JP2012116901A - 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体 - Google Patents

成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体 Download PDF

Info

Publication number
JP2012116901A
JP2012116901A JP2010265812A JP2010265812A JP2012116901A JP 2012116901 A JP2012116901 A JP 2012116901A JP 2010265812 A JP2010265812 A JP 2010265812A JP 2010265812 A JP2010265812 A JP 2010265812A JP 2012116901 A JP2012116901 A JP 2012116901A
Authority
JP
Japan
Prior art keywords
group
molding material
cellulose
carbon atoms
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010265812A
Other languages
English (en)
Other versions
JP5639862B2 (ja
Inventor
Yoshihiro Nakai
義博 中井
Shunei Yoshitani
俊英 芳谷
Shigeo Kamihira
茂生 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010265812A priority Critical patent/JP5639862B2/ja
Priority to PCT/JP2011/076323 priority patent/WO2012073689A1/ja
Publication of JP2012116901A publication Critical patent/JP2012116901A/ja
Application granted granted Critical
Publication of JP5639862B2 publication Critical patent/JP5639862B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/32Cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

【課題】良好な熱可塑性を有し、成形性(メルトボリュームレート)、耐熱性(荷重たわみ温度)、剛性(曲げ弾性率)、耐衝撃性(落球衝撃強度)の観点で優れた成形材料を提供する。
【解決手段】セルロースに含まれる水酸基の水素原子が、下記A)で置換された基、及び下記B)で置換された基を含むセルロース誘導体と、下記一般式(p1)又は(p2)で表される繰り返し単位を含み、かつ末端基が下記一般式(p1−1)、(p1−2)、(p2−1)、又は(p2−2)で表される基であるポリエーテル化合物とを含有する成形材料。A)炭化水素基:−R。B)アシル基:−CO−R(Rは炭化水素基を表す。)。−CHCH(R)O−(p1)。−(CHO−(p2)。−CHCH(R)O−Rm1(p1−1)。Rm2−CHCH(R)O−(p1−2)。−(CHO−Rm1(p2−1)。Rm2−(CHO−(p2−2)。
【選択図】なし

Description

本発明は、成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体に関する。
コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile−butadiene−styrene)樹脂、PC/ABS等が一般的に多量に使用されている(特許文献1)。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。
ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。
一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。
このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献2)。
しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
公知のセルロース誘導体として、ヒドロキシプロピルメチルアセチルセルロースが特許文献3及び特許文献4に記載されている。特許文献3及び特許文献4では、このヒドロキシプロピルメチルアセチルセルロースは、揮発しやすい有機溶剤の蒸気圧を低減するための添加剤として有用であることが記載されている。また、特許文献3及び特許文献4に記載のヒドロキシプロピルメチルアセチルセルロースにおける各置換基の置換度は、例えばヒドロキシプロピル基のモル置換度(MS)が約2から8の範囲、メチル基の置換度が約0.1から1の範囲、アセチル基の置換度は約0.8から2.5の範囲であることが記載されている。
一方、特許文献5や特許文献6には、熱可塑性樹脂にポリエチレングリコールやポリエチレンオキサイドを添加して樹脂組成物の落錘衝撃強度を向上させることが知られている。
また、特許文献7や特許文献8には、セルロースエステルとポリエーテルを含有する組成物が記載されている。
特開昭56−55425号公報 特開2008−24919号公報 米国特許第3979179号明細書 米国特許第3940384号明細書 特開平6−57093号公報 特開平9−202859号公報 特開2004−182979号公報 特開昭59−86639号公報
本発明者らは、カーボンニュートラルな樹脂として、セルロースを使用することに着目した。しかし、セルロースは一般的に熱可塑性を持たないため、加熱等により成形することが困難であるため、成形加工に適さない。また、たとえ熱可塑性を付与できたとしても、耐衝撃性等の強度が大きく衰える問題がある。
例えば、上記特許文献3、及び4に記載のセルロース誘導体は水可溶性又は膨潤性であり、強度が不足しており成形材料として好ましくない。また、特許文献7及び8のようにセルロースエステルとポリエーテルを含有する組成物から得られた成形体は落球衝撃強度に劣る。
これらの様に、従来、公知のセルロース系樹脂に対して可塑剤や滑剤を任意量添加して様々な改良がされてきたが、電気電子機器筐体外装などの大型成形体として利用する上で、特に重要な特性である落球衝撃強度を改善することはできておらず、この分野での利用は断念せざるをえなかった。
本発明の目的は、良好な熱可塑性を有し、成形性(メルトボリュームレート)、耐熱性(荷重たわみ温度)、剛性(曲げ弾性率)、耐衝撃性(落球衝撃強度)の観点で優れた成形材料を提供することである。また、本発明の別の目的は、該成形材料を成形して得られる成形体、該成形体の製造方法、及び該成形体から構成される電気電子機器用筐体を提供することである。
本発明者らは、セルロースの分子構造に着目し、セルロースをエーテル構造とエステル構造を有する特定構造のセルロース誘導体とし、該特定構造のセルロース誘導体とポリエーテル化合物とを含有する成形材料により、熱可塑性、成形性、耐熱性、剛性、耐衝撃性の全ての観点で優れた性能を発現すること、特に従来のセルロース系樹脂やそれを用いた組成物ではなし得なかった落球衝撃強度が発現できることを見出し、本発明を完成するに至った。
すなわち、上記課題は以下の手段により達成することができる。
[1]
セルロースに含まれる水酸基の水素原子が、
下記A)で置換された基を少なくとも1つ、及び
下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
下記一般式(p1)で表される繰り返し単位及び下記一般式(p2)で表される繰り返し単位のうち少なくとも一方を含み、かつ少なくとも1つの末端基が下記一般式(p1−1)、(p1−2)、(p2−1)、又は(p2−2)で表される基であるポリエーテル化合物とを含有する成形材料。
A)炭化水素基:−R
B)アシル基:−CO−R(Rは炭化水素基を表す。)
−CHCH(R)O− ・・・(p1)
−(CHO− ・・・(p2)
[一般式(p1)及び(p2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。]
−CHCH(R)O−Rm1 ・・・(p1−1)
m2−CHCH(R)O− ・・・(p1−2)
−(CHO−Rm1 ・・・(p2−1)
m2−(CHO− ・・・(p2−2)
[一般式(p1−1)、(p1−2)、(p2−1)、及び(p2−2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。Rm1は水素原子、又は炭素数1〜20のアルキル基を表す。Rm2は水素原子、炭素数1〜20のアルコキシル基、水酸基、又は炭素数2〜20のアシロキシ基を表す。]
[2]
前記ポリエーテル化合物が、前記一般式(p2)で表される繰り返し単位を有し、一方の末端基が前記一般式(p2−1)で表され、Rm1が水素原子であり、もう一方の末端基が前記一般式(p2−2)で表され、Rm2が水酸基である、上記[1]に記載の成形材料。
[3]
前記セルロース誘導体が、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含む、上記[1]又は[2]に記載の成形材料。
C)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。)
[4]
前記C)アルキレンオキシ基とアシル基とを含む基が、下記一般式(3)で表される基である、上記[3]に記載の成形材料。
Figure 2012116901
(式中、RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。nは1以上の整数を表す。)
[5]
前記Rが炭素数1〜4のアルキル基である、上記[1]〜[4]のいずれか1項に記載の成形材料。
[6]
前記Rがメチル基又はエチル基である、上記[1]〜[5]のいずれか1項に記載の成形材料。
[7]
前記R及びRC1が、それぞれ独立に、アルキル基又はアリール基である、上記[3]〜[6]のいずれか1項に記載の成形材料。
[8]
前記R及びRC1が、それぞれ独立に、メチル基、エチル基、又はプロピル基である、上記[3]〜[7]のいずれか1項に記載の成形材料。
[9]
前記Rが、炭素数3〜10の分岐構造を有する炭化水素基である、上記[1]〜[7]のいずれか1項に記載の成形材料。
[10]
前記アルキレンオキシ基が下記式(1)又は(2)で表される基である、上記[3]〜[9]のいずれか1項に記載の成形材料。
Figure 2012116901
[11]
前記セルロース誘導体が、カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない、上記[1]〜[10]のいずれか1項に記載の成形材料。
[12]
前記セルロース誘導体が水に不溶である、上記[1]〜[11]のいずれか1項に記載の成形材料。
[13]
前記ポリエーテル化合物が、ポリエチレングリコール、及びエチレングリコール/プロピレングリコール共重合体から選択される少なくとも一つである、上記[1]〜[12]のいずれか1項に記載の成形材料。
[14]
前記ポリエーテル化合物が、質量平均分子量10,000〜10,000,000である、上記[1]〜[13]のいずれか1項に記載の成形材料。
[15]
上記[1]〜[14]のいずれか1項に記載の成形材料を成形して得られる成形体。
[16]
上記[1]〜[14]のいずれか1項に記載の成形材料を加熱し、成形する工程を含む、成形体の製造方法。
[17]
上記[15]に記載の成形体から構成される電気電子機器用筐体。
本発明の成形材料は、優れた熱可塑性を有するため、加熱成形などにより成形体とすることができる。また、本発明の成形材料によって形成された成形体は、良好な熱可塑性、成形性、耐熱性、剛性、耐衝撃性を有しており、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、植物由来の樹脂であるため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。
本発明は、セルロースに含まれる水酸基の水素原子が、
下記A)で置換された基を少なくとも1つ、及び
下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
下記一般式(p1)で表される繰り返し単位及び下記一般式(p2)で表される繰り返し単位のうち少なくとも一方を含み、かつ少なくとも1つの末端基が下記一般式(p1−1)、(p1−2)、(p2−1)、又は(p2−2)で表される基であるポリエーテル化合物とを含有する成形材料。
A)炭化水素基:−R
B)アシル基:−CO−R(Rは炭化水素基を表す。)
−CHCH(R)O− ・・・(p1)
−(CHO− ・・・(p2)
[一般式(p1)及び(p2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。]
−CHCH(R)O−Rm1 ・・・(p1−1)
m2−CHCH(R)O− ・・・(p1−2)
−(CHO−Rm1 ・・・(p2−1)
m2−(CHO− ・・・(p2−2)
[一般式(p1−1)、(p1−2)、(p2−1)、及び(p2−2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。Rm1は水素原子、又は炭素数1〜20のアルキル基を表す。Rm2は水素原子、炭素数1〜20のアルコキシル基、水酸基、又は炭素数2〜20のアシロキシ基を表す。]
以下、本発明について詳細に説明する。
1.セルロース誘導体
本発明の成形材料に含まれるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、
下記A)で置換された基を少なくとも1つ、及び
下記B)で置換された基を少なくとも1つ含むセルロース誘導体である。
A)炭化水素基:−R
B)アシル基:−CO−R(Rは炭化水素基を表す。)
すなわち、本発明におけるセルロース誘導体は、セルロースエーテルエステルであり、セルロース{(C10}に含まれる水酸基の水素原子の少なくとも一部が、A)炭化水素基:−R、B)アシル基:−CO−R(Rは炭化水素基を表す。)により置換されている。
より詳細には、本発明におけるセルロース誘導体は、下記一般式(A)で表される繰り返し単位を有する。
Figure 2012116901
上記一般式(A)において、R、R及びRは、それぞれ独立に、水素原子、A)炭化水素基:−R、B)アシル基:−CO−R(Rは炭化水素基を表す。)、又はその他の置換基を表す。ただし、R、R、及びRの少なくとも一部がA)炭化水素基を表し、かつR、R、及びRの少なくとも一部がB)アシル基を表す。
本発明におけるセルロース誘導体は、上記のようにβ−グルコース環の水酸基の少なくとも一部がA)炭化水素基、及びB)アシル基によって、エーテル化、及びエステル化されていることにより、熱可塑性を発現することができ、成形加工に適したものとなる。
更には、セルロースは完全な植物由来成分であるため、カーボンニュートラルであり、環境に対する負荷を大幅に低減することができる。
なお、本発明にいう「セルロース」とは、多数のグルコースがβ−1,4−グリコシド結合によって結合した高分子化合物であって、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基が無置換であるものを意味する。また、「セルロースに含まれる水酸基」とは、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基を指す。
前記セルロース誘導体は、その全体のいずれかの部分に前記A)炭化水素基、及びB)アシル基とを含んでいればよく、同一の繰り返し単位からなるものであってもよいし、複数の種類の繰り返し単位からなるものであってもよい。また、前記セルロース誘導体は、ひとつの繰り返し単位において前記A)炭化水素基、及びB)アシル基をすべて含有する必要はない。
より具体的な態様としては、例えば以下の態様が挙げられる。
(1)R、R及びRの少なくとも1つが、A)炭化水素基で置換されている繰り返し単位と、R、R及びRの少なくとも1つが、B)アシル基で置換されている繰り返し単位と、から構成されるセルロース誘導体。
(2)ひとつの繰り返し単位のR、R及びRのいずれか少なくとも1つがA)炭化水素基で置換され、それとは別のいずれか少なくとも1つがB)アシル基で置換されている(すなわち、ひとつの繰り返し単位中に前記A)及びB)の置換基を有する)同種の繰り返し単位から構成されるセルロース誘導体。
(3)置換位置や置換基の種類が異なる繰り返し単位が、ランダムに結合しているセルロース誘導体。
また、セルロース誘導体には、無置換の繰り返し単位(すなわち、前記一般式(A)において、R、R及びRすべてが水素原子である繰り返し単位)を含んでいてもよい。
また、セルロース誘導体は、水素原子、A)炭化水素基、及びB)アシル基以外のその他の置換基を有していても良い。
A)炭化水素基:−Rは、脂肪族基、及び芳香族基のいずれでもよい。
が脂肪族基である場合は、直鎖、分岐、及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。
が芳香族基である場合は、単環、及び縮環のいずれでもよい。Rが芳香族基である場合の好ましい炭素数は6〜18であり、より好ましくは6〜14、更に好ましくは6〜10である。芳香族基としては、例えば、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
A)炭化水素基は、得られる成形材料(以下「樹脂組成物」と称する場合がある。)の耐衝撃性が優れることから、脂肪族基であることが好ましく、メルトフローレート等の成形加工性が優れることから、より好ましくはアルキル基であり、更に好ましくは炭素数1〜4のアルキル基(低級アルキル基)である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2−エチルヘキシル基、tert−ブチル基、イソヘプチル基等が挙げられ、メチル基又はエチル基が特に好ましい。
B)アシル基:−CO−Rにおいて、Rは炭化水素基を表す。Rは、脂肪族基、及び芳香族基のいずれでもよい。
が脂肪族基である場合は、直鎖、分岐、及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。
が芳香族基である場合は、単環、及び縮環のいずれでもよい。芳香族基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
は、好ましくはアルキル基又はアリール基である。Rは、より好ましくは炭素数1〜12のアルキル基又はアリール基であり、更に好ましくは炭素数1〜12のアルキル基であり、Tgが高く、曲げ弾性率及び荷重たわみ温度が向上するという理由から特に好ましくは炭素数1〜4のアルキル基であり(好ましくはメチル基、エチル基、プロピル基)、最も好ましくは炭素数1又は2のアルキル基(すなわち、メチル基又はエチル基)である。
また、Rは、炭素数3〜10の分岐構造を有する炭化水素基であることも耐衝撃性及び成形性の観点から好ましく、炭素数3〜10の分岐構造を有するアルキル基であることがより好ましく、炭素数7〜9の分岐構造を有するアルキル基であることが更に好ましい。
としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、1−エチルペンチル基、2−エチルヘキシル基、tert−ブチル基、及びイソヘプチル基等が挙げられる。好ましくは、Rはメチル基、エチル基、プロピル基、又は3−ヘプチル基であり、より好ましくはメチル基、エチル基、又は3−ヘプチル基である。
本発明の成形材料におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、前記A)で置換された基を少なくとも1つ、及び前記B)で置換された基を少なくとも1つ含むセルロース誘導体であるが、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含むことが耐衝撃性の観点から好ましい。
C)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。)
前記C)に含まれるアシル基(−CO−RC1)において、RC1は炭化水素基を表す。RC1が表す炭化水素基としては、前記Rで挙げたものと同様のものを適用することができる。RC1の好ましい範囲も前記Rと同様である。
前記C)に含まれるアルキレンオキシ基(−RC2−O−)において、RC2は炭素数が2〜4のアルキレン基を表す。RC2は、直鎖状、分岐状、又は環状のいずれでもよいが、直鎖状、又は分岐状が好ましく、分岐状がより好ましい。
アルキレンオキシ基(−RC2−O−)としては、炭素数2又は3のアルキレンオキシ基が好ましい。アルキレンオキシ基としては具体的には下記構造が好ましく挙げられる。
Figure 2012116901
上記の中でも、得られる成形材料の曲げ弾性率が優れることから、−RC2−O−が分岐状である下記式(1)又は(2)で表される基が好ましい。
Figure 2012116901
前記C)の基は、アルキレンオキシ基を複数含んでいてもよいし、1つだけ含むものであってもよい。好ましくは、前記C)の基は、下記一般式(3)で表すことができる。
Figure 2012116901
前記一般式(3)中、RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。RC1及びRC2の好ましい範囲は、前記したものと同様である。nは1以上の整数である。nの上限は特に限定されず、アルキレンオキシ基の導入量等により変わるが、例えば10程度である。nは好ましくは1〜5であり、より好ましくは1〜3であり、更に好ましくは1である。
C2が複数存在する場合には互いに同じでも異なっていてもよいが、同じであることが好ましい。
また、本発明におけるセルロース誘導体は、アルキレンオキシ基を1つだけ含む前記C)の基(上記一般式(3)においてnが1である基)と、アルキレンオキシ基を2以上含む前記C)の基(上記一般式(3)においてnが2以上である基)とを含んでいてもよい。
また、前記C)の基におけるアルキレンオキシ基のセルロース誘導体に対する結合向きは特に限定されないが、アルキレンオキシ基のアルキレン基部分(RC2)がβ−グルコース環構造側に結合していることが好ましい。
前記A)におけるR、前記B)におけるR、前記C)におけるRC1及びRC2は、さらなる置換基を有していてもよいし無置換でもよいが、無置換であることが好ましい。
前記A)におけるR、前記B)におけるR、前記C)におけるRC1及びRC2がさらなる置換基を有する場合、さらなる置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、ヒドロキシ基、アルコキシ基(アルキル基部分の炭素数は好ましくは1〜5)、アルケニル基等が挙げられる。ただし、置換基を含む場合でもRC2の炭素数は2又は3である。なお、R、R、及びRC1がアルキル基以外である場合は、アルキル基(好ましくは炭素数1〜5)を置換基として有することもできる。
特に、R及びRC1がさらなる置換基を有する場合、カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないことが好ましい。セルロース誘導体がカルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないことにより、本発明の成形材料を水不溶性とすることができ、成形性を更に向上させることができる。また、セルロース誘導体がカルボキシル基、スルホン酸基、及びこれらの塩を有する場合、化合物安定性を悪化させることが知られており、特に熱分解を促進することがあるため、これらの基を含まないことが好ましい。
なお、「カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない」とは、本発明におけるセルロース誘導体が全くカルボキシル基、スルホン酸基、及びこれらの塩を有さない場合のみならず、本発明におけるセルロース誘導体が水に不溶な範囲で微量のカルボキシル基、スルホン酸基、及びこれらの塩を有する場合を包含するものとする。例えば、原料であるセルロースにカルボキシル基が含まれる場合があり、これを用いて前記A)〜C)の置換基を導入したセルロース誘導体はカルボキシル基が含まれる場合があるが、これは「カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないセルロース誘導体」に含まれるものとする。
この場合、カルボキシル基、スルホン酸基、及びこれらの塩の好ましい含有量としては、セルロース誘導体に対して1質量%以下、より好ましくは0.5質量%以下である。
また、本発明におけるセルロース誘導体は、水に不溶であることが好ましい。ここで、「水に不溶である」とは、25℃の水100質量部への溶解度が5質量部以下であることとする。
本発明におけるセルロース誘導体の具体例としては、
アセチルメチルセルロース、アセチルエチルセルロース、アセチルプロピルセルロース、アセチルブチルセルロース、アセチルペンチルセルロース、アセチルヘキシルセルロース、アセチルシクロヘキシルセルロース、アセチルフェニルセルロース、アセチルナフチルセルロース、
プロピオニルメチルセルロース、プロピオニルエチルセルロース、プロピオニルプロピルセルロース、プロピオニルブチルセルロース、プロピオニルペンチルセルロース、プロピオニルヘキシルセルロース、プロピオニルシクロヘキシルセルロース、プロピオニルフェニルセルロース、プロピオニルナフチルセルロース、
ブチリルメチルセルロース、ブチリルエチルセルロース、ブチリルプロピルセルロース、ブチリルブチルセルロース、ブチリルペンチルセルロース、ブチリルヘキシルセルロース、ブチリルシクロヘキシルセルロース、ブチリルフェニルセルロース、ブチリルナフチルセルロース、
メチルセルロース−2−エチルヘキサノエート、エチルセルロース−2−エチルヘキサノエート、プロピルセルロース−2−エチルヘキサノエート、ブチルセルロース−2−エチルヘキサノエート、ペンチルセルロース−2−エチルヘキサノエート、ヘキシルセルロース−2−エチルヘキサノエート、シクロヘキシルセルロース−2−エチルヘキサノエート、フェニルセルロース−2−エチルヘキサノエート、ナフチルセルロース−2−エチルヘキサノエート、
アセトキシエチルメチルアセチルセルロース、アセトキシエチルエチルアセチルセルロース、アセトキシエチルプロピルアセチルセルロース、アセトキシエチルブチルアセチルセルロース、アセトキシエチルペンチルアセチルセルロース、アセトキシエチルヘキシルアセチルセルロース、アセトキシエチルシクロヘキシルアセチルセルロース、アセトキシエチルフェニルアセチルセルロース、アセトキシエチルナフチルアセチルセルロース、
アセトキシエチルメチルプロピオニルセルロース、アセトキシエチルエチルプロピオニルセルロース、アセトキシエチルプロピルプロピオニルセルロース、アセトキシエチルブチルプロピオニルセルロース、アセトキシエチルペンチルプロピオニルセルロース、アセトキシエチルヘキシルプロピオニルセルロース、アセトキシエチルシクロヘキシルプロピオニルセルロース、アセトキシエチルフェニルプロピオニルセルロース、アセトキシエチルナフチルプロピオニルセルロース、
アセトキシエチルメチルセルロース−2−エチルヘキサノエート、アセトキシエチルエチルセルロース−2−エチルヘキサノエート、アセトキシエチルプロピルセルロース−2−エチルヘキサノエート、アセトキシエチルブチルセルロース−2−エチルヘキサノエート、アセトキシエチルペンチルセルロース−2−エチルヘキサノエート、アセトキシエチルヘキシルセルロース−2−エチルヘキサノエート、アセトキシエチルシクロヘキシルセルロース−2−エチルヘキサノエート、アセトキシエチルフェニルセルロース−2−エチルヘキサノエート、アセトキシエチルナフチルセルロース−2−エチルヘキサノエート、
プロピオニルオキシエチルメチルアセチルセルロース、プロピオニルオキシエチルエチルアセチルセルロース、プロピオニルオキシエチルプロピルアセチルセルロース、プロピオニルオキシエチルブチルアセチルセルロース、プロピオニルオキシエチルペンチルアセチルセルロース、プロピオニルオキシエチルヘキシルアセチルセルロース、プロピオニルオキシエチルシクロヘキシルアセチルセルロース、プロピオニルオキシエチルフェニルアセチルセルロース、プロピオニルオキシエチルナフチルアセチルセルロース、
プロピオニルオキシエチルメチルプロピオニルセルロース、プロピオニルオキシエチルエチルプロピオニルセルロース、プロピオニルオキシエチルプロピルプロピオニルセルロース、プロピオニルオキシエチルブチルプロピオニルセルロース、プロピオニルオキシエチルペンチルプロピオニルセルロース、プロピオニルオキシエチルヘキシルプロピオニルセルロース、プロピオニルオキシエチルシクロヘキシルプロピオニルセルロース、プロピオニルオキシエチルフェニルプロピオニルセルロース、プロピオニルオキシエチルナフチルプロピオニルセルロース、
プロピオニルオキシエチルメチルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルエチルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルプロピルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルブチルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルペンチルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルヘキシルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルシクロヘキシルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルフェニルセルロース−2−エチルヘキサノエート、プロピオニルオキシエチルナフチルセルロース−2−エチルヘキサノエート、
アセトキシプロピルメチルアセチルセルロース、アセトキシプロピルエチルアセチルセルロース、アセトキシプロピルプロピルアセチルセルロース、アセトキシプロピルブチルアセチルセルロース、アセトキシプロピルペンチルアセチルセルロース、アセトキシプロピルヘキシルアセチルセルロース、アセトキシプロピルシクロヘキシルアセチルセルロース、アセトキシプロピルフェニルアセチルセルロース、アセトキシプロピルナフチルアセチルセルロース、
プロピオニルオキシプロピルメチルアセチルセルロース、プロピオニルオキシプロピルエチルアセチルセルロース、プロピオニルオキシプロピルプロピルアセチルセルロース、プロピオニルオキシプロピルブチルアセチルセルロース、プロピオニルオキシプロピルペンチルアセチルセルロース、プロピオニルオキシプロピルヘキシルアセチルセルロース、プロピオニルオキシプロピルシクロヘキシルアセチルセルロース、プロピオニルオキシプロピルフェニルアセチルセルロース、プロピオニルオキシプロピルナフチルアセチルセルロース、
バレロキシプロピルメチルバレロイルセルロース、バレロキシブチルメチルバレロイルセルロースなどが挙げられる。
本発明の成形材料は、前記特定のセルロース誘導体を1種のみ含んでもよいし、2種以上を含んでもよい。
本発明におけるセルロース誘導体中のA)炭化水素基:−R、B)アシル基:−CO−R、及びC)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基の置換位置、並びにβ−グルコース環単位当たりの各置換基の数(置換度)は特に限定されない。
例えば、A)炭化水素基:−Rの置換度DS(繰り返し単位中、β−グルコース環の2位、3位及び6位の水酸基に対するRの数)は、1.0<DSであることが好ましく、1.0<DS<2.5がより好ましい。また、DSは1.1以上であることが好ましい。
B)アシル基(−CO−R)の置換度DS(繰り返し単位中、β−グルコース環のセルロース構造の2位、3位及び6位の水酸基に対する−CO−Rの数)は、0.1<DSであることが好ましく、0.1<DS<2.0であることがより好ましい。
C)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基の置換度DS(繰り返し単位中、β−グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するC)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基の数)は、0<DSであることが好ましく、0<DS<1.0であることがより好ましい。0<DSであることにより、セルロース誘導体の溶融開始温度を低くできるので、熱成形をより容易に行うことができる。
上記のような範囲の置換度とすることにより、機械強度及び成形性等を向上させることができる。
また、セルロース誘導体中に存在する無置換の水酸基の数も特に限定されない。水素原子の置換度DS(繰り返し単位中、2位、3位及び6位の水酸基が無置換である割合)は0〜1.5の範囲とすることができ、好ましくは0〜0.6とすればよい。DSを0.6以下とすることにより、成形材料の流動性を向上させたり、熱分解の加速・成形時の成形材料の吸水による発泡等を抑制させたりできる。
また、本発明におけるセルロース誘導体は、A)炭化水素基、B)アシル基、及びC)アルキレンオキシ基とアシル基とを含む基以外の置換基を有しても良い。有してもよい置換基の例としては、例えばヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシエトキシエチル基、ヒドロキシプロポキシプロピル基、ヒドロキシエトキシエトキシエチル基、ヒドロキシプロポキシプロポキシプロピル基が挙げられる。よって、セルロース誘導体が有するすべての置換基の各置換度の総和は3であるが、(DS+DS+DS+DS)は3以下である。
また、前記C)の基におけるアルキレンオキシ基の導入量はモル置換度(MS:グルコース残基あたりの置換基の導入モル数)で表される(セルロース学会編集、セルロース辞典P142)。アルキレンオキシ基のモル置換度MSは、0<MSであることが好ましく、0<MS≦1.5であることがより好ましく、0<MS<1.0であることが更に好ましい。MSが1.5以下(MS≦1.5)であることにより、耐熱性・成形性等を向上させることができ、成形材料に好適なセルロース誘導体が得られる。
本発明の成形材料におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、前記A)で置換された基を少なくとも1つ、及び前記B)で置換された基を少なくとも1つ含むセルロース誘導体であるが、セルロースに含まれる水酸基の水素原子が置換される場合は、成形性の観点から、前記A)及び前記B)のみで置換されているか、又は前記A)、前記B)、及び前記C)のみで置換されている場合が好ましい。すなわち本発明におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が前記A)、前記B)、及び前記C)以外の基により置換されていないことが好ましい。
本発明におけるセルロース誘導体の分子量は、数平均分子量(Mn)が5×10〜1000×10の範囲が好ましく、10×10〜500×10の範囲が更に好ましく、10×10〜200×10の範囲が最も好ましい。また、質量平均分子量(Mw)は、7×10〜10000×10の範囲が好ましく、15×10〜5000×10の範囲が更に好ましく、100×10〜3000×10の範囲が最も好ましい。この範囲の平均分子量とすることにより、成形体の成形性、力学強度等を向上させることができる。
分子量分布(MWD)は1.1〜10.0の範囲が好ましく、1.5〜8.0の範囲が更に好ましい。この範囲の分子量分布とすることにより、成形性等を向上させることができる。
本発明における、数平均分子量(Mn)、質量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N−メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
2.セルロース誘導体の製造方法
本発明におけるセルロース誘導体の製造方法は特に限定されず、セルロースを原料とし、セルロースに対しエーテル化及びエステル化することにより本発明におけるセルロース誘導体を製造することができる。セルロースの原料としては限定的でなく、例えば、綿、リンター、パルプ等が挙げられる。
前記A)炭化水素基:−R、及びB)アシル基:−CO−R(Rは炭化水素基を表す。)を有するセルロース誘導体の好ましい製造方法の態様は、セルロースエーテルに、塩基存在下、酸クロリド又は酸無水物等を反応させることにより、エステル化する工程を含むものである。
前記セルロースエーテルとしては、例えば、セルロースに含まれるβ−グルコース環の2位、3位、及び6位の水酸基の水素原子の少なくとも一部が、炭化水素基に置換されたものを用いることができ、具体的には、メチルセルロース、エチルセルロース、プロピルセルロース、ブチルセルロース、アリルセルロース、ベンジルセルロース等が挙げられる。
前記A)炭化水素基:−R、B)アシル基:−CO−R(Rは炭化水素基を表す。)、及びC)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。)を有するセルロース誘導体の好ましい製造方法の態様は、炭化水素基と、ヒドロキシエチル基を有するヒドロキシエチルセルロースエーテル又はヒドロキシプロピル基とを有するヒドロキシプロピルセルロースエーテルに酸クロライド又は酸無水物等を反応させることにより、エステル化(アシル化)する工程を含む方法によって行うものである。
また、別の態様として、例えばメチルセルロース、エチルセルロース等のセルロースエーテルにプロピレンオキサイド等によりエーテル化するか、又はセルロースにメチルクロライド、エチルクロライド等のアルキルクロライド/炭素数3のアルキレンオキサイド等を作用させた後、更に酸クロライド又は酸無水物等を反応させることにより、エステル化する工程を含む方法も挙げられる。
酸クロライドを反応させる方法としては、例えばCellulose 10;283−296,2003に記載の方法を用いることができる。
炭化水素基とヒドロキシエチル基を有するセルロースエーテルとしては、具体的には、ヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロース、ヒドロキシエチルプロピルセルロース、ヒドロキシエチルアリルセルロース、ヒドロキシエチルベンジルセルロース等が挙げられる。好ましくは、ヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロースである。
炭化水素基とヒドロキシプロピル基を有するセルロースエーテルとしては、具体的には、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、ヒドロキシプロピルプロピルセルロース、ヒドロキシプロピルアリルセルロース、ヒドロキシプロピルベンジルセルロース等が挙げられる。好ましくは、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロースである。
酸クロリドとしては、前記B)アシル基、及びC)に含まれるアシル基に対応したカルボン酸クロライドを使用することができる。カルボン酸クロリドとしては、例えば、アセチルクロライド、プロピオニルクロライド、ブチリルクロリド、イソブチリルクロリド、ペンタノイルクロリド、2−メチルブタノイルクロリド、3−メチルブタノイルクロリド、ピバロイルクロリド、ヘキサノイルクロリド、2−メチルペンタノイルクロリド、3−メチルペンタノイルクロリド、4−メチルペンタノイルクロリド、2,2−ジメチルブタノイルクロリド、2,3−ジメチルブタノイルクロリド、3,3−ジメチルブタノイルクロリド、2−エチルブタノイルクロリド、ヘプタノイルクロリド、2−メチルヘキサノイルクロリド、3−メチルヘキサノイルクロリド、4−メチルヘキサノイルクロリド、5−メチルヘキサノイルクロリド、2,2−ジメチルペンタノイルクロリド、2,3−ジメチルペンタノイルクロリド、3,3−ジメチルペンタノイルクロリド、2−エチルペンタノイルクロリド、シクロヘキサノイルクロリド、オクタノイルクロリド、2−メチルヘプタノイルクロリド、3−メチルヘプタノイルクロリド、4−メチルヘプタノイルクロリド、5−メチルヘプタノイルクロリド、6−メチルヘプタノイルクロリド、2,2−ジメチルヘキサノイルクロリド、2,3−ジメチルヘキサノイルクロリド、3,3−ジメチルヘキサノイルクロリド、2−エチルヘキサノイルクロリド、2−プロピルペンタノイルクロリド、ノナノイルクロリド、2−メチルオクタノイルクロリド、3−メチルオクタノイルクロリド、4−メチルオクタノイルクロリド、5−メチルオクタノイルクロリド、6−メチルオクタノイルクロリド、2,2−ジメチルヘプタノイルクロリド、2,3−ジメチルヘプタノイルクロリド、3,3−ジメチルヘプタノイルクロリド、2−エチルヘプタノイルクロリド、2−プロピルヘキサノイルクロリド、2−ブチルペンタノイルクロリド、デカノイルクロリド、2−メチルノナノイルクロリド、3−メチルノナノイルクロリド、4−メチルノナノイルクロリド、5−メチルノナノイルクロリド、6−メチルノナノイルクロリド、7−メチルノナノイルクロリド、2,2−ジメチルオクタノイルクロリド、2,3−ジメチルオクタノイルクロリド、3,3−ジメチルオクタノイルクロリド、2−エチルオクタノイルクロリド、2−プロピルヘプタノイルクロリド、2−ブチルヘキサノイルクロリド等が挙げられる。
酸無水物としては、例えば前記B)アシル基、及びC)に含まれるアシル基に対応したカルボン酸無水物を使用することができる。このようなカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、酪酸無水物、吉草酸無水物、ヘキサン酸無水物、ヘプタン酸無水物、オクタン酸無水物、2−エチルヘキサン酸無水物、ノナン酸無水物等が挙げられる。
なお、前述したとおり、本発明におけるセルロース誘導体は置換基としてカルボン酸を有さないことが好ましいため、例えば無水フタル酸、無水マレイン酸等のジカルボン酸等、セルロースと反応させてカルボキシル基が生じる化合物を用いないことが好ましい。
そのほかの具体的な製造条件等は、常法に従うことができる。例えば、「セルロースの事典」131頁〜164頁(朝倉書店、2000年)等に記載の方法を参考にすることができる。
3.ポリエーテル化合物
本発明の成形材料は、前記セルロース誘導体と、下記一般式(p1)で表される繰り返し単位及び下記一般式(p2)で表される繰り返し単位のうち少なくとも一方を含み、かつ少なくとも1つの末端基が下記一般式(p1−1)、(p1−2)、(p2−1)、又は(p2−2)で表される基であるポリエーテル化合物とを含有する。
−CHCH(R)O− ・・・(p1)
−(CHO− ・・・(p2)
[一般式(p1)及び(p2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。]
−CHCH(R)O−Rm1 ・・・(p1−1)
m2−CHCH(R)O− ・・・(p1−2)
−(CHO−Rm1 ・・・(p2−1)
m2−(CHO− ・・・(p2−2)
[一般式(p1−1)、(p1−2)、(p2−1)、及び(p2−2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。Rm1は水素原子、又は炭素数1〜20のアルキル基を表す。Rm2は水素原子、炭素数1〜20のアルコキシル基、水酸基、又は炭素数2〜20のアシロキシ基を表す。]
ポリエーテル化合物が前記セルロース誘導体との相溶性に優れるため、本発明の成形材料から得られた成形体は応力を緩和しやすく、落球衝撃強度が非常に高い。更に、ポリエーテル化合物の流動特性が良好なため、成形材料としての成形加工性(溶融時の流動性)も良好になる効果を有する。また、ポリエーテル化合物は生分解性の低いフェニル基、アルキルフェニル基、アリールフェニル基などの芳香族で置換されていないため生分解性が良好であるという特徴も有している。
ポリエーテル化合物は、一般式(p1)で表される繰り返し単位及び一般式(p2)で表される繰り返し単位のうち少なくとも一方と前記末端基のみからなることが好ましい。
ポリエーテル化合物は、一般式(p1)で表される繰り返し単位を有する場合は少なくとも1つの末端基が一般式(p1−1)又は(p1−2)で表されることが好ましく、一般式(p2)で表される繰り返し単位を有する場合は少なくとも1つの末端基が一般式(p2−1)又は(p2−2)で表されることが好ましい。
前記ポリエーテル化合物における末端基について説明する。
一般式(p1−1)及び(p2−1)におけるRm1は、前記セルロース誘導体との相溶性がより優れるため、好ましくは水素原子又は炭素数1〜16のアルキル基であり、更に好ましくは水素原子又は炭素数1〜12のアルキル基であり、最も好ましくは水素原子又は炭素数1〜8のアルキル基である。
炭素数1〜20のアルキル基としては具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2−エチルヘキシル基、tert−ブチル基、イソヘプチル基、ステアリル基、ラウリル基等が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2−エチルヘキシル基、tert−ブチル基、イソヘプチル基が好ましい。
一般式(p1−2)及び(p2−2)におけるRm2が炭素数1〜20のアルコキシル基を表す場合、該炭素数1〜20のアルコキシル基としては具体的には、上記Rm1がアルキル基を表す場合のアルキル基に酸素原子が結合したものであり、メチルオキシ基、エチルオキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、2−エチルヘキシルオキシ基、tert−ブチルオキシ基、イソヘプチルオキシ基、ステアリルオキシ基、ラウリルオキシ基等が挙げられ、メチルオキシ基、エチルオキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、2−エチルヘキシルオキシ基、tert−ブチルオキシ基、イソヘプチルオキシ基が好ましい。
一般式(p1−2)及び(p2−2)におけるRm2が炭素数1〜20のアルキル基を表す場合、該アルキル基の具体例及び好ましい範囲は上記Rm1がアルキル基を表す場合の具体例及び好ましい範囲と同様である。
一般式(p1−2)及び(p2−2)におけるRm2が炭素数2〜20のアシロキシ基を表す場合、該炭素数2〜20のアシロキシ基としては具体的には、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレロイルオキシ基、2−エチルヘキサノイルオキシ基、ステアロイルオキシ基、ラウロイルオキシ基等が挙げられ、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、バレロイルオキシ基、2−エチルヘキサノイルオキシ基が好ましい。
前記ポリエーテル化合物における末端基は同じでも異なっていてもよい。
一般式(p1)中、Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。Rは、得られる成形体の耐衝撃性が優れることから、好ましくは炭素数1〜4のアルキル基、炭素数1〜4のアルコキシル基、又は塩素原子であり、更に好ましくは炭素数1〜3のアルキル基、又は炭素数1〜3のアルコキシル基、最も好ましくは炭素数1〜2のアルキル基、又は炭素数1〜2のアルコキシル基である。
一般式(p1)中、pは2〜5の整数を表し、前記セルロース誘導体との相溶性が優れることから、好ましくは2〜4の整数、更に好ましくは2〜3の整数である。
前記ポリエーテル化合物は一般式(p1)で表される繰り返し単位及び一般式(p2)で表される繰り返し単位を両方有していてもよい。また、一般式(p1)で表される繰り返し単位を2種以上有してもよく、一般式(p2)で表される繰り返し単位を2種以上有してもよい。
ポリエーテル化合物が一般式(p1)で表される繰り返し単位及び一般式(p2)で表される繰り返し単位を両方有する場合、一般式(p1)で表される繰り返し単位と一般式(p2)で表される繰り返し単位との含有比はモル比で2:98〜50:50が好ましく、5:95〜25:75がより好ましい。
本発明において、ポリエーテル化合物が、前記一般式(p2)で表される繰り返し単位を有し、一方の末端基が前記一般式(p2−1)で表され、Rm1が水素原子であり、もう一方の末端基が前記一般式(p2−2)で表され、Rm2が水酸基であることが得られる成形体の耐衝撃性が優れることから好ましい。
本発明におけるポリエーテル化合物において、一般式(p1)で表される繰り返し単位、及び一般式(p2)で表される繰り返し単位の含有量は本発明のセルロース誘導体との相溶性に優れることから、全繰り返し単位に対して一般式(p2)の繰り返し単位の比率が70〜100モル%であることが好ましく、85〜100モル%であることがより好ましい。
本発明において、ポリエーテル化合物は一般式(p1)、(p2)以外のその他の繰り返し単位を有していてもよいが、本発明のセルロース誘導体との相溶性が低下し、得られる成形体の落球衝撃強度が低下することから有さないことが好ましい。すなわち、ポリエーテル化合物は一般式(p1)で表される繰り返し単位のみからなる場合、一般式(p2)で表される繰り返し単位のみからなる場合、又は、一般式(p1)で表される繰り返し単位及び一般式(p2)で表される繰り返し単位のみからなる場合が好ましい。ポリエーテル化合物がその他の繰り返し単位を有する場合は全繰り返し単位に対して1〜30モル%であることが好ましく、1〜20モル%であることがより好ましい。
前記ポリエーテル化合物の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエピクロロヒドリン、エチレングリコール/プロピレングリコール共重合体、エピクロロヒドリン/エチレンオキサイド/アリルグリシジルエーテル共重合体、エチレングリコール/プロピレングリコール/アリルグリシジルエーテル共重合体、ポリオキシエチレンジメチルエーテル、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレート、ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレート、ポリオキシエチレンジオレートなどが挙げられるがこれらに限定されない。この中でも、ポリエチレングリコール、エチレングリコール/プロピレングリコール共重合体が好ましい。
これらポリエーテル化合物は工業的に入手可能であり、住友精化工業(株)、明成化学工業(株)、日本ゼオン(株)などから種々の構造、分子量のものが販売されている。
ポリエーテル化合物の分子量としては特に限定されないが、ポリスチレン換算質量平均分子量として、10,000〜10,000,000であることで得られる樹脂組成物の落球衝撃強度が向上し、上記セルロース誘導体との相溶性も良好となるため好ましい。落球衝撃強度と成形加工性とのバランスに優れることから、より好ましくは50,000〜5,000,000、特に好ましくは100,000〜2,000,000である。
本発明の成形材料におけるポリエーテル化合物の配合量は、1〜50質量%であることが好ましい。配合量を50質量%以下とすることにより、得られる樹脂組成物の弾性率や熱変形温度が良好となる。一方、配合量を1質量%以上とすることにより、得られる樹脂組成物の落球衝撃強度や成形性加工性(溶融時の流動性)が良好になる。本発明の成形材料におけるポリエーテル化合物の配合量は、より好ましくは5〜40質量%であり、特に好ましくは10〜20質量%である。
4.成形材料、及び成形体
本発明の成形材料は、上記で説明したセルロース誘導体とポリエーテル化合物を含有しており、必要に応じてその他の添加剤を含有することができる。
本発明の成形材料に含まれる成分の含有割合は、特に限定されない。好ましくはセルロース誘導体を50質量%以上、より好ましくは60質量%以上99質量%以下、更に好ましくは80質量%以上95質量%以下、特に好ましくは80質量%以上90質量%以下含有する。
本発明の成形材料は、セルロース誘導体及びポリエーテル化合物のほか、必要に応じて、酸化防止剤、フィラー(強化材)、難燃剤等の種々の添加剤を含有していてもよい。
本発明の成形材料は、更に酸化防止剤を含有することが好ましい。これによって、セルロース誘導体の熱劣化を抑制できるため、セルロース誘導体への添加量が少量であっても十分な効果を発揮することができる。したがって、特定のセルロース誘導体が有する耐衝撃性、成形性、剛性、曲げ強度、耐熱性等の低下を抑えることができる。
本発明における酸化防止剤は、低分子化合物であっても、高分子化合物であってもよく、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤を用いることができる。
ヒンダードフェノール系酸化防止剤の具体例としては、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル) プロピオネート]、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、1.6−ヘキサンジオール−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、オクタドデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル及び1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンなどが挙げられる。
リン系酸化防止剤としては、次亜リン酸カルシウム、2,6−ジ−t−ブチル−4−メチルフェノール、テトラキス(メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)メタン、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジン)イソシアヌレート等のフェノール系化合物、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート等のイオウ化合物、トリスノニルフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト等のリン系化合物などが挙げられるが、中でも次亜リン酸カルシウムが好ましい。
アミン系酸化防止剤としては、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オキザレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)エタン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)ベンゼン−1,3,5−トリカルボキシレート、フェニル−α−ナフチルアミン、フェニル−β−ナフチルアミン、N,N′−ジフェニル−p−フェニレンジアミン、N−フェニル−N′−シクロヘキシル−p−フェニレンジアミン、N−イソプロピル−N′−フェニル−p−フェニレンジアミンなどが挙げられる。
イオウ系酸化防止剤の具体例としては、チオエーテル系、ジチオカルバミン酸ニッケルなどのジチオ酸塩系、メルカプトベンズイミダゾール系、チオカルバニリド系、及びチオジプロピオンエステル系などのイオウを含む化合物を挙げることができる。これらの中でも、特にチオジプロピオンエステル系化合物の使用が好ましい。
本発明における酸化防止剤としては、ヒンダードフェノール系酸化防止剤を用いることが好ましい。
本発明の成形材料が酸化防止剤を含有する場合、その含有量は限定的でないが、成形材料に対して0.01〜5質量%が好ましく、更に好ましくは0.1〜3質量%である。0.01質量%以上であれば酸化防止剤の添加の効果を得ることができ、5質量%以下であればセルロース誘導体の耐衝撃性、成形性、剛性、曲げ強度、耐熱性等の低下を抑えることができるため好ましい。
本発明の成形材料は、フィラー(強化材)を含有してもよい。フィラーを含有することにより、成形材料によって形成される成形体の機械的特性を強化することができる。
フィラーとしては、公知のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。
成形材料がフィラーを含有する場合、その含有量は限定的でないが、成形材料に対して、通常30質量%以下、好ましくは5〜10質量%とすればよい。
本発明の成形材料は、難燃剤を含有してもよい。これによって、その燃焼速度の低下又は抑制といった難燃効果を向上させることができる。
難燃剤は、特に限定されず、常用のものを用いることができる。例えば、臭素系難燃剤、塩素系難燃剤、リン含有難燃剤、ケイ素含有難燃剤、窒素化合物系難燃剤、無機系難燃剤等が挙げられる。これらの中でも、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、また、焼却廃棄時にハロゲンが気散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないことから、リン含有難燃剤及びケイ素含有難燃剤が好ましい。
リン含有難燃剤としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、縮合リン酸エステル、ポリリン酸塩などの有機リン系化合物が挙げられる。
リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2−エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2−エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2−アクリロイルオキシエチルアシッドホスフェート、2−メタクリロイルオキシエチルアシッドホスフェート、ジフェニル−2−アクリロイルオキシエチルホスフェート、ジフェニル−2−メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。
リン酸縮合エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ−2,6−キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6−キシリル)ホスフェート並びにこれらの縮合物などの芳香族リン酸縮合エステル等を挙げることができる。
また、リン酸、ポリリン酸と周期律表1族〜14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。
また、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β−クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
ケイ素含有難燃剤としては、二次元又は三次元構造の有機ケイ素化合物、ポリジメチルシロキサン、又はポリジメチルシロキサンの側鎖又は末端のメチル基が、水素原子、置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基で置換又は修飾されたもの、いわゆるシリコーンオイル、又は変性シリコーンオイルが挙げられる。
置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基としては、例えば、アルキル基、シクロアルキル基、フェニル基、ベンジル基、アミノ基、エポキシ基、ポリエーテル基、カルボキシル基、メルカプト基、クロロアルキル基、アルキル高級アルコールエステル基、アルコール基、アラルキル基、ビニル基、又はトリフロロメチル基等が挙げられる。
これらのケイ素含有難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
また、前記リン含有難燃剤又はケイ素含有難燃剤以外の難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ、ヒドロキシスズ酸亜鉛、スズ酸亜鉛、メタスズ酸、酸化スズ、酸化スズ塩、硫酸亜鉛、酸化亜鉛、酸化第一鉄、酸化第二鉄、酸化第一錫、酸化第二スズ、ホウ酸亜鉛、ホウ酸アンモニウム、オクタモリブデン酸アンモニウム、タングステン酸の金属塩、タングステンとメタロイドとの複合酸化物、スルファミン酸アンモニウム、臭化アンモニウム、ジルコニウム系化合物、グアニジン系化合物、フッ素系化合物、黒鉛、膨潤性黒鉛等の無機系難燃剤を用いることができる。これらの他の難燃剤は、1種単独で用いても、2種以上を併用して用いてもよい。
本発明の成形材料が難燃剤を含有する場合、その含有量は限定的でないが、成形材料に対して、通常30質量%以下、好ましくは2〜10質量%とすればよい。この範囲とすることにより、耐衝撃性・脆性等を改良させたり、ペレットブロッキングの発生を抑制できる。
本発明の成形材料は、前記したもの以外にも、本発明の目的を阻害しない範囲で、成形性・難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
他の成分としては、例えば、前記セルロース誘導体以外のポリマー、可塑剤、安定剤(紫外線吸収剤など)、帯電防止剤、難燃助剤、加工助剤、ドリップ防止剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
前記セルロース誘導体以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロース誘導体以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−プロピレン−非共役ジエン共重合体、エチレン−ブテン−1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン−プロピレンブロックコポリマーなど)、ポリブテン−1及びポリ−4−メチルペンテン−1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル−アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル−スチレン共重合体)、ABS樹脂、AES樹脂(エチレン系ゴム強化AS樹脂)、ACS樹脂(塩素化ポリエチレン強化AS樹脂)、ASA樹脂(アクリル系ゴム強化AS樹脂)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸−スチレン共重合体、MS樹脂(メタクリル酸メチル−スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、酢酸セルロース、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。
また、各種アクリルゴム、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン−アクリル酸アルキルエステル共重合体(例えば、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4−ポリブタジエン、1,2−ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン−ブタジエンランダム共重合体、スチレン−ブタジエンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレンランダム共重合体、スチレン−イソプレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン−アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。
更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものや、コア層とそれを覆う1以上のシェル層から構成され、また隣接し合った層が異種の重合体から構成されるいわゆるコアシェルゴムと呼ばれる多層構造重合体なども使用することができ、更にシリコーン化合物を含有したコアシェルゴムも使用することができる。
これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
本発明の成形材料がセルロース誘導体以外のポリマーを含有する場合、その含有量は、成形材料に対して30質量%以下が好ましく、2〜10質量%がより好ましい。
本発明の成形材料は、着色剤を添加することもできる。
着色剤としては公知の顔料、染料等が挙げられ、好ましい顔料としては、有機顔料としては、モノアゾ及び縮合アゾ系、アンスラキノン系、イソインドリノン系、複素環系、ペリノン系、キナクリドン系、ペリレン系、チオインジゴ系、ジオキサジン系等が挙げられる。無機顔料としては、カーボンブラック、酸化チタン、チタンイエロー、酸化鉄、群青、コバルトブルー、焼成顔料、メタリック顔料等が挙げられる。
ここで、カーボンブラックとしては、チャネルブラック系、ファーネスブラック系、ランプブラック系、サーマルブラック系、ケッチェンブラック系、ナフタレンブラック系等が好ましく用いられる。これらのカーボンブラックは1種で用いても良いし、又、2種以上を組み合わせて用いてもよい。また、他の着色剤と併用してもよい。メタリック顔料としては、アルミニウム、着色アルミニウム、ニッケル、スズ、銅、金、銀、白金、酸化鉄、ステンレス、チタン等の金属粒子、マイカ製パール顔料、カラーグラファイト、カラーガラス繊維、カラーガラスフレーク等を挙げることができる。
本発明の成形材料は、可塑剤を含有してもよい。これにより、難燃性及び成形性をより一層向上させることができる。可塑剤としては、ポリマーの成形に常用されるものを用いることができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。
ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。
グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。
多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n−オクチル−n−デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ−2−エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ−2−エチルヘキシル等が挙げられる。
ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。
エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。
その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ−2−エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。
本発明の成形材料が可塑剤を含有する場合、その含有量は、セルロース誘導体100質量部に対して通常5質量部以下であり、0.005〜5質量部が好ましく、より好ましくは0.01〜1質量部である。
本発明の成形体は、前記セルロース誘導体と前記ポリエーテル化合物を含む成形材料を成形することにより得られる。より具体的には、前記セルロース誘導体、又は、前記セルロース誘導体及び必要に応じて各種添加剤等を含む成形材料を加熱し、各種の成形方法により成形する工程を含む製造方法によって得られる。
本発明の成形体の製造方法は、前記成形材料を加熱し、成形する工程を含む。
成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられる。
加熱温度は、通常160〜300℃であり、好ましくは180〜260℃である。
本発明の成形体の用途は、とくに限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。すなわち、本発明の電気電子機器用筐体は本発明の成形体から構成される。
以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明の範囲は以下に示す実施例に限定されるものではない。
(合成例1)
<合成例1:アセトキシプロピルメチルアセチルセルロース(C−1)の合成>
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシプロピルメチルセルロース(商品名メトローズ90SH−100;信越化学製)60g、N,N−ジメチルアセトアミド2100mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド101mLをゆっくりと滴下し、系の温度を80〜90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水10Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C−1)(アセトキシプロピルメチルアセチルセルロース)を白色粉体として得た。このセルロース誘導体(C−1)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<合成例2、3、4:アセトキシエチルメチルアセチルセルロース(C−2)、メチルアセチルセルロース(C−3)、エチルアセチルセルロース(C−4)の合成>
合成例1におけるヒドロキシプロピルメチルセルロース(商品名メトローズ90SH−100;信越化学製)をヒドロキシエチルメチルセルロース(商品名マーポローズME−250T;松本油脂製)、メチルセルロース(商品名マーポローズM−4000:松本油脂製株式会社製)、エチルセルロース(商品名エトセル300CP:ダウケミカル製)に変更した以外は合成例1と同様にしてアセトキシエチルメチルアセチルセルロース(C−2)、メチルアセチルセルロース(C−3)、エチルアセチルセルロース(C−4)を得た。このセルロース誘導体(C−2)、(C−3)、(C−4)の25℃での水への溶解度はいずれも0.1質量%未満であった(不溶)。
<合成例5:メチルセルロース−2−エチルヘキサノエート(C−5)の合成>
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた3Lの三ツ口フラスコにメチルセルロース(和光純薬製:メチル置換度1.8)80g、ピリジン1500mLを量り取り、室温で攪拌した。ここに水冷下、2−エチルヘキサノイルクロリド173mLをゆっくりと滴下し、更に60℃で6時間攪拌した。反応後、室温に戻し、氷冷下、メタノール200mLを加えてクエンチした。反応溶液を水12Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量のメタノール溶媒で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することによりメチルセルロース−2−エチルヘキサノエート(C−5)を得た。このセルロース誘導体(C−5)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<合成例6:バレロキシプロピルメチルバレロイルセルロース(C−6)の合成>
合成例5におけるメチルセルロース(和光純薬製:メチル置換度1.8)に変えて、ヒドロキシプロピルメチルセルロース(商品名メトローズ90SH−100;信越化学製)、及び2−エチルヘキサノイルクロリドに変えてバレロイルクロライドを用いた以外、合成例5と同様にして、バレロキシプロピルバレロイルセルロース(C−6)を得た。このセルロース誘導体(C−6)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<合成例7:バレロキシブチルメチルバレロイルセルロース(C−7)の合成>
合成例6におけるヒドロキシプロピルメチルセルロース(商品名メトローズ90SH−100;信越化学製)をヒドロキシブチルメチルセルロースを用いた以外、合成例6と同様にしてバレロキシブチルメチルバレロイルセルロース(C−7)を得た。このセルロース誘導体(C−7)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
なお、以上で得られたセルロース誘導体が有する炭化水素基の種類及び置換度、アルキレンオキシ基の種類及びモル置換度、アシル基の種類及びアシル化度は、Cellulose Communication 6,73−79(1999)に記載の方法を利用して、1H−NMRにより、観測及び決定した。なお、炭化水素基の置換度とはグルコース環ユニットに置換した炭化水素基のモル数であり、0以上3未満の値をとる。アルキレンオキシ基のモル置換度とは、グルコース環ユニットに置換したアルキレンオキシ基のモル数であり、0以上の値をとる。また、アシル化度とは、セルロースのグルコース環又はエーテル置換基に存在する水酸基をエステル化することによりアシル基で置換した程度を示し、0以上100以下で示す。なお、セルロースのグルコース環の水酸基に対するアシル基の反応性と、アルキレンオキシ基に由来する水酸基に対するアシル基の反応性とは殆ど差が無いので、C)アルキレンオキシ基とアシル基とを含む基のモル置換度は、アルキレンオキシ基のモル置換度とアシル化度とを掛け合わせることにより求めることができる。
また、コロイド滴定法を行い、上記セルロース誘導体(C−1)〜(C−7)におけるカルボキシル基又はスルホン酸基の置換度が0.02未満(すなわち、カルボキシル基又はスルホン酸基の含有量がセルロース誘導体に対して0.5質量%未満)であることを確認した。
<セルロース誘導体の分子量測定>
得られたセルロース誘導体について、数平均分子量(Mn)、質量平均分子量(Mw)、を測定した。これらの測定方法は以下の通りである。
[分子量及び分子量分布]
数平均分子量(Mn)、質量平均分子量(Mw)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いた。具体的には、N−メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC−8220GPC(東ソー社製)を使用した。
得られたセルロース誘導体が有する炭化水素基の種類及び置換度、アルキレンオキシ基の種類及びモル置換度、アシル基の種類及びアシル化度、数平均分子量(Mn)、並びに質量平均分子量(Mw)をまとめて表1に示す。なお、表1には比較例で使用したセルロースエステル樹脂(H−1)についても記載した。
Figure 2012116901
[成形体の作製]
セルロース誘導体(C−1〜C−7、H−1)、及びポリエーテル化合物(P−1〜P−11)、可塑剤(S−1)を下記表2に記載の質量部で添加し、酸化防止剤(チバ・スペシャリティ・ケミカルズ社製「イルガノックス1010」)0.5質量部を添加後、ヘンシェルミキサーで混合して成形材料用混合物を作製した。この混合物をバレル温度210℃に設定した二軸混練押出機(テクノベル(株)製、Ultranano)に供給しペレットを作製した。続いて、得られたペレットを小型射出成形機(ファナック(株)Roboshot S−2000i、自動射出成形機)に供給して、幅4mm×長さ10mm×厚み80mmの多目的試験片(曲げ試験片、HDT試験片)及び幅8cm×長さ5cm×厚み2mmの板状試験片を成形した。
なお、表2において、ポリエーテル化合物は以下のものを示す。
[ポリエーテル化合物]
(P−1)ポリエチレングリコール(質量平均分子量500,000、明成化学工業社製「アルコックスE−30」)
(P−2)ポリエチレングリコール(質量平均分子量2,000、和光純薬工業社製試薬)
(P−3)ポリエチレングリコール(質量平均分子量20,000、和光純薬工業社製試薬)
(P−4)ポリエチレングリコール(質量平均分子量200,000、明成化学工業社製「アルコックスR−400」)
(P−5)ポリエチレングリコール(質量平均分子量2,000,000、明成化学工業社製「アルコックスE−75」)
(P−6)ポリエチレングリコール(質量平均分子量3,500,000、明成化学工業社製「アルコックスE−130」)
(P−7)エチレングリコール−1,2−プロピレングリコール共重合体(モル比率90/10、質量平均分子量1,000,000、明成化学工業社製「アルコックスEP−10」)
(P−8)ポリエピクロルヒドリン(質量平均分子量350,000、日本ゼオン社製)
(P−9)ポリエチレングリコールビス(2−エチルヘキサノエート)(質量平均分子量2,000、アルドリッチ社製試薬)
(P−10)ポリエチレングリコールジメチルエーテル(質量平均分子量2,000、アルドリッチ社製試薬)
(P−11)ポリ1,3−プロピレングリコール(質量平均分子量2,000、アルドリッチ社製試薬)
また、比較となる可塑剤として、以下を準備した。
(S−1)アジピン酸−エチレングリコール共重合体(質量平均分子量550、アデカ社製「アデカサイザーRS−1000」)
[評価]
得られた多目的試験片及び板状試験片を用いて、以下の項目について評価した。評価結果等を表2に示す。
(落球衝撃試験)
JIS K7211−1に準じて、板状試験片の両端(幅8cmのうち、各1cm)を固定し、筒状ガイドを使用して500g鋼球を、所定の高さから試験片の中心に落下させ、試験片にクラックが貫通したか否かを観察した。複数の試験片について、試験を行い試験片にクラックが貫通する確率が50%であるときの高さを求めた。その結果から、破壊エネルギー(単位J)を求め、表2に示した。試験は23℃にて行った。
(曲げ弾性率)
ISO178に準拠して、射出成形にて成形した試験片を23℃±2℃、50%±5%RHで48時間以上調製した後、インストロン(東洋精機製、ストログラフV50)によって支点間距離64mm、試験速度2mm/minで測定した。測定は3回測定の平均値である。結果を表2に示す。なお、曲げ弾性率が1GPa以上であることは、成形材料が実用上良好に使用可能であることを意味する。
(荷重たわみ温度:HDT)
ISO75−1、2の方法に準拠して、射出成形にて成形した試験片を1.8MPa荷重にて測定した。結果を表2に示す。
(メルトボリュームレート)
JIS K−7210に準拠して、テクノセブン(株)製L251−11型MFR測定機を用いて、220℃、荷重10kgで10分間に流出したポリマー量(cm)で示した。結果を表2に示す。
Figure 2012116901
表2から、実施例の成形材料によって形成された成形体は、比較例に比べて、良好な落球衝撃強度、曲げ弾性率、荷重たわみ温度(HDT)、流動性を有し成形性(メルトボリュームレート)に優れていることがわかる。

Claims (17)

  1. セルロースに含まれる水酸基の水素原子が、
    下記A)で置換された基を少なくとも1つ、及び
    下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
    下記一般式(p1)で表される繰り返し単位及び下記一般式(p2)で表される繰り返し単位のうち少なくとも一方を含み、かつ少なくとも1つの末端基が下記一般式(p1−1)、(p1−2)、(p2−1)、又は(p2−2)で表される基であるポリエーテル化合物とを含有する成形材料。
    A)炭化水素基:−R
    B)アシル基:−CO−R(Rは炭化水素基を表す。)
    −CHCH(R)O− ・・・(p1)
    −(CHO− ・・・(p2)
    [一般式(p1)及び(p2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。]
    −CHCH(R)O−Rm1 ・・・(p1−1)
    m2−CHCH(R)O− ・・・(p1−2)
    −(CHO−Rm1 ・・・(p2−1)
    m2−(CHO− ・・・(p2−2)
    [一般式(p1−1)、(p1−2)、(p2−1)、及び(p2−2)中Rは炭素数1〜6のアルキル基、炭素数1〜6のアルコキシル基、又はハロゲン原子を表す。該アルキル基はハロゲン原子、アリルオキシ基を置換基として有してもよい。pは2〜5の整数を表す。Rm1は水素原子、又は炭素数1〜20のアルキル基を表す。Rm2は水素原子、炭素数1〜20のアルコキシル基、水酸基、又は炭素数2〜20のアシロキシ基を表す。]
  2. 前記ポリエーテル化合物が、前記一般式(p2)で表される繰り返し単位を有し、一方の末端基が前記一般式(p2−1)で表され、Rm1が水素原子であり、もう一方の末端基が前記一般式(p2−2)で表され、Rm2が水酸基である、請求項1に記載の成形材料。
  3. 前記セルロース誘導体が、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含む、請求項1又は2に記載の成形材料。
    C)アルキレンオキシ基:−RC2−O−とアシル基:−CO−RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。)
  4. 前記C)アルキレンオキシ基とアシル基とを含む基が、下記一般式(3)で表される基である、請求項3に記載の成形材料。
    Figure 2012116901
    (式中、RC1は炭化水素基を表し、RC2は炭素数が2〜4のアルキレン基を表す。nは1以上の整数を表す。)
  5. 前記Rが炭素数1〜4のアルキル基である、請求項1〜4のいずれか1項に記載の成形材料。
  6. 前記Rがメチル基又はエチル基である、請求項1〜5のいずれか1項に記載の成形材料。
  7. 前記R及びRC1が、それぞれ独立に、アルキル基又はアリール基である、請求項3〜6のいずれか1項に記載の成形材料。
  8. 前記R及びRC1が、それぞれ独立に、メチル基、エチル基、又はプロピル基である、請求項3〜7のいずれか1項に記載の成形材料。
  9. 前記Rが、炭素数3〜10の分岐構造を有する炭化水素基である、請求項1〜7のいずれか1項に記載の成形材料。
  10. 前記アルキレンオキシ基が下記式(1)又は(2)で表される基である、請求項3〜9のいずれか1項に記載の成形材料。
    Figure 2012116901
  11. 前記セルロース誘導体が、カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない、請求項1〜10のいずれか1項に記載の成形材料。
  12. 前記セルロース誘導体が水に不溶である、請求項1〜11のいずれか1項に記載の成形材料。
  13. 前記ポリエーテル化合物が、ポリエチレングリコール、及びエチレングリコール/プロピレングリコール共重合体から選択される少なくとも一つである、請求項1〜12のいずれか1項に記載の成形材料。
  14. 前記ポリエーテル化合物が、質量平均分子量10,000〜10,000,000である、請求項1〜13のいずれか1項に記載の成形材料。
  15. 請求項1〜14のいずれか1項に記載の成形材料を成形して得られる成形体。
  16. 請求項1〜14のいずれか1項に記載の成形材料を加熱し、成形する工程を含む、成形体の製造方法。
  17. 請求項15に記載の成形体から構成される電気電子機器用筐体。
JP2010265812A 2010-11-29 2010-11-29 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体 Expired - Fee Related JP5639862B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010265812A JP5639862B2 (ja) 2010-11-29 2010-11-29 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
PCT/JP2011/076323 WO2012073689A1 (ja) 2010-11-29 2011-11-15 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265812A JP5639862B2 (ja) 2010-11-29 2010-11-29 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体

Publications (2)

Publication Number Publication Date
JP2012116901A true JP2012116901A (ja) 2012-06-21
JP5639862B2 JP5639862B2 (ja) 2014-12-10

Family

ID=46171636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265812A Expired - Fee Related JP5639862B2 (ja) 2010-11-29 2010-11-29 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体

Country Status (2)

Country Link
JP (1) JP5639862B2 (ja)
WO (1) WO2012073689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069419A (ja) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760083A (ja) * 1993-08-26 1995-03-07 Teijin Ltd セルロースエステル中空糸膜の製造方法
JP2004182979A (ja) * 2002-11-21 2004-07-02 Toray Ind Inc 熱可塑性セルロースアセテートプロピオネート組成物およびそれからなる繊維
JP2005283997A (ja) * 2004-03-30 2005-10-13 Daicel Chem Ind Ltd セルロースエーテルアセテート光学フィルム
JP2006111858A (ja) * 2004-09-17 2006-04-27 Toray Ind Inc 樹脂組成物ならびにそれからなる成形品
JP2006341434A (ja) * 2005-06-08 2006-12-21 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760083A (ja) * 1993-08-26 1995-03-07 Teijin Ltd セルロースエステル中空糸膜の製造方法
JP2004182979A (ja) * 2002-11-21 2004-07-02 Toray Ind Inc 熱可塑性セルロースアセテートプロピオネート組成物およびそれからなる繊維
JP2005283997A (ja) * 2004-03-30 2005-10-13 Daicel Chem Ind Ltd セルロースエーテルアセテート光学フィルム
JP2006111858A (ja) * 2004-09-17 2006-04-27 Toray Ind Inc 樹脂組成物ならびにそれからなる成形品
JP2006341434A (ja) * 2005-06-08 2006-12-21 Konica Minolta Opto Inc 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069419A (ja) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体

Also Published As

Publication number Publication date
WO2012073689A1 (ja) 2012-06-07
JP5639862B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2011078275A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078285A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132448A (ja) 成形材料、成形体、及びその製造方法、並びに容器およびフィルム
JP5639863B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2012111925A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5639862B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132445A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5470030B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132459A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5486918B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078283A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132451A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078282A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132438A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5486917B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5364567B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078279A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132444A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078276A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011149006A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132435A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132452A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132462A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132432A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132467A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees