably -20 ° C to 120 ° C. In particular, the reaction is preferably performed at a low temperature in order to suppress heat generation at the initial stage of the reaction. The amount of contact can be arbitrarily selected, but the aluminoxane (e) per unit gram of the particles (d) is usually 0.01 to 100 mmol, preferably 0.1 to 20 mmol, more preferably 1 to 20 in terms of aluminum atom. 10 mmol.

改質された粒子(III)は、改質された粒子(II)の調製時にさらに遷移金属化合物を用いて得られるものである。
遷移金属化合物としては、上記一般式[2]に示した遷移金属化合物(A)またはそのμ―オキソタイプの遷移金属化合物二量体(A’)が用いられる。
アルモキサン(e)、粒子(d)および遷移金属化合物の接触は任意の方法により実施され、改質された粒子(III)が製造される。その際、溶媒を使用するのが好ましく、該溶媒としては上記記載のいずれの溶媒も用いることができ、アルミノキサン(e)および遷移金属化合物と反応しないものが好ましく、アルミノキサン(e)および遷移金属化合物を溶解させる溶媒がより好ましい。具体的にはトルエンやキシレンなどの芳香族ハイドロカルビル溶媒またはヘキサン、ヘプタン、オクタンなどの脂肪族ハイドロカルビル溶媒が好ましく、トルエンまたはキシレンが更に好ましい。
The modified particles (III) are obtained using a transition metal compound during the preparation of the modified particles (II).
As the transition metal compound, the transition metal compound (A) represented by the above general formula [2] or its μ-oxo type transition metal compound dimer (A ′) is used.
Contact of the alumoxane (e), the particles (d) and the transition metal compound can be carried out by any method to produce the modified particles (III). In that case, it is preferable to use a solvent, and any of the above-mentioned solvents can be used as the solvent, and those that do not react with the aluminoxane (e) and the transition metal compound are preferable. The aluminoxane (e) and the transition metal compound A solvent that dissolves is more preferable. Specifically, an aromatic hydrocarbyl solvent such as toluene or xylene or an aliphatic hydrocarbyl solvent such as hexane, heptane, or octane is preferable, and toluene or xylene is more preferable.

接触させる温度、時間は任意に取ることが出来るが、温度は通常−100℃〜200℃、好ましくは−50℃〜150℃、更に好ましくは−20℃〜120℃である。特に反応初期は発熱を抑えるために低温で反応させるのが好ましい。接触させる量は、任意に選ぶことが出来るが、粒子(d)の単位グラム当たりアルミノキサン(e)をアルミニウム原子換算で通常0.01〜100mmol、好ましくは0.1〜20mmol、更に好ましくは1〜10mmolである。また、粒子(d)の単位グラム当たり遷移金属化合物(A)を遷移金属原子換算で通常0.1〜1000μmol、好ましくは1〜500μmol、更に好ましくは10〜200μmolである。   Although the temperature and time to contact can be taken arbitrarily, the temperature is usually -100 ° C to 200 ° C, preferably -50 ° C to 150 ° C, more preferably -20 ° C to 120 ° C. In particular, the reaction is preferably performed at a low temperature in order to suppress heat generation at the initial stage of the reaction. The amount of contact can be arbitrarily selected, but the aluminoxane (e) per unit gram of the particles (d) is usually 0.01 to 100 mmol, preferably 0.1 to 20 mmol, more preferably 1 to 20 in terms of aluminum atom. 10 mmol. Moreover, the transition metal compound (A) per unit gram of the particles (d) is usually 0.1 to 1000 μmol, preferably 1 to 500 μmol, and more preferably 10 to 200 μmol in terms of transition metal atom.

有機アルミニウム化合物(C)
本発明に用いられる有機アルミニウム化合物(C)は、公知の有機アルミニウム化合物が使用できる。好ましくは、下記一般式[8]で示される有機アルミニウム化合物である。
AlY3-d [8]
(式中、R はハイドロカルビル基を表し、全てのR は同一であっても異なっていてもよい。Yは水素原子、ハロゲン原子、アルコキシ基、アラルキルオキシ基、またはアリールオキシ基を表し、全てのYは同一であっても異なっていてもよい。dは0<d≦3を満足する数を表す。)
Organoaluminum compound (C)
As the organoaluminum compound (C) used in the present invention, a known organoaluminum compound can be used. Preferably, it is an organoaluminum compound represented by the following general formula [8].
R 7 d AlY 3-d [8]
(Wherein R 7 represents a hydrocarbyl group, and all R 7 may be the same or different. Y represents a hydrogen atom, a halogen atom, an alkoxy group, an aralkyloxy group, or an aryloxy group. And all Y may be the same or different, and d represents a number satisfying 0 <d ≦ 3.)

有機アルミニウム化合物を表す一般式[8]におけるR として好ましくは炭素原子数1〜24のハイドロカルビル基であり、より好ましくは炭素原子数1〜24のアルキル基である。具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、イソブチル基、n−ヘキシル基、2−メチルヘキシル基、n−オクチル基等が挙げられ、好ましくはエチル基、n−ブチル基、イソブチル基、n−ヘキシル基またはn−オクチル基である。 R 7 in the general formula [8] representing the organoaluminum compound is preferably a hydrocarbyl group having 1 to 24 carbon atoms, and more preferably an alkyl group having 1 to 24 carbon atoms. Specific examples include methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-hexyl group, 2-methylhexyl group, n-octyl group and the like, preferably ethyl group, n -A butyl group, an isobutyl group, an n-hexyl group or an n-octyl group.

また、Yがハロゲン原子である場合の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子である。
Yにおけるアルコキシ基としては炭素原子数1〜24のアルコキシ基が好ましく、具体例としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、ネオペントキシ基、n−ヘキソキシ基、n−オクトキシ基、n−ドデソキシ基、n−ペンタデソキシ基、n−イコソキシ基などが挙げられ、好ましくはメトキシ基、エトキシ基またはtert−ブトキシ基である。
Specific examples when Y is a halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom.
The alkoxy group in Y is preferably an alkoxy group having 1 to 24 carbon atoms. Specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert. -Butoxy group, n-pentoxy group, neopentoxy group, n-hexoxy group, n-octoxy group, n-dodesoxy group, n-pentadexoxy group, n-icosoxy group, etc., preferably methoxy group, ethoxy group or tert group -Butoxy group.

Yにおけるアリールオキシ基としては炭素原子数6〜24のアリールオキシ基が好ましく、具体例としては、例えばフェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2,3−ジメチルフェノキシ基、2,4−ジメチルフェノキシ基、2,5−ジメチルフェノキシ基、2,6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基などが挙げられる。   The aryloxy group in Y is preferably an aryloxy group having 6 to 24 carbon atoms. Specific examples thereof include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,3 -Dimethylphenoxy group, 2,4-dimethylphenoxy group, 2,5-dimethylphenoxy group, 2,6-dimethylphenoxy group, 3,4-dimethylphenoxy group, 3,5-dimethylphenoxy group, 2,3,4 -Trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6-trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5 -Trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetramethylphenoxy 2,3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, ethylphenoxy group, n-propylphenoxy group, isopropylphenoxy group, n-butylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group N-hexylphenoxy group, n-octylphenoxy group, n-decylphenoxy group, n-tetradecylphenoxy group, naphthoxy group, anthracenoxy group and the like.

Yにおけるアラルキルオキシ基としては炭素原子数7〜24のアラルキルオキシ基が好ましく、具体例としては、例えばベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2,3−ジメチルフェニル)メトキシ基、(2,4−ジメチルフェニル)メトキシ基、(2,5−ジメチルフェニル)メトキシ基、(2,6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、(n−テトラデシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基などが挙げられ、好ましくはベンジルオキシ基である。   The aralkyloxy group in Y is preferably an aralkyloxy group having 7 to 24 carbon atoms. Specific examples include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4 -Methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, 2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6- Limethylphenyl) methoxy group, (3,4,5-trimethylphenyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) methoxy Group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (sec-butylphenyl) methoxy group , (Tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group, (n-tetradecylphenyl) methoxy group, naphthylmethoxy group , Anthracenylmethoxy group and the like, preferably a benzyloxy group That.

一般式[8]で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、ジ−n−ブチルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジ−n−ヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、n−プロピルアルミニウムジクロライド、n−ブチルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、n−ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジ−n−プロピルアルミニウムハイドライド、ジ−n−ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジ−n−ヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;メチル(ジメトキシ)アルミニウム、メチル(ジエトキシ)アルミニウム、メチル(ジ−tert−ブトキシ)アルミニウム等のアルキル(ジアルコキシ)アルミニウム;ジメチル(メトキシ)アルミニウム、ジメチル(エトキシ)アルミニウム、ジメチル(tert−ブトキシ)アルミニウム等のジアルキル(アルコキシ)アルミニウム;メチル(ジフェノキシ)アルミニウム、メチルビス(2,6−ジイソプロピルフェノキシ)アルミニウム、メチルビス(2,6−ジフェニルフェノキシ)アルミニウム等のアルキル(ジアリールオキシ)アルミニウム;ジメチル(フェノキシ)アルミニウム、ジメチル(2,6−ジイソプロピルフェノキシ)アルミニウム、ジメチル(2,6−ジフェニルフェノキシ)アルミニウム等のジアルキル(アリールオキシ)アルミニウム等を例示することができる。   Specific examples of the organoaluminum compound represented by the general formula [8] include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri -Trialkylaluminum such as n-octylaluminum; Dialkylaluminum such as dimethylaluminum chloride, diethylaluminum chloride, di-n-propylaluminum chloride, di-n-butylaluminum chloride, diisobutylaluminum chloride, di-n-hexylaluminum chloride Chloride: methylaluminum dichloride, ethylaluminum dichloride, n-propylaluminum dichloride, n-butylaluminum Alkylaluminum dichlorides such as mudichloride, isobutylaluminum dichloride, n-hexylaluminum dichloride; dimethylaluminum hydride, diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, di-n- Dialkyl aluminum hydrides such as hexyl aluminum hydride; alkyl (dialkoxy) aluminum such as methyl (dimethoxy) aluminum, methyl (diethoxy) aluminum, methyl (di-tert-butoxy) aluminum; dimethyl (methoxy) aluminum, dimethyl (ethoxy) aluminum Di, such as dimethyl (tert-butoxy) aluminum Alkyl (diaryloxy) aluminum such as methyl (diphenoxy) aluminum, methylbis (2,6-diisopropylphenoxy) aluminum, methylbis (2,6-diphenylphenoxy) aluminum; dimethyl (phenoxy) aluminum, dimethyl ( Examples include dialkyl (aryloxy) aluminum such as 2,6-diisopropylphenoxy) aluminum and dimethyl (2,6-diphenylphenoxy) aluminum.

これらの内、好ましくはトリアルキルアルミニウムであり、さらに好ましくはトリメチルアルミニウム、トリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウムまたはトリ−n−オクチルアルミニウムであり、特に好ましくはトリイソブチルアルミニウムまたはトリ−n−オクチルアルミニウムである。
これらの有機アルミニウム化合物は一種類のみを用いても、二種類以上を組み合わせて用いてもよい。
Of these, trialkylaluminum is preferable, trimethylaluminum, triethylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum or tri-n-octylaluminum is particularly preferable. Is triisobutylaluminum or tri-n-octylaluminum.
These organoaluminum compounds may be used alone or in combination of two or more.

電子供与性化合物(D)
本発明の予備重合および付加重合体の製造にあたり、電子供与性化合物(D)を接触させてもよい。電子供与性化合物(D)としては、窒素原子、リン原子、酸素原子または硫黄原子を含む化合物が好ましく、酸素含有化合物、窒素含有化合物、リン含有化合物、硫黄含有化合物が挙げられ、なかでも酸素含有化合物または窒素含有化合物が好ましい。酸素含有化合物としては、アルコキシケイ素類、エーテル類、ケトン類、アルデヒド類、カルボン酸類、有機酸または無機酸のエステル類、有機酸または無機酸の酸アミド類、酸無水物類などが挙げられ、なかでもアルコキシケイ素類またはエーテル類が好ましい。窒素含有化合物としては、アミン類、ニトリル類、イソシアネート類等が挙げられ、アミン類が好ましい。
Electron donating compound (D)
In the prepolymerization and addition polymer production of the present invention, the electron donating compound (D) may be contacted. The electron-donating compound (D) is preferably a compound containing a nitrogen atom, a phosphorus atom, an oxygen atom or a sulfur atom, and examples thereof include an oxygen-containing compound, a nitrogen-containing compound, a phosphorus-containing compound and a sulfur-containing compound. Compounds or nitrogen-containing compounds are preferred. Examples of the oxygen-containing compound include alkoxy silicons, ethers, ketones, aldehydes, carboxylic acids, esters of organic acids or inorganic acids, acid amides of organic acids or inorganic acids, acid anhydrides, and the like. Of these, alkoxysilicones or ethers are preferable. Examples of the nitrogen-containing compound include amines, nitriles, isocyanates, and the like, and amines are preferable.

アルコキシケイ素類としては、一般式 R rSi(OR4-r (式中、Rは炭素原子数1〜20のハイドロカルビル基、水素原子またはヘテロ原子含有置換基を表し、Rは炭素原子数1〜20のハイドロカルビル基を表し、rは0≦r<4を満足する数を表す。全てのRおよび全てのRはそれぞれ同一であっても異なっていてもよい。)で表されるアルコキシケイ素化合物が好ましく用いられる。 The alkoxysilicons Motorui general formula R 8 r Si (OR 9) in 4-r (wherein, R 8 represents a hydrocarbyl group, a hydrogen atom or a hetero atom-containing substituent group having a carbon number 1 to 20, R 9 represents a hydrocarbyl group having 1 to 20 carbon atoms, and r represents a number satisfying 0 ≦ r <4, and all R 8 and all R 9 may be the same or different. It is preferable to use an alkoxysilicon compound represented by the following formula.

やR がハイドロカルビル基の場合、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等の直鎖状アルキル基、イソプロピル基、sec−ブチル基、tert−ブチル基、tert−アミル基等の分岐鎖状アルキル基、シクロペンンチル基、シクロヘキシル基等のシクロアルキル基、シクロペンテニル基等のシクロアルケニル基、フェニル基、トリル基等のアリール基等が挙げられる。Rがヘテロ原子含有置換基の場合、ヘテロ原子としては、酸素原子、窒素原子、硫黄原子、リン原子が挙げられる。具体的にはジメチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基、エチルn−プロピルアミノ基、ジn−プロピルアミノ基、ピロリル基、ピリジル基、ピロリジニル基、ピペリジル基、パーヒドロインドリル基、パーヒドロイソインドリル基、パーヒドロキノリル基、パーヒドロイソキノリル基、パーヒドロカルバゾリル基、パーヒドロアクリジニル基、フリル基、ピラニル基、パーヒドロフリル基、チエニル基等が挙げられる。
アルコキシケイ素類としては、R およびR がアルキル基であることが好ましく、更にrが4>r≧2を満足する数であることが好ましい。
When R 8 or R 9 is a hydrocarbyl group, a linear alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, isopropyl group, sec-butyl group, tert-butyl group, tert- Examples thereof include branched alkyl groups such as amyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, cycloalkenyl groups such as cyclopentenyl group, and aryl groups such as phenyl group and tolyl group. When R 8 is a heteroatom-containing substituent, examples of the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom. Specifically, dimethylamino group, methylethylamino group, diethylamino group, ethyl n-propylamino group, di-n-propylamino group, pyrrolyl group, pyridyl group, pyrrolidinyl group, piperidyl group, perhydroindolyl group, perhydro Examples thereof include an isoindolyl group, a perhydroquinolyl group, a perhydroisoquinolyl group, a perhydrocarbazolyl group, a perhydroacridinyl group, a furyl group, a pyranyl group, a perhydrofuryl group, and a thienyl group.
As alkoxysilicones, R 8 and R 9 are preferably alkyl groups, and r is preferably a number satisfying 4> r ≧ 2.

前記アルコキシケイ素類の具体例としては、テトラメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、ノルマルプロピルトリメトキシシラン、イソプロピルトリメトキシシラン、ノルマルブチルトリメトキシシラン、イソブチルトリメトキシシラン、sec−ブチルトリメトキシシラン、tert−ブチルトリメトキシシラン、ノルマルペンチルトリメトキシシラン、tert−アミルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジノルマルブチルジメトキシシラン、ジイソブチルジメトキシシラン、ジ−tert−ブチルジメトキシシラン、メチルエチルジメトキシシラン、メチルノルマルプロピルジメトキシシラン、メチルノルマルブチルジメトキシシラン、メチルイソブチルジメトキシシラン、tert−ブチルメチルジメトキシシラン、tert−ブチルエチルジメトキシシラン、tert−ブチルノルマルプロピルジメトキシシラン、tert−ブチルイソプロピルジメトキシシラン、tert−ブチルノルマルブチルジメトキシシラン、tert−ブチルイソブチルジメトキシシラン、tert−アミルメチルジメトキシシラン、tert−アミルエチルジメトキシシラン、tert−アミルノルマルプロピルジメトキシシラン、tert−アミルノルマルブチルジメトキシシラン、イソブチルイソプロピルジメトキシシラン、ジシクロブチルジメトキシシラン、シクロブチルメチルジメトキシシラン、シクロブチルエチルジメトキシシラン、シクロブチルイソプロピルジメトキシシラン、シクロブチルノルマルブチルジメトキシシラン、シクロブチルイソブチルジメトキシシラン、シクロブチル−tert−ブチルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルノルマルプロピルジメトキシシラン、シクロペンチルイソプロピルジメトキシシラン、シクロペンチルノルマルブチルジメトキシシラン、シクロペンチルイソブチルジメトキシシラン、シクロペンチル−tert−ブチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルノルマルプロピルジメトキシシラン、シクロヘキシルイソプロピルジメトキシシラン、シクロヘキシルノルマルブチルジメトキシシラン、シクロヘキシルイソブチルジメトキシシラン、シクロヘキシル−tert−ブチルジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルフェニルジメトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、フェニルエチルジメトキシシラン、フェニルノルマルプロピルジメトキシシラン、フェニルイソプロピルジメトキシシラン、フェニルノルマルブチルジメトキシシラン、フェニルイソブチルジメトキシシラン、フェニル−tert−ブチルジメトキシシラン、フェニルシクロペンチルジメトキシシラン、2−ノルボルナンメチルジメトキシシラン、ビス(パーヒドロキノリノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、(パーヒドロキノリノ)(パーヒドロイソキノリノ)ジメトキシシラン、(パーヒドロキノリノ)メチルジメトキシシラン、(パーヒドロイソキノリノ)メチルジメトキシシラン、(パーヒドロキノリノ)エチルジメトキシシラン、(パーヒドロイソキノリノ)エチルジメトキシシラン、(パーヒドロキノリノ)(n−プロピル)ジメトキシシラン、(パーヒドロイソキノリノ)(n−プロピル)ジメトキシシラン、((パーヒドロキノリノ)(tert−ブチル)ジメトキシシラン、(パーヒドロイソキノリノ)(tert−ブチル)ジメトキシシラン、トリメチルメトキシシラン、トリエチルメトキシシラン、トリノルマルプロピルメトキシシラン、トリイソプロピルメトキシシラン、トリノルマルブチルメトキシシラン、トリイソブチルメトキシシラン、トリ−tert−ブチルメトキシシラン等が挙げられる。これらの化合物のメトキシをエトキシ、プロポキシ、ノルマルブトキシ、イソブトキシ、tert−ブトキシ、フェノキシに置き換えた化合物も例示することができる。好ましくは、ジアルキルジアルコキシシランまたはトリアルキルモノアルコキシシランであり、より好ましくはトリアルキルモノアルコキシシランである。   Specific examples of the alkoxysilicones include tetramethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, normalpropyltrimethoxysilane, isopropyltrimethoxysilane, normalbutyltrimethoxysilane, isobutyltrimethoxysilane, sec-butyltrimethyl. Methoxysilane, tert-butyltrimethoxysilane, normal pentyltrimethoxysilane, tert-amyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, dinormalbutyldimethoxysilane, diisobutyldimethoxysilane, di-tert-butyldimethoxysilane, methyl Ethyl dimethoxysilane, methyl normal propyl dimethoxy silane, methyl normal butyl dimethoxy silane, methyl isobutyl Methoxysilane, tert-butylmethyldimethoxysilane, tert-butylethyldimethoxysilane, tert-butylnormalpropyldimethoxysilane, tert-butylisopropyldimethoxysilane, tert-butylnormalbutyldimethoxysilane, tert-butylisobutyldimethoxysilane, tert-amyl Methyldimethoxysilane, tert-amylethyldimethoxysilane, tert-amylnormalpropyldimethoxysilane, tert-amylnormalbutyldimethoxysilane, isobutylisopropyldimethoxysilane, dicyclobutyldimethoxysilane, cyclobutylmethyldimethoxysilane, cyclobutylethyldimethoxysilane, Cyclobutylisopropyldimethoxysilane, cyclobutylnor Rubutyldimethoxysilane, cyclobutylisobutyldimethoxysilane, cyclobutyl-tert-butyldimethoxysilane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylnormalpropyldimethoxysilane, cyclopentylisopropyldimethoxysilane, cyclopentylnormalbutyldimethoxysilane, cyclopentylisobutyldimethoxysilane , Cyclopentyl-tert-butyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylethyldimethoxysilane, cyclohexylnormalpropyldimethoxysilane, cyclohexylisopropyldimethoxysilane, cyclohexylnormalbutyldimethoxysilane, silane Cyclohexyl isobutyldimethoxysilane, cyclohexyl-tert-butyldimethoxysilane, cyclohexylcyclopentyldimethoxysilane, cyclohexylphenyldimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, phenylethyldimethoxysilane, phenylnormalpropyldimethoxysilane, phenylisopropyldimethoxysilane, phenyl Normal butyldimethoxysilane, phenylisobutyldimethoxysilane, phenyl-tert-butyldimethoxysilane, phenylcyclopentyldimethoxysilane, 2-norbornanemethyldimethoxysilane, bis (perhydroquinolino) dimethoxysilane, bis (perhydroisoquinolino) dimethoxysilane, (Perhydroquinolino) Hydroisoquinolino) dimethoxysilane, (perhydroquinolino) methyldimethoxysilane, (perhydroisoquinolino) methyldimethoxysilane, (perhydroquinolino) ethyldimethoxysilane, (perhydroisoquinolino) ethyldimethoxysilane, Hydroquinolino) (n-propyl) dimethoxysilane, (perhydroisoquinolino) (n-propyl) dimethoxysilane, ((perhydroquinolino) (tert-butyl) dimethoxysilane, (perhydroisoquinolino) (tert- Butyl) dimethoxysilane, trimethylmethoxysilane, triethylmethoxysilane, trinormalpropylmethoxysilane, triisopropylmethoxysilane, trinormalbutylmethoxysilane, triisobutylmethoxysilane, tri-t rt- butyl methoxysilane, and the like. Examples of these compounds include compounds in which methoxy is replaced with ethoxy, propoxy, normal butoxy, isobutoxy, tert-butoxy, or phenoxy. Dialkyl dialkoxy silane or trialkyl monoalkoxy silane is preferable, and trialkyl monoalkoxy silane is more preferable.

エーテル類の例としては、ジアルキルエーテル、アルキルアリールエーテル、ジアリールエーテル、ジエーテル化合物、環状エーテル類および環状ジエーテル類を挙げることができる。   Examples of ethers include dialkyl ethers, alkylaryl ethers, diaryl ethers, diether compounds, cyclic ethers and cyclic diethers.

具体例としては、ジメチルエーテル、ジエチルエーテル、ジノルマルプロピルエーテル、ジイソプロピルエーテル、ジノルマルブチルエーテル、ジイソブチルエーテル、ジ‐tert−ブチルエーテル、ジシクロヘキシルエーテル、ジフェニルエーテル、メチルエチルエーテル、メチルノルマルプロピルエーテル、メチルイソプロピルエーテル、メチルノルマルブチルエーテル、メチルイソブチルエーテル、メチル−tert−ブチルエーテル、メチルシクロヘキシルエーテル、メチルフェニルエーテル、エチレンオキサイド、プロピレンオキサイド、オキセタン、テトラヒドロフラン、2,5−ジメチルテトラヒドロフラン、テトラヒドロピラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジイソブトキシエタン、2,2−ジメトキシプロパン、1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ビス(シクロヘキシルメチル)−1,3−ジメトキシプロパン、2−イソプロピル−2−3,7−ジメチルオクチル−1,3−ジメトキシプロパン、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2−イソプロピル−2−シクロヘキシルメチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2,2−ジプロピル−1,3−ジメトキシプロパン、2−イソプロピル−2−シクロヘキシル−1,3−ジメトキシプロパン、2−イソプロピル−2−シクロペンチル−1,3−ジメトキシプロパン、2,2−ジシクロペンチル−1,3−ジメトキシプロパン、2−ヘプチル−2−ペンチル−1,3−ジメトキシプロパン、1,2−ジメトキシベンゼン、1.3−ジメトキシベンゼン、1,4−ジメトキシベンゼン、1,3−ジオキソラン、1,4−ジオキサン、1,3−ジオキサン、等を挙げることができる。好ましくは、ジエチルエーテル、ジノルマルブチルエーテル、メチルノルマルブチルエーテル、メチルフェニルエーテル、テトラヒドロフラン、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソランであり、更に好ましくは、ジエチルエーテル、ジノルマルブチルエーテルまたはテトラヒドロフランである。   Specific examples include dimethyl ether, diethyl ether, dinormal propyl ether, diisopropyl ether, dinormal butyl ether, diisobutyl ether, di-tert-butyl ether, dicyclohexyl ether, diphenyl ether, methyl ethyl ether, methyl normal propyl ether, methyl isopropyl ether, methyl. Normal butyl ether, methyl isobutyl ether, methyl tert-butyl ether, methyl cyclohexyl ether, methyl phenyl ether, ethylene oxide, propylene oxide, oxetane, tetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1, 2-diethoxyethane, 1,2-diisobutoxyethane, , 2-dimethoxypropane, 1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) -1,3-dimethoxypropane, 2-isopropyl-2-3,7-dimethyloctyl-1,3-dimethoxypropane, 2,2-diisopropyl-1,3-dimethoxypropane, 2-isopropyl-2-cyclohexylmethyl- 1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisopropyl-1,3-dimethoxypropane, 2, 2-dipropyl-1,3-dimethoxypropane, 2-isopropyl 2-cyclohexyl-1,3-dimethoxypropane, 2-isopropyl-2-cyclopentyl-1,3-dimethoxypropane, 2,2-dicyclopentyl-1,3-dimethoxypropane, 2-heptyl-2-pentyl-1 , 3-dimethoxypropane, 1,2-dimethoxybenzene, 1.3-dimethoxybenzene, 1,4-dimethoxybenzene, 1,3-dioxolane, 1,4-dioxane, 1,3-dioxane, and the like. it can. Preferred are diethyl ether, dinormal butyl ether, methyl normal butyl ether, methyl phenyl ether, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, and more preferred are diethyl ether and dinormal butyl ether. Or tetrahydrofuran.

カルボン酸エステル類の具体例としては、モノおよび多価のカルボン酸エステルが挙げられ、それらの例として飽和脂肪族カルボン酸エステル、不飽和脂肪族カルボン酸エステル、脂環式カルボン酸エステル、芳香族カルボン酸エステルを挙げることができる。具体例としては、酢酸メチル、酢酸エチル、酢酸ノルマルブチル、酢酸イソブチル、酢酸−tert−ブチル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、酪酸エチル、吉草酸エチル、アクリル酸エチル、メタクリル酸メチル、安息香酸メチル、安息香酸エチル、安息香酸ノルマルブチル、安息香酸イソブチル、安息香酸−tert−ブチル、トルイル酸メチル、トルイル酸エチル、アニス酸メチル、アニス酸エチル、コハク酸ジメチル、コハク酸ジエチル、コハク酸ジノルマルブチル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジノルマルブチル、マレイン酸ジメチル、マレイン酸ジブチル、イタコン酸ジエチル、イタコン酸ジノルマルブチル、フタル酸モノエチル、フタル酸ジメチル、フタル酸メチルエチル、フタル酸ジエチル、フタル酸ジノルマルプロピル、フタル酸ジイソプロピル、フタル酸ジノルマルブチル、フタル酸ジイソブチル、フタル酸ジ−tert−ブチル、フタル酸ジペンチル、フタル酸ジ−n−ヘキシル、フタル酸ジヘプチル、フタル酸ジノルマルオクチル、フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデシル、フタル酸ジシクロヘキシル、フタル酸ジフェニル、イソフラル酸ジメチル、イソフタル酸ジエチル、イソフタル酸ジノルマルブチル、イソフタル酸ジイソブチル、イソフタル酸ジ−tert−ブチル、テレフタル酸ジメチル、テレフタル酸ジエチル、テレフタル酸ジノルマルブチル、テレフタル酸ジイソブチル、テレフタル酸ジ−tert−ブチル等を挙げることができる。好ましくは酢酸メチル、酢酸エチル、安息香酸メチル、安息香酸エチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジノルマルブチル、フタル酸ジイソブチル、テレフタル酸ジメチルまたはテレフタル酸ジエチルであり、更に好ましくは、安息香酸メチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジイソブチルまたはテレフタル酸ジメチルである。   Specific examples of the carboxylic acid esters include mono- and polyvalent carboxylic acid esters, and examples thereof include saturated aliphatic carboxylic acid esters, unsaturated aliphatic carboxylic acid esters, alicyclic carboxylic acid esters, aromatics. Carboxylic acid esters can be mentioned. Specific examples include methyl acetate, ethyl acetate, normal butyl acetate, isobutyl acetate, tert-butyl acetate, phenyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, ethyl valerate, ethyl acrylate, methyl methacrylate, Methyl benzoate, ethyl benzoate, normal butyl benzoate, isobutyl benzoate, tert-butyl benzoate, methyl toluate, ethyl toluate, methyl anisate, ethyl anisate, dimethyl succinate, diethyl succinate, succinic acid Dinormal butyl, dimethyl malonate, diethyl malonate, dinormal butyl malonate, dimethyl maleate, dibutyl maleate, diethyl itaconate, dinormal butyl itaconate, monoethyl phthalate, dimethyl phthalate, methyl ethyl phthalate, phthalate Diethyl phthalate, dinormal phthalate, diisopropyl phthalate, dinormal butyl phthalate, diisobutyl phthalate, di-tert-butyl phthalate, dipentyl phthalate, di-n-hexyl phthalate, diheptyl phthalate, diphthalate Normal octyl, di (2-ethylhexyl) phthalate, diisodecyl phthalate, dicyclohexyl phthalate, diphenyl phthalate, dimethyl isophthalate, diethyl isophthalate, dinormal butyl isophthalate, diisobutyl isophthalate, di-tert-butyl isophthalate, Examples thereof include dimethyl terephthalate, diethyl terephthalate, di-normal butyl terephthalate, diisobutyl terephthalate, and di-tert-butyl terephthalate. Preferred are methyl acetate, ethyl acetate, methyl benzoate, ethyl benzoate, dimethyl phthalate, diethyl phthalate, di-normal butyl phthalate, diisobutyl phthalate, dimethyl terephthalate or diethyl terephthalate, more preferably benzoic acid Methyl, dimethyl phthalate, diethyl phthalate, diisobutyl phthalate or dimethyl terephthalate.

アミン類の例示化合物としては、トリヒドロカルビルアミンが挙げられ、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリノルマルブチルアミン、トリイソブチルアミン、トリヘキシルアミン、トリオクチルアミン、トリドデシルアミン、トリフェニルアミンが挙げられる。好ましくは、トリエチルアミンまたはトリオクチルアミンである。   Examples of amines include trihydrocarbylamine, and examples include trimethylamine, triethylamine, tripropylamine, trinormalbutylamine, triisobutylamine, trihexylamine, trioctylamine, tridodecylamine, and triphenylamine. Triethylamine or trioctylamine is preferable.

電子供与性化合物(D)としては、アルコキシケイ素類、エーテル類またはアミン類が好ましく用いられる。更にアミン類がより好ましく用いられる。これらの電子供与性化合物(D)は一種類のみを用いても、二種類以上を組み合わせて用いてもよい。   As the electron donating compound (D), alkoxysilicones, ethers or amines are preferably used. Furthermore, amines are more preferably used. These electron donating compounds (D) may be used alone or in combination of two or more.

本発明の付加重合体の製造方法は、下記の4つの方法を含む。
(1)本発明のコーティング済反応器において、1次触媒の存在下、モノマーを付加重合して付加重合体を製造する方法
(2)本発明のコーティング済反応器で1次触媒の存在下、モノマーを予備重合することにより予備重合済付加重合触媒成分を得、コーティングしてない反応器で該予備重合済付加重合触媒成分の存在下、モノマーを付加重合して付加重合体を製造する方法
(3)コーティングしてない反応器で1次触媒の存在下、モノマーを予備重合することにより予備重合済付加重合触媒成分を得、本発明のコーティング済反応器で該予備重合済付加重合触媒成分の存在下、モノマーを付加重合して付加重合体を製造する方法
(4)本発明のコーティング済反応器で1次触媒の存在下、モノマーを予備重合することにより予備重合済付加重合触媒成分を得、本発明のコーティング済反応器で該予備重合済付加重合触媒成分の存在下、モノマーを付加重合して付加重合体を製造する方法
The method for producing an addition polymer of the present invention includes the following four methods.
(1) A method for producing an addition polymer by addition polymerization of a monomer in the presence of a primary catalyst in the coated reactor of the present invention (2) In the presence of a primary catalyst in the coated reactor of the present invention, A method of producing a prepolymerized addition polymerization catalyst component by prepolymerizing the monomer and producing an addition polymer by subjecting the monomer to addition polymerization in the presence of the prepolymerized addition polymerization catalyst component in an uncoated reactor ( 3) A prepolymerized addition polymerization catalyst component is obtained by prepolymerizing a monomer in the presence of a primary catalyst in an uncoated reactor, and the prepolymerized addition polymerization catalyst component is obtained in a coated reactor of the present invention. Method for producing addition polymer by addition polymerization of monomer in the presence (4) Prepolymerized by prepolymerizing monomer in the presence of primary catalyst in the coated reactor of the present invention Obtain a polymerization catalyst component, the presence of the prepolymerized spent addition polymerization catalyst component in the coating already reactor of the present invention, a method of producing an addition polymer of a monomer addition polymerization to

1次触媒
本発明における1次触媒は、上記の成分(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、成分(B)と、必要に応じて成分(C)とを接触させて得られる。各成分の接触量比としては、成分(A)または(A’)の接触量は、成分(B)に対して、通常0.1〜1000μmol/gであり、好ましくは1〜500μmol/gであり、より好ましくは10〜300μmol/gである。成分(C)の接触量は成分(A)または(A’)に対して、通常0.01〜10000mmol/gであり、好ましくは0.1〜1000mmol/gであり、より好ましくは0.5〜200mmol/gである。
Primary catalyst The primary catalyst in the present invention comprises the above component (A) or its μ-oxo type transition metal compound dimer (A ′), component (B), and optionally component (C). Obtained by contacting with As the contact amount ratio of each component, the contact amount of component (A) or (A ′) is usually 0.1 to 1000 μmol / g, preferably 1 to 500 μmol / g, relative to component (B). Yes, more preferably 10 to 300 μmol / g. The contact amount of component (C) is usually 0.01 to 10000 mmol / g, preferably 0.1 to 1000 mmol / g, more preferably 0.5 to component (A) or (A ′). ~ 200 mmol / g.

各成分の接触方法は、成分(A)または(A’)と、成分(B)と成分(C)とを予め接触させて得られた反応物を用いてもよく、反応器に別々に投入して用いてもよい。それらの内の任意の成分を予め接触させて、その後残りの成分を接触させてもよい。それらの接触方法の中で、重合反応器に別々に投入する方法が好ましい。また、成分(A)または(A’)を粉体はたは溶媒に懸濁させたスラリー状態で投入しても構わない。   As the contact method of each component, a reaction product obtained by previously contacting the component (A) or (A ′), the component (B) and the component (C) may be used, and charged separately into the reactor. May be used. Any of them may be contacted in advance and then the remaining components may be contacted. Among these contact methods, a method of separately charging the polymerization reactor is preferable. Further, the component (A) or (A ′) may be added in a slurry state in which the component (A) or (A ′) is suspended in a powder or a solvent.

また、各成分の接触は、溶媒が存在していても存在していなくてもよい。溶媒を用いる方が効率よく活性点を形成することができるので溶媒が存在する方が好ましい。接触の際に使用する溶媒としては、生成する活性点を失活しないものであればいずれの溶媒でも用いることができる。また、接触の際に、成分(A)または(A’)が溶解する溶媒の方が更に好ましく、具体的には、ブタン、ペンタン、ヘキサン、オクタン等の脂肪族ハイドロカルビル溶媒およびベンゼン、トルエン、キシレン等の芳香族ハイドロカルビル溶媒、ジクロロメタンのようなハロゲン化ハイドロカルビル溶媒、エーテル類、エステル類、ケトン類等の極性溶媒も使用できる。粒子を形成する重合(例えば、スラリー重合、気相重合、バルク重合等)に用いる場合、生成する付加重合体が溶媒に溶けないほうが好ましく、具体的には脂肪族ハイドロカルビル溶媒が好ましい。また、接触時にモノマーが存在していてもよい。   The contact of each component may or may not be present in the presence of a solvent. Since it is possible to form active sites more efficiently using a solvent, it is preferable that a solvent is present. As the solvent used for the contact, any solvent can be used as long as it does not deactivate the generated active sites. Further, a solvent in which the component (A) or (A ′) dissolves upon contact is more preferable. Specifically, aliphatic hydrocarbyl solvents such as butane, pentane, hexane, and octane, benzene, and toluene Aromatic hydrocarbyl solvents such as xylene, halogenated hydrocarbyl solvents such as dichloromethane, polar solvents such as ethers, esters, and ketones can also be used. When used for polymerization for forming particles (for example, slurry polymerization, gas phase polymerization, bulk polymerization, etc.), it is preferable that the resulting addition polymer is not soluble in a solvent, and specifically, an aliphatic hydrocarbyl solvent is preferable. Moreover, the monomer may exist at the time of contact.

各成分を接触する際の温度は、任意に設定することが出来る。通常−50℃から100℃、好ましくは−30℃から80℃、更に好ましくは−10℃から60℃が好ましい。接触する時間は、任意に設定することが出来る。通常連続的に投入(実質的に0分)から24時間、好ましくは1分間から12時間、更に好ましくは3分間から10時間である。   The temperature at the time of contacting each component can be arbitrarily set. Usually, −50 ° C. to 100 ° C., preferably −30 ° C. to 80 ° C., more preferably −10 ° C. to 60 ° C. is preferable. The contact time can be arbitrarily set. Usually, it is continuously charged (substantially 0 minutes) to 24 hours, preferably 1 minute to 12 hours, more preferably 3 minutes to 10 hours.

各成分を接触する際に攪拌を行うことが好ましい。   It is preferable to perform stirring when contacting each component.

予備重合方法および予備重合済付加重合触媒成分
予備重合方法は特に限定されるものではないが、溶媒を使用する溶液重合、スラリー重合等が好ましい。例えば、1次触媒の存在下で予備重合する方法等を挙げることができる。1次触媒の存在下で予備重合する方法において使用する重合溶媒としては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、およびオクタンのような脂肪族ハイドロカルビル溶媒、ベンゼンおよびトルエンのような芳香族ハイドロカルビル溶媒、およびジクロロメタンのようなハロゲン化ハイドロカルビル溶媒を挙げることができる。また、モノマー自体を重合溶媒に用いることも可能であり、該モノマーとしては、例えば、エチレン、プロピレン、1−ブテンおよび1−ヘキセンを挙げることができる。
The prepolymerization method and the prepolymerized addition polymerization catalyst component prepolymerization method are not particularly limited, but solution polymerization using a solvent, slurry polymerization and the like are preferable. For example, a prepolymerization method in the presence of a primary catalyst can be exemplified. Examples of the polymerization solvent used in the prepolymerization method in the presence of the primary catalyst include aliphatic hydrocarbyl solvents such as butane, pentane, hexane, heptane, and octane, and aromatic hydrocarbyl such as benzene and toluene. Mention may be made of carbyl solvents and halogenated hydrocarbyl solvents such as dichloromethane. In addition, the monomer itself can be used as a polymerization solvent, and examples of the monomer include ethylene, propylene, 1-butene and 1-hexene.

予備重合方法は、回分式重合、連続式重合のいずれでも可能であり、さらに重合を反応条件の異なる2段階以上に分けて行ってもよい。重合時間は、一般に、目的とするオレフィン重合体の種類、反応装置により適宜決定されるが、1分間〜20時間の範囲を取ることができる。予備重合温度は、通常―50℃から100℃、好ましくは−30℃から80℃、更に好ましくは−10℃から60℃が好ましい。また、温度を途中で変化させてもよい。また、予備重合時の圧力は、通常0.001MPaから5MPa、好ましくは0.01MPaから2MPaである。   The prepolymerization method can be either batch polymerization or continuous polymerization, and the polymerization may be performed in two or more stages with different reaction conditions. In general, the polymerization time is appropriately determined depending on the kind of the target olefin polymer and the reaction apparatus, but can be in the range of 1 minute to 20 hours. The prepolymerization temperature is usually −50 ° C. to 100 ° C., preferably −30 ° C. to 80 ° C., more preferably −10 ° C. to 60 ° C. Moreover, you may change temperature on the way. Moreover, the pressure at the time of prepolymerization is usually 0.001 MPa to 5 MPa, preferably 0.01 MPa to 2 MPa.

モノマーの投入方法も任意に選ぶことができる。予備重合に使用するモノマーは、炭素原子数2〜20からなるオレフィンのいずれをも用いることができ、同時に2種類以上のオレフィンを用いることもできる。該オレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、4−メチル−1−ペンテン、4−メチル−2−ペンテン、およびビニルシクロヘキサン等を挙げることができる。   The monomer charging method can be arbitrarily selected. As the monomer used for the prepolymerization, any olefin having 2 to 20 carbon atoms can be used, and two or more olefins can be used at the same time. Examples of the olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene and 4-methyl. -2-pentene, vinylcyclohexane and the like.

予備重合に同時に2種類以上のモノマーを用いて予備共重合体を形成する場合、共重合体を構成するモノマーの組み合わせとしては、例えば、エチレンとプロピレン、エチレンと1−ブテン、エチレンと1−ヘキセン、およびプロピレンと1−ブテン等の組み合わせを挙げることができる。   When a preliminary copolymer is formed by using two or more types of monomers at the same time for the preliminary polymerization, examples of combinations of monomers constituting the copolymer include ethylene and propylene, ethylene and 1-butene, and ethylene and 1-hexene. And a combination of propylene and 1-butene.

予備重合において水素等の分子量調節剤を共存させて、予備重合体の分子量を調節することもできる。   In the prepolymerization, the molecular weight of the prepolymer can be adjusted by coexisting a molecular weight regulator such as hydrogen.

予備重合によって予備重合済付加重合触媒成分を形成させた後、得られた予備重合済付加重合触媒成分をそのまま本重合に用いてもよく、または次のような処理を行ってから用いてもよい。溶媒の存在下で予備重合する方法によって予備重合済付加重合触媒成分を形成した場合、その予備重合済付加重合触媒成分を溶液またはスラリー液状態で使用してもよく、または脱モノマー、溶媒留去、ろ過、洗浄、および乾燥等の処理を行い、固体状態で本重合に用いてもよい。   After the prepolymerized addition polymerization catalyst component is formed by prepolymerization, the prepolymerized addition polymerization catalyst component obtained may be used for the main polymerization as it is, or may be used after the following treatment. . When a prepolymerized addition polymerization catalyst component is formed by a method of prepolymerization in the presence of a solvent, the prepolymerized addition polymerization catalyst component may be used in a solution or slurry liquid state, or it is removed from a monomer or a solvent. , Filtration, washing, drying, etc. may be performed and used in the main polymerization in the solid state.

予備重合によって生成する重合体量(予備重合度ともいう)は、成分(B)1g当たり、通常0.1〜1000gの範囲であり、好ましくは0.5〜500gの範囲であり、特に好ましくは1〜100gの範囲となるよう予備重合は実施される。   The amount of polymer produced by pre-polymerization (also referred to as pre-polymerization degree) is usually in the range of 0.1 to 1000 g, preferably in the range of 0.5 to 500 g, particularly preferably, per 1 g of component (B). The prepolymerization is carried out so as to be in the range of 1 to 100 g.

付加重合方法および付加重合体
本発明において、付加重合体を製造するに際しては、1次触媒を用いてモノマーを付加重合する方法、および、予備重合済付加重合触媒成分を用いてモノマーを付加重合する方法(本重合)が挙げられる。
予備重合済付加重合触媒成分を用いる場合には、予備重合済付加重合触媒成分をそのまま用いてもよいし、予備重合済付加重合触媒成分と有機アルミニウム化合物(C)とを接触させて用いてもよい。重合活性において優れる観点から、後者が好ましい。後者の場合の有機アルミニウム化合物としては、前記化合物(C)として例示した有機アルミニウム化合物が用いられる。有機アルミニウム化合物をこのように使用する場合、その使用量は、成分(A)または(A’)に対して、通常1〜10000mol/molであり、好ましくは10〜5000mol/molであり、より好ましくは30〜1000mmol/gである。
Addition polymerization method and addition polymer In the present invention, when an addition polymer is produced, a monomer is addition-polymerized using a primary catalyst, and a monomer is addition-polymerized using a prepolymerized addition polymerization catalyst component. And a method (main polymerization).
When the prepolymerized addition polymerization catalyst component is used, the prepolymerized addition polymerization catalyst component may be used as it is, or the prepolymerized addition polymerization catalyst component and the organoaluminum compound (C) may be used in contact with each other. Good. The latter is preferable from the viewpoint of excellent polymerization activity. As the organoaluminum compound in the latter case, the organoaluminum compound exemplified as the compound (C) is used. When the organoaluminum compound is used in this way, the amount used is usually 1 to 10000 mol / mol, preferably 10 to 5000 mol / mol, more preferably, relative to the component (A) or (A ′). Is 30 to 1000 mmol / g.

予備重合済付加重合触媒成分および有機アルミニウム化合物(C)を接触させて用いる場合、該予備重合済付加重合触媒成分および該有機アルミニウム化合物(C)は重合時に、重合反応器に任意の順序で投入し使用することができ、またそれらを予め接触させてから重合反応器に投入して使用してもよい。   When the prepolymerized addition polymerization catalyst component and the organoaluminum compound (C) are used in contact with each other, the prepolymerized addition polymerization catalyst component and the organoaluminum compound (C) are charged into the polymerization reactor in any order during polymerization. Alternatively, they may be brought into contact with each other in advance before being used in the polymerization reactor.

本発明の予備重合済付加重合触媒成分および有機アルミニウム化合物(C)を触媒調製用反応器もしくは本重合の重合反応器に供給する方法は、特に限定されない。該方法としては、例えば、各成分を固体状態で供給する方法、および水分や酸素等の触媒成分を失活させる成分を十分に取り除いたハイドロカルビル溶媒に溶解させた溶液状態、または懸濁もしくはスラリー化させた状態で供給する方法等を挙げることができる。このときのハイドロカルビル溶媒としては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、およびオクタンのような脂肪族ハイドロカルビル溶媒、ベンゼンおよびトルエンのような芳香族ハイドロカルビル溶媒、およびジクロロメタンのようなハロゲン化ハイドロカルビル溶媒を挙げることができ、なかでも、脂肪族ハイドロカルビル溶媒または芳香族ハイドロカルビル溶媒が好ましく、脂肪族ハイドロカルビル溶媒が更に好ましい。   The method for supplying the prepolymerized addition polymerization catalyst component of the present invention and the organoaluminum compound (C) to the catalyst preparation reactor or the polymerization reactor for the main polymerization is not particularly limited. Examples of the method include a method in which each component is supplied in a solid state, a solution state in which a component that deactivates a catalyst component such as moisture and oxygen is sufficiently removed, a solution in a hydrocarbyl solvent, or a suspension or The method etc. which supply in the state made into the slurry can be mentioned. Examples of the hydrocarbyl solvent at this time include aliphatic hydrocarbyl solvents such as butane, pentane, hexane, heptane, and octane, aromatic hydrocarbyl solvents such as benzene and toluene, and dichloromethane. A halogenated hydrocarbyl solvent can be mentioned, and among them, an aliphatic hydrocarbyl solvent or an aromatic hydrocarbyl solvent is preferable, and an aliphatic hydrocarbyl solvent is more preferable.

付加重合方法としては、例えば、(1)ガス状のモノマー中で重合を行う気相重合法、(2)溶媒中で重合させる溶液重合法、またはスラリー重合法(懸濁重合法)、(3)モノマーを溶媒として用いるバルク重合法を挙げることができる。溶液重合またはスラリー重合に用いる重合溶媒としては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、およびオクタンのような脂肪族ハイドロカルビル溶媒、ベンゼンおよびトルエンのような芳香族ハイドロカルビル溶媒、ならびにジクロロメタンのようなハロゲン化ハイドロカルビル溶媒を挙げることができる。本重合の方式は、回分式重合、連続式重合のいずれでも可能であり、更に本重合を反応条件の異なる2段階以上に分けて行ってもよい。本重合の重合時間は、一般に、目的とする付加重合体の種類、重合反応器により決定され、通常、1分間〜20時間である。   Examples of the addition polymerization method include (1) a gas phase polymerization method in which polymerization is performed in a gaseous monomer, (2) a solution polymerization method in which polymerization is performed in a solvent, or a slurry polymerization method (suspension polymerization method), (3 ) Bulk polymerization using monomers as solvents can be mentioned. Examples of polymerization solvents used for solution polymerization or slurry polymerization include aliphatic hydrocarbyl solvents such as butane, pentane, hexane, heptane, and octane, aromatic hydrocarbyl solvents such as benzene and toluene, and dichloromethane. Mention may be made of such halogenated hydrocarbyl solvents. The polymerization method can be either batch polymerization or continuous polymerization, and the polymerization may be further divided into two or more stages having different reaction conditions. The polymerization time of the main polymerization is generally determined by the kind of the target addition polymer and the polymerization reactor, and is usually 1 minute to 20 hours.

本発明の予備重合済付加重合触媒成分は、スラリー重合、気相重合、およびバルク重合のように、本重合において付加重合体が粒子状に生成する重合に特に好適に適用される。
スラリー重合は、公知の方法および条件に従って行うことができる。該方法の好ましい方法は、モノマー(およびコモノマー)、稀釈剤およびその他の供給物等を必要に応じて重合反応器に連続的または間欠的に供給し、生成した付加重合体スラリーを重合反応器から連続的または間欠的に抜き出す方法である。該重合反応器としては、例えば、ループ反応器、攪拌機付反応器、および種類や重合反応条件の異なる複数の攪拌機付反応器を直列、並列またはこれらの組合せで結合した反応器を挙げることができる。
The prepolymerized addition polymerization catalyst component of the present invention is particularly suitably applied to polymerization in which an addition polymer is produced in the form of particles in the main polymerization, such as slurry polymerization, gas phase polymerization, and bulk polymerization.
Slurry polymerization can be performed according to known methods and conditions. A preferred method of this method is to continuously or intermittently supply monomers (and comonomers), diluents, and other feeds to the polymerization reactor as necessary, and the resulting addition polymer slurry from the polymerization reactor. It is a method of extracting continuously or intermittently. Examples of the polymerization reactor include a loop reactor, a reactor with a stirrer, and a reactor in which a plurality of reactors with a stirrer having different types and polymerization reaction conditions are connected in series, in parallel, or a combination thereof. .

上記稀釈剤としては、例えば、パラフィン、シクロパラフィンおよび芳香族ハイドロカルビルのような不活性稀釈剤(媒質)を挙げることができる。該媒質、ならびに重合温度および重合圧力は、触媒を懸濁状態に保持し、媒質および少なくとも一部のモノマーおよびコモノマーを液相で維持し、モノマーおよびコモノマーを接触させることができるように選択される。該重合温度は、通常約0℃〜約150℃であり、好ましくは30℃〜100℃である。該重合圧力は通常約0.1MPa〜約10MPaであり、好ましくは0.5MPa〜5MPaである。 Examples of the diluent include inert diluents (medium) such as paraffin, cycloparaffin, and aromatic hydrocarbyl. The medium, as well as the polymerization temperature and pressure, are selected so as to keep the catalyst in suspension, maintain the medium and at least some monomer and comonomer in the liquid phase, and allow the monomer and comonomer to contact. . The polymerization temperature is usually about 0 ° C to about 150 ° C, preferably 30 ° C to 100 ° C. The polymerization pressure is usually about 0.1 MPa to about 10 MPa, preferably 0.5 MPa to 5 MPa.

付加重合体の分子量の制御は、重合温度または例えば水素のような分子量調節剤によって行なうことができる。   The molecular weight of the addition polymer can be controlled by the polymerization temperature or a molecular weight regulator such as hydrogen.

各触媒成分、およびモノマー(およびコモノマー)は、公知の任意の方法によって、任意の順序で重合反応器へ供給することができる。重合反応器への供給方法としては、例えば、(1)同時に供給する方法、および(2)逐次に供給する方法、を挙げることができる。各触媒成分はモノマー(およびコモノマー)と接触させる前に、不活性雰囲気中において予備接触させてもよい。   Each catalyst component and monomer (and comonomer) can be fed to the polymerization reactor in any order by any known method. Examples of the supply method to the polymerization reactor include (1) a method of supplying simultaneously and (2) a method of supplying sequentially. Each catalyst component may be pre-contacted in an inert atmosphere prior to contact with the monomer (and comonomer).

気相重合は、公知の方法および条件に従って行うことができる。該気相重合用の反応器は流動層型反応器、好ましくは、拡大部を有する流動層型反応器である。該反応器は、反応器内に攪拌翼を設置していてもよい。
各触媒成分を反応器に供給する方法としては、例えば、通常、窒素およびアルゴンのような不活性ガス、水素、またはエチレンとともに、水分のない状態で供給する方法、または、溶媒に溶解した溶液または稀釈したスラリーで供給する方法を挙げることができる。各触媒成分は個別に供給してもよいし、任意の成分を任意の順序にあらかじめ接触させて供給してもよい。
The gas phase polymerization can be performed according to known methods and conditions. The reactor for gas phase polymerization is a fluidized bed reactor, preferably a fluidized bed reactor having an enlarged portion. The reactor may be provided with a stirring blade in the reactor.
As a method of supplying each catalyst component to the reactor, for example, a method of supplying an inert gas such as nitrogen and argon, hydrogen, or ethylene in the absence of moisture, or a solution dissolved in a solvent or The method of supplying with the diluted slurry can be mentioned. Each catalyst component may be supplied individually, or may be supplied by contacting arbitrary components in advance in an arbitrary order.

重合温度は、製造される付加重合体の溶融温度未満であれば特に限定されないが、好ましくは0℃〜150℃、特に好ましくは30℃〜100℃である。製造される付加重合体の溶融流動性を調節する目的で、分子量調節剤として水素を添加しても構わない。また、重合に際して、混合ガス中に不活性ガスを共存させてもよい。   The polymerization temperature is not particularly limited as long as it is lower than the melting temperature of the produced addition polymer, but is preferably 0 ° C to 150 ° C, particularly preferably 30 ° C to 100 ° C. Hydrogen may be added as a molecular weight modifier for the purpose of adjusting the melt fluidity of the produced addition polymer. In the polymerization, an inert gas may coexist in the mixed gas.

本発明の付加重合体の製造方法におけるモノマーとしては、例えば、炭素原子数2〜20のオレフィン、ジオレフィン、環状オレフィン、アルケニル芳香族ハイドロカルビル、および極性モノマーを挙げることができ、同時に2種以上のモノマーを用いることもできる。   Examples of the monomer in the method for producing an addition polymer of the present invention include olefins having 2 to 20 carbon atoms, diolefins, cyclic olefins, alkenyl aromatic hydrocarbyls, and polar monomers. The above monomers can also be used.

該モノマーとしては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、5−メチル−1−ヘキセン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、およびビニルシクロヘキサンのようなオレフィン;1,5−ヘキサジエン、1,4−ヘキサジエン、1,4−ペンタジエン、1,7−オクタジエン、1,8−ノナジエン、1,9−デカジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン、5−エチリデン−2−ノルボルネン、ジシクロペンタジエン、5−ビニル−2−ノルボルネン、ノルボルナジエン、5−メチレン−2−ノルボルネン、1,5−シクロオクタジエン、5,8−エンドメチレンヘキサヒドロナフタレン、1,3−ブタジエン、イソプレン、1,3−ヘキサジエン、1,3−オクタジエン、1,3−シクロオクタジエン、および1,3−シクロヘキサジエンのようなジオレフィン;ノルボルネン、5−メチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネン、5−フェニル−2−ノルボルネン、5−ベンジル−2−ノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、5−アセチル−2−ノルボルネン、5−アセチルオキシ−2−ノルボルネン、5−メトキシカルボニル−2−ノルボルネン、5−エトキシカルボニル−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネン、5−シアノ−2−ノルボルネン、8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−テトラシクロドデセン、および8−シアノテトラシクロドデセンのような環状オレフィン;スチレン、アルケニルベンゼン(例えば、2−フェニルプロピレン、2−フェニルブテン、および3−フェニルプロピレン)、アルキルスチレン(例えば、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン、α−メチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、3−メチル−5−エチルスチレン、1,1−ジフェニルエチレン、p−第3級ブチルスチレン、およびp−第2級ブチルスチレン)、および、ビスアルケニルベンゼン(例えば、ジビニルベンゼン)、アルケニルナフタレン(例えば、1−ビニルナフタレン)のようなアルケニル芳香族ハイドロカルビル;ならびに、α,β−不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、およびビシクロ(2,2,1)−5−ヘプテン−2,3−ジカルボン酸)、該α,β−不飽和カルボン酸の、ナトリウム、カリウム、リチウム、亜鉛、マグネシウム、およびカルシウムのような金属の金属塩、α,β−不飽和カルボン酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸tert−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、およびメタクリル酸イソブチル)、不飽和ジカルボン酸(例えば、マレイン酸およびイタコン酸)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、およびトリフルオロ酢酸ビニル)、および、不飽和カルボン酸グリシジルエステル(例えば、アクリル酸グリシジル、メタクリル酸グリシジル、およびイタコン酸モノグリシジルエステル)のような極性モノマー、を挙げることができる。   Examples of the monomer include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene, 1-hexene, 1-heptene, 1-octene and 1-nonene. Olefins such as 1,5-decene and vinylcyclohexane; 1,5-hexadiene, 1,4-hexadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4 -Methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, norbornadiene , 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydride Diolefins such as naphthalene, 1,3-butadiene, isoprene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclooctadiene, and 1,3-cyclohexadiene; norbornene, 5-methyl-2 -Norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-phenyl-2-norbornene, 5-benzyl-2-norbornene, tetracyclododecene, tricyclodecene, tricycloundecene, penta Cyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetyl-2-norbornene, 5-acetyloxy-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-Ethoxycarbonyl-2-norbol , 5-methyl-5-methoxycarbonyl-2-norbornene, 5-cyano-2-norbornene, 8-methoxycarbonyltetracyclododecene, 8-methyl-8-tetracyclododecene, and 8-cyanotetracyclodone Cyclic olefins such as decene; styrene, alkenylbenzene (eg, 2-phenylpropylene, 2-phenylbutene, and 3-phenylpropylene), alkylstyrene (eg, p-methylstyrene, m-methylstyrene, o-methylstyrene) P-ethylstyrene, m-ethylstyrene, o-ethylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, 3 -Methyl-5-ethylstyrene, 1,1-diphenyl ester And alkenyl aromatic hydrocals such as bisalkenylbenzene (eg divinylbenzene), alkenylnaphthalene (eg 1-vinylnaphthalene), and the like. And α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, and bicyclo (2,2,1) -5-heptene-2 , 3-dicarboxylic acid), metal salts of such α, β-unsaturated carboxylic acids, such as sodium, potassium, lithium, zinc, magnesium, and calcium, α, β-unsaturated carboxylic acid esters (eg, Methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, acrylic acid ert-butyl, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and isobutyl methacrylate), unsaturated dicarboxylic acids (eg, maleic acid and Itaconic acid), vinyl esters (eg, vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl trifluoroacetate), and unsaturated carboxylic acid glycidyl esters (eg, And polar monomers such as glycidyl acrylate, glycidyl methacrylate, and monoglycidyl itaconate).

本発明は、これらのモノマーの単独重合または共重合に適用される。共重合体を構成するモノマーの組み合わせとしては、例えば、エチレンとプロピレン、エチレンと1−ブテン、エチレンと1−ヘキセン、エチレンと1−オクテン、プロピレンと1−ブテンを挙げることができる。   The present invention is applied to homopolymerization or copolymerization of these monomers. Examples of the combination of monomers constituting the copolymer include ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, and propylene and 1-butene.

本発明の予備重合済付加重合触媒成分は、オレフィン重合体の製造に好適に用いられる。該オレフィン重合体は、特に好ましくはエチレンとα−オレフィンとの共重合体であり、なかでも、好ましくは、ポリエチレン結晶構造を有するエチレンとα−オレフィンとの共重合体である。該α−オレフィンとしては、例えば、炭素原子数3〜8のα−オレフィンが好ましく、例えば、1−ブテン、1−ヘキセン、および1−オクテンを挙げることができる。   The prepolymerized addition polymerization catalyst component of the present invention is suitably used for the production of an olefin polymer. The olefin polymer is particularly preferably a copolymer of ethylene and an α-olefin, and particularly preferably a copolymer of ethylene and an α-olefin having a polyethylene crystal structure. The α-olefin is preferably an α-olefin having 3 to 8 carbon atoms, and examples thereof include 1-butene, 1-hexene, and 1-octene.

以下、実施例および比較例によって本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。実施例における改質された粒子の元素分析、および、オレフィン重合体の性質は下記の方法により測定した。   Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these. The elemental analysis of the modified particles and the properties of the olefin polymer in the examples were measured by the following methods.

(1)元素分析
Zn:試料を硫酸水溶液(1M)に投じたのち超音波をあてて金属成分を抽出した。得られた液体部分についてICP発光分析法により定量した。
F:酸素を充填させたフラスコ中で試料を燃焼させて生じた燃焼ガスを水酸化ナトリウム水溶液(10%)に吸収させ、得られた当該水溶液についてイオン電極法を用いて定量した。
(1) Elemental analysis Zn: The sample was poured into a sulfuric acid aqueous solution (1M), and then ultrasonic waves were applied to extract metal components. The obtained liquid portion was quantified by ICP emission spectrometry.
F: Combustion gas generated by burning a sample in a flask filled with oxygen was absorbed in an aqueous sodium hydroxide solution (10%), and the obtained aqueous solution was quantified using an ion electrode method.

(2)MFR:JIS K7210−1995に規定された方法に従い、190℃にて荷重21.18N(2.16kg)で測定したメルトフローレート値である(単位:g/10分)。 (2) MFR: Melt flow rate value measured at 190 ° C. under a load of 21.18 N (2.16 kg) according to the method defined in JIS K7210-1995 (unit: g / 10 minutes).

(3)スウェル比=SR:MFR測定時に得られたストランド径をダイの内径である2.095mmで除した値である。 (3) Swell ratio = SR: A value obtained by dividing the strand diameter obtained at the time of MFR measurement by 2.095 mm which is the inner diameter of the die.

(4)予備重合済付加重合触媒成分の粒径が60μm以下である粒子の累積重量分率
SYMPATEC社製レーザー回折式粒度分布測定装置HELOS&RODOSシステムを使用して以下の測定条件により、予備重合済付加重合触媒成分を乾燥状態で分散させて粒度分布を測定し、粒径が60μm以下の予備重合済付加重合触媒成分の量を体積換算で算出した。
(4) Prepolymerized addition polymerization The cumulative weight fraction of particles having a particle size of 60 μm or less Preliminarily polymerized addition using a laser diffraction particle size distribution analyzer HELOS & RODOS system manufactured by SYMPATEC under the following measurement conditions The polymerization catalyst component was dispersed in a dry state, the particle size distribution was measured, and the amount of prepolymerized addition polymerization catalyst component having a particle size of 60 μm or less was calculated in terms of volume.

(測定条件)
レンジ :R4 1.8〜350μm
トリガー条件:リファレンス持続時間 2秒
:タイムベース 100m秒
:スタート channel 15≧0.5%
:停止 2s、channel 15≦0.5%、 10s実時間
分散条件 :RODOS(乾式気流型分散ユニット)直投式
:フィーダー VIBRI
:送り 50%
:インジェクター 4mm
:分散圧 1.5bar
(Measurement condition)
Range: R4 1.8-350μm
Trigger condition: Reference duration 2 seconds
: Time base 100ms
: Start channel 15 ≧ 0.5%
: Stop 2s, channel 15 ≦ 0.5%, 10s real time Dispersion condition: RODOS (dry airflow type dispersion unit) direct throwing type
: Feeder VIBRI
: Feed 50%
: Injector 4mm
: Dispersion pressure 1.5bar

[実施例1]
(1)改質された粒子(B)の製造
特開2009−79180号公報の実施例1(1)および(2)の成分(A)の調製と同様の方法で、本明細書中の改質された粒子(B)を製造した。元素分析の結果、Zn=11wt%、F=6.4wt%であった。
[Example 1]
(1) Production of modified particles (B) In the same manner as the preparation of component (A) in Example 1 (1) and (2) of JP-A-2009-79180, Quality particles (B) were produced. As a result of elemental analysis, Zn = 11 wt% and F = 6.4 wt%.

(2)コーティング済反応器の製造
90℃に加熱した内容積3リットルの攪拌機付き反応器の内壁に、濃度を1mg/mlに調整した酪酸ナトリウム([CH(CHCOO]Na)のエタノール溶液50mlをピペットで塗布した後、90℃で1時間ほど減圧乾燥し、溶媒のエタノールを蒸発させて、内壁面をコーティングした。反応器の内壁面積に対するコーティング化合物の量は486mg/mであった。
(2) Production of coated reactor Sodium butyrate ([CH 3 (CH 2 ) 2 COO] Na) whose concentration was adjusted to 1 mg / ml on the inner wall of a reactor with a stirrer having an internal volume of 3 liters heated to 90 ° C. After 50 ml of ethanol solution was applied with a pipette, it was dried under reduced pressure at 90 ° C. for about 1 hour, and the solvent ethanol was evaporated to coat the inner wall surface. The amount of the coating compound relative to the inner wall area of the reactor was 486 mg / m 2 .

(3)予備重合
コーティング済反応器を減圧乾燥後、アルゴンで置換したのち真空にし、ブタンを480gおよびエチレンビス(インデニル)ジルコニウムジフェノキシド(A)191mg(358μmol)を加えた。50℃にて1時間攪拌した後、30℃まで冷却した。次いで、エチレンを1g加え、上記(1)で得られた改質された粒子(B)7.0gを加え、次いで濃度を1.0mmol/mlに調製したトリイソブチルアルミニウム(C)のヘキサン溶液 3.5ml(3.5mmol)を加え予備重合を開始した。はじめに、0.13g/分でエチレンを供給しながら30℃で30分間予備重合を行った。次いで、エチレン/水素混合ガス(水素濃度:0.182mol%)に切り替え、0.81g/分で供給しながら、50℃へ30分間かけて昇温し、引き続き50℃で2時間予備重合を行った。モノマーおよびブタンをパージし、予備重合済付加重合触媒成分を回収した。回収量は、121.3gであり、改質された粒子(B)あたりの重合度は17.4g/gであった。反応器の内壁には全くポリマーが付着していなかった。粒度分布測定の結果、予備重合済付加重合触媒成分中の60μm以下である粒子の含有量は4.1%であった。
(3) The prepolymerized and coated reactor was dried under reduced pressure and then replaced with argon, followed by evacuation, and 480 g of butane and 191 mg (358 μmol) of ethylenebis (indenyl) zirconium diphenoxide (A) were added. After stirring at 50 ° C. for 1 hour, the mixture was cooled to 30 ° C. Next, 1 g of ethylene was added, 7.0 g of the modified particles (B) obtained in (1) above were added, and then a hexane solution of triisobutylaluminum (C) adjusted to a concentration of 1.0 mmol / ml 3 Pre-polymerization was started by adding 0.5 ml (3.5 mmol). First, prepolymerization was performed at 30 ° C. for 30 minutes while supplying ethylene at 0.13 g / min. Next, the ethylene / hydrogen mixed gas (hydrogen concentration: 0.182 mol%) was switched to, while supplying at 0.81 g / min, the temperature was raised to 50 ° C. over 30 minutes, followed by prepolymerization at 50 ° C. for 2 hours. It was. The monomer and butane were purged and the prepolymerized addition polymerization catalyst component was recovered. The recovered amount was 121.3 g, and the degree of polymerization per modified particle (B) was 17.4 g / g. No polymer adhered to the inner wall of the reactor. As a result of the particle size distribution measurement, the content of particles having a particle size of 60 μm or less in the prepolymerized addition polymerization catalyst component was 4.1%.

(4)本重合
減圧乾燥後、アルゴンで置換した内容積5リットルの撹拌機付きオートクレーブ内を真空にし、水素を分圧で0.037MPa加え、ヘキセン−1を154gおよびブタンを1046g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.91mol%、であった。これに、濃度を1mmol/mlに調製したトリイソブチルアルミニウムのヘキサン溶液 2.0mlを投入した。次に、濃度を0.1mmol/mlに調製したトリエチルアミンのトルエン溶液を1.0ml加えた。更に、上記(3)で得られた予備重合済付加重合触媒成分359.8mgを投入した。全圧を一定に保つようにエチレン/水素混合ガス(水素0.304mol%)をフィードしながら70℃で、3時間重合を行った。その結果、オレフィン重合体16gが得られた。活性化剤(B)当りの重合活性は760g/gであった。また、得られたオレフィン重合体はMFR=3.57、SR=1.48であった。
(4) Main polymerization
After drying under reduced pressure, the inside of an autoclave with a stirrer with an internal volume of 5 liters substituted with argon was evacuated, hydrogen was added at a partial pressure of 0.037 MPa, 154 g of hexene-1 and 1046 g of butane were charged, and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.91 mol%. To this, 2.0 ml of a hexane solution of triisobutylaluminum prepared at a concentration of 1 mmol / ml was added. Next, 1.0 ml of a toluene solution of triethylamine prepared at a concentration of 0.1 mmol / ml was added. Furthermore, 359.8 mg of the prepolymerized addition polymerization catalyst component obtained in the above (3) was added. Polymerization was carried out at 70 ° C. for 3 hours while feeding an ethylene / hydrogen mixed gas (hydrogen 0.304 mol%) so as to keep the total pressure constant. As a result, 16 g of an olefin polymer was obtained. The polymerization activity per activator (B) was 760 g / g. Moreover, the obtained olefin polymer was MFR = 3.57 and SR = 1.48.

[実施例2]
(1)コーティング済反応器の製造
酪酸ナトリウムの代わりに、ステアリン酸ナトリウム([CH(CH16COO]Na)を用いたこと、以外は実施例1(2)と同様にコーティング済み反応器を製造した。反応器の内壁面積に対するコーティング化合物の量は486mg/mであった。
[Example 2]
(1) Production of coated reactor Coated reaction as in Example 1 (2) except that sodium stearate ([CH 3 (CH 2 ) 16 COO] Na) was used instead of sodium butyrate A vessel was manufactured. The amount of the coating compound relative to the inner wall area of the reactor was 486 mg / m 2 .

(2)予備重合
コーティング済反応器を減圧乾燥後、アルゴンで置換したのち真空にし、ブタンを480gおよびエチレンビス(インデニル)ジルコニウムジフェノキシド(A)202mg(378μmol)を加えた。50℃にて1時間攪拌した後、30℃まで冷却した。次いで、エチレンを1g加え、実施例1(1)で得られた改質された粒子(B)7.0gを加え、次いで濃度を1.0mmol/mlに調製したトリイソブチルアルミニウム(C)のヘキサン溶液 3.5ml(3.5mmol)を加え予備重合を開始した。はじめに、0.13g/分でエチレンを供給しながら30℃で30分間予備重合を行った。次いで、エチレン/水素混合ガス(水素濃度:0.195mol%)に切り替え、0.81g/分で供給しながら、50℃へ30分間かけて昇温し、引き続き50℃で2時間予備重合を行った。モノマーおよびブタンをパージし、予備重合済付加重合触媒成分を回収した。回収量は、120.6gであり、改質された粒子(B)あたりの重合度は17.3g/gであった。また、回収した予備重合済付加重合触媒成分の1.1gは反応器の内壁付着物として回収された。粒度分布測定の結果、予備重合済付加重合触媒成分中の60μm以下である粒子の含有量は4.4%であった。
(2) The pre-polymerized and coated reactor was dried under reduced pressure and then replaced with argon, followed by evacuation, and 480 g of butane and 202 mg (378 μmol) of ethylenebis (indenyl) zirconium diphenoxide (A) were added. After stirring at 50 ° C. for 1 hour, the mixture was cooled to 30 ° C. Next, 1 g of ethylene was added, 7.0 g of the modified particles (B) obtained in Example 1 (1) were added, and then hexane of triisobutylaluminum (C) prepared to a concentration of 1.0 mmol / ml Preliminary polymerization was started by adding 3.5 ml (3.5 mmol) of the solution. First, prepolymerization was performed at 30 ° C. for 30 minutes while supplying ethylene at 0.13 g / min. Subsequently, the ethylene / hydrogen mixed gas (hydrogen concentration: 0.195 mol%) was switched to, while supplying at 0.81 g / min, the temperature was raised to 50 ° C. over 30 minutes, followed by prepolymerization at 50 ° C. for 2 hours. It was. The monomer and butane were purged and the prepolymerized addition polymerization catalyst component was recovered. The recovered amount was 120.6 g, and the degree of polymerization per modified particle (B) was 17.3 g / g. Further, 1.1 g of the recovered prepolymerized addition polymerization catalyst component was recovered as a deposit on the inner wall of the reactor. As a result of the particle size distribution measurement, the content of particles having a particle size of 60 μm or less in the prepolymerized addition polymerization catalyst component was 4.4%.

(3)本重合
減圧乾燥後、アルゴンで置換した内容積5リットルの撹拌機付きオートクレーブ内を真空にし、水素を分圧で0.037MPa加え、ヘキセン−1を154gおよびブタンを1046g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.81mol%、であった。これに、濃度を1mmol/mlに調製したトリイソブチルアルミニウムのヘキサン溶液 2.0mlを投入した。次に、濃度を0.1mmol/mlに調製したトリエチルアミンのトルエン溶液を1.0ml加えた。更に、上記(2)で得られた予備重合済付加重合触媒成分356.2mgを投入した。全圧を一定に保つようにエチレン/水素混合ガス(水素0.293mol%)をフィードしながら70℃で、3時間重合を行った。その結果、オレフィン重合体80gが得られた。活性化剤(B)当りの重合活性は3890g/gであった。また、得られたオレフィン重合体はMFR=3.40、SR=1.47であった。
(3) Main polymerization
After drying under reduced pressure, the inside of an autoclave with a stirrer with an internal volume of 5 liters substituted with argon was evacuated, hydrogen was added at a partial pressure of 0.037 MPa, 154 g of hexene-1 and 1046 g of butane were charged, and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.81 mol%. To this, 2.0 ml of a hexane solution of triisobutylaluminum prepared at a concentration of 1 mmol / ml was added. Next, 1.0 ml of a toluene solution of triethylamine prepared at a concentration of 0.1 mmol / ml was added. Furthermore, 356.2 mg of the prepolymerized addition polymerization catalyst component obtained in the above (2) was added. Polymerization was carried out at 70 ° C. for 3 hours while feeding an ethylene / hydrogen mixed gas (hydrogen 0.293 mol%) so as to keep the total pressure constant. As a result, 80 g of an olefin polymer was obtained. The polymerization activity per activator (B) was 3890 g / g. Moreover, the obtained olefin polymer was MFR = 3.40 and SR = 1.47.

[実施例3]
(1)コーティング済反応器の製造
酪酸ナトリウムの代わりに、ステアリン酸カルシウム([CH(CH16COO]Ca)を用いたこと、以外は実施例1(2)と同様にコーティング済み反応器を製造した。反応器の内壁面積に対するコーティング化合物の量は486mg/mであった。
[Example 3]
(1) Production of coated reactor Coated reaction as in Example 1 (2) except that calcium stearate ([CH 3 (CH 2 ) 16 COO] 2 Ca) was used instead of sodium butyrate A vessel was manufactured. The amount of the coating compound relative to the inner wall area of the reactor was 486 mg / m 2 .

(2)予備重合
コーティング済反応器を減圧乾燥後、アルゴンで置換したのち真空にし、ブタンを480gおよびエチレンビス(インデニル)ジルコニウムジフェノキシド(A)213mg(399μmol)を加えた。50℃にて1時間攪拌した後、30℃まで冷却した。次いで、エチレンを1g加え、実施例1(1)で得られた改質された粒子(B)7.0gを加え、次いで濃度を1.0mmol/mlに調製したトリイソブチルアルミニウム(C)のヘキサン溶液 3.5ml(3.5mmol)を加え予備重合を開始した。はじめに、0.13g/分でエチレンを供給しながら30℃で30分間予備重合を行った。次いで、エチレン/水素混合ガス(水素濃度:0.193mol%)に切り替え、0.81g/分で供給しながら、50℃へ30分間かけて昇温し、引き続き50℃で2時間予備重合を行った。モノマーおよびブタンをパージし、予備重合済付加重合触媒成分を回収した。回収量は、129.1gであり、改質された粒子(B)あたりの重合度は18.5g/gであった。また、回収した予備重合済付加重合触媒成分の5.1gは反応器の内壁付着物として回収された。粒度分布測定の結果、予備重合済付加重合触媒成分中の60μm以下である粒子の含有量は5.9%であった。
(2) The prepolymerized reactor was dried under reduced pressure, and then replaced with argon, followed by vacuum, and 480 g of butane and 213 mg (399 μmol) of ethylenebis (indenyl) zirconium diphenoxide (A) were added. After stirring at 50 ° C for 1 hour, the mixture was cooled to 30 ° C. Next, 1 g of ethylene was added, 7.0 g of the modified particles (B) obtained in Example 1 (1) were added, and then hexane of triisobutylaluminum (C) prepared to a concentration of 1.0 mmol / ml Preliminary polymerization was started by adding 3.5 ml (3.5 mmol) of the solution. First, prepolymerization was performed at 30 ° C. for 30 minutes while supplying ethylene at 0.13 g / min. Next, the ethylene / hydrogen mixed gas (hydrogen concentration: 0.193 mol%) was switched to, while supplying at 0.81 g / min, the temperature was raised to 50 ° C. over 30 minutes, followed by prepolymerization at 50 ° C. for 2 hours. It was. The monomer and butane were purged and the prepolymerized addition polymerization catalyst component was recovered. The recovered amount was 129.1 g, and the degree of polymerization per modified particle (B) was 18.5 g / g. Further, 5.1 g of the recovered prepolymerized addition polymerization catalyst component was recovered as a deposit on the inner wall of the reactor. As a result of the particle size distribution measurement, the content of particles having a particle size of 60 μm or less in the prepolymerized addition polymerization catalyst component was 5.9%.

(3)本重合
減圧乾燥後、アルゴンで置換した内容積5リットルの撹拌機付きオートクレーブ内を真空にし、水素を分圧で0.037MPa加え、ヘキセン−1を154gおよびブタンを1046g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.93mol%、であった。これに、濃度を1mmol/mlに調製したトリイソブチルアルミニウムのヘキサン溶液 2.0mlを投入した。次に、濃度を0.1mmol/mlに調製したトリエチルアミンのトルエン溶液を1.0ml加えた。更に、上記(2)で得られた予備重合済付加重合触媒成分380.7mgを投入した。全圧を一定に保つようにエチレン/水素混合ガス(水素0.298mol%)をフィードしながら70℃で、3時間重合を行った。その結果、オレフィン重合体131gが得られた。活性化剤(B)当りの重合活性は6370g/gであった。また、得られたオレフィン重合体はMFR=1.42、SR=1.41であった。
(3) Main polymerization
After drying under reduced pressure, the inside of an autoclave with a stirrer with an internal volume of 5 liters substituted with argon was evacuated, hydrogen was added at a partial pressure of 0.037 MPa, 154 g of hexene-1 and 1046 g of butane were charged, and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.93 mol%. To this, 2.0 ml of a hexane solution of triisobutylaluminum prepared at a concentration of 1 mmol / ml was added. Next, 1.0 ml of a toluene solution of triethylamine prepared at a concentration of 0.1 mmol / ml was added. Furthermore, 380.7 mg of the prepolymerized addition polymerization catalyst component obtained in the above (2) was added. Polymerization was carried out at 70 ° C. for 3 hours while feeding an ethylene / hydrogen mixed gas (hydrogen 0.298 mol%) so as to keep the total pressure constant. As a result, 131 g of an olefin polymer was obtained. The polymerization activity per activator (B) was 6370 g / g. Moreover, the obtained olefin polymer was MFR = 1.42 and SR = 1.41.

[実施例4]
(1)コーティング済反応器の製造
酪酸ナトリウムの代わりに、ステアリン酸亜鉛([CH(CH16COO]Zn)を用いたこと、以外は実施例1(2)と同様にコーティング済み反応器を製造した。反応器の内壁面積に対するコーティング化合物の量は486mg/mであった。
[Example 4]
(1) Production of coated reactor Coated as in Example 1 (2) except that zinc stearate ([CH 3 (CH 2 ) 16 COO] 2 Zn) was used instead of sodium butyrate A reactor was manufactured. The amount of the coating compound relative to the inner wall area of the reactor was 486 mg / m 2 .

(2)予備重合
コーティング済反応器を減圧乾燥後、アルゴンで置換したのち真空にし、ブタンを480gおよびエチレンビス(インデニル)ジルコニウムジフェノキシド(A)220mg(412μmol)を加えた。50℃にて1時間攪拌した後、30℃まで冷却した。次いで、エチレンを1g加え、実施例1(1)で得られた改質された粒子(B)6.9gを加え、次いで濃度を1.0mmol/mlに調製したトリイソブチルアルミニウム(C)のヘキサン溶液 3.5ml(3.5mmol)を加え予備重合を開始した。はじめに、0.13g/分でエチレンを供給しながら30℃で30分間予備重合を行った。次いで、エチレン/水素混合ガス(水素濃度:0.195mol%)に切り替え、0.81g/分で供給しながら、50℃へ30分間かけて昇温し、引き続き50℃で2時間予備重合を行った。モノマーおよびブタンをパージし、予備重合済付加重合触媒成分を回収した。回収量は、127.2gであり、改質された粒子(B)あたりの重合度は18.4g/gであった。また、回収した予備重合済付加重合触媒成分の3.8gは反応器の内壁付着物として回収された。粒度分布測定の結果、予備重合済付加重合触媒成分中の60μm以下である粒子の含有量は10.5%であった。
(2) The pre-polymerized and coated reactor was dried under reduced pressure and then replaced with argon, followed by evacuation, and 480 g of butane and 220 mg (412 μmol) of ethylenebis (indenyl) zirconium diphenoxide (A) were added. After stirring at 50 ° C. for 1 hour, the mixture was cooled to 30 ° C. Next, 1 g of ethylene was added, 6.9 g of the modified particles (B) obtained in Example 1 (1) were added, and then hexane of triisobutylaluminum (C) prepared to a concentration of 1.0 mmol / ml Preliminary polymerization was started by adding 3.5 ml (3.5 mmol) of the solution. First, prepolymerization was performed at 30 ° C. for 30 minutes while supplying ethylene at 0.13 g / min. Subsequently, the ethylene / hydrogen mixed gas (hydrogen concentration: 0.195 mol%) was switched to, while supplying at 0.81 g / min, the temperature was raised to 50 ° C. over 30 minutes, followed by prepolymerization at 50 ° C. for 2 hours. It was. The monomer and butane were purged and the prepolymerized addition polymerization catalyst component was recovered. The recovered amount was 127.2 g, and the degree of polymerization per modified particle (B) was 18.4 g / g. Further, 3.8 g of the recovered prepolymerized addition polymerization catalyst component was recovered as a deposit on the inner wall of the reactor. As a result of the particle size distribution measurement, the content of particles having a particle size of 60 μm or less in the prepolymerized addition polymerization catalyst component was 10.5%.

(3)本重合
減圧乾燥後、アルゴンで置換した内容積5リットルの撹拌機付きオートクレーブ内を真空にし、水素を分圧で0.037MPa加え、ヘキセン−1を154gおよびブタンを1046g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.90mol%、であった。これに、濃度を1mmol/mlに調製したトリイソブチルアルミニウムのヘキサン溶液 2.0mlを投入した。次に、濃度を0.1mmol/mlに調製したトリエチルアミンのトルエン溶液を1.0ml加えた。更に、上記(2)で得られた予備重合済付加重合触媒成分375.4mgを投入した。全圧を一定に保つようにエチレン/水素混合ガス(水素0.309mol%)をフィードしながら70℃で、3時間重合を行った。その結果、オレフィン重合体105gが得られた。活性化剤(B)当りの重合活性は5120g/gであった。また、得られたオレフィン重合体はMFR=2.05、SR=1.43であった。
(3) Main polymerization
After drying under reduced pressure, the inside of an autoclave with a stirrer with an internal volume of 5 liters substituted with argon was evacuated, hydrogen was added at a partial pressure of 0.037 MPa, 154 g of hexene-1 and 1046 g of butane were charged, and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.90 mol%. To this, 2.0 ml of a hexane solution of triisobutylaluminum prepared at a concentration of 1 mmol / ml was added. Next, 1.0 ml of a toluene solution of triethylamine prepared at a concentration of 0.1 mmol / ml was added. Further, 375.4 mg of the prepolymerized addition polymerization catalyst component obtained in the above (2) was added. Polymerization was carried out at 70 ° C. for 3 hours while feeding an ethylene / hydrogen mixed gas (hydrogen 0.309 mol%) so as to keep the total pressure constant. As a result, 105 g of an olefin polymer was obtained. The polymerization activity per activator (B) was 5120 g / g. Moreover, the obtained olefin polymer was MFR = 2.05 and SR = 1.43.

[実施例5]
(1)コーティング済反応器の製造
酪酸ナトリウムの代わりに、モノステアリン酸アルミニウム([CH(CH16COO](OH)Al)を用いたこと、以外は実施例1(2)と同様にコーティング済み反応器を製造した。反応器の内壁面積に対するコーティング化合物の量は486mg/mであった。
[Example 5]
(1) Preparation of coated reactor Example 1 (2) with the exception that aluminum monostearate ([CH 3 (CH 2 ) 16 COO] (OH) 2 Al) was used instead of sodium butyrate. A coated reactor was prepared as well. The amount of the coating compound relative to the inner wall area of the reactor was 486 mg / m 2 .

(2)予備重合
コーティング済反応器を減圧乾燥後、アルゴンで置換したのち真空にし、ブタンを480gおよびエチレンビス(インデニル)ジルコニウムジフェノキシド(A)220mg(412μmol)を加えた。50℃にて1時間攪拌した後、30℃まで冷却した。次いで、エチレンを1g加え、実施例1(1)で得られた改質された粒子(B)7.1gを加え、次いで濃度を1.0mmol/mlに調製したトリイソブチルアルミニウム(C)のヘキサン溶液 3.5ml(3.5mmol)を加え予備重合を開始した。はじめに、0.13g/分でエチレンを供給しながら30℃で30分間予備重合を行った。次いで、エチレン/水素混合ガス(水素濃度:0.223mol%)に切り替え、0.81g/分で供給しながら、50℃へ30分間かけて昇温し、引き続き50℃で2時間予備重合を行った。モノマーおよびブタンをパージし、予備重合済付加重合触媒成分を回収した。回収量は、129.3gであり、改質された粒子(B)あたりの重合度は18.3g/gであった。また、回収した予備重合済付加重合触媒成分の2.1gは反応器の内壁付着物として回収された。粒度分布測定の結果、予備重合済付加重合触媒成分中の60μm以下である粒子の含有量は3.9%であった。
(2) The pre-polymerized and coated reactor was dried under reduced pressure and then replaced with argon, followed by evacuation, and 480 g of butane and 220 mg (412 μmol) of ethylenebis (indenyl) zirconium diphenoxide (A) were added. After stirring at 50 ° C for 1 hour, the mixture was cooled to 30 ° C. Next, 1 g of ethylene was added, 7.1 g of the modified particles (B) obtained in Example 1 (1) were added, and then hexane of triisobutylaluminum (C) prepared to a concentration of 1.0 mmol / ml Preliminary polymerization was started by adding 3.5 ml (3.5 mmol) of the solution. First, prepolymerization was performed at 30 ° C. for 30 minutes while supplying ethylene at 0.13 g / min. Next, the ethylene / hydrogen mixed gas (hydrogen concentration: 0.223 mol%) was switched to, while supplying at 0.81 g / min, the temperature was raised to 50 ° C. over 30 minutes, followed by prepolymerization at 50 ° C. for 2 hours. It was. The monomer and butane were purged and the prepolymerized addition polymerization catalyst component was recovered. The recovered amount was 129.3 g, and the degree of polymerization per modified particle (B) was 18.3 g / g. Further, 2.1 g of the recovered prepolymerized addition polymerization catalyst component was recovered as a deposit on the inner wall of the reactor. As a result of the particle size distribution measurement, the content of particles having a particle size of 60 μm or less in the prepolymerized addition polymerization catalyst component was 3.9%.

(3)本重合
減圧乾燥後、アルゴンで置換した内容積5リットルの撹拌機付きオートクレーブ内を真空にし、水素を分圧で0.037MPa加え、ヘキセン−1を154gおよびブタンを1046g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.91mol%、であった。これに、濃度を1mmol/mlに調製したトリイソブチルアルミニウムのヘキサン溶液 2.0mlを投入した。次に、濃度を0.1mmol/mlに調製したトリエチルアミンのトルエン溶液を1.0ml加えた。更に、上記(2)で得られた予備重合済付加重合触媒成分367.1mgを投入した。全圧を一定に保つようにエチレン/水素混合ガス(水素0.293mol%)をフィードしながら70℃で、3時間重合を行った。その結果、オレフィン重合体120gが得られた。活性化剤(B)当りの重合活性は5960g/gであった。また、得られたオレフィン重合体はMFR=1.94、SR=1.43であった。
(3) Main polymerization
After drying under reduced pressure, the inside of an autoclave with a stirrer with an internal volume of 5 liters substituted with argon was evacuated, hydrogen was added at a partial pressure of 0.037 MPa, 154 g of hexene-1 and 1046 g of butane were charged, and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.91 mol%. To this, 2.0 ml of a hexane solution of triisobutylaluminum prepared at a concentration of 1 mmol / ml was added. Next, 1.0 ml of a toluene solution of triethylamine prepared at a concentration of 0.1 mmol / ml was added. Furthermore, 367.1 mg of the prepolymerized addition polymerization catalyst component obtained in (2) above was added. Polymerization was carried out at 70 ° C. for 3 hours while feeding an ethylene / hydrogen mixed gas (hydrogen 0.293 mol%) so as to keep the total pressure constant. As a result, 120 g of an olefin polymer was obtained. The polymerization activity per activator (B) was 5960 g / g. Further, the obtained olefin polymer had MFR = 1.94 and SR = 1.43.

[比較例1]
(1)予備重合
エチレンビス(インデニル)ジルコニウムジフェノキシド(A)を198mg(372μmol)、および改質された粒子(B)を7.0g添加し、コーティングが施されていない反応器を用い、エチレン/水素混合ガスとして、水素濃度:0.183mol%のガスを使用した以外は実施例1(3)と同様に予備重合を実施した。回収量は130.3gであり、改質された粒子(B)あたりの重合度は18.6g/gであった。また、回収した予備重合済付加重合触媒成分の7.1gは反応器の内壁付着物として回収された。粒度分布測定の結果、予備重合済付加重合触媒成分中の60μm以下である粒子の含有量は11.0%であった。
[Comparative Example 1]
(1) Prepolymerization 198 mg (372 μmol) of ethylenebis (indenyl) zirconium diphenoxide (A) and 7.0 g of modified particles (B) were added and ethylene was used in a reactor without coating. / Preliminary polymerization was carried out in the same manner as in Example 1 (3) except that a gas having a hydrogen concentration of 0.183 mol% was used as the hydrogen mixed gas. The recovered amount was 130.3 g, and the degree of polymerization per modified particle (B) was 18.6 g / g. In addition, 7.1 g of the recovered prepolymerized addition polymerization catalyst component was recovered as a deposit on the inner wall of the reactor. As a result of the particle size distribution measurement, the content of particles having a particle size of 60 μm or less in the prepolymerized addition polymerization catalyst component was 11.0%.

(2)本重合
減圧乾燥後、アルゴンで置換した内容積5リットルの撹拌機付きオートクレーブ内を真空にし、水素を分圧で0.037MPa加え、ヘキセン−1を154gおよびブタンを1046g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.90mol%、であった。これに、濃度を1mmol/mlに調製したトリイソブチルアルミニウムのヘキサン溶液 2.0mlを投入した。次に、濃度を0.1mmol/mlに調製したトリエチルアミンのトルエン溶液を1.0ml加えた。更に、上記(1)で得られた予備重合済付加重合触媒成分384.1mgを投入した。全圧を一定に保つようにエチレン/水素混合ガス(水素0.315mol%)をフィードしながら70℃で、3時間重合を行った。その結果、オレフィン重合体104gが得られた。活性化剤(B)当りの重合活性は5170g/gであった。また、得られたオレフィン重合体はMFR=1.86、SR=1.42であった。
(2) Main polymerization
After drying under reduced pressure, the inside of an autoclave with a stirrer with an internal volume of 5 liters substituted with argon was evacuated, hydrogen was added at a partial pressure of 0.037 MPa, 154 g of hexene-1 and 1046 g of butane were charged, and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.90 mol%. To this, 2.0 ml of a hexane solution of triisobutylaluminum prepared at a concentration of 1 mmol / ml was added. Next, 1.0 ml of a toluene solution of triethylamine prepared at a concentration of 0.1 mmol / ml was added. Further, 384.1 mg of the prepolymerized addition polymerization catalyst component obtained in the above (1) was added. Polymerization was carried out at 70 ° C. for 3 hours while feeding an ethylene / hydrogen mixed gas (hydrogen 0.315 mol%) so as to keep the total pressure constant. As a result, 104 g of an olefin polymer was obtained. The polymerization activity per activator (B) was 5170 g / g. Moreover, the obtained olefin polymer was MFR = 1.86 and SR = 1.42.

Claims (13)

下記一般式[1]で表される化合物で反応器の内壁面をコーティングする方法。
(RCOO) [1]
(上記一般式[1]において、Rは置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表し、Rが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Rは水素原子、ヒドロキシ基、または、置換基を有していてもよい炭素原子数1〜20のハイドロカルビル基を表し、Rが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Mは周期律表第1族、第2族、第8族、第9族、第10族、第11族、第12族、および、第13族からなる群より選ばれる金属原子を表す。lは1以上の数を、mは0以上の数を表す。ただし、lおよびmは1≦l+m≦nを満足する数であり、nはMの原子価に相当する数を表す。)
A method of coating the inner wall surface of a reactor with a compound represented by the following general formula [1].
(R 1 COO) l R 2 m M 1 [1]
(In the above general formula [1], R 1 represents an optionally substituted hydrocarbyl group having 1 to 20 carbon atoms, and when a plurality of R 1 are present, they are the same as each other. R 2 represents a hydrogen atom, a hydroxy group, or a hydrocarbyl group having 1 to 20 carbon atoms which may have a substituent, and when there are a plurality of R 2 , M 1 may be the same as or different from each other, and M 1 represents groups 1, 2, 8, 9, 10, 11, 12, and 12 in the periodic table. Represents a metal atom selected from the group consisting of Group 13. l represents a number of 1 or more, m represents a number of 0 or more, provided that l and m are numbers satisfying 1 ≦ l + m ≦ n, and n is Represents the number corresponding to the valence of M 1 )
反応器が付加重合用反応器である請求項1に記載のコーティングする方法。   The method of coating according to claim 1, wherein the reactor is a reactor for addition polymerization. 請求項1または2に記載の方法により得られるコーティング済反応器。   Coated reactor obtained by the method according to claim 1 or 2. 請求項3に記載のコーティング済反応器で行う付加重合方法であって、下記一般式[2]で表される遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、活性化剤(B)と、を接触して得られる1次触媒を用いて付加重合可能なモノマーを付加重合させる付加重合方法。
1 a1 b [2]
(式中、Mは周期律表第4族の遷移金属原子である。L1はシクロペンタジエン形アニオン骨格を有する基またはヘテロ原子を含有する基であり、複数のL1は互いに直接連結されているか、または、炭素原子、ケイ素原子、窒素原子、酸素原子、硫黄原子もしくはリン原子を含有する残基を介して連結されていてもよい。X1はハロゲン原子、ハイドロカルビル基(但し、シクロペンタジエン形アニオン骨格を有する基を除く。)またはハイドロカルビルオキシ基である。aは0<a≦3を満足する数を、bは0<b≦3を満足する数を表す。)
It is the addition polymerization method performed with the coated reactor of Claim 3, Comprising: The transition metal compound (A) represented by following General formula [2], or its mu-oxo type transition metal compound dimer (A ') And an addition polymerization method in which a monomer capable of addition polymerization is subjected to addition polymerization using a primary catalyst obtained by contacting the activator (B).
L 1 a M 2 X 1 b [2]
(In the formula, M 2 is a transition metal atom of Group 4 of the periodic table. L 1 is a group having a cyclopentadiene-type anion skeleton or a group containing a hetero atom, and a plurality of L 1 are directly connected to each other. Or may be linked via a residue containing a carbon atom, a silicon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom, wherein X 1 is a halogen atom, a hydrocarbyl group (provided that (Excluding a group having a cyclopentadiene type anion skeleton) or a hydrocarbyloxy group, a represents a number satisfying 0 <a ≦ 3, and b represents a number satisfying 0 <b ≦ 3.)
遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、活性化剤(B)と、有機アルミニウム化合物(C)と、を接触して得られる1次触媒を用いて付加重合可能なモノマーを付加重合させる請求項4に記載の付加重合方法。   Primary catalyst obtained by contacting transition metal compound (A) or its μ-oxo type dimer (A ′), activator (B) and organoaluminum compound (C) The addition polymerization method according to claim 4, wherein a monomer capable of addition polymerization is subjected to addition polymerization. 活性化剤(B)が、下記(a)、下記(b)、下記(c)および下記(d)を接触させて得られる改質された粒子(B)である請求項4または5に記載の付加重合方法。
(a):下記一般式[3]で表される化合物
2 [3]
(b):下記一般式[4]で表される化合物
t-1TH [4]
(c):下記一般式[5]で表される化合物
t-2TH2 [5]
(d):無機酸化物粒子または有機ポリマー粒子
(上記一般式[3]〜[5]においてそれぞれ、Mは周期律表第12族の典型金属原子を表す。L は水素原子、ハロゲン原子またはハイドロカルビル基を表し、Lが複数存在する場合はそれらは互いに同じであっても異なっていてもよい。R は電子吸引性基または電子吸引性基を含有する基を表し、R が複数存在する場合はそれらは互いに同じであっても異なっていてもよい。Rはハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。Tはそれぞれ独立に周期律表の第15族または第16族の原子を表し、tはそれぞれの化合物のTの原子価に相当する数を表す。)
The activator (B) is a modified particle (B) obtained by bringing the following (a), (b), (c) and (d) below into contact with each other. Of addition polymerization.
(A): Compound represented by the following general formula [3] M 3 L 2 2 [3]
(B): Compound represented by the following general formula [4] R 3 t-1 TH [4]
(C): Compound represented by the following general formula [5] R 4 t-2 TH 2 [5]
(D): Inorganic oxide particles or organic polymer particles (in the above general formulas [3] to [5], M 3 represents a typical metal atom of Group 12 of the periodic table. L 2 represents a hydrogen atom or a halogen atom. Or a hydrocarbyl group, and when a plurality of L 2 are present, they may be the same or different from each other, R 3 represents an electron-withdrawing group or a group containing an electron-withdrawing group, and R 3 When a plurality of 3 are present, they may be the same or different from each other, R 4 represents a hydrocarbyl group or a halogenated hydrocarbyl group, and each T independently represents group 15 of the periodic table. Or represents a group 16 atom, and t represents a number corresponding to the valence of T of each compound.)
付加重合が予備重合である、請求項4〜6のいずれかに記載の付加重合方法。   The addition polymerization method according to any one of claims 4 to 6, wherein the addition polymerization is preliminary polymerization. 請求項7に記載の方法により得られる予備重合済付加重合触媒成分。   A prepolymerized addition polymerization catalyst component obtained by the method according to claim 7. 請求項8に記載の予備重合済付加重合触媒成分を用いる付加重合体の製造方法。   A method for producing an addition polymer using the prepolymerized addition polymerization catalyst component according to claim 8. 請求項8に記載の予備重合済付加重合触媒成分および有機アルミニウム化合物(C)を用いる付加重合体の製造方法。   A method for producing an addition polymer using the prepolymerized addition polymerization catalyst component according to claim 8 and the organoaluminum compound (C). 一般式[2]で表される遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、活性化剤(B)と、を接触して得られる1次触媒を用い、付加重合可能なモノマーを予備重合させて予備重合済付加重合触媒成分を得、請求項3に記載のコーティング済反応器内で前記予備重合済付加重合触媒成分の存在下、付加重合可能なモノマーを付加重合させる付加重合体の製造方法。   A primary product obtained by contacting a transition metal compound (A) represented by the general formula [2] or its μ-oxo type transition metal compound dimer (A ′) with an activator (B). A prepolymerized addition polymerization catalyst component is obtained by prepolymerizing a monomer capable of addition polymerization using a catalyst, and the addition polymerization is carried out in the presence of the prepolymerized addition polymerization catalyst component in the coated reactor according to claim 3. A method for producing an addition polymer in which possible monomers are addition-polymerized. 一般式[2]で表される遷移金属化合物(A)またはそのμ−オキソタイプの遷移金属化合物二量体(A’)と、活性化剤(B)と、を接触して得られる1次触媒を用い、付加重合可能なモノマーを予備重合させて予備重合済付加重合触媒成分を得、請求項3に記載のコーティング済反応器内で、前記予備重合済付加重合触媒成分および有機アルミニウム化合物(C)の存在下、付加重合可能なモノマーを付加重合させる付加重合体の製造方法。   A primary product obtained by contacting a transition metal compound (A) represented by the general formula [2] or its μ-oxo type transition metal compound dimer (A ′) with an activator (B). A prepolymerized addition polymerization catalyst component is obtained by prepolymerizing a monomer capable of addition polymerization using a catalyst, and the prepolymerized addition polymerization catalyst component and the organoaluminum compound ( A method for producing an addition polymer in which addition-polymerizable monomers are added in the presence of C). 付加重合体が、エチレンとα−オレフィンとの共重合体である請求項9〜12のいずれかに記載の付加重合体の製造方法。   The method for producing an addition polymer according to any one of claims 9 to 12, wherein the addition polymer is a copolymer of ethylene and an α-olefin.
JP2011118872A 2010-11-12 2011-05-27 Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same Withdrawn JP2012117032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118872A JP2012117032A (en) 2010-11-12 2011-05-27 Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010253570 2010-11-12
JP2010253570 2010-11-12
JP2011118872A JP2012117032A (en) 2010-11-12 2011-05-27 Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same

Publications (1)

Publication Number Publication Date
JP2012117032A true JP2012117032A (en) 2012-06-21

Family

ID=46500252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118872A Withdrawn JP2012117032A (en) 2010-11-12 2011-05-27 Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same

Country Status (1)

Country Link
JP (1) JP2012117032A (en)

Similar Documents

Publication Publication Date Title
US7932330B2 (en) Process for producing modified particle; carrier; catalyst component for addition polymerization; process for producing catalyst for addition polymerization; and process for producing addition polymer
JP5138151B2 (en) Prepolymerized addition polymerization catalyst component, addition polymerization catalyst and method for producing addition polymer
JP5358917B2 (en) Olefin polymerization catalyst component, olefin polymerization catalyst and process for producing olefin polymer
JP4218265B2 (en) Addition polymerization catalyst, prepolymerized addition polymerization catalyst component, and method for producing addition polymer
US8273677B2 (en) Production process of pre-polymerized polymerization catalyst component and addition polymer
JP4013541B2 (en) Modified particle and method for producing the same, carrier, catalyst component for addition polymerization, catalyst for addition polymerization, and method for producing addition polymer
JP5062543B2 (en) Catalyst for addition polymerization and method for producing addition polymer
JP2005068170A (en) Modified particle and method for producing the same, carrier, catalyst component for addition polymerization, catalyst for addition polymerization and method for producing addition polymer
JP5957945B2 (en) Addition polymerization method, prepolymerized catalyst component for addition polymerization, and method for producing addition polymer
JP2006274161A (en) Catalytic component for addition polymerization, catalyst for addition polymerization and method for producing addition polymer
JP6295506B2 (en) Polymerization method using surfactant-containing particles
JP2007269997A (en) Modified particle, catalyst component for addition polymerization, catalyst for addition polymerization and method for producing addition polymer
JP2012117043A (en) Method for coating reactor, reactor having coated inner wall, addition polymerization method, pre-polymerization method, pre-polymerized addition polymerization catalyst and method for producing addition polymer using the same
JP5138152B2 (en) Addition polymerization catalyst component, addition polymerization catalyst and addition polymer production method
JP4622350B2 (en) Modified particles and method for producing the same, carrier, catalyst component for addition polymerization, catalyst for addition polymerization, and method for producing addition polymer
JP2012117032A (en) Coating method, coated reactor, addition polymerization method, pre-polymerization method, pre-polymerized catalyst component for addition polymerization, and method for producing addition polymer using the same
JP2012193348A (en) Method for performing preliminary polymerization, preliminary polymerized catalytic component for addition polymerization and method for producing addition polymer by using the same
JP2005336446A (en) Modified particle and its manufacturing method, carrier, catalyst component for addition polymerization, catalyst for addition polymerization and manufacturing method of addition polymer
JP5147493B2 (en) Catalyst for addition polymerization, method for producing addition polymer using the same, modified particles, method for producing the same, and catalyst component for addition polymerization
JP2005194454A (en) Anti-static agent, seed powder, method for polymerizing olefin and method for producing olefin polymer
JP2013082891A (en) Washing method, addition polymerization method, prepolymerization method, prepolymerized catalytic component for addition polymerization, and method for producing addition polymer using the same
JP2009256661A (en) Addition polymerization catalyst, and method of manufacturing addition polymer using the same
JP2008248088A (en) Addition polymerization catalyst and method for producing addition polymer
JP2005314181A (en) Modified partcle and its manufacturing method, carrier, catalyst component for addition polymerization, and method of manufacturing catalyst for addition polymerization and addition polymer
JP2004027102A (en) Modified particle, method for producing the same, support, catalytic component for addition polymerization, catalyst for addition polymerizaion and method for producing addition polymer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805