JP2012113864A - Superconducting rebco oxide thin film and method for manufacturing the same - Google Patents

Superconducting rebco oxide thin film and method for manufacturing the same Download PDF

Info

Publication number
JP2012113864A
JP2012113864A JP2010260114A JP2010260114A JP2012113864A JP 2012113864 A JP2012113864 A JP 2012113864A JP 2010260114 A JP2010260114 A JP 2010260114A JP 2010260114 A JP2010260114 A JP 2010260114A JP 2012113864 A JP2012113864 A JP 2012113864A
Authority
JP
Japan
Prior art keywords
layer
superconducting
thin film
oxide superconducting
rebco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260114A
Other languages
Japanese (ja)
Other versions
JP5736603B2 (en
Inventor
Tatsuoki Nagaishi
竜起 永石
Yasutaro Oki
康太郎 大木
Iwao Yamaguchi
巖 山口
Mitsugi Soma
貢 相馬
Takaaki Manabe
高明 真部
Toshiya Kumagai
俊弥 熊谷
Junichi Shimoyama
淳一 下山
Masashi Mukoda
昌志 向田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010260114A priority Critical patent/JP5736603B2/en
Publication of JP2012113864A publication Critical patent/JP2012113864A/en
Application granted granted Critical
Publication of JP5736603B2 publication Critical patent/JP5736603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a superconducting oxide thin film offering sufficiently high Ic with stability by thickening the film by a fluorine-free metal organic deposition (FF-MOD) method.SOLUTION: The method for manufacturing a superconducting REBCO oxide thin film comprises the steps of making a superconducting oxide layer by calcining a coating film of a fluorine-free metal organic compound solution and applying firing treatment to the calcined film by a MOD method; forming a non-superconducting material layer on the superconducting oxide layer; and making a dispersion layer by making a superconducting oxide layer on the non-superconducting material layer by the MOD method and dispersing the product of a chemical reaction between the non-superconducting material and the superconducting oxide layer caused by heat applied at the manufacture of the superconducting oxide layer to work as pins. The superconducting REBCO oxide thin film comprises the plurality of superconducting oxide layers made by the MOD method, and contains a dispersion layer made by dispersing the non-superconducting material to work as pins, between the superconducting oxide layers.

Description

本発明は、REBCO系酸化物超電導薄膜とその製造方法に関し、詳しくは、塗布熱分解法を用いて製造される超電導特性に優れたREBCO系酸化物超電導薄膜とその製造方法に関する。   The present invention relates to a REBCO-based oxide superconducting thin film and a method for producing the same, and more particularly, to a REBCO-based oxide superconducting thin film excellent in superconducting properties produced using a coating pyrolysis method and a method for producing the same.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、基板上に酸化物超電導薄膜を形成させた酸化物超電導薄膜線材が注目されている。   Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among these, an oxide superconducting thin film wire in which an oxide superconducting thin film is formed on a substrate has attracted attention.

前記酸化物超電導薄膜の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)がある(特許文献1)。   One method for producing the oxide superconducting thin film is a coating pyrolysis method (Metal Organic Deposition, abbreviated as MOD method) (Patent Document 1).

この方法は、Y(イットリウム)などのRE(希土類元素)、Ba(バリウム)、Cu(銅)の各有機金属化合物を溶媒に溶解して製造された原料溶液(MOD溶液)を基板に塗布して塗布膜を形成した後、例えば、500℃付近で仮焼熱処理して、有機金属化合物を熱分解させ、熱分解した有機成分を除去することにより酸化物超電導薄膜の前駆体である仮焼膜を作製後、作製した仮焼膜をさらに高温(例えば750〜800℃付近)で本焼熱処理することにより結晶化を行って、REBaCu7−Xで表されるREBCO超電導薄膜を製造するものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有しているため、広く用いられている。 In this method, a raw material solution (MOD solution) produced by dissolving each organic metal compound of RE (rare earth element) such as Y (yttrium), Ba (barium), and Cu (copper) in a solvent is applied to a substrate. After the coating film is formed, for example, a calcined film that is a precursor of the oxide superconducting thin film is subjected to a calcining heat treatment at around 500 ° C. to thermally decompose the organometallic compound and remove the pyrolyzed organic component. Then, the prepared calcined film is crystallized by subjecting it to a heat treatment at a higher temperature (for example, around 750 to 800 ° C.) to produce a REBCO superconducting thin film represented by REBa 2 Cu 3 O 7-X. Compared with vapor phase methods (evaporation, sputtering, pulsed laser deposition, etc.) that are mainly manufactured in a vacuum, the manufacturing equipment is simple, and it can handle large areas and complex shapes. Special features such as Because it has been widely used.

前記MOD法としては、原料溶液にフッ素を含む有機金属化合物を用いるTFA−MOD法(Metal Organic Deposition using TriFluoroAcetates)とフッ素を含まない有機金属化合物を用いるフッ素フリーMOD法(FF−MOD法)とがある。   Examples of the MOD method include a TFA-MOD method (Metal Organic Deposition using TriFluoroAcetates) using an organometallic compound containing fluorine in a raw material solution and a fluorine-free MOD method (FF-MOD method) using an organometallic compound containing no fluorine. is there.

TFA−MOD法を用いると、面内配向性に優れた酸化物超電導薄膜を得ることができる。しかし、この方法では、仮焼時にフッ化物であるBaF(フッ化バリウム)が生成され、このBaFが本焼時に分解して危険なフッ化水素ガスを発生する。このため、フッ化水素ガスを処理する装置、設備が必要となる。 When the TFA-MOD method is used, an oxide superconducting thin film excellent in in-plane orientation can be obtained. However, in this method, BaF 2 (barium fluoride), which is a fluoride, is generated during calcination, and this BaF 2 is decomposed during the main firing to generate dangerous hydrogen fluoride gas. For this reason, the apparatus and installation which process hydrogen fluoride gas are needed.

これに対して、FF−MOD法は、フッ化水素ガスのような危険なガスを発生することがないため、環境にやさしく、また処理設備が不要であるという利点を有している。   On the other hand, the FF-MOD method has an advantage that it does not generate a dangerous gas such as hydrogen fluoride gas, and therefore is environmentally friendly and does not require processing equipment.

このようなFF−MOD法において、より高い臨界電流値Icの酸化物超電導薄膜を得るために、前記した原料溶液の塗布、仮焼熱処理、本焼熱処理を繰り返すことにより、酸化物超電導薄膜を積層して、厚膜化を図ることが行われている。   In such an FF-MOD method, in order to obtain an oxide superconducting thin film having a higher critical current value Ic, the oxide superconducting thin film is laminated by repeating the application of the raw material solution, the calcination heat treatment, and the main calcination heat treatment. Thus, it is attempted to increase the film thickness.

しかし、従来のFF−MOD法を用いて、例えば、YBCO超電導薄膜を製造した場合、膜厚を厚くしても、Icが充分に高くならないという問題があった。   However, for example, when a YBCO superconducting thin film is manufactured using the conventional FF-MOD method, there is a problem that Ic does not increase sufficiently even if the film thickness is increased.

そこで、積層構造とすることにより、膜厚を向上させる試みとして、YBCO超電導薄膜を単純に積層するのではなく、YBCO超電導薄膜とCeOなどの非超電導薄膜とをサンドイッチ構造とし、各々のYBCO超電導薄膜を接続することにより、高Icとする技術が提案されている(非特許文献1)。 Therefore, instead of simply laminating the YBCO superconducting thin film as an attempt to improve the film thickness by adopting a laminated structure, the YBCO superconducting thin film and a non-superconducting thin film such as CeO 2 have a sandwich structure, and each YBCO superconducting A technique for achieving high Ic by connecting thin films has been proposed (Non-patent Document 1).

特開2007−165153号公報JP 2007-165153 A

Q.X.Jia, et al,:“High−temperature superconducting thick films with enhanced supercurrent carrying capability”,Appl.Phys.Lett.80,1601−1603(2002).Q. X. Jia, et al ,: “High-temperature superconducting thick film with enhanced supercapacity carrying capability”, Appl. Phys. Lett. 80, 1601-1603 (2002).

しかしながら、非特許文献1に示された技術により、酸化物超電導薄膜の積層を行っても、未だ、充分に高いIcの酸化物超電導薄膜が得られているとは言えなかった。   However, even if oxide superconducting thin films are stacked by the technique shown in Non-Patent Document 1, it cannot be said that a sufficiently high Ic oxide superconducting thin film has been obtained.

そこで、本発明は、FF−MOD法を用いて製造された酸化物超電導薄膜であって、厚膜化により、充分に高いIcの酸化物超電導薄膜とその製造方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide an oxide superconducting thin film produced by using the FF-MOD method, which has a sufficiently high Ic oxide superconducting thin film and a method for producing the same. .

本発明者は、FF−MOD法を用いて、酸化物超電導薄膜を積層して膜厚を厚くしても、従来の製造方法では、Icが充分に高くならない原因につき、検討を行い、以下の知見を得た。   The present inventor has investigated the cause that Ic does not become sufficiently high in the conventional manufacturing method even when the oxide superconducting thin film is stacked and the film thickness is increased by using the FF-MOD method. Obtained knowledge.

即ち、従来の製造方法では、前記したように、基板上で、MOD溶液の塗布、仮焼熱処理、本焼熱処理を繰り返すことにより、酸化物超電導薄膜が積層されて、厚膜化が図られている。しかし、この積層される酸化物超電導薄膜は結晶性が高いため、Icの向上に関係するピン止め点として機能する欠陥や異相は、第1層目の酸化物超電導薄膜層と基板に形成された中間層との間にのみ形成され、第2層目以降の酸化物超電導薄膜層の形成時には殆ど形成されない。   That is, in the conventional manufacturing method, as described above, the oxide superconducting thin film is laminated and thickened by repeating the application of the MOD solution, the calcination heat treatment, and the main heat treatment on the substrate. Yes. However, since this stacked oxide superconducting thin film has high crystallinity, defects and heterogeneous phases that function as pinning points related to the improvement of Ic were formed in the first oxide superconducting thin film layer and the substrate. It is formed only between the intermediate layer and hardly formed when the oxide superconducting thin film layer after the second layer is formed.

このように、従来の製造方法を用いて厚膜化された酸化物超電導薄膜では、ピン止め点が不足して酸化物超電導薄膜全体に働かないため、ピン止め効果を充分に発揮させることができず、Icを充分に向上させることができなかったことが分かった。   As described above, the oxide superconducting thin film thickened by using the conventional manufacturing method does not work on the entire oxide superconducting thin film due to insufficient pinning points, so that the pinning effect can be sufficiently exerted. Thus, it was found that Ic could not be sufficiently improved.

そこで、本発明者は、厚膜化された酸化物超電導薄膜に充分な量のピン止め点を適切に設けることにより、ピン止め効果を充分に発揮させて、Icを充分に向上させることができる手段につき、鋭意検討を行った。   Accordingly, the present inventor can sufficiently improve Ic by sufficiently providing a pinning effect by appropriately providing a sufficient amount of pinning points on the thick oxide superconducting thin film. The means were intensively studied.

最初に、有機金属化合物を溶媒に溶解する際に、ピン止め点として機能することが期待できる非超電導物質の微粒子を溶媒に分散させたMOD溶液を作製し、このMOD溶液を用いて、非超電導物質の微粒子が膜内に分散された酸化物超電導薄膜を形成することを考えたが、実験の結果、非超電導物質の微粒子を適切に配置して、ピン止め点として充分機能するように制御することは容易ではなく、安定して高いIcの酸化物超電導薄膜を得ることは困難であることが分かった。   First, when an organometallic compound is dissolved in a solvent, a MOD solution in which fine particles of a non-superconducting substance that can be expected to function as a pinning point is dispersed in a solvent is prepared. Using this MOD solution, non-superconductivity is prepared. We thought about forming an oxide superconducting thin film in which fine particles of the material are dispersed in the film. However, as a result of the experiment, the fine particles of the non-superconducting material are appropriately arranged and controlled to function sufficiently as a pinning point. This is not easy, and it has been found that it is difficult to stably obtain a high Ic oxide superconducting thin film.

そこで、本発明者は、ピン止め点を適切に設ける方法についてさらに検討を行い、その結果、積層される各酸化物超電導薄膜層の厚さを適切に制御し、各酸化物超電導薄膜層間にピン止め点として機能する非超電導物質の微粒子が分散した層を設ける、即ち、酸化物超電導薄膜層と非超電導物質の微粒子が分散した層を交互に積層することにより、ピン止め点が適切に配置されて、酸化物超電導薄膜全体に亘ってピン止め効果を充分に発揮させることができ、高いIcの酸化物超電導薄膜が得られることを見出した。   Therefore, the present inventor further studied a method for appropriately providing pinning points, and as a result, appropriately controlled the thickness of each oxide superconducting thin film layer to be laminated, and pinned between each oxide superconducting thin film layer. By providing a layer in which fine particles of non-superconducting material are dispersed, which functions as a stopping point, that is, by alternately laminating oxide superconducting thin film layers and layers in which fine particles of non-superconducting material are dispersed, pinning points are appropriately arranged. Thus, the inventors have found that the pinning effect can be sufficiently exerted over the entire oxide superconducting thin film, and that a high Ic oxide superconducting thin film can be obtained.

また、非超電導物質の微粒子が分散した層を形成する具体的な方法として、酸化物超電導薄膜層の上に、加熱により酸化物超電導薄膜層と反応して、ピン止め点として機能する非超電導物質の微粒子を生成する物質の薄膜を形成することにより、その後積層する酸化物超電導薄膜層の形成時、容易に、ピン止め点として機能する非超電導物質の微粒子が分散した層を形成することができることを見出した。   Further, as a specific method for forming a layer in which fine particles of a non-superconducting material are dispersed, a non-superconducting material that functions as a pinning point by reacting with the oxide superconducting thin film layer by heating on the oxide superconducting thin film layer By forming a thin film of a substance that generates fine particles, it is possible to easily form a layer in which fine particles of a non-superconducting substance that functions as a pinning point are dispersed when an oxide superconducting thin film layer to be subsequently laminated is formed. I found.

請求項1に記載の発明は、以上の知見に基づくものであり、
MOD法を用いて、フッ素を含まない有機金属化合物溶液の塗膜の仮焼熱処理、および仮焼膜の本焼熱処理により酸化物超電導層を作製する工程と、
前記酸化物超電導層の上に非超電導物質からなる層を形成する工程と、
前記非超電導物質からなる層上に、さらにMOD法を用いて酸化物超電導層を作製すると共に、酸化物超電導層作製時の加熱により、前記非超電導物質と、前記非超電導物質を挟む前記酸化物超電導層とを化学反応させて、ピン止め点として機能する前記非超電導物質の反応生成物が分散した分散層を作製する工程と、
を備えていることを特徴とするREBCO系酸化物超電導薄膜の製造方法である。
The invention according to claim 1 is based on the above knowledge,
Using the MOD method, a step of preparing an oxide superconducting layer by a calcining heat treatment of a coating film of an organometallic compound solution containing no fluorine and a calcining heat treatment of the calcined film;
Forming a layer made of a non-superconducting material on the oxide superconducting layer;
On the layer made of the non-superconducting material, an oxide superconducting layer is further produced by using the MOD method, and the non-superconducting material and the oxide sandwiching the non-superconducting material by heating at the time of producing the oxide superconducting layer. Chemically reacting with the superconducting layer to produce a dispersed layer in which the reaction product of the non-superconducting substance functioning as a pinning point is dispersed;
It is a manufacturing method of the REBCO type oxide superconducting thin film characterized by comprising.

酸化物超電導層と非超電導物質からなる層とが化学反応して、ピン止め点として機能する反応生成物の微粒子が生成され、分散層を形成することにより、前記したように、ピン止め点が各酸化物超電導層間に適切に配置されて、酸化物超電導薄膜全体に亘ってピン止め効果を充分に発揮させることができる。   The oxide superconducting layer and the layer made of the non-superconducting material chemically react to generate fine particles of a reaction product that functions as a pinning point, thereby forming a dispersion layer. The pinning effect can be sufficiently exhibited over the entire oxide superconducting thin film by being appropriately disposed between the oxide superconducting layers.

また、分散層は、非超電導物質からなる緻密な層ではなく、非超電導物質の微粒子が分散された層であるため、分散層を形成する微粒子の近傍では、上下の酸化物超電導層の間で、連続した結晶相が形成されるため、同じ配向性の酸化物超電導層を形成させることができ、膜厚方向に配向性が整った厚膜の酸化物超電導薄膜を得ることができる。   In addition, the dispersion layer is not a dense layer made of a non-superconducting material, but a layer in which fine particles of the non-superconducting material are dispersed. Therefore, in the vicinity of the fine particles forming the dispersion layer, between the upper and lower oxide superconducting layers. Since a continuous crystal phase is formed, an oxide superconducting layer having the same orientation can be formed, and a thick oxide superconducting thin film having a uniform orientation in the film thickness direction can be obtained.

この結果、安定して高いIcの酸化物超電導薄膜を提供することができる。   As a result, an oxide superconducting thin film having a high Ic can be provided stably.

なお、非特許文献1に示されたような、非超電導薄膜層と酸化物超電導薄膜層の積層では、MOD法において酸化物超電導材料が非超電導材料と反応して、膜厚方向に配向性が整った厚膜の酸化物超電導薄膜が容易に得られなかった。   In addition, in the lamination of the non-superconducting thin film layer and the oxide superconducting thin film layer as shown in Non-Patent Document 1, the oxide superconducting material reacts with the non-superconducting material in the MOD method, and the orientation in the film thickness direction is increased. An ordered thick oxide superconducting thin film was not easily obtained.

非超電導物質としては、例えば、CeO(酸化セリウム)、SrTiO(チタン酸ストロンチウム)、ZrO(2酸化ジルコニウム)などを挙げることができ、それぞれ、BaCeO(セリウム酸バリウム)、BaTiO(チタン酸バリウム)、BaZrO(ジルコン酸バリウム)などの反応生成物が生成される。 Examples of the non-superconducting material include CeO 2 (cerium oxide), SrTiO 3 (strontium titanate), ZrO 2 (zirconium dioxide), and the like, and BaCeO 3 (barium cerate) and BaTiO 3 ( Reaction products such as barium titanate) and BaZrO 3 (barium zirconate) are produced.

また、非超電導物質からなる層を形成する方法としては、従来の中間層の形成方法と同じ、スパッタ法などを採用することができるため、新たな設備を導入する必要がない。   In addition, as a method for forming a layer made of a non-superconducting material, the same sputtering method as the conventional intermediate layer forming method can be employed, so that it is not necessary to introduce new equipment.

請求項2に記載の発明は、
前記酸化物超電導層の上に前記非超電導物質からなる層を形成する工程、
および前記非超電導物質からなる層の上に、さらにMOD法を用いて前記酸化物超電導層を作製する工程
を繰り返すことにより、
前記酸化物超電導層と前記分散層とが交互に設けられたREBCO系酸化物超電導薄膜を製造することを特徴とする請求項1に記載のREBCO系酸化物超電導薄膜の製造方法である。
The invention described in claim 2
Forming a layer made of the non-superconducting material on the oxide superconducting layer;
And by repeating the step of forming the oxide superconducting layer using the MOD method on the layer made of the non-superconducting material,
The REBCO-based oxide superconducting thin film according to claim 1, wherein the REBCO-based oxide superconducting thin film in which the oxide superconducting layer and the dispersion layer are alternately provided is manufactured.

酸化物超電導層と分散層の作製を繰り返すことにより、多層化された酸化物超電導薄膜でありながら、容易に、ピン止め点を適切に配置して、酸化物超電導薄膜全体に亘ってピン止め効果を充分に発揮させることができ、高いIcの酸化物超電導薄膜を得ることができる。   By repeating the preparation of the oxide superconducting layer and the dispersion layer, the pinning point can be easily arranged appropriately and the pinning effect can be achieved throughout the oxide superconducting thin film, even though it is a multilayered oxide superconducting thin film. Can be sufficiently exhibited, and a high Ic oxide superconducting thin film can be obtained.

請求項3に記載の発明は、
前記非超電導物質からなる層の厚さが、1〜10nmである
ことを特徴とする請求項1または請求項2に記載のREBCO系酸化物超電導薄膜の製造方法である。
The invention according to claim 3
3. The method for producing a REBCO-based oxide superconducting thin film according to claim 1, wherein the layer made of the non-superconducting material has a thickness of 1 to 10 nm.

非超電導物質からなる層の厚さが厚すぎると、反応生成物のサイズが大きくなり、ピン止め点として充分に機能しない恐れがある。一方、薄すぎると、充分な量の反応生成物が生成されず、ピン止め点が不足する恐れがある。   If the thickness of the layer made of the non-superconducting material is too thick, the size of the reaction product increases, and there is a possibility that it does not function sufficiently as a pinning point. On the other hand, if it is too thin, a sufficient amount of reaction product is not produced, and the pinning point may be insufficient.

請求項4に記載の発明は、
前記非超電導物質が、CeO、SrTiO、ZrO、BaZrOのいずれか1種である
ことを特徴とする請求項1ないし請求項3のいずれか1項に記載のREBCO系酸化物超電導薄膜の製造方法である。
The invention according to claim 4
Wherein the non-superconductive material, CeO 2, SrTiO 3, REBCO based oxide superconducting thin film according to any one of claims 1 to 3, characterized in that a ZrO 2, any one of the BaZrO 3 It is a manufacturing method.

CeO、SrTiO、ZrO、BaZrOが、酸化物超電導層と化学反応して生成されるBaCeO(セリウム酸バリウム)、BaTiO(チタン酸バリウム)などは、ピン止め点として充分な機能を有しているため好ましい。 BaCeO 3 (barium cerate), BaTiO 3 (barium titanate), etc. produced by the chemical reaction of CeO 2 , SrTiO 3 , ZrO 2 , BaZrO 3 with the oxide superconducting layer have sufficient functions as pinning points. This is preferable.

また、これらの材料は、酸化物超電導薄膜の形成において、従来より、一般的に使用されている材料であり、入手も容易であり、コストの上昇を抑制することができる。   In addition, these materials are materials that have been generally used in the past in the formation of oxide superconducting thin films, are easily available, and can suppress an increase in cost.

請求項5に記載の発明は、
フッ素を含まない有機金属化合物溶液の塗膜の仮焼熱処理、および仮焼膜の本焼熱処理により作製される酸化物超電導層を複数層備え、
各酸化物超電導層の間に、ピン止め点として機能する非超電導物質が分散された分散層が形成されている
ことを特徴とするREBCO系酸化物超電導薄膜である。
The invention described in claim 5
A plurality of oxide superconducting layers prepared by a calcining heat treatment of a coating film of an organometallic compound that does not contain fluorine and a calcining heat treatment of a calcined film,
A REBCO-based oxide superconducting thin film is characterized in that a dispersion layer in which a non-superconducting material functioning as a pinning point is dispersed is formed between each oxide superconducting layer.

前記の通り、ピン止め点として機能する非超電導物質が分散された分散層が、酸化物超電導層の間に形成された酸化物超電導薄膜においては、酸化物超電導薄膜全体に亘って、分散層がピン止め点として有効に機能するため、安定して高いIcの酸化物超電導薄膜を提供することができる。   As described above, in the oxide superconducting thin film in which the non-superconducting material functioning as the pinning point is dispersed, the oxide superconducting thin film is formed between the oxide superconducting layers. Since it functions effectively as a pinning point, a stable high Ic oxide superconducting thin film can be provided.

なお、分散層は、前記したような酸化物超電導層と非超電導物質からなる層とが化学反応して形成される分散層だけではなく、予めピン止め点として機能する物質の微粒子を分散させた分散層であってもよい。   The dispersion layer is not only a dispersion layer formed by a chemical reaction between the oxide superconducting layer and the layer made of a non-superconducting material as described above, but also fine particles of a substance that functions as a pinning point are dispersed in advance. It may be a dispersion layer.

請求項6に記載の発明は、
前記分散層の厚さが、2〜30nmである
ことを特徴とする請求項5に記載のREBCO系酸化物超電導薄膜である。
The invention described in claim 6
The REBCO-based oxide superconducting thin film according to claim 5, wherein the thickness of the dispersion layer is 2 to 30 nm.

前記した層の厚さが、前記した1〜10nmである非超電導物質からなる層が、酸化物超電導層と化学反応することにより、厚さ2〜30nmの分散層が生成される。   The above-described layer made of a non-superconducting material having a thickness of 1 to 10 nm chemically reacts with the oxide superconducting layer, thereby generating a dispersion layer having a thickness of 2 to 30 nm.

請求項7に記載の発明は、
前記酸化物超電導層の厚さが、50〜500nmである
ことを特徴とする請求項5または請求項6に記載のREBCO系酸化物超電導薄膜である。
The invention described in claim 7
The REBCO-based oxide superconducting thin film according to claim 5 or 6, wherein the oxide superconducting layer has a thickness of 50 to 500 nm.

酸化物超電導層1層の厚さが薄すぎると、酸化物超電導層の形成が不安定となる恐れがある。また、薄すぎる場合には、分散層が作製される化学反応において、酸化物超電導層の形成に組成ズレを招き、異相や欠陥が生じる恐れがある。   If the thickness of one oxide superconducting layer is too thin, the formation of the oxide superconducting layer may become unstable. On the other hand, if it is too thin, composition deviation may occur in the formation of the oxide superconducting layer in the chemical reaction for producing the dispersion layer, which may cause heterogeneous phases and defects.

一方、各酸化物超電導層が厚すぎると、分散層の酸化物超電導薄膜全体に対する堆積が減少するため、ピン止め効果が低下する恐れがある。   On the other hand, if each oxide superconducting layer is too thick, deposition on the entire oxide superconducting thin film of the dispersion layer is reduced, which may reduce the pinning effect.

本発明によれば、FF−MOD法を用いて、厚膜化することにより、充分に高いIcの酸化物超電導薄膜を安定して提供することができる。   According to the present invention, a sufficiently high Ic oxide superconducting thin film can be stably provided by increasing the film thickness using the FF-MOD method.

(a)〜(e)は実施例のYBCO超電導薄膜の作製工程を模式的に示す断面図である。(A)-(e) is sectional drawing which shows typically the manufacturing process of the YBCO superconducting thin film of an Example. (a)(b)はピン止め点として機能する分散層が形成される様子を模式的に示す断面図である。(A) (b) is sectional drawing which shows typically a mode that the dispersion layer which functions as a pinning point is formed.

以下、本発明を実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

以下に、FF−MOD法を用いてYBCO超電導薄膜を形成した実施例を挙げて、本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples in which a YBCO superconducting thin film is formed using the FF-MOD method.

1.YBCO超電導薄膜の構成
図1(a)〜(e)は、実施例のYBCO超電導薄膜の作製工程を模式的に示す断面図である。図2(a)(b)は、ピン止め点として機能する分散層が形成される様子を模式的に示す断面図である。
1. Configuration of YBCO Superconducting Thin Film FIGS. 1A to 1E are cross-sectional views schematically showing a production process of a YBCO superconducting thin film of an example. FIGS. 2A and 2B are cross-sectional views schematically showing how a dispersion layer that functions as a pinning point is formed.

2.YBCO超電導薄膜の形成
(1)実施例1
2. Formation of YBCO superconducting thin film (1) Example 1

(1−1)第1層目のYBCO超電導層の作製
(a)MOD溶液の作製
まず、Y、Ba、Cuの各アセチルアセトナート塩から出発してY:Ba:Cu=1:2:3の比率(モル比)で合成し、アルコールを溶媒としたMOD溶液を作製した。なおMOD溶液のY3+、Ba2+、Cu2+を合わせた総カチオン濃度を1mol/Lとした。
(1-1) Preparation of first YBCO superconducting layer (a) Preparation of MOD solution First, Y: Ba: Cu = 1: 2: 3 starting from acetylacetonate salts of Y, Ba and Cu. Thus, a MOD solution using alcohol as a solvent was prepared. The total cation concentration of Y 3+ , Ba 2+ and Cu 2+ in the MOD solution was 1 mol / L.

(b)塗膜作製工程
次に、基板として、SUS上に順にCu層、Ni層を形成させたクラッド基板の上に、CeO、YSZ、CeOの3層からなる中間層を設けた基板1を準備し、基板1上に、前記MOD溶液を塗布し、塗膜の作製を行った。
(B) Coating film production process Next, as a substrate, a substrate in which an intermediate layer composed of three layers of CeO 2 , YSZ, and CeO 2 is provided on a clad substrate in which a Cu layer and a Ni layer are sequentially formed on SUS. 1 was prepared, and the MOD solution was applied onto the substrate 1 to prepare a coating film.

(c)仮焼熱処理工程
塗膜が形成された基板1を、大気圧の空気雰囲気下、5℃/分の昇温速度で500℃まで昇温した後、そのまま2時間保持して、基板1上に仮焼膜を形成した。
(C) Calcination Heat Treatment Step The substrate 1 on which the coating film is formed is heated to 500 ° C. at a temperature increase rate of 5 ° C./min in an air atmosphere at atmospheric pressure, and then held for 2 hours as it is. A calcined film was formed thereon.

(d)本焼熱処理工程
実施例で得られた仮焼膜を、酸素濃度100ppmのアルゴン/酸素混合ガス雰囲気下で780℃まで50℃/分の昇温スピードで昇温後、そのまま20分間保持して本焼熱処理を施した。本焼熱処理終了後、500℃まで約3時間で降温した時点でガス雰囲気を酸素濃度100vol%ガスに切り替えて、さらに約5時間かけて室温まで炉冷し、YBCO超電導層を作製した。これにより、図1(a)に示す厚さ100nmの第1層目のYBCO超電導層2を作製した。
(D) Main firing heat treatment step The calcined film obtained in the example was heated up to 780 ° C. at a heating rate of 50 ° C./min in an argon / oxygen mixed gas atmosphere having an oxygen concentration of 100 ppm, and then kept for 20 minutes. Then, a heat treatment for main firing was performed. When the temperature was lowered to 500 ° C. in about 3 hours after the main heat treatment, the gas atmosphere was switched to an oxygen concentration of 100 vol% gas, and the furnace was cooled to room temperature over about 5 hours to prepare a YBCO superconducting layer. As a result, the first YBCO superconducting layer 2 having a thickness of 100 nm shown in FIG.

(1−2)第1層目のCeO層の作製
第1層目のYBCO超電導層2の上に、スパッタ法により、厚さ5nmのCeOを成膜し、図1(b)に示すようにCeO層3aを作製した。
(1-2) Production of first-layer CeO 2 layer On the first YBCO superconducting layer 2, a 5 nm thick CeO 2 film was formed by sputtering, as shown in FIG. Thus, a CeO 2 layer 3a was produced.

(1−3)第2層目のYBCO超電導層の作製
第1層目のCeO層3aの上に、第1層目のYBCO超電導層2と同じ条件で、図1(c)に示すように厚さ100nmの第2層目のYBCO超電導層2を作製した。このとき、CeOがYBCOと反応してBaCeOに変化することにより、図2(b)に示すようにBaCeO粒3が分散する分散層4が作製された。
(1-3) Production of second YBCO superconducting layer As shown in FIG. 1C on the first CeO 2 layer 3a under the same conditions as the first YBCO superconducting layer 2. Then, a second YBCO superconducting layer 2 having a thickness of 100 nm was prepared. At this time, CeO 2 reacted with YBCO and changed to BaCeO 3 , thereby producing a dispersion layer 4 in which BaCeO 3 grains 3 were dispersed as shown in FIG.

(1−4)第2層目のCeO層の作製
第2層目のYBCO超電導層2の上に、第1層目のCeO層3aと同じ条件で、図1(d)に示すように厚さ5nmの第2層目のCeO層3aを作製した。
(1-4) on the prepared second layer YBCO superconducting layer 2 of the second layer of CeO 2 layer, in the same conditions as the first layer of the CeO 2 layer 3a, as shown in FIG. 1 (d) Then, a second CeO 2 layer 3a having a thickness of 5 nm was produced.

(1−5)第2層目のCeO層3aの上に、第1層目のYBCO超電導層2と同じ条件で、図1(e)に示すように第3層目のYBCO超電導層2を作製した。このとき、前記の(1−3)の場合と同様、CeOがYBCOと反応してBaCeOに変化することにより、分散層4が形成された。 (1-5) On the second CeO 2 layer 3a, under the same conditions as the first YBCO superconducting layer 2, the third YBCO superconducting layer 2 as shown in FIG. Was made. At this time, as in the case of (1-3) above, CeO 2 reacted with YBCO and changed to BaCeO 3 , thereby forming dispersion layer 4.

以上により、YBCO超電導薄膜を作製した。   As described above, a YBCO superconducting thin film was produced.

なお、図1において、CeO層3aは、超電導薄膜の作成過程で分散層4(BaCeO)になるが、説明の便宜上から、CeO層3aの符号を残して表示した。 In FIG. 1, the CeO 2 layer 3a becomes the dispersion layer 4 (BaCeO 3 ) in the process of forming the superconducting thin film. However, for the convenience of explanation, the CeO 2 layer 3a is displayed with the reference numeral.

(2)実施例2
CeO層3aの厚さを15nmにすることにより、厚さ30nmの分散層4を形成したこと以外は、実施例1と同じ条件で、YBCO超電導薄膜を作製した。
(2) Example 2
A YBCO superconducting thin film was produced under the same conditions as in Example 1 except that the dispersion layer 4 having a thickness of 30 nm was formed by changing the thickness of the CeO 2 layer 3a to 15 nm.

(3)実施例3
各YBCO超電導層2の厚さを40nmとしたこと以外は、実施例1と同じ条件で、YBCO超電導薄膜を作製した。
(3) Example 3
A YBCO superconducting thin film was produced under the same conditions as in Example 1 except that the thickness of each YBCO superconducting layer 2 was 40 nm.

(4)比較例1
CeO層を形成しなかったこと以外は、実施例1と同じ条件で、YBCO超電導薄膜を作製した。
(4) Comparative Example 1
A YBCO superconducting thin film was produced under the same conditions as in Example 1 except that the CeO 2 layer was not formed.

3.YBCO超電導薄膜の評価
(1)分散層の分析
断面TEMにより分散層を分析し、BaCeO粒により分散層が形成されていることを確認した。
3. Evaluation of YBCO superconducting thin film (1) Analysis of dispersion layer The dispersion layer was analyzed by cross-sectional TEM, and it was confirmed that the dispersion layer was formed by BaCeO 3 grains.

(2)超電導特性
実施例1〜3および比較例1で得られたYBCO超電導薄膜を用いて、77K、自己磁場下において、JcおよびIcを測定した。表1に測定結果を示す。
(2) Superconducting properties Using the YBCO superconducting thin films obtained in Examples 1 to 3 and Comparative Example 1, Jc and Ic were measured under a self magnetic field of 77K. Table 1 shows the measurement results.

Figure 2012113864
Figure 2012113864

(3)考察
(a)実施例1〜3について
表1に示すように、実施例1〜3は、比較例1と比べて高Jcおよび高Icを示している。これは、CeOがYBCOと反応して分散層が形成され、分散層のBaCeO粒がピン止め点としての役割を果たしているためである。また、実施例2、3は実施例1と比べてJcおよびIcは低くなっている。これは、実施例2については、ピン止め点としての大きさが最適サイズより大きくなったためであり、実施例3については、YBCO超電導層2が薄く、YBCO超電導層に組成ずれが生じたためである。
(3) Discussion (a) About Examples 1 to 3 As shown in Table 1, Examples 1 to 3 show higher Jc and higher Ic than Comparative Example 1. This is because CeO 2 reacts with YBCO to form a dispersion layer, and BaCeO 3 grains in the dispersion layer serve as a pinning point. In Examples 2 and 3, Jc and Ic are lower than those in Example 1. This is because in Example 2, the size as the pinning point is larger than the optimum size, and in Example 3, the YBCO superconducting layer 2 is thin and a composition shift occurs in the YBCO superconducting layer. .

(b)比較例1について
表1に示すように、比較例1は、JcおよびIcが実施例1〜3と比べて小さくなっている。これは、比較例1については、基板の中間層のCeOが第1層目のYBCO超電導層のYBCOと反応してピン止めとしての役割を果たしているが、第2層目および第3層目のYBCO超電導層に対してはピン止めとしての役割を果たす層がないためである。
(B) About Comparative Example 1 As shown in Table 1, Jc and Ic of Comparative Example 1 are smaller than those of Examples 1 to 3. In Comparative Example 1, CeO 2 in the intermediate layer of the substrate reacts with YBCO in the first YBCO superconducting layer to play a role of pinning, but the second layer and the third layer This is because there is no layer serving as a pin for the YBCO superconducting layer.

以上より、本実施例によれば、MOD法により、厚膜化してもJcが低下せず、高いIcを有する酸化物超電導薄膜を作製できることが分かる。   From the above, it can be seen that according to this example, an oxide superconducting thin film having a high Ic can be produced without increasing Jc even when the film thickness is increased by the MOD method.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 基板
2 YBCO超電導層
3 BaCeO
3a CeO
4 分散層
1 Substrate 2 YBCO superconducting layer 3 BaCeO 3 grains 3a CeO 2 layer 4 Dispersed layer

Claims (7)

MOD法を用いて、フッ素を含まない有機金属化合物溶液の塗膜の仮焼熱処理、および仮焼膜の本焼熱処理により酸化物超電導層を作製する工程と、
前記酸化物超電導層の上に非超電導物質からなる層を形成する工程と、
前記非超電導物質からなる層上に、さらにMOD法を用いて酸化物超電導層を作製すると共に、酸化物超電導層作製時の加熱により、前記非超電導物質と、前記非超電導物質を挟む前記酸化物超電導層とを化学反応させて、ピン止め点として機能する前記非超電導物質の反応生成物が分散した分散層を作製する工程と、
を備えていることを特徴とするREBCO系酸化物超電導薄膜の製造方法。
Using the MOD method, a step of preparing an oxide superconducting layer by a calcining heat treatment of a coating film of an organometallic compound solution containing no fluorine and a calcining heat treatment of the calcined film;
Forming a layer made of a non-superconducting material on the oxide superconducting layer;
On the layer made of the non-superconducting material, an oxide superconducting layer is further produced by using the MOD method, and the non-superconducting material and the oxide sandwiching the non-superconducting material by heating at the time of producing the oxide superconducting layer. Chemically reacting with the superconducting layer to produce a dispersed layer in which the reaction product of the non-superconducting substance functioning as a pinning point is dispersed;
A process for producing a REBCO-based oxide superconducting thin film characterized by comprising:
前記酸化物超電導層の上に前記非超電導物質からなる層を形成する工程、
および前記非超電導物質からなる層の上に、さらにMOD法を用いて前記酸化物超電導層を作製する工程
を繰り返すことにより、
前記酸化物超電導層と前記分散層とが交互に設けられたREBCO系酸化物超電導薄膜を製造することを特徴とする請求項1に記載のREBCO系酸化物超電導薄膜の製造方法。
Forming a layer made of the non-superconducting material on the oxide superconducting layer;
And by repeating the step of forming the oxide superconducting layer using the MOD method on the layer made of the non-superconducting material,
The method for producing a REBCO-based oxide superconducting thin film according to claim 1, wherein a REBCO-based oxide superconducting thin film in which the oxide superconducting layer and the dispersion layer are alternately provided is manufactured.
前記非超電導物質からなる層の厚さが、1〜10nmである
ことを特徴とする請求項1または請求項2に記載のREBCO系酸化物超電導薄膜の製造方法。
The method for producing a REBCO-based oxide superconducting thin film according to claim 1 or 2, wherein the layer made of the non-superconducting material has a thickness of 1 to 10 nm.
前記非超電導物質が、CeO、SrTiO、ZrO、BaZrOのいずれか1種である
ことを特徴とする請求項1ないし請求項3のいずれか1項に記載のREBCO系酸化物超電導薄膜の製造方法。
Wherein the non-superconductive material, CeO 2, SrTiO 3, REBCO based oxide superconducting thin film according to any one of claims 1 to 3, characterized in that a ZrO 2, any one of the BaZrO 3 Manufacturing method.
フッ素を含まない有機金属化合物溶液の塗膜の仮焼熱処理、および仮焼膜の本焼熱処理により作製される酸化物超電導層を複数層備え、
各酸化物超電導層の間に、ピン止め点として機能する非超電導物質が分散された分散層が形成されている
ことを特徴とするREBCO系酸化物超電導薄膜。
A plurality of oxide superconducting layers prepared by a calcining heat treatment of a coating film of an organometallic compound that does not contain fluorine and a calcining heat treatment of a calcined film,
A REBCO-based oxide superconducting thin film in which a dispersion layer in which a non-superconducting material functioning as a pinning point is dispersed is formed between the oxide superconducting layers.
前記分散層の厚さが、2〜30nmである
ことを特徴とする請求項5に記載のREBCO系酸化物超電導薄膜。
The REBCO-based oxide superconducting thin film according to claim 5, wherein the dispersion layer has a thickness of 2 to 30 nm.
前記酸化物超電導層の厚さが、50〜500nmである
ことを特徴とする請求項5または請求項6に記載のREBCO系酸化物超電導薄膜。
The REBCO-based oxide superconducting thin film according to claim 5 or 6, wherein the oxide superconducting layer has a thickness of 50 to 500 nm.
JP2010260114A 2010-11-22 2010-11-22 REBCO oxide superconducting thin film and manufacturing method thereof Active JP5736603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260114A JP5736603B2 (en) 2010-11-22 2010-11-22 REBCO oxide superconducting thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260114A JP5736603B2 (en) 2010-11-22 2010-11-22 REBCO oxide superconducting thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012113864A true JP2012113864A (en) 2012-06-14
JP5736603B2 JP5736603B2 (en) 2015-06-17

Family

ID=46497865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260114A Active JP5736603B2 (en) 2010-11-22 2010-11-22 REBCO oxide superconducting thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5736603B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352212A (en) * 2013-07-09 2013-10-16 东北大学 Method for preparing YBCO (yttrium barium copper oxide) film by taking ethanol as solvent through low-fluorine MOD (metal organic deposition) method
KR101374212B1 (en) * 2013-08-16 2014-03-17 케이조인스(주) Rebco high temperature superconducting tape joining apparatus and joining method of the same
WO2015166936A1 (en) * 2014-05-01 2015-11-05 古河電気工業株式会社 Superconducting wire rod connection structure and connection method, and superconducting wire rod
JP2015219960A (en) * 2014-05-14 2015-12-07 古河電気工業株式会社 Connection structure of superconducting wire rod, connection method and superconducting wire rod
CN107311641A (en) * 2017-07-25 2017-11-03 东北大学 A kind of method that step Technology for Heating Processing prepares boron doped YBCO superconducting film
CN108565067A (en) * 2018-01-19 2018-09-21 清华大学深圳研究生院 Multi-layer compound structure rare earth barium copper oxide superconducting film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643917A (en) * 1987-06-26 1989-01-09 Furukawa Electric Co Ltd Manufacture of ceramic superconductive formed body
JPH05147941A (en) * 1989-12-27 1993-06-15 Agency Of Ind Science & Technol Production of superconductor and superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643917A (en) * 1987-06-26 1989-01-09 Furukawa Electric Co Ltd Manufacture of ceramic superconductive formed body
JPH05147941A (en) * 1989-12-27 1993-06-15 Agency Of Ind Science & Technol Production of superconductor and superconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352212A (en) * 2013-07-09 2013-10-16 东北大学 Method for preparing YBCO (yttrium barium copper oxide) film by taking ethanol as solvent through low-fluorine MOD (metal organic deposition) method
KR101374212B1 (en) * 2013-08-16 2014-03-17 케이조인스(주) Rebco high temperature superconducting tape joining apparatus and joining method of the same
WO2015023125A1 (en) * 2013-08-16 2015-02-19 케이조인스(주) Rebco high temperature superconducting wire bonding device and bonding method using same
WO2015166936A1 (en) * 2014-05-01 2015-11-05 古河電気工業株式会社 Superconducting wire rod connection structure and connection method, and superconducting wire rod
JP2015219960A (en) * 2014-05-14 2015-12-07 古河電気工業株式会社 Connection structure of superconducting wire rod, connection method and superconducting wire rod
CN107311641A (en) * 2017-07-25 2017-11-03 东北大学 A kind of method that step Technology for Heating Processing prepares boron doped YBCO superconducting film
CN108565067A (en) * 2018-01-19 2018-09-21 清华大学深圳研究生院 Multi-layer compound structure rare earth barium copper oxide superconducting film and preparation method thereof

Also Published As

Publication number Publication date
JP5736603B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
WO2007069524A1 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JPWO2017145401A1 (en) Oxide superconductor and manufacturing method thereof
Chen et al. Composition effects on the critical current of MOCVD-processed Zr: GdYBCO coated conductors in an applied magnetic field
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
JP2010049891A (en) Method for producing oxide superconductive thin film
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
WO2013179443A1 (en) Oxide superconducting thin film and method for manufacturing same
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012174564A (en) Oxide superconducting thin film and method for producing the same
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP5731236B2 (en) Manufacturing method of oxide superconducting wire
JP5688804B2 (en) Intermediate layer for forming oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire
JP2012174565A (en) Raw material solution for forming oxide superconductor
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2012129085A (en) Oxide superconductive thin film wire rod and manufacturing method thereof
JP5477395B2 (en) Oxide superconducting thin film, manufacturing method thereof, and oxide superconducting thin film wire
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
JP5464194B2 (en) Oxide superconducting thin film wire
WO2013183157A1 (en) Starting-material solution for forming oxide superconductor
JP5713440B2 (en) Oxide superconducting thin film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5736603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250