JP2012116972A - Resin coated silica, rubber composition and tire - Google Patents

Resin coated silica, rubber composition and tire Download PDF

Info

Publication number
JP2012116972A
JP2012116972A JP2010268709A JP2010268709A JP2012116972A JP 2012116972 A JP2012116972 A JP 2012116972A JP 2010268709 A JP2010268709 A JP 2010268709A JP 2010268709 A JP2010268709 A JP 2010268709A JP 2012116972 A JP2012116972 A JP 2012116972A
Authority
JP
Japan
Prior art keywords
silica
coating material
resin
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010268709A
Other languages
Japanese (ja)
Other versions
JP5731805B2 (en
Inventor
Masayuki Saito
正幸 齋藤
Akihiro Okubo
明浩 大久保
Hiroaki Saito
裕昭 斎藤
Toshiyasu Yamazaki
倫康 山崎
Yuki Yagi
優紀 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2010268709A priority Critical patent/JP5731805B2/en
Priority to PCT/JP2011/077185 priority patent/WO2012073822A1/en
Priority to TW100143546A priority patent/TW201235392A/en
Publication of JP2012116972A publication Critical patent/JP2012116972A/en
Application granted granted Critical
Publication of JP5731805B2 publication Critical patent/JP5731805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin coated silica which has good kneadability with rubber and is excellent in the hardness-imparting effect and to provide a rubber composition and a tire each of which has a good balance between the improvement of fuel efficiency due to the decrease in rolling resistance and steering stability.SOLUTION: The resin coated silica is produced by coating silica having a nitrogen adsorption specific surface area of 50-300 m/g determined by a BET method sequentially with a first coating material and a second coating material and is characterized in that the first coating material contains phenols and the second coating material contains at least one of (A) a novolac type phenolic resin and a curing agent and (B) a resol type phenolic resin.

Description

本発明は、樹脂被覆シリカ、該樹脂被覆シリカを含有するゴム組成物、及び該ゴム組成物を用いたタイヤに関する。   The present invention relates to resin-coated silica, a rubber composition containing the resin-coated silica, and a tire using the rubber composition.

近年、地球環境に対して国際的に関心が高まるなか、二酸化炭素の排出量削減の観点から、自動車の低燃費化の要求が強まっている。
自動車の燃費には、タイヤトレッド部の転がり抵抗の影響が大きい。そのため、環境性と安全性とを共に満足するには、タイヤトレッド部の転がり抵抗の低下による燃費向上と操縦安定性との両立を図る必要がある。
In recent years, with increasing international interest in the global environment, there is an increasing demand for lower fuel consumption in automobiles from the viewpoint of reducing carbon dioxide emissions.
The rolling resistance of the tire tread portion has a great influence on the fuel consumption of an automobile. Therefore, in order to satisfy both environmental performance and safety, it is necessary to achieve both improvement in fuel efficiency and steering stability due to a decrease in rolling resistance of the tire tread portion.

タイヤトレッド部には、耐摩耗性や補強性を付与するため、カーボンブラックをゴムに配合したゴム組成物が用いられている。これに対して、カーボンブラックの代わりにシリカを使用することで、耐摩耗性や補強性の付与に加えて、転がり抵抗の低下による燃費向上と操縦安定性とのバランスを改良できることから、シリカを配合したゴム組成物が使用されるようになってきた(非特許文献1参照)。
しかしながら、シリカ粒子の表面はシラノール基で覆われているため、シリカ粒子はゴム中で凝集しやすく、分散性が悪い。その結果として、シリカ粒子とゴムとが混ざりにくいという問題があった。また、タイヤへの硬さ付与効果も得られにくかった。
A rubber composition in which carbon black is blended with rubber is used for the tire tread portion in order to impart wear resistance and reinforcement. In contrast, by using silica instead of carbon black, in addition to imparting wear resistance and reinforcing properties, it is possible to improve the balance between fuel efficiency improvement and steering stability due to reduced rolling resistance, so silica A compounded rubber composition has been used (see Non-Patent Document 1).
However, since the surface of the silica particles is covered with silanol groups, the silica particles tend to aggregate in the rubber and have poor dispersibility. As a result, there is a problem that silica particles and rubber are difficult to mix. In addition, it was difficult to obtain an effect of imparting hardness to the tire.

このシリカ粒子のゴム中での分散性を向上するため、シリカを、ポリスルフィド構造を含むシランカップリング剤で表面処理する方法が開示されている(特許文献1参照)。
また、フェノール類とアルデヒド類とを触媒の存在下で反応させて得られるフェノール樹脂でシリカが被覆された樹脂被覆シリカ、及びゴムを必須成分とするゴム組成物が開示されている(特許文献2参照)。
In order to improve the dispersibility of the silica particles in the rubber, a method of surface-treating silica with a silane coupling agent containing a polysulfide structure has been disclosed (see Patent Document 1).
Also disclosed are resin-coated silica in which silica is coated with a phenol resin obtained by reacting phenols and aldehydes in the presence of a catalyst, and a rubber composition containing rubber as an essential component (Patent Document 2). reference).

高分子材料・技術総覧,723頁,(2)シリカ補強技術Polymer materials and technology overview, page 723, (2) Silica reinforcement technology

特開平08−333481号公報Japanese Patent Application Laid-Open No. 08-333481 特開2010−083943号公報JP 2010-089443 A

しかしながら、特許文献1、2に記載された方法では、ゴム中でのシリカ粒子の分散性が不良であり、転がり抵抗の低下による燃費向上と操縦安定性との両立について不充分である。また、シリカとゴムとの混練性も未だ充分とは云えず、タイヤへの硬さ付与効果も不充分である。
本発明は、上記事情を鑑みてなされたもので、ゴムとの混練性が良好で、硬さ付与効果に優れた樹脂被覆シリカ、並びに、転がり抵抗の低下による燃費向上と操縦安定性とを両立するゴム組成物及びタイヤを提供することを課題とする。
However, the methods described in Patent Documents 1 and 2 have poor dispersibility of silica particles in rubber, and are insufficient in achieving both fuel efficiency improvement and steering stability due to a decrease in rolling resistance. In addition, the kneadability between silica and rubber is not sufficient, and the effect of imparting hardness to the tire is insufficient.
The present invention has been made in view of the above circumstances, and is compatible with resin-coated silica having good kneadability with rubber and excellent hardness imparting effect, as well as improved fuel efficiency and reduced steering stability due to reduced rolling resistance. It is an object to provide a rubber composition and a tire.

上記の課題を解決するため、本発明は以下の構成を採用した。
すなわち、本発明の樹脂被覆シリカは、BET法による窒素吸着比表面積50〜300m/gのシリカが第一の被覆材料と第二の被覆材料で順次被覆された樹脂被覆シリカであって、前記第一の被覆材料はフェノール類を含み、前記第二の被覆材料は(A)ノボラック型フェノール樹脂と硬化剤、及び(B)レゾール型フェノール樹脂の少なくとも一方を含むことを特徴とする。
本発明の樹脂被覆シリカにおいては、前記第一の被覆材料が硬化剤を含むことが好ましい。
また、本発明の樹脂被覆シリカにおいては、前記第一の被覆材料がシランカップリング剤を含むことが好ましい。
また、本発明のゴム組成物は、前記本発明の樹脂被覆シリカと、ゴムとを含有することを特徴とする。
また、本発明のタイヤは、前記本発明のゴム組成物をタイヤトレッド部に用いたことを特徴とする。
In order to solve the above problems, the present invention employs the following configuration.
That is, the resin-coated silica of the present invention is a resin-coated silica in which silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g according to the BET method is sequentially coated with a first coating material and a second coating material, The first coating material contains phenols, and the second coating material contains (A) at least one of a novolac type phenol resin and a curing agent, and (B) a resol type phenol resin.
In the resin-coated silica of the present invention, the first coating material preferably contains a curing agent.
In the resin-coated silica of the present invention, the first coating material preferably contains a silane coupling agent.
The rubber composition of the present invention contains the resin-coated silica of the present invention and rubber.
The tire of the present invention is characterized in that the rubber composition of the present invention is used for a tire tread portion.

本発明によれば、ゴムとの混練性が良好で、硬さ付与効果に優れた樹脂被覆シリカを提供することができる。
また、本発明によれば、転がり抵抗の低下による燃費向上と操縦安定性とを両立するゴム組成物及びタイヤを提供することができる。
According to the present invention, it is possible to provide a resin-coated silica having good kneadability with rubber and excellent hardness imparting effect.
Further, according to the present invention, it is possible to provide a rubber composition and a tire that achieve both improvement in fuel efficiency and reduction in steering stability due to a decrease in rolling resistance.

<樹脂被覆シリカ>
本発明の樹脂被覆シリカは、BET法による窒素吸着比表面積50〜300m/gのシリカが第一の被覆材料と第二の被覆材料で順次被覆されたものである。
<Resin-coated silica>
The resin-coated silica of the present invention is obtained by sequentially coating silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g by a BET method with a first coating material and a second coating material.

(シリカ)
本発明の樹脂被覆シリカに用いられるシリカは、湿式シリカであってもよく、乾式シリカであってもよい。なかでも、補強効果がより高いことから、湿式シリカが好ましい。
本発明において「BET法による窒素吸着比表面積」とは、粉体粒子の表面に窒素ガスを吸着させ、その際の圧力と吸着量との関係からBET式によって単分子吸着量を測定することにより求められる比表面積をいう。
シリカのBET法による窒素吸着比表面積は50〜300m/gであり、90〜230m/gであることが好ましく、115〜215m/gであることがより好ましい。
シリカの該窒素吸着比表面積が下限値以上であると、ゴムに対する補強効果が優れる。一方、上限値以下であると、ゴム中のシリカ分散性が優れる。
シリカは、一種を単独で用いてもよく、二種以上を併用してもよい。
(silica)
The silica used for the resin-coated silica of the present invention may be wet silica or dry silica. Of these, wet silica is preferred because of its higher reinforcing effect.
In the present invention, “nitrogen adsorption specific surface area by BET method” means that nitrogen gas is adsorbed on the surface of powder particles, and the amount of monomolecular adsorption is measured by the BET equation from the relationship between the pressure and the adsorption amount at that time. The specific surface area required.
Nitrogen adsorption specific surface area by the BET method of the silica is 50 to 300 m 2 / g, is preferably 90~230m 2 / g, more preferably 115~215m 2 / g.
When the nitrogen adsorption specific surface area of silica is not less than the lower limit, the reinforcing effect on rubber is excellent. On the other hand, when it is at most the upper limit value, the silica dispersibility in the rubber is excellent.
Silica may be used alone or in combination of two or more.

(第一の被覆材料)
第一の被覆材料はフェノール類を含む。
本発明において「フェノール類」とは、芳香族炭化水素核の水素原子をヒドロキシ基で置換した芳香族ヒドロキシ化合物をいう。
フェノール類としては、フェノール、レゾルシン、クレゾール、キシレノール、プロピルフェノール、ブチルフェノール、オクチルフェノール、アリルフェノール、フェニルフェノール、ブロモフェノール、ビスフェノールA、ビスフェノールF、カルダノール、カシューナッツシェル油、没食子酸、オイゲノール、ウルシオール等が挙げられる。
なかでも、液状であるためシリカを被覆しやすく、経済的にも有利であることから、クレゾール、アリルフェノール、カルダノール、カシューナッツシェル油が好ましく、クレゾール、カルダノールがより好ましい。
クレゾールのなかでもオルトクレゾールが好ましい。アリルフェノールのなかでもオルトアリルフェノールが好ましい。
フェノール類は、一種を単独で用いてもよく、二種以上を併用してもよい。
(First coating material)
The first coating material contains phenols.
In the present invention, “phenols” refers to an aromatic hydroxy compound in which a hydrogen atom of an aromatic hydrocarbon nucleus is substituted with a hydroxy group.
Phenols include phenol, resorcin, cresol, xylenol, propylphenol, butylphenol, octylphenol, allylphenol, phenylphenol, bromophenol, bisphenol A, bisphenol F, cardanol, cashew nut shell oil, gallic acid, eugenol, urushiol, etc. Can be mentioned.
Of these, cresol, allylphenol, cardanol, and cashew nut shell oil are preferred, and cresol and cardanol are more preferred because they are liquid and are easy to coat silica and are economically advantageous.
Among the cresols, ortho-cresol is preferable. Of allylphenols, orthoallylphenol is preferred.
Phenols may be used alone or in combination of two or more.

第一の被覆材料(溶媒、分散媒を除く)中のフェノール類の含有量は、第一の被覆材料(溶媒、分散媒を除く)全体に対して40質量%以上が好ましく、60質量%以上がより好ましく、100質量%でもよい。
フェノール類の含有量が好ましい下限値以上であると、シリカ表面の極性を低減しやすくなる。また、第一の被覆材料で被覆されたシリカを第二の被覆材料で被覆しやすくなる。
The content of phenols in the first coating material (excluding the solvent and the dispersion medium) is preferably 40% by mass or more, and 60% by mass or more with respect to the entire first coating material (excluding the solvent and the dispersion medium). Is more preferable, and may be 100% by mass.
It becomes easy to reduce the polarity of the silica surface as content of phenols is more than a desirable lower limit. In addition, the silica coated with the first coating material can be easily coated with the second coating material.

第一の被覆材料は、フェノール類以外の成分を含んでいてもよい。
本発明の樹脂被覆シリカにおいては、前記第一の被覆材料が硬化剤を含むことが好ましい。硬化剤の併用により、樹脂被覆シリカを含有するゴム組成物を加硫させた際、第一の被覆材料が第二の被覆材料と共に硬化反応を生じ、第一の被覆材料と第二の被覆材料とが一体化する効果がより高まる。
本発明において「硬化剤」とは、フェノール類の芳香族炭化水素核の水素原子、又はフェノール性水酸基と反応する官能基を2つ以上有する化合物をいう。
硬化剤としては、ヘキサメチレンテトラミン、ヘキサメトキシメチルメラミン、パラホルムアルデヒド、ホルムアルデヒド、グリオキサール、トリオキサン、4,4’−ジアミノジフェニルメタン、アセトアルデヒドアンモニア、レゾール型フェノール樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。なかでも、硬化反応が良好に進行しやすいことから、ヘキサメチレンテトラミンが特に好ましい。
硬化剤は、一種を単独で用いてもよく、二種以上を併用してもよい。
The first coating material may contain components other than phenols.
In the resin-coated silica of the present invention, the first coating material preferably contains a curing agent. When the rubber composition containing the resin-coated silica is vulcanized by the combined use of the curing agent, the first coating material undergoes a curing reaction together with the second coating material, and the first coating material and the second coating material And the effect of integrating them is further increased.
In the present invention, the “curing agent” refers to a compound having two or more functional groups that react with a hydrogen atom of an aromatic hydrocarbon nucleus of a phenol or a phenolic hydroxyl group.
Examples of the curing agent include hexamethylenetetramine, hexamethoxymethylmelamine, paraformaldehyde, formaldehyde, glyoxal, trioxane, 4,4′-diaminodiphenylmethane, acetaldehyde ammonia, a resol type phenol resin, a urethane resin, and an epoxy resin. Among these, hexamethylenetetramine is particularly preferable because the curing reaction easily proceeds well.
A hardening | curing agent may be used individually by 1 type, and may use 2 or more types together.

第一の被覆材料(溶媒、分散媒を除く)中の硬化剤の含有量は、フェノール類100質量部に対して0.5〜50質量部が好ましく、5〜20質量部がより好ましい。
硬化剤の含有量が好ましい下限値以上であると、第一の被覆材料と第二の被覆材料とが一体化する効果が向上し、タイヤとした際、良好な硬さが得られやすく、操縦安定性も向上する。一方、好ましい上限値を超えても、その増加分に応じた硬さ付与効果と操縦安定性の向上が見られない。好ましい上限値以下であれば、コスト低減が図れる。
0.5-50 mass parts is preferable with respect to 100 mass parts of phenols, and, as for content of the hardening | curing agent in a 1st coating material (a solvent and a dispersion medium are excluded), 5-20 mass parts is more preferable.
When the content of the curing agent is not less than the preferable lower limit value, the effect of integrating the first coating material and the second coating material is improved, and when the tire is formed, good hardness is easily obtained, Stability is also improved. On the other hand, even if the preferable upper limit is exceeded, the hardness imparting effect and the steering stability are not improved according to the increase. If it is less than or equal to the preferable upper limit value, the cost can be reduced.

また、本発明の樹脂被覆シリカにおいては、前記第一の被覆材料がシランカップリング剤を含むことが好ましい。シランカップリング剤の併用により、シリカとフェノール類との親和性が高まり、シリカと第一の被覆材料との密着性が高まる。
シランカップリング剤としては、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノシラン;3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルシラン;3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン等のメタクリロキシシラン;p−スチリルトリメトキシシラン等のスチリルシラン;3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等のメルカプトシラン;ビス(トリエトキシシリルプロピル)テトラスルフィド等のスルフィドシランなどが挙げられる。
なかでも、シリカと第一の被覆材料との密着性がより高まることから、3−アミノプロピルトリエトキシシランが特に好ましい。
シランカップリング剤は、一種を単独で用いてもよく、二種以上を併用してもよい。
In the resin-coated silica of the present invention, the first coating material preferably contains a silane coupling agent. The combined use of the silane coupling agent increases the affinity between silica and phenols, and increases the adhesion between silica and the first coating material.
Examples of silane coupling agents include aminosilanes such as 3-aminopropyltriethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) Epoxy silanes such as ethyltrimethoxysilane; vinylsilanes such as vinyltrimethoxysilane and vinyltriethoxysilane; methacryloxysilanes such as 3-methacryloxypropylmethyldimethoxysilane and 3-methacryloxypropyltriethoxysilane; p-styryltrimethoxy Styryl silanes such as silane; mercaptosilanes such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane; sulfs such as bis (triethoxysilylpropyl) tetrasulfide Idoshiran and the like.
Among these, 3-aminopropyltriethoxysilane is particularly preferable because adhesion between silica and the first coating material is further increased.
A silane coupling agent may be used individually by 1 type, and may use 2 or more types together.

なお、特許文献1に記載されている、ポリスルフィド構造(硫黄原子)を含むシランカップリング剤は高価であり、タイヤを得るのに高コストになる問題もあった。しかし、本発明の樹脂被覆シリカにおいては、シランカップリング剤は必須ではなく、シランカップリング剤を用いる場合であっても、この硫黄原子を含むシランカップリング剤を用いなくても、前記の一般的なシランカップリング剤を用いることにより、シリカと第一の被覆材料との密着性向上の効果が得られ、コスト低減も図れる。   In addition, the silane coupling agent containing the polysulfide structure (sulfur atom) described in Patent Document 1 is expensive, and there is a problem in that it is expensive to obtain a tire. However, in the resin-coated silica of the present invention, a silane coupling agent is not essential, and even if a silane coupling agent is used or the silane coupling agent containing a sulfur atom is not used, By using a typical silane coupling agent, the effect of improving the adhesion between silica and the first coating material can be obtained, and the cost can be reduced.

(第二の被覆材料)
第二の被覆材料は、(A)ノボラック型フェノール樹脂と硬化剤、及び(B)レゾール型フェノール樹脂の少なくとも一方を含む。すなわち、第二の被覆材料は、(A)ノボラック型フェノール樹脂と硬化剤、(B)レゾール型フェノール樹脂単独、又は(A)ノボラック型フェノール樹脂と硬化剤と(B)レゾール型フェノール樹脂との組合せ、のいずれかを含む。
(Second coating material)
The second coating material contains at least one of (A) a novolac type phenol resin and a curing agent, and (B) a resol type phenol resin. That is, the second coating material comprises (A) a novolak type phenol resin and a curing agent, (B) a resole type phenol resin alone, or (A) a novolac type phenol resin and a curing agent, and (B) a resole type phenol resin. Any one of the combinations.

(A)ノボラック型フェノール樹脂と硬化剤
ノボラック型フェノール樹脂としては、フェノール類とアルデヒド類とを酸触媒の存在下で反応させたものが用いられる。また、酸触媒の存在下、フェノール類とアルデヒド類との反応物をカシューナッツシェル油、桐油、ロジン等で変性したノボラック型フェノール樹脂も用いることができる。
本発明において「アルデヒド類」とは、カルボニル基に水素原子を少なくとも1個持つ、すなわちホルミル基−CHOを持つカルボニル化合物をいう。
フェノール類は、フェノール、レゾルシン、クレゾール、キシレノール、プロピルフェノール、ブチルフェノール、オクチルフェノール、フェニルフェノール、ブロモフェノール、ビスフェノールA、ビスフェノールF、カルダノール、カシューナッツシェル油、没食子酸、オイゲノール、ウルシオール等を用いることができる。該フェノール類は、一種を単独で用いてもよく、二種以上を併用してもよい。
アルデヒド類は、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、グリオキザール、ベンズアルデヒド、サリチルアルデヒド等を用いることができる。該アルデヒド類は、一種を単独で用いてもよく、二種以上を併用してもよい。
なかでも、タイヤとした際に転がり抵抗と操縦安定性がより両立しやすいことから、フェノール類としてはフェノール、クレゾール、カルダノール、ブチルフェノール、オクチルフェノール、ビスフェノールAが好ましく、アルデヒド類としてはホルムアルデヒド、パラホルムアルデヒドが好ましい。
酸触媒は、塩酸、硫酸、リン酸、蟻酸、酢酸、蓚酸、酪酸、乳酸、ベンゼンスルホン酸、p−トルエンスルホン酸、硼酸、又は塩化亜鉛もしくは酢酸亜鉛などの金属との塩等が挙げられる。該酸触媒は、一種を単独で用いてもよく、二種以上を併用してもよい。
ノボラック型フェノール樹脂は、一種を単独で用いてもよく、二種以上を併用してもよい。
(A) Novolak-type phenolic resin and curing agent As the novolac-type phenolic resin, those obtained by reacting phenols and aldehydes in the presence of an acid catalyst are used. In addition, a novolac type phenol resin obtained by modifying a reaction product of a phenol and an aldehyde with cashew nut shell oil, tung oil, rosin or the like in the presence of an acid catalyst can also be used.
In the present invention, “aldehyde” refers to a carbonyl compound having at least one hydrogen atom in the carbonyl group, that is, having a formyl group —CHO.
As phenols, phenol, resorcin, cresol, xylenol, propylphenol, butylphenol, octylphenol, phenylphenol, bromophenol, bisphenol A, bisphenol F, cardanol, cashew nut shell oil, gallic acid, eugenol, urushiol and the like can be used. . These phenols may be used alone or in combination of two or more.
As the aldehydes, formaldehyde, paraformaldehyde, trioxane, glyoxal, benzaldehyde, salicylaldehyde and the like can be used. These aldehydes may be used alone or in combination of two or more.
Among them, phenol, cresol, cardanol, butylphenol, octylphenol, and bisphenol A are preferable as phenols, and formaldehyde and paraformaldehyde are preferable as phenols because rolling resistance and steering stability are more compatible when used as a tire. preferable.
Examples of the acid catalyst include hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, succinic acid, butyric acid, lactic acid, benzenesulfonic acid, p-toluenesulfonic acid, boric acid, and a salt with a metal such as zinc chloride or zinc acetate. The acid catalyst may be used alone or in combination of two or more.
A novolak-type phenol resin may be used individually by 1 type, and may use 2 or more types together.

第二の被覆材料が(A)ノボラック型フェノール樹脂と硬化剤を含み、(B)レゾール型フェノール樹脂を含まない場合、第二の被覆材料(溶媒、分散媒を除く)中のノボラック型フェノール樹脂の含有量は、第二の被覆材料(溶媒、分散媒を除く)全体に対して30質量%以上が好ましく、60〜99質量%がより好ましく、70〜95質量%がさらに好ましい。
ノボラック型フェノール樹脂の含有量が好ましい下限値以上であると、シリカのゴムに対する混練性が向上する。加えて、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
When the second coating material contains (A) a novolak type phenol resin and a curing agent, and (B) does not contain a resol type phenol resin, the novolak type phenol resin in the second coating material (excluding the solvent and the dispersion medium) The content of is preferably 30% by mass or more, more preferably 60 to 99% by mass, and still more preferably 70 to 95% by mass with respect to the entire second coating material (excluding the solvent and the dispersion medium).
When the content of the novolac type phenol resin is equal to or more than the preferable lower limit value, the kneadability of silica with rubber is improved. In addition, when used as a tire, it is easy to achieve both rolling resistance and steering stability.

(A)成分における硬化剤としては、上記第一の被覆材料について説明した中の硬化剤と同様のものが挙げられる。なかでも、硬化反応が良好に進行しやすいことから、ヘキサメチレンテトラミン、4,4’−ジアミノジフェニルメタンがより好ましく、ヘキサメチレンテトラミンが特に好ましい。
硬化剤は、一種を単独で用いてもよく、二種以上を併用してもよい。
(A) As a hardening | curing agent in a component, the thing similar to the hardening | curing agent in the said 1st coating material is mentioned. Among these, hexamethylenetetramine and 4,4′-diaminodiphenylmethane are more preferable, and hexamethylenetetramine is particularly preferable because the curing reaction easily proceeds well.
A hardening | curing agent may be used individually by 1 type, and may use 2 or more types together.

第二の被覆材料中の硬化剤の含有量は、ノボラック型フェノール樹脂100質量部に対して1〜30質量部が好ましく、5〜20質量部がより好ましい。
硬化剤の含有量が好ましい下限値以上であると、加硫したゴム組成物に硬さを付与する効果が向上する。加えて、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。一方、好ましい上限値を超えても、その増加分に応じた硬さ付与効果と操縦安定性の向上が見られない。好ましい上限値以下であれば、コスト低減が図れる。
1-30 mass parts is preferable with respect to 100 mass parts of novolak-type phenol resins, and, as for content of the hardening | curing agent in a 2nd coating material, 5-20 mass parts is more preferable.
When the content of the curing agent is equal to or more than the preferred lower limit, the effect of imparting hardness to the vulcanized rubber composition is improved. In addition, when used as a tire, it is easy to achieve both rolling resistance and steering stability. On the other hand, even if the preferable upper limit is exceeded, the hardness imparting effect and the steering stability are not improved according to the increase. If it is less than or equal to the preferable upper limit value, the cost can be reduced.

(B)レゾール型フェノール樹脂
レゾール型フェノール樹脂としては、フェノール類とアルデヒド類とをアルカリ触媒の存在下で反応させたものが用いられる。また、アルカリ触媒の存在下、フェノール類とアルデヒド類との反応物をカシューナッツシェル油、桐油、ロジン等で変性したレゾール型フェノール樹脂も用いることができる。これらのレゾール型フェノール樹脂は自硬性を有する。
フェノール類及びアルデヒド類としては、上記ノボラック型フェノール樹脂について説明した中のフェノール類及びアルデヒド類とそれぞれ同様のものが挙げられる。
なかでも、タイヤとした際に転がり抵抗と操縦安定性がより両立しやすいことから、フェノール類としてはフェノール、クレゾール、カルダノール、ブチルフェノール、オクチルフェノールが好ましく、アルデヒド類としてはホルムアルデヒド、パラホルムアルデヒドが好ましい。
アルカリ触媒は、水酸化ナトリウム、水酸化リチウム等のアルカリ金属の水酸化物;水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;水酸化アンモニウム;ジエチルアミン、トリエチルアミン、トリエタノールアミン、エチレンジアミン、ヘキサメチレンテトラミン等のアミン類等が挙げられる。該アルカリ触媒は、一種を単独で用いてもよく、二種以上を併用してもよい。
レゾール型フェノール樹脂は、一種を単独で用いてもよく、二種以上を併用してもよい。
(B) Resol type phenol resin As the resol type phenol resin, a product obtained by reacting phenols and aldehydes in the presence of an alkali catalyst is used. In addition, a resol type phenol resin obtained by modifying a reaction product of phenols and aldehydes with cashew nut shell oil, tung oil, rosin or the like in the presence of an alkali catalyst can also be used. These resol type phenol resins are self-hardening.
Examples of the phenols and aldehydes include the same phenols and aldehydes as those described above for the novolak type phenol resin.
Among them, phenol, cresol, cardanol, butylphenol, and octylphenol are preferable as phenols, and formaldehyde and paraformaldehyde are preferable as aldehydes because rolling resistance and steering stability are more compatible when used as a tire.
Alkali catalysts include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; ammonium hydroxide; diethylamine, triethylamine, triethanolamine, Examples include amines such as ethylenediamine and hexamethylenetetramine. The alkali catalyst may be used alone or in combination of two or more.
A resol type phenol resin may be used individually by 1 type, and may use 2 or more types together.

第二の被覆材料が(B)レゾール型フェノール樹脂を含み、(A)ノボラック型フェノール樹脂と硬化剤を含まない場合、第二の被覆材料(溶媒、分散媒を除く)中のレゾール型フェノール樹脂の含有量は、第二の被覆材料(溶媒、分散媒を除く)全体に対して30質量%以上が好ましく、70質量%以上がより好ましく、100質量%でもよい。
レゾール型フェノール樹脂の含有量が好ましい下限値以上であると、シリカのゴムに対する混練性が向上する。加えて、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
When the second coating material contains (B) a resol type phenol resin and (A) a novolac type phenol resin and a curing agent, the resol type phenol resin in the second coating material (excluding the solvent and dispersion medium) The content of is preferably 30% by mass or more, more preferably 70% by mass or more, and may be 100% by mass with respect to the entire second coating material (excluding the solvent and the dispersion medium).
When the content of the resol type phenolic resin is equal to or more than the preferable lower limit value, the kneadability of silica with rubber is improved. In addition, when used as a tire, it is easy to achieve both rolling resistance and steering stability.

第二の被覆材料には、(A)ノボラック型フェノール樹脂と硬化剤、(B)レゾール型フェノール樹脂の他に、メラミン樹脂、尿素樹脂、エポキシ樹脂、ウレタン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体)、AS樹脂(アクリロニトリル−スチレン共重合体)、アクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルサルフォン樹脂等の(C)樹脂を用いてもよい。
また、第二の被覆材料には、ノボラック型フェノール樹脂と硬化剤との硬化反応、レゾール型フェノール樹脂の硬化反応を促進するため、水酸化カルシウム等の硬化触媒などを用いてもよい。
(C)樹脂を併用する場合、第二の被覆材料(溶媒、分散媒を除く)中の、(ノボラック型フェノール樹脂とレゾール型フェノール樹脂との合計の含有量)/(全樹脂の含有量)は、質量比で0.50〜1であることが好ましく、0.65〜1であることがより好ましい。
該質量比が好ましい下限値以上であると、シリカのゴムに対する混練性が向上する。加えて、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
The second coating material includes (A) novolac type phenol resin and curing agent, (B) resol type phenol resin, melamine resin, urea resin, epoxy resin, urethane resin, alkyd resin, unsaturated polyester resin, Polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, ABS resin (acrylonitrile-butadiene-styrene copolymer), AS resin (acrylonitrile-styrene copolymer), acrylic resin, polyamide resin, polycarbonate resin, polyethylene terephthalate resin (C) resins such as polybutylene terephthalate resin, polyphenylene sulfide resin, polysulfone resin, and polyether sulfone resin may be used.
Moreover, in order to accelerate | stimulate the hardening reaction of a novolak-type phenol resin and a hardening | curing agent and the hardening reaction of a resol type phenol resin, you may use hardening catalysts, such as a calcium hydroxide, for the 2nd coating material.
(C) When resin is used in combination, (total content of novolac-type phenol resin and resol-type phenol resin) / (content of all resins) in the second coating material (excluding solvent and dispersion medium) Is preferably 0.50 to 1 in terms of mass ratio, and more preferably 0.65 to 1.
When the mass ratio is at least the preferred lower limit, the kneadability of silica with rubber is improved. In addition, when used as a tire, it is easy to achieve both rolling resistance and steering stability.

(樹脂被覆シリカの製造)
本発明の樹脂被覆シリカは、前記のシリカを、第一の被覆材料と第二の被覆材料で順次被覆することにより製造できる。具体的には、シリカと第一の被覆材料とを混合した後、第二の被覆材料を加えて混合する方法が挙げられる。
(Production of resin-coated silica)
The resin-coated silica of the present invention can be produced by sequentially coating the silica with a first coating material and a second coating material. Specifically, there is a method in which silica and a first coating material are mixed, and then a second coating material is added and mixed.

第一の被覆材料の塗布量は、シリカに塗布された該被覆材料中に含まれるフェノール類が、シリカ100質量部に対して0.5〜50質量部となる量が好ましく、1〜30質量部となる量がより好ましい。シリカの比表面積が大きいほど、第一の被覆材料の塗布量も多い方が好ましい。
該被覆材料中に含まれるフェノール類が好ましい下限値以上であると、シリカ表面の極性が低減しやすくなる。また、シリカ表面の極性が低減することにより、第一の被覆材料で被覆されたシリカを第二の被覆材料で被覆しやすくなる。一方、好ましい上限値以下であると、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
The coating amount of the first coating material is preferably such that the phenols contained in the coating material coated on silica are 0.5 to 50 parts by mass with respect to 100 parts by mass of silica, and 1 to 30 masses. The amount to be part is more preferable. The larger the specific surface area of silica, the greater the amount of the first coating material applied.
When the phenols contained in the coating material are at least the preferred lower limit, the polarity of the silica surface is likely to be reduced. In addition, when the polarity of the silica surface is reduced, the silica coated with the first coating material can be easily coated with the second coating material. On the other hand, when it is not more than the preferable upper limit value, it is easy to achieve both rolling resistance and steering stability when the tire is used.

第一の被覆材料がシランカップリング剤を含む場合、第一の被覆材料の塗布量は、シリカに塗布された該被覆材料中に含まれるシランカップリング剤が、シリカ100質量部に対して0.3〜20質量部となる量が好ましく、1〜10質量部となる量がより好ましい。
該被覆材料中に含まれるシランカップリング剤が好ましい下限値以上であると、シリカと第一の被覆材料との密着性が高まりやすい。一方、好ましい上限値を超えても、その増加分に応じたシリカと第一の被覆材料との密着性の向上が見られない。好ましい上限値以下であれば、コスト低減が図れる。
When the first coating material contains a silane coupling agent, the coating amount of the first coating material is 0 for the silane coupling agent contained in the coating material applied to silica to 100 parts by mass of silica. The amount of 3 to 20 parts by mass is preferable, and the amount of 1 to 10 parts by mass is more preferable.
When the silane coupling agent contained in the coating material is at least the preferred lower limit, the adhesion between the silica and the first coating material tends to increase. On the other hand, even if it exceeds the preferable upper limit value, no improvement in the adhesion between the silica and the first coating material according to the increase is observed. If it is less than or equal to the preferable upper limit value, the cost can be reduced.

第二の被覆材料が(A)ノボラック型フェノール樹脂と硬化剤を含み、(B)レゾール型フェノール樹脂を含まない場合、第二の被覆材料の塗布量は、シリカに塗布された該被覆材料中に含まれるノボラック型フェノール樹脂が、シリカ100質量部に対して0.5〜50質量部となる量が好ましく、1〜30質量部となる量がより好ましい。
該被覆材料中に含まれるノボラック型フェノール樹脂が好ましい下限値以上であると、シリカのゴムに対する混練性が向上する。ノボラック型フェノール樹脂が前記の好ましい範囲となる量であることにより、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
When the second coating material contains (A) a novolac type phenolic resin and a curing agent, and (B) does not contain a resol type phenolic resin, the coating amount of the second coating material is within the coating material applied to silica. The amount of the novolac-type phenolic resin contained in is preferably 0.5 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of silica.
When the novolac type phenolic resin contained in the coating material has a preferable lower limit value or more, kneadability of silica with rubber is improved. When the amount of the novolac-type phenol resin is within the above-mentioned preferable range, it is easy to achieve both rolling resistance and steering stability when used as a tire.

第二の被覆材料が(B)レゾール型フェノール樹脂を含み、(A)ノボラック型フェノール樹脂と硬化剤を含まない場合、第二の被覆材料の塗布量は、シリカに塗布された該被覆材料中に含まれるレゾール型フェノール樹脂が、シリカ100質量部に対して0.5〜50質量部となる量が好ましく、1〜30質量部となる量がより好ましい。
該被覆材料中に含まれるレゾール型フェノール樹脂が好ましい下限値以上であると、シリカのゴムに対する混練性が向上する。レゾール型フェノール樹脂が前記の好ましい範囲となる量であることにより、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
When the second coating material contains (B) a resol type phenol resin and (A) a novolac type phenol resin and a curing agent, the coating amount of the second coating material is within the coating material applied to silica. The amount of the resol type phenolic resin contained in is preferably 0.5 to 50 parts by mass and more preferably 1 to 30 parts by mass with respect to 100 parts by mass of silica.
When the resol type phenolic resin contained in the coating material is at least a preferred lower limit, the kneadability of silica to rubber is improved. When the amount of the resol-type phenol resin is within the above-mentioned preferable range, it is easy to achieve both rolling resistance and steering stability when the tire is used.

第二の被覆材料が(A)ノボラック型フェノール樹脂と硬化剤と(B)レゾール型フェノール樹脂との両方を含む場合、第二の被覆材料の塗布量は、シリカに塗布された該被覆材料中に含まれるノボラック型フェノール樹脂とレゾール型フェノール樹脂との合計が、シリカ100質量部に対して0.5〜50質量部となる量が好ましく、1〜30質量部となる量がより好ましい。
該被覆材料中に含まれるノボラック型フェノール樹脂とレゾール型フェノール樹脂との合計が好ましい下限値以上であると、シリカのゴムに対する混練性が向上する。ノボラック型フェノール樹脂とレゾール型フェノール樹脂との合計が前記の好ましい範囲となる量であることにより、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
When the second coating material contains both (A) a novolak type phenolic resin, a curing agent, and (B) a resol type phenolic resin, the coating amount of the second coating material is within the coating material applied to silica. The total amount of the novolac-type phenol resin and the resol-type phenol resin contained in is preferably 0.5 to 50 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of silica.
When the total of the novolac type phenol resin and the resol type phenol resin contained in the coating material is equal to or more than the preferable lower limit value, the kneadability of silica with rubber is improved. When the total of the novolac type phenol resin and the resol type phenol resin is within the above preferable range, the rolling resistance and the handling stability are easily compatible when the tire is used.

第一の被覆材料と第二の被覆材料は、必要に応じて、それぞれ適切な溶媒又は分散媒により希釈又は分散した材料を用いてもよい。溶媒又は分散媒としては、水、メタノール、アセトン、メチルエチルケトン等を用いることができる。
第一の被覆材料がシランカップリング剤を含む場合、該シランカップリング剤を第一の被覆材料に含まれるその他の成分と予め混合したものをシリカと混合させてもよく、該シランカップリング剤を単独でシリカと混合させた後、第一の被覆材料に含まれるその他の成分を混合させてもよい。
シリカと各被覆材料との混合には、バッチ式ミキサー、連続式ミキサー等の装置を用いることができる。これらの装置は、常温で、又は必要に応じて加温して用いればよい。特に、各被覆材料に固体材料を用いる場合、混合操作を容易に行うことができることから、装置を加温して用いることが好ましい。
第二の被覆材料を加えて混合した後に得られるシリカを、必要に応じて、公知の乾燥機等により乾燥してもよい。その際の乾燥温度、乾燥時間は、使用する溶媒又は分散媒、材料の希釈量などによって適宜決定すればよい。
As the first coating material and the second coating material, materials diluted or dispersed with an appropriate solvent or dispersion medium may be used as necessary. As the solvent or dispersion medium, water, methanol, acetone, methyl ethyl ketone, or the like can be used.
In the case where the first coating material contains a silane coupling agent, the silane coupling agent may be mixed with silica in advance by mixing the silane coupling agent with other components contained in the first coating material. May be mixed with silica alone, and then other components contained in the first coating material may be mixed.
A device such as a batch mixer or a continuous mixer can be used for mixing the silica and each coating material. These devices may be used at room temperature or with heating as necessary. In particular, when a solid material is used for each coating material, it is preferable to use the apparatus after heating because the mixing operation can be easily performed.
If necessary, the silica obtained after adding and mixing the second coating material may be dried by a known dryer or the like. What is necessary is just to determine the drying temperature and drying time in that case suitably by the solvent or dispersion medium to be used, the dilution amount of material, etc.

<ゴム組成物>
本発明のゴム組成物は、前記本発明の樹脂被覆シリカと、ゴムとを含有する。
(ゴム)
ゴムとしては、天然ゴム;スチレンブタジエンゴム、ポリイソプレンゴム、ポリブタジエンゴム、エチレンブタジエンゴム等のジエン系ゴム等が挙げられる。
<Rubber composition>
The rubber composition of the present invention contains the resin-coated silica of the present invention and a rubber.
(Rubber)
Examples of the rubber include natural rubber; diene rubbers such as styrene butadiene rubber, polyisoprene rubber, polybutadiene rubber, and ethylene butadiene rubber.

ゴム組成物中の樹脂被覆シリカの含有量は、ゴム100質量部に対して10〜200質量部が好ましく、30〜150質量部がより好ましい。
樹脂被覆シリカの含有量が好ましい上限値以下であると、樹脂被覆シリカとゴムとが良好に混ざりやすい。また、樹脂被覆シリカの含有量が前記の好ましい範囲であることにより、タイヤとした際に転がり抵抗と操縦安定性が両立しやすい。
10-200 mass parts is preferable with respect to 100 mass parts of rubber | gum, and, as for content of the resin-coated silica in a rubber composition, 30-150 mass parts is more preferable.
When the content of the resin-coated silica is not more than the preferable upper limit value, the resin-coated silica and the rubber are easily mixed well. Moreover, when the content of the resin-coated silica is within the above preferable range, it is easy to achieve both rolling resistance and steering stability when the tire is used.

ゴム組成物は、樹脂被覆シリカとゴム以外の成分を含有していてもよい。
ゴム組成物には、樹脂被覆シリカの他に、カーボンブラック、水酸化アルミニウム、アルミナ、炭酸カルシウム、マイカ、クレー等の補強材を併用してもよい。これらの補強材は、その表面が未処理のものでも、公知のシランカップリング剤等で表面処理が施されたものでもよい。
また、ゴム組成物には、フェノール樹脂等の補強用樹脂;ヘキサメチレンテトラミン、ヘキサメトキシメチルメラミン等の硬化剤;硫黄、4,4’−ジアミノジフェニルメタン等のゴム架橋剤;加硫促進剤、老化防止剤、可塑剤、各種オイル、ワックス、ステアリン酸、酸化亜鉛などのゴム工業界で通常使用される配合成分を用いてもよい。
The rubber composition may contain components other than the resin-coated silica and rubber.
In addition to the resin-coated silica, a reinforcing material such as carbon black, aluminum hydroxide, alumina, calcium carbonate, mica and clay may be used in combination with the rubber composition. These reinforcing materials may be those whose surfaces are untreated or those whose surfaces are treated with a known silane coupling agent or the like.
In addition, the rubber composition includes a reinforcing resin such as a phenol resin; a curing agent such as hexamethylenetetramine and hexamethoxymethylmelamine; a rubber cross-linking agent such as sulfur and 4,4′-diaminodiphenylmethane; a vulcanization accelerator and an aging agent. Ingredients usually used in the rubber industry such as inhibitors, plasticizers, various oils, waxes, stearic acid, and zinc oxide may be used.

未加硫状態のゴム組成物(未加硫ゴム組成物)は、樹脂被覆シリカと、ゴムと、必要に応じてその他の配合成分とを、バンバリーミキサー、ロール、ニーダー等の装置で混練することにより製造できる。
また、未加硫状態のゴム組成物を、所定の型などに充填し、好ましくは130〜180℃で5〜60分間の加熱処理(加硫)を行うことにより、加硫状態のゴム組成物(加硫ゴム組成物)が得られる。
A rubber composition in an unvulcanized state (unvulcanized rubber composition) is obtained by kneading resin-coated silica, rubber, and other compounding components as necessary with a device such as a Banbury mixer, a roll, or a kneader. Can be manufactured.
Moreover, the rubber composition in a vulcanized state is filled by filling the unvulcanized rubber composition in a predetermined mold and preferably subjected to a heat treatment (vulcanization) at 130 to 180 ° C. for 5 to 60 minutes. (Vulcanized rubber composition) is obtained.

本発明のゴム組成物は、タイヤ、ベルト、ゴムクローラ、防振ゴム、ホース、マット、海洋用フェンス等の用途に利用できる。なかでも、タイヤ用として好適であり、タイヤトレッド部用として特に好適である。   The rubber composition of the present invention can be used for applications such as tires, belts, rubber crawlers, anti-vibration rubbers, hoses, mats, marine fences and the like. Especially, it is suitable for tires and is particularly suitable for tire tread parts.

<タイヤ>
本発明のタイヤは、前記本発明のゴム組成物をタイヤトレッド部に用いたものである。
かかるタイヤは、通常の方法により製造される。具体的には、本発明のゴム組成物を未加硫の状態で用いてタイヤトレッド部の所定形状に加工したものと、タイヤの各部材向けに調製されたゴム組成物を未加硫の状態で用いてそれぞれ所定形状に加工したものとを、タイヤ成形機により貼り合わせて生タイヤ(未加硫状態)を成形し、これを加硫機中で加熱、加圧することにより製造される。
<Tire>
The tire of the present invention uses the rubber composition of the present invention in a tire tread portion.
Such a tire is manufactured by a usual method. Specifically, the rubber composition of the present invention processed in an unvulcanized state into a predetermined shape of a tire tread portion, and a rubber composition prepared for each member of a tire are in an unvulcanized state These are processed in a predetermined shape and bonded to each other by a tire molding machine to form a raw tire (unvulcanized state), which is then heated and pressurized in a vulcanizer.

未加硫ゴム組成物を製造する際、本発明の樹脂被覆シリカを用いた方が、従来のポリスルフィド構造を含むシランカップリング剤で、又はフェノール樹脂のみで表面処理されたシリカを用いるよりも、シリカのゴムに対する混練性が良好である。また、本発明の樹脂被覆シリカを用いた加硫ゴム組成物は、従来の表面処理を施したシリカを用いた加硫ゴム組成物よりも、転がり抵抗の低下による燃費向上と操縦安定性が共に優れ、かつ、硬さにも優れる。これらの理由は次のように推測される。   When producing an unvulcanized rubber composition, it is better to use the resin-coated silica of the present invention than to use a conventional silane coupling agent containing a polysulfide structure, or silica surface-treated only with a phenol resin. The kneadability of silica with rubber is good. Further, the vulcanized rubber composition using the resin-coated silica of the present invention has both improved fuel efficiency and steering stability due to lower rolling resistance than conventional vulcanized rubber compositions using surface-treated silica. Excellent and excellent hardness. These reasons are presumed as follows.

本発明の樹脂被覆シリカにおいては、シリカが、直接、フェノール類を含む第一の被覆材料で被覆されている。フェノール類は、親水性のフェノール性水酸基と親油性のフェニル基を有する。そして、この親水性のフェノール性水酸基と、シリカ表面のシラノール基とが水素結合により強固に結合する。これにより、第一の被覆材料で被覆されたシリカ表面の極性がシリカ単独の表面の極性に比べて低くなり、シリカと第二の被覆材料との密着性が高まることで、次に第二の被覆材料で被覆しやすくなる。さらに、フェノール類は、フェノール樹脂などの樹脂類に比べ、その粘度又は溶融粘度が著しく低い。そのため、溶媒等により希釈しなくても、シリカの被覆処理を容易に行うことができる。
また、本発明の樹脂被覆シリカにおいては、自硬性樹脂である(B)レゾール型フェノール樹脂、又は(A)ノボラック型フェノール樹脂と硬化剤、の少なくとも一方を含む第二の被覆材料でさらに被覆されている。このようにシリカが第一及び第二の被覆材料による被覆層を有するため、ゴムと混練する際の粘度が低くなり、シリカのゴムに対する混練性が向上する。また、該被覆層と、非極性又は極性の低いゴムとの親和性が高まることにより、ゴム中でのシリカの分散性が向上することで、転がり抵抗の低下による燃費向上と操縦安定性が共に優れると考えられる。
さらに、ゴム組成物に加硫操作を施した際、第二の被覆材料は第一の被覆材料と硬化反応を生じ、第一の被覆材料と第二の被覆材料とが一体化して、シリカとの密着性が高い樹脂被覆層が形成される。加えて、第二の被覆材料はゴム、及び必要に応じて配合される補強用樹脂とも硬化反応を生じて一体化する。これらの作用により、加硫したゴム組成物に硬さが充分に付与されると考えられる。
In the resin-coated silica of the present invention, the silica is directly coated with the first coating material containing phenols. Phenols have a hydrophilic phenolic hydroxyl group and a lipophilic phenyl group. And this hydrophilic phenolic hydroxyl group and the silanol group of the silica surface are couple | bonded firmly by a hydrogen bond. As a result, the polarity of the silica surface coated with the first coating material is lower than the polarity of the surface of the silica alone, and the adhesion between the silica and the second coating material is increased. It becomes easy to coat with a coating material. Furthermore, phenols have a significantly lower viscosity or melt viscosity than resins such as phenol resins. Therefore, the silica coating process can be easily performed without diluting with a solvent or the like.
Further, the resin-coated silica of the present invention is further coated with a second coating material containing at least one of (B) a resol type phenol resin or (A) a novolak type phenol resin and a curing agent, which is a self-hardening resin. ing. Thus, since silica has the coating layer by the 1st and 2nd coating material, the viscosity at the time of kneading | mixing with rubber | gum becomes low, and the kneadability with respect to the rubber | gum of silica improves. In addition, by increasing the affinity between the coating layer and nonpolar or low polarity rubber, the dispersibility of silica in the rubber is improved, thereby improving both fuel efficiency and driving stability due to reduced rolling resistance. It is considered excellent.
Furthermore, when the rubber composition is vulcanized, the second coating material undergoes a curing reaction with the first coating material, and the first coating material and the second coating material are integrated to form silica and A resin coating layer having high adhesion is formed. In addition, the second coating material is integrated with the rubber and the reinforcing resin that is blended as necessary to cause a curing reaction. These actions are considered to provide sufficient hardness to the vulcanized rubber composition.

本発明の樹脂被覆シリカは、上記のように、その製造が容易である。さらに、本発明の樹脂被覆シリカを用いた加硫ゴム組成物は、従来の表面処理を施したシリカを用いた加硫ゴム組成物に比べて、硬さに優れると共に同程度の破断強度を持ち、ゴム製品として充分な強度を有する。
以上のように、本発明の樹脂被覆シリカをタイヤ原料として用いることにより、環境性と安全性を共に満足したタイヤを提供することができる。
The resin-coated silica of the present invention is easy to produce as described above. Furthermore, the vulcanized rubber composition using the resin-coated silica of the present invention is superior in hardness and has the same breaking strength as the conventional vulcanized rubber composition using the surface-treated silica. It has sufficient strength as a rubber product.
As described above, by using the resin-coated silica of the present invention as a tire raw material, it is possible to provide a tire that satisfies both environmental performance and safety.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
<評価>
本実施例において、未加硫ゴム組成物についての混練性は以下の方法により評価した。また、加硫ゴム組成物についての貯蔵弾性率、損失正接(tanδ)、硬さ、破断強度は、以下の方法によりそれぞれ測定した。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
<Evaluation>
In this example, the kneadability of the unvulcanized rubber composition was evaluated by the following method. Further, the storage elastic modulus, loss tangent (tan δ), hardness, and breaking strength of the vulcanized rubber composition were measured by the following methods.

[混練性]
未加硫ゴム組成物について、キュラストメーター(JSR社製、CURELASTOMETER MODELIII)を使用して、150℃におけるトルクと時間との関係(トルク−時間曲線)を測定し、ゴム組成物が溶融した後、加硫する前のキュラスト最小トルク(N・m)を求めることにより混練性を評価した。このキュラスト最小トルクの値が小さいほど、混練性が良好であることを意味する。
[Kneadability]
For unvulcanized rubber composition, after measuring the relationship between torque and time (torque-time curve) at 150 ° C. using a curast meter (manufactured by JSR, CURELASTOMETER MODELIII), and the rubber composition is melted The kneadability was evaluated by determining the curast minimum torque (N · m) before vulcanization. The smaller the value of this curast minimum torque, the better the kneading property.

[貯蔵弾性率、損失正接(tanδ)]
加硫ゴム組成物について、エスエスアイ・ナノテクノロジー社製のDMS110を使用し、振動数10Hzにて70℃における貯蔵弾性率と損失正接(tanδ)をそれぞれ測定した。
この貯蔵弾性率の値が高いほど、タイヤとした場合に操縦安定性に優れていることを意味する。このtanδの値が小さいほど、転がり抵抗が小さいことを意味する。
[Storage modulus, loss tangent (tan δ)]
The vulcanized rubber composition was measured for the storage elastic modulus and loss tangent (tan δ) at 70 ° C. at a frequency of 10 Hz using DMS110 manufactured by SSI Nanotechnology.
The higher the value of the storage elastic modulus, the better the steering stability when the tire is used. It means that rolling resistance is so small that the value of this tan-delta is small.

[硬さ]
加硫ゴム組成物について、JIS K6253に準じ、テクロック製のタイプAデュロメータGS−719Gを使用して、硬さ(ショアA)を測定した。この硬さの測定値が高いほど、硬さ付与効果に優れていることを意味する。
[Hardness]
The hardness (Shore A) of the vulcanized rubber composition was measured using a type A durometer GS-719G manufactured by Teclock in accordance with JIS K6253. It means that it is excellent in the hardness provision effect, so that the measured value of this hardness is high.

[破断強度]
加硫ゴム組成物について、JIS K6251に準じ、東洋精機製のストログラフV10−Cを使用して、ダンベル状3号とした試験片の破断強度(MPa)を測定した。この破断強度の値が高いほど、強度に優れていることを意味する。
[Breaking strength]
With respect to the vulcanized rubber composition, the breaking strength (MPa) of the test piece having a dumbbell shape No. 3 was measured using a strograph V10-C manufactured by Toyo Seiki in accordance with JIS K6251. The higher the value of the breaking strength, the better the strength.

<シリカの表面処理に使用した材料>
シリカ(a):ウルトラジルVN3(商品名、デグサ社製)、BET法による窒素吸着比表面積205m/gの湿式シリカ。
シリカ(b):Zeosil 1115MP(商品名、ローディア社製)、BET法による窒素吸着比表面積115m/gの湿式シリカ。
オルトクレゾール:オルソクレゾール(商品名、新日鐵化学社製)。
カルダノール:カルダノール(商品名、Golden Cashew products pvt.Ltd.製)。
シランカップリング剤(1):3−アミノプロピルトリエトキシシランKBE−903(商品名、信越化学社製)。
ノボラック型フェノール樹脂(1):PS−6230(商品名、群栄化学工業社製;カルダノール−フェノール−ホルムアルデヒド樹脂、軟化点85℃)の50質量%メタノール溶液。
ノボラック型フェノール樹脂(2):PSK−2320(商品名、群栄化学工業社製;フェノール−ホルムアルデヒド樹脂、軟化点90℃)の50質量%メタノール溶液。
硬化剤(1):ヘキサメチレンテトラミン(三菱ガス化学社製)の10質量%水溶液。
硬化剤(2):4,4’−ジアミノジフェニルメタン、スミキュアM(商品名、住友化学社製)の10質量%メタノール溶液。
レゾール型フェノール樹脂:PL−6507(商品名、群栄化学工業社製;カルダノール−フェノール−ホルムアルデヒド樹脂、固形分50質量%のメタノール溶液)。
シランカップリング剤(2):ビス(トリエトキシシリルプロピル)テトラスルフィドKBE−846(商品名、信越化学社製)の50質量%メタノール溶液。
<Materials used for silica surface treatment>
Silica (a): Ultrasil VN3 (trade name, manufactured by Degussa), wet silica having a nitrogen adsorption specific surface area of 205 m 2 / g by BET method.
Silica (b): Zeosil 1115MP (trade name, manufactured by Rhodia), wet silica having a nitrogen adsorption specific surface area of 115 m 2 / g by BET method.
Orthocresol: Orthocresol (trade name, manufactured by Nippon Steel Chemical Co., Ltd.).
Cardanol: Cardanol (trade name, manufactured by Golden Cashew products pvt. Ltd.).
Silane coupling agent (1): 3-aminopropyltriethoxysilane KBE-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
Novolac-type phenol resin (1): PS-6230 (trade name, manufactured by Gunei Chemical Industry Co., Ltd .; cardanol-phenol-formaldehyde resin, softening point 85 ° C.) in a 50% by mass methanol solution.
Novolac-type phenol resin (2): PSK-2320 (trade name, manufactured by Gunei Chemical Industry Co., Ltd .; phenol-formaldehyde resin, softening point 90 ° C.) in a 50% by mass methanol solution.
Curing agent (1): 10% by mass aqueous solution of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Company).
Curing agent (2): 10% by mass methanol solution of 4,4′-diaminodiphenylmethane, Sumicure M (trade name, manufactured by Sumitomo Chemical Co., Ltd.).
Resol type phenol resin: PL-6507 (trade name, manufactured by Gunei Chemical Industry Co., Ltd .; cardanol-phenol-formaldehyde resin, methanol solution having a solid content of 50% by mass).
Silane coupling agent (2): 50% by mass methanol solution of bis (triethoxysilylpropyl) tetrasulfide KBE-846 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).

<ゴム組成物の製造に使用した材料>
シリカ(a1)〜(a9):実施例1〜5、7、8と比較例1〜2の表面処理されたシリカ。
シリカ(b1):実施例6の表面処理されたシリカ。
天然ゴム:RSS3号。
ワックス:サンノックワックス(商品名、大内新興化学工業社製)。
オイル:ダイアナプロセスAH40(商品名、出光興産社製)。
老化防止剤:ノクラック6C(商品名、大内新興化学工業社製)。
ステアリン酸:ステアリン酸さくら(商品名、日本油脂社製)。
亜鉛華:酸化亜鉛(堺化学社製)。
ノボラック型フェノール樹脂(3):PS−4569(商品名、群栄化学工業社製;カシュー変性フェノール−ホルムアルデヒド樹脂、融点72℃)。
硫黄:硫黄(鶴見化学工業社製)。
硬化剤(1):ヘキサメチレンテトラミン(三菱ガス化学社製)の10質量%水溶液。
加硫促進剤:ノクセラーNS−P(商品名、大内新興化学工業社製)。
<Materials used for production of rubber composition>
Silica (a1) to (a9): Surface-treated silica of Examples 1 to 5, 7, and 8 and Comparative Examples 1 to 2.
Silica (b1): The surface-treated silica of Example 6.
Natural rubber: RSS3.
Wax: Sunnock wax (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.).
Oil: Diana Process AH40 (trade name, manufactured by Idemitsu Kosan Co., Ltd.).
Anti-aging agent: NOCRACK 6C (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.).
Stearic acid: Sakura stearate (trade name, manufactured by NOF Corporation).
Zinc flower: Zinc oxide (manufactured by Sakai Chemical Co., Ltd.).
Novolac type phenolic resin (3): PS-4569 (trade name, manufactured by Gunei Chemical Industry Co., Ltd .; cashew modified phenol-formaldehyde resin, melting point 72 ° C.).
Sulfur: Sulfur (manufactured by Tsurumi Chemical Co., Ltd.).
Curing agent (1): 10% by mass aqueous solution of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Company).
Vulcanization accelerator: Noxeller NS-P (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.).

<シリカの表面処理>
表1に示す組成に従い、各材料を撹拌混合して、表面処理されたシリカを調製した。
表1中、各材料の配合量は、シリカ100質量部に対する、その材料自体の量(該材料が溶液の場合、溶液としての量)を示す。
<Silica surface treatment>
According to the composition shown in Table 1, each material was stirred and mixed to prepare surface-treated silica.
In Table 1, the compounding amount of each material indicates the amount of the material itself (the amount as a solution when the material is a solution) with respect to 100 parts by mass of silica.

(実施例1)
シリカ(a)100質量部に、カルダノール2.7質量部を加えて、ヘンシェルミキサーにて撹拌混合した。次いで、ノボラック型フェノール樹脂(1)(50質量%メタノール溶液)12.6質量部と硬化剤(1)(10質量%水溶液)9.0質量部とを加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a1)を得た。
Example 1
2.7 parts by mass of cardanol was added to 100 parts by mass of silica (a), and the mixture was stirred and mixed with a Henschel mixer. Next, 12.6 parts by mass of the novolac-type phenol resin (1) (50% by mass methanol solution) and 9.0 parts by mass of the curing agent (1) (10% by mass aqueous solution) are added with stirring and mixed in a hot air dryer. The surface-treated silica (a1) was obtained by drying at 90 ° C. for 1 hour.

(実施例2)
シリカ(a)100質量部に、オルトクレゾール4.5質量部を加えて、ヘンシェルミキサーにて撹拌混合した。次いで、ノボラック型フェノール樹脂(1)(50質量%メタノール溶液)9.0質量部と硬化剤(1)(10質量%水溶液)9.0質量部とを加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a2)を得た。
(Example 2)
To 100 parts by mass of silica (a), 4.5 parts by mass of ortho-cresol was added and mixed by stirring with a Henschel mixer. Next, 9.0 parts by mass of the novolac-type phenol resin (1) (50% by mass methanol solution) and 9.0 parts by mass of the curing agent (1) (10% by mass aqueous solution) are added with stirring and mixed in a hot air dryer. The surface-treated silica (a2) was obtained by drying at 90 ° C. for 1 hour.

(実施例3)
シリカ(a)100質量部に、カルダノール4.5質量部を加えて、ヘンシェルミキサーにて撹拌混合した。次いで、ノボラック型フェノール樹脂(2)(50質量%メタノール溶液)9.0質量部と硬化剤(1)(10質量%水溶液)9.0質量部とを加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a3)を得た。
(Example 3)
To 100 parts by mass of silica (a), 4.5 parts by mass of cardanol was added and stirred and mixed with a Henschel mixer. Next, 9.0 parts by mass of the novolak-type phenol resin (2) (50% by mass methanol solution) and 9.0 parts by mass of the curing agent (1) (10% by mass aqueous solution) are added with stirring and mixed in a hot air dryer. The surface-treated silica (a3) was obtained by drying at 90 ° C. for 1 hour.

(実施例4)
シリカ(a)100質量部に、カルダノール2.7質量部を加えて、ヘンシェルミキサーにて撹拌混合した。次いで、レゾール型フェノール樹脂(50質量%メタノール溶液)12.6質量部を加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a4)を得た。
Example 4
2.7 parts by mass of cardanol was added to 100 parts by mass of silica (a), and the mixture was stirred and mixed with a Henschel mixer. Next, 12.6 parts by mass of a resol type phenol resin (50% by mass methanol solution) was added, mixed by stirring, and dried at 90 ° C. for 1 hour in a hot air dryer to obtain surface-treated silica (a4). It was.

(実施例5)
シリカ(a)100質量部に、シランカップリング剤(1)2.0質量部と、カルダノール1.5質量部とを加えて、ヘンシェルミキサーにて撹拌混合した。次いで、ノボラック型フェノール樹脂(1)(50質量%メタノール溶液)3.0質量部と硬化剤(1)(10質量%水溶液)3.0質量部とを加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a5)を得た。
(Example 5)
To 100 parts by mass of silica (a), 2.0 parts by mass of the silane coupling agent (1) and 1.5 parts by mass of cardanol were added and stirred and mixed with a Henschel mixer. Next, 3.0 parts by mass of the novolac-type phenolic resin (1) (50% by mass methanol solution) and 3.0 parts by mass of the curing agent (1) (10% by mass aqueous solution) are added with stirring and mixed in a hot air dryer. The surface-treated silica (a5) was obtained by drying at 90 ° C. for 1 hour.

(実施例6)
シリカ(a)をシリカ(b)に変更した以外は、実施例5と同様にして、表面処理されたシリカ(b1)を得た。
(Example 6)
Surface-treated silica (b1) was obtained in the same manner as in Example 5 except that the silica (a) was changed to silica (b).

(実施例7)
シリカ(a)100質量部に、シランカップリング剤(1)2.0質量部と、カルダノール4.5質量部と、硬化剤(1)(10質量%水溶液)4.5質量部とを加えて、ヘンシェルミキサーにて撹拌混合した。次いで、ノボラック型フェノール樹脂(1)(50質量%メタノール溶液)9.0質量部と硬化剤(1)(10質量%水溶液)4.5質量部とを加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a6)を得た。
(Example 7)
To 100 parts by mass of silica (a), 2.0 parts by mass of silane coupling agent (1), 4.5 parts by mass of cardanol, and 4.5 parts by mass of curing agent (1) (10% by mass aqueous solution) are added. The mixture was stirred and mixed with a Henschel mixer. Next, 9.0 parts by mass of the novolac-type phenolic resin (1) (50% by mass methanol solution) and 4.5 parts by mass of the curing agent (1) (10% by mass aqueous solution) were added with stirring and mixed in a hot air dryer. The surface-treated silica (a6) was obtained by drying at 90 ° C. for 1 hour.

(実施例8)
シリカ(a)100質量部に、シランカップリング剤(1)2.0質量部と、カルダノール4.5質量部とを加えて、ヘンシェルミキサーにて撹拌混合した。次いで、ノボラック型フェノール樹脂(1)(50質量%メタノール溶液)9.0質量部と硬化剤(1)(10質量%水溶液)4.5質量部と硬化剤(2)(10質量%メタノール溶液)4.5質量部とを加えて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a7)を得た。
(Example 8)
To 100 parts by mass of silica (a), 2.0 parts by mass of the silane coupling agent (1) and 4.5 parts by mass of cardanol were added and stirred and mixed with a Henschel mixer. Next, 9.0 parts by mass of novolac-type phenol resin (1) (50% by mass methanol solution), 4.5 parts by mass of curing agent (1) (10% by mass aqueous solution) and curing agent (2) (10% by mass methanol solution) ) 4.5 parts by mass was added, mixed with stirring, and dried by a hot air dryer at 90 ° C. for 1 hour to obtain surface-treated silica (a7).

(比較例1)
シリカ(a)100質量部に、シランカップリング剤(2)(50質量%メタノール溶液)16.0質量部を加えて、ヘンシェルミキサーにて撹拌混合し、熱風乾燥機にて130℃−1時間乾燥することにより、表面処理されたシリカ(a8)を得た。
(Comparative Example 1)
Add 16.0 parts by mass of the silane coupling agent (2) (50% by mass methanol solution) to 100 parts by mass of silica (a), stir and mix with a Henschel mixer, and 130 ° C. for 1 hour with a hot air dryer. By drying, surface-treated silica (a8) was obtained.

(比較例2)
シリカ(a)100部に、シランカップリング剤(1)2.0質量部と、ノボラック型フェノール樹脂(2)(50質量%メタノール溶液)20.0質量部とを加えて、ヘンシェルミキサーにて撹拌混合し、熱風乾燥機にて90℃−1時間乾燥することにより、表面処理されたシリカ(a9)を得た。
(Comparative Example 2)
In 100 parts of silica (a), 2.0 parts by mass of a silane coupling agent (1) and 20.0 parts by mass of a novolac type phenol resin (2) (50% by mass methanol solution) are added, and a Henschel mixer is used. The mixture was stirred and mixed, and dried with a hot air dryer at 90 ° C. for 1 hour to obtain surface-treated silica (a9).

Figure 2012116972
Figure 2012116972

<ゴム組成物の製造>
表2に示す組成に従い、各材料を混練して未加硫ゴム組成物を調製した。また、未加硫ゴム組成物を型内で加熱して加硫ゴム組成物を得た。
表2中、各材料の配合量は、天然ゴム100質量部に対する、その材料自体の量(該材料が溶液の場合、溶液としての量)を示す。
<Manufacture of rubber composition>
According to the composition shown in Table 2, each material was kneaded to prepare an unvulcanized rubber composition. Moreover, the unvulcanized rubber composition was heated in a mold to obtain a vulcanized rubber composition.
In Table 2, the blending amount of each material indicates the amount of the material itself (the amount as a solution when the material is a solution) with respect to 100 parts by mass of natural rubber.

(実施例9)
天然ゴム100質量部と、シリカ(a1)85質量部と、ワックス2質量部と、オイル4質量部と、老化防止剤2質量部と、ステアリン酸4質量部と、亜鉛華5質量部と、ノボラック型フェノール樹脂(3)10質量部とを、加圧ニーダーにて150℃−5分間混練した。得られた混練物に、硫黄2.5質量部と、硬化剤(1)(10質量%水溶液)5質量部と、加硫促進剤1.5質量部とを添加し、2軸ロールにて90℃−5分間混練することにより、シート状の未加硫ゴム組成物を得た。
Example 9
100 parts by weight of natural rubber, 85 parts by weight of silica (a1), 2 parts by weight of wax, 4 parts by weight of oil, 2 parts by weight of anti-aging agent, 4 parts by weight of stearic acid, 5 parts by weight of zinc white, 10 parts by mass of the novolac type phenol resin (3) was kneaded with a pressure kneader at 150 ° C. for 5 minutes. To the obtained kneaded product, 2.5 parts by mass of sulfur, 5 parts by mass of the curing agent (1) (10% by mass aqueous solution), and 1.5 parts by mass of the vulcanization accelerator were added. By kneading at 90 ° C. for 5 minutes, a sheet-like unvulcanized rubber composition was obtained.

次いで、得られた未加硫ゴム組成物を150mm×150mm×2mmの型内に入れ、150℃−40分間加熱することにより、加硫ゴム組成物を得た。   Subsequently, the obtained unvulcanized rubber composition was put into a 150 mm × 150 mm × 2 mm mold and heated at 150 ° C. for 40 minutes to obtain a vulcanized rubber composition.

(実施例10〜16、比較例3〜4)
シリカ(a1)をシリカ(a2)〜(a5)、(b1)、(a6)〜(a9)にそれぞれ変更した以外は、実施例9と同様にして、未加硫ゴム組成物と加硫ゴム組成物を得た。
(Examples 10-16, Comparative Examples 3-4)
Unvulcanized rubber composition and vulcanized rubber in the same manner as in Example 9, except that silica (a1) was changed to silica (a2) to (a5), (b1), (a6) to (a9), respectively. A composition was obtained.

上記評価の方法により、各例の未加硫ゴム組成物についてキュラスト最小トルクを求めた。また、加硫ゴム組成物について貯蔵弾性率、tanδ、硬さ、破断強度をそれぞれ測定した。それらの結果を表2に示す。   The curast minimum torque was determined for the unvulcanized rubber composition of each example by the above evaluation method. Further, the storage elastic modulus, tan δ, hardness, and breaking strength were measured for the vulcanized rubber composition. The results are shown in Table 2.

Figure 2012116972
Figure 2012116972

表2の結果から、実施例9〜16の未加硫ゴム組成物は、比較例3、4の未加硫ゴム組成物に比べて、ゴム組成物が溶融した後、加硫するまでのキュラスト最小トルクの値が小さいことから、ゴム組成物を製造する際の混練性が良好であることが分かる。
また、実施例9〜16の加硫ゴム組成物は、比較例3、4の加硫ゴム組成物よりも、貯蔵弾性率の値が高く、かつ、tanδの値が小さいことから、操縦安定性に優れ、転がり抵抗の低下による燃費向上の効果も高いことが分かる。
From the results shown in Table 2, the unvulcanized rubber compositions of Examples 9 to 16 are curasted until vulcanization after the rubber composition is melted, compared to the unvulcanized rubber compositions of Comparative Examples 3 and 4. From the fact that the value of the minimum torque is small, it can be seen that the kneadability at the time of producing the rubber composition is good.
Further, the vulcanized rubber compositions of Examples 9 to 16 have a higher storage elastic modulus and a smaller tan δ value than the vulcanized rubber compositions of Comparative Examples 3 and 4, and thus steering stability. It can be seen that the effect of improving the fuel consumption due to the reduction in rolling resistance is also high.

さらに、実施例9〜16の加硫ゴム組成物は、比較例3、4の加硫ゴム組成物に比べて、硬さの値が高いことから、実施例1〜8の表面処理されたシリカ(樹脂被覆シリカ)は硬さ付与効果に優れていることが分かる。
加えて、実施例9〜16の加硫ゴム組成物は、比較例3、4の加硫ゴム組成物と同等以上の破断強度を持つことから、実用上、ゴム製品として充分な強度を有している、と云える。
Furthermore, since the vulcanized rubber compositions of Examples 9 to 16 have higher hardness values than the vulcanized rubber compositions of Comparative Examples 3 and 4, the surface-treated silica of Examples 1 to 8 was used. It can be seen that (resin-coated silica) is excellent in hardness imparting effect.
In addition, since the vulcanized rubber compositions of Examples 9 to 16 have a breaking strength equal to or higher than that of the vulcanized rubber compositions of Comparative Examples 3 and 4, they have practically sufficient strength as rubber products. It can be said that.

Claims (5)

BET法による窒素吸着比表面積50〜300m/gのシリカが第一の被覆材料と第二の被覆材料で順次被覆された樹脂被覆シリカであって、
前記第一の被覆材料はフェノール類を含み、
前記第二の被覆材料は(A)ノボラック型フェノール樹脂と硬化剤、及び(B)レゾール型フェノール樹脂の少なくとも一方を含むことを特徴とする樹脂被覆シリカ。
A resin-coated silica in which a silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g by the BET method is sequentially coated with a first coating material and a second coating material,
The first coating material comprises phenols;
The resin-coated silica, wherein the second coating material includes (A) at least one of a novolac type phenol resin and a curing agent, and (B) a resol type phenol resin.
前記第一の被覆材料が硬化剤を含む、請求項1記載の樹脂被覆シリカ。   The resin-coated silica according to claim 1, wherein the first coating material contains a curing agent. 前記第一の被覆材料がシランカップリング剤を含む、請求項1又は請求項2記載の樹脂被覆シリカ。   The resin-coated silica according to claim 1 or 2, wherein the first coating material contains a silane coupling agent. 請求項1記載の樹脂被覆シリカと、ゴムとを含有するゴム組成物。   A rubber composition comprising the resin-coated silica according to claim 1 and rubber. 請求項4記載のゴム組成物をタイヤトレッド部に用いたタイヤ。   A tire using the rubber composition according to claim 4 in a tire tread portion.
JP2010268709A 2010-12-01 2010-12-01 Resin-coated silica, rubber composition and tire Active JP5731805B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010268709A JP5731805B2 (en) 2010-12-01 2010-12-01 Resin-coated silica, rubber composition and tire
PCT/JP2011/077185 WO2012073822A1 (en) 2010-12-01 2011-11-25 Resin coated silica, rubber composition and tire
TW100143546A TW201235392A (en) 2010-12-01 2011-11-28 Resin-coated silica, rubber composition and tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268709A JP5731805B2 (en) 2010-12-01 2010-12-01 Resin-coated silica, rubber composition and tire

Publications (2)

Publication Number Publication Date
JP2012116972A true JP2012116972A (en) 2012-06-21
JP5731805B2 JP5731805B2 (en) 2015-06-10

Family

ID=46171760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268709A Active JP5731805B2 (en) 2010-12-01 2010-12-01 Resin-coated silica, rubber composition and tire

Country Status (3)

Country Link
JP (1) JP5731805B2 (en)
TW (1) TW201235392A (en)
WO (1) WO2012073822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209464A (en) * 2012-03-30 2013-10-10 Sumitomo Bakelite Co Ltd Rubber composition
JP7427418B2 (en) 2019-10-28 2024-02-05 Toyo Tire株式会社 Rubber composition for seismic isolation structures and seismic isolation structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048395A (en) * 2013-08-30 2015-03-16 群栄化学工業株式会社 Thermosetting resin composition and resol type phenol resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320427A (en) * 1992-05-27 1993-12-03 Bridgestone Corp Rubber composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115874A (en) * 1997-06-17 1999-01-12 Yokohama Rubber Co Ltd:The Rubber composition
JP2002003652A (en) * 2000-06-20 2002-01-09 Bridgestone Corp Rubber composition and pneumatic tire using it
JP2003292793A (en) * 2002-04-01 2003-10-15 Asahi Kasei Corp Flame-retardant composition
JP2003292816A (en) * 2002-04-01 2003-10-15 Asahi Kasei Corp Inorganic function-adding agent
JP4043896B2 (en) * 2002-09-12 2008-02-06 トヨタ自動車株式会社 Filler-containing slurry composition
JP2010184991A (en) * 2009-02-12 2010-08-26 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2010189608A (en) * 2009-02-20 2010-09-02 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320427A (en) * 1992-05-27 1993-12-03 Bridgestone Corp Rubber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209464A (en) * 2012-03-30 2013-10-10 Sumitomo Bakelite Co Ltd Rubber composition
JP7427418B2 (en) 2019-10-28 2024-02-05 Toyo Tire株式会社 Rubber composition for seismic isolation structures and seismic isolation structures

Also Published As

Publication number Publication date
JP5731805B2 (en) 2015-06-10
TW201235392A (en) 2012-09-01
WO2012073822A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP4354512B2 (en) Rubber composition for tread and tire having tread comprising the same
JP5134592B2 (en) Rubber composition for cap tread and tire having cap tread comprising the same
JP5662977B2 (en) Rubber composition for sidewall reinforcing layer of run flat tire and run flat tire
EP3156426B1 (en) Modified rubber for tyre, rubber composition for tyre using said modified rubber and tyre
CN107075186B (en) Rubber composition for tire
JP6933068B2 (en) Rubber composition for steel cord coating and tires
EP3187532A1 (en) Rubber composition and pneumatic tire
JP2006225448A (en) Rubber composition for tire tread and pneumatic tire
CN105189591B (en) Cocondensation and its manufacture method and the rubber composition containing cocondensation
JP2012224678A (en) Rubber composition for tire and tire using the same
EP2620470B1 (en) Rubber composition for tire, and pneumatic tire
JP5731805B2 (en) Resin-coated silica, rubber composition and tire
US9481783B2 (en) Rubber composition for tires and pneumatic tire
JP4800188B2 (en) Rubber composition for bead apex and tire having bead apex using the same
JP5654410B2 (en) Rubber composition for tire and pneumatic tire
JP5395380B2 (en) Rubber composition for tire
JP5820231B2 (en) Rubber composition for covering steel cord and pneumatic tire
JP5775945B2 (en) Rubber composition and pneumatic tire using the same
WO2016052451A1 (en) Metal cord-rubber composite body
WO2016052449A1 (en) Metal cord-rubber composite body
JP2009286822A (en) Rubber composition for studless tire
JP5518804B2 (en) Rubber composition for tire and pneumatic tire
JP2010083943A (en) Rubber composition
JP2011046817A (en) Rubber composition for tire tread
JP2013129728A (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5731805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250