JP2012112736A - Electrode body and measuring apparatus using the electrode body - Google Patents

Electrode body and measuring apparatus using the electrode body Download PDF

Info

Publication number
JP2012112736A
JP2012112736A JP2010260685A JP2010260685A JP2012112736A JP 2012112736 A JP2012112736 A JP 2012112736A JP 2010260685 A JP2010260685 A JP 2010260685A JP 2010260685 A JP2010260685 A JP 2010260685A JP 2012112736 A JP2012112736 A JP 2012112736A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
pair
electrode body
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260685A
Other languages
Japanese (ja)
Other versions
JP5477913B2 (en
Inventor
Tomoko Kai
智子 甲斐
Atsushi Tanaka
敦志 田中
Masakazu Hasegawa
雅一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Horiba Advanced Techno Co Ltd
Original Assignee
Horiba Ltd
Horiba Advanced Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Horiba Advanced Techno Co Ltd filed Critical Horiba Ltd
Priority to JP2010260685A priority Critical patent/JP5477913B2/en
Publication of JP2012112736A publication Critical patent/JP2012112736A/en
Application granted granted Critical
Publication of JP5477913B2 publication Critical patent/JP5477913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode body which can prevent failure of disabling measurement by being conducted between respective electrodes by, for example, a solid substance such as silver chloride even when the end point of titration is detected by a method for measuring the potential difference only by a pair of electrodes.SOLUTION: The electrode body 15 for detecting the end point of the titration by the method for measuring the potential difference only by the pair of the electrodes without using a reference electrode includes: the pair of the electrodes 153; and a body 151 on which the pair of the electrodes 153 is mounted. The thickness dimension of the electrodes 153 is set to be smaller than the diameter dimension of the electrodes 153.

Description

本発明は、基準電極を用いずに一対の電極のみで電位差を測定する方法により滴定の終点を検出するための電極体及びその電極を用いた測定装置に関するものである。   The present invention relates to an electrode body for detecting the end point of titration by a method of measuring a potential difference using only a pair of electrodes without using a reference electrode, and a measuring apparatus using the electrode.

例えば、水質汚濁の指標の一つであるCOD(化学的酸素要求量)を測定する場合、試料液中に含まれる有機化合物等の被酸化物質を過マンガン酸カリウム(KMnO)により酸化させ、過剰のシュウ酸ナトリウム(Na)を加えて酸化を停止したあと、再び過マンガン酸カリウムによる逆滴定を行う。このようにして、試料液中の被酸化物質を酸化するのに必要であった過マンガン酸カリウムの量を測定し、その量からCOD値が求められている。 For example, when measuring COD (chemical oxygen demand) which is one of the indicators of water pollution, an oxidizable substance such as an organic compound contained in a sample solution is oxidized with potassium permanganate (KMnO 4 ), Excess sodium oxalate (Na 2 C 2 O 4 ) is added to stop the oxidation, and then back titration with potassium permanganate is performed again. In this way, the amount of potassium permanganate required to oxidize the oxidizable substance in the sample solution is measured, and the COD value is determined from the amount.

このような酸化還元反応に関する滴定の終点を検出するために、特許文献1に示されるような従来のCOD自動測定装置においては、セラミック等の多孔質を液絡部とした基準電極と、酸化還元電位測定電極とを試料液中に浸漬しておき、各電極により当量点の近傍において酸化還元電位が大きく変化するのを利用して滴定の終点を検出するように構成されている。   In order to detect the end point of titration related to such oxidation-reduction reaction, a conventional COD automatic measuring apparatus as disclosed in Patent Document 1 uses a reference electrode having a liquid junction as a liquid junction, such as ceramic, and oxidation-reduction. A potential measurement electrode is immersed in a sample solution, and the end point of titration is detected by utilizing the fact that the oxidation-reduction potential changes greatly in the vicinity of the equivalence point by each electrode.

ところで、CODの測定対象である河川の水や、工業用排水にはゴミ等も含まれているため、前記基準電極の液絡部が詰まってしまい、その結果、酸化還元電位をうまく測定できなくなることがある。このような不具合を避けるためには、前記基準電極を用いて酸化還元電位を測定するのではなく、液絡部を有しない双白金電極を用いた定電流分極電位差法により滴定の終点を検出することが考えられる。   By the way, the river water, which is the COD measurement target, and industrial wastewater contain dust and the like, so that the liquid junction of the reference electrode is clogged, and as a result, the redox potential cannot be measured well. Sometimes. In order to avoid such problems, the end point of titration is detected not by measuring the redox potential using the reference electrode but by the constant current polarization potential difference method using a twin platinum electrode having no liquid junction. It is possible.

定電流分極電位差法について簡単に説明すると、図6に示すように、装置構成としては、ガラス製の試験管状のボディ151Aと、前記ボディ151Aの先端部から突出しており、その径寸法に対して厚さ寸法が大きい棒状に形成された一対の白金電極153Aと、を具備する双白金電極15Aを試料液中に浸漬しておき、前記白金電極153A間に所定の電流値で定電流が流れるように構成される。このように構成されていると、シュウ酸ナトリウムが試料液中に存在する場合に過マンガン酸カリウムにより滴定を行う場合、シュウ酸ナトリウムと過マンガン酸カリウムが当量に近づくにつれて、電荷の担い手であるシュウ酸イオンが酸化還元反応により試料液中に存在する量が減少する。従って、当量点に近づくにつれて電荷の担い手が試料液中から少なくなるので、電流が流れにくくなる。そして、各白金電極間は定電流が流れるように構成されているので、電極間の電位差は大きくなっていく。このことを利用して、最終的に電位差が極値を取る滴定点を終点として検出することができる。   The constant current polarization potential difference method will be briefly described. As shown in FIG. 6, the apparatus configuration includes a test tube body 151A made of glass, and projects from the tip of the body 151A. A biplatinum electrode 15A having a pair of platinum electrodes 153A formed in a rod shape having a large thickness dimension is immersed in a sample solution so that a constant current flows between the platinum electrodes 153A at a predetermined current value. Configured. When configured in this way, when titration is performed with potassium permanganate when sodium oxalate is present in the sample solution, it is a charge bearer as sodium oxalate and potassium permanganate approach the equivalent. The amount of oxalate ions present in the sample solution is reduced by the oxidation-reduction reaction. Accordingly, as the equivalence point is approached, the charge bearer is reduced from the sample liquid, so that it is difficult for the current to flow. And since it is comprised so that a constant current may flow between each platinum electrode, the electrical potential difference between electrodes becomes large. Using this fact, it is possible to detect the titration point at which the potential difference finally takes an extreme value as the end point.

しかしながら、上述したような双白金電極を用いたとしても試料液に含まれる固形物質の性質によって滴定の終点をうまく検出できなくなることがある。例えば、COD測定では試料液中の塩素が測定に影響を与えるのを防ぐために、試料液中に硝酸銀を加えて塩素イオンを固体の塩化銀とする。硝酸銀を加えた直後においては塩化銀は白綿状であり、試料液中を漂っている。この際、試料液全体に均一に硝酸銀が行き渡るように撹拌が行われているので、この白綿状の塩化銀は試料液中の流れにのって浸漬されている双白金電極に引っ掛かることがある。すると前述したような従来の双白金電極では、一対の棒状の白金電極間を橋渡しするように水分を含んだ塩化銀が絡まることがあり、白金電極間が導通することによって各電極間に分極が生じず、電位差を測定できなくなってしまうことがある。   However, even if the above-described biplatinum electrode is used, the end point of titration may not be detected well depending on the properties of the solid substance contained in the sample solution. For example, in COD measurement, in order to prevent chlorine in a sample solution from affecting the measurement, silver nitrate is added to the sample solution to convert chlorine ions into solid silver chloride. Immediately after the addition of silver nitrate, the silver chloride is fluffy and drifts in the sample solution. At this time, since stirring is performed so that silver nitrate spreads uniformly throughout the sample solution, the white cotton-like silver chloride may be caught by the twin platinum electrode immersed in the flow in the sample solution. Then, in the conventional biplatinum electrode as described above, silver chloride containing moisture may be entangled so as to bridge between a pair of rod-shaped platinum electrodes, and the polarization between each electrode is caused by conduction between the platinum electrodes. It may not occur and the potential difference cannot be measured.

特開平05−322830号公報JP 05-322830 A

本発明は上述したような問題を鑑みてなされたものであり、COD測定等において基準電極を用いずに一対の電極のみで電位差を測定する方法により滴定の終点を行う場合であっても、例えば塩化銀等の固形物質により各電極間が導通して、測定が行えなくなる不具合を防ぐことができる電極体を提供することを目的とする。   The present invention has been made in view of the above-described problems, and even when the end point of titration is performed by a method of measuring a potential difference with only a pair of electrodes without using a reference electrode in COD measurement or the like, for example, An object of the present invention is to provide an electrode body capable of preventing a problem in which measurement cannot be performed due to conduction between electrodes due to a solid substance such as silver chloride.

すなわち、本発明の電極体は、基準電極を用いずに一対の電極のみで電位差を測定する方法により滴定の終点を検出するための電極体であって、一対の電極と、前記一対の電極が取り付けられるボディと、を備え、前記電極の厚さ寸法が、当該電極の径寸法よりも小さく設定されていることを特徴とする。ここで基準電極とは、電極電位の測定において電位の基準点を与えるために用いられる電極である。基準電極は、例えば、参照電極、照合電極などとも故障される。   That is, the electrode body of the present invention is an electrode body for detecting the end point of titration by a method of measuring a potential difference with only a pair of electrodes without using a reference electrode, and the pair of electrodes and the pair of electrodes are And a thickness dimension of the electrode set to be smaller than a diameter dimension of the electrode. Here, the reference electrode is an electrode used for providing a reference point of potential in measuring the electrode potential. For example, the reference electrode and the reference electrode and the reference electrode are broken.

ここで、電極の厚さ寸法とは例えば、前記電極が取り付けられているボディの表面又は前記電極が前記ボディと交差して切り取る外縁を含む仮想面に対して垂直な方向の寸法であり、電極の径寸法とは、前記電極が取り付けられているボディの表面又は前記電極が前記ボディと交差して切り取る外縁を含む仮想面に対して面に沿った方向の寸法のことである。   Here, the thickness dimension of the electrode is, for example, a dimension in a direction perpendicular to the surface of the body to which the electrode is attached or an imaginary plane including an outer edge that the electrode intersects with the body. The diameter dimension is a dimension in a direction along the surface with respect to a virtual surface including a surface of the body to which the electrode is attached or an outer edge that the electrode intersects with the body.

このようなものであれば、前記電極が前記ボディから突出している量が小さいので浸されている試料液中に塩化銀等の固形物質が漂っていたとしても、前記電極にひっかかりにくく、一対の電極間が塩化銀等により導通してしまうのを防ぐことができる。従って、COD測定においても滴定の終点を測定できなくなってしまう事態を防ぐことができる。   If this is the case, since the amount of the electrode protruding from the body is small, even if a solid substance such as silver chloride is drifting in the sample solution that is immersed, It is possible to prevent conduction between the electrodes due to silver chloride or the like. Therefore, it is possible to prevent a situation in which the end point of titration cannot be measured even in COD measurement.

前記一対の電極間において導通を防ぐための具体的な態様としては、前記ボディに一対の取付穴が形成されており、各電極が各取付穴の内部に取り付けられていればよい。   As a specific mode for preventing conduction between the pair of electrodes, a pair of attachment holes may be formed in the body, and each electrode may be attached to the inside of each attachment hole.

電極に使う金属を少量にしつつ、前記ボディ内に信号線等を収容して保護できるようにするには、前記ボディが管状に形成されたものであり、前記取付穴が前記ボディの壁面を貫通するように形成されており、前記電極が前記取付穴と略同じ形状であり、当該取付穴を塞ぐように取り付けられていればよい。   In order to accommodate and protect signal lines and the like in the body while reducing the amount of metal used for the electrodes, the body is formed in a tubular shape, and the mounting hole penetrates the wall surface of the body It is sufficient that the electrode has substantially the same shape as the attachment hole and is attached so as to close the attachment hole.

前記電極に塩化銀等の固形物がより付着しにくくするには、前記電極が平板状のものであり、前記ボディに形成された取付穴の内部側を塞ぐように取り付けられたものであればよい。   In order to make solid matter such as silver chloride more difficult to adhere to the electrode, the electrode is a flat plate and is attached so as to close the inner side of the mounting hole formed in the body. Good.

塩化銀等により前記一対の電極間が導通するのを防ぐための具体的な実施の態様としては、前記一対の電極を通るように切断した断面において、各電極間に前記ボディの切断面があるようにすればよい。   As a specific embodiment for preventing conduction between the pair of electrodes due to silver chloride or the like, there is a cut surface of the body between the electrodes in a cross section cut through the pair of electrodes. What should I do?

前記一対の電極間が固形物質に導通するのをより防ぎやすくするには、前記一対の電極が、前記ボディを挟んで対向するように取り付けられていればよい。このようなものであれば、前記一対の電極同士が離れているため、一方に固形物質が付着したとしてももう一方の電極まで付着することは起こりにくい。   In order to more easily prevent conduction between the pair of electrodes and the solid substance, the pair of electrodes may be attached so as to face each other with the body interposed therebetween. In such a case, since the pair of electrodes are separated from each other, even if a solid substance adheres to one of the electrodes, it is unlikely to adhere to the other electrode.

CODの自動測定を行う際等において、試料液が試料容器内にあるかどうかを付加的なセンサを用いずに検出できるようにするには、電極体と前記一対の電極間に交流電圧を印加し、その際の当該一対の電極間における導電率に基づいて前記電極体に接触する試料液の有無を検知する試料液検知部と、を備えた測定装置であればよい。   In order to be able to detect whether the sample liquid is in the sample container without using an additional sensor when performing automatic measurement of COD, an AC voltage is applied between the electrode body and the pair of electrodes. In this case, the measurement apparatus may include a sample liquid detection unit that detects the presence or absence of the sample liquid that contacts the electrode body based on the conductivity between the pair of electrodes.

このように本発明の電極体によれば、電極体が浸漬される試料液中に塩化銀等のからみつきやすい固形物質が漂っている等しても、一対の電極同士を橋渡しするように付着して導通し、定電流分極電位差法が行えなくなるのを防ぐことができるようになる。   As described above, according to the electrode body of the present invention, even if a solid material such as silver chloride drifts in the sample solution in which the electrode body is immersed, the electrode body adheres to bridge the pair of electrodes. It becomes possible to prevent the constant current polarization potential difference method from being disabled.

本発明の一実施形態に係るCOD自動測定装置を示す模式図。The schematic diagram which shows the COD automatic measuring apparatus which concerns on one Embodiment of this invention. 同実施形態における双白金電極の模式的拡大縦断面図。The typical expanded longitudinal cross-sectional view of the twin platinum electrode in the embodiment. 同実施形態における双白金電極の模式的拡大横断面図。The typical expanded cross-sectional view of the twin platinum electrode in the embodiment. 本発明の別の実施形態に係る双白金電極の模式的拡大断面図。The typical expanded sectional view of the twin platinum electrode concerning another embodiment of the present invention. 本発明のさらに別の実施形態に係る双白金電極の模式図。The schematic diagram of the biplatinum electrode which concerns on another embodiment of this invention. 従来の双白金電極を示す模式図。The schematic diagram which shows the conventional twin platinum electrode.

以下、本発明の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態の電極体である双白金電極15及び当該双白金電極15を用いた測定装置100は、水質の指標の一つであるCOD(化学的酸素要求量)を測定するために用いられる。より具体的には、本実施形態の測定装置100は、JISに定められた規格に基づいたCOD自動測定装置100であって、後述する反応槽101において試料液中の有機物等の被酸化物質を過マンガン酸カリウムとともに加熱することで酸化させ、被酸化物質を酸化するために必要となった過マンガン酸カリウムの量を逆滴定により測定し、COD値を算出するものである。   The biplatinum electrode 15 that is the electrode body of the present embodiment and the measuring device 100 using the biplatinum electrode 15 are used for measuring COD (chemical oxygen demand), which is one of water quality indicators. More specifically, the measuring apparatus 100 of the present embodiment is a COD automatic measuring apparatus 100 based on a standard defined in JIS, and oxidizes substances such as organic substances in a sample solution in a reaction tank 101 described later. It is oxidized by heating with potassium permanganate, and the amount of potassium permanganate required to oxidize the substance to be oxidized is measured by back titration to calculate the COD value.

前記COD自動測定装置100は、少なくとも反応槽101と、前記反応槽への試料液や試薬液の導入、排出等のCODの自動測定に関係する各種制御を行う制御装置104とを備えたものである。   The COD automatic measuring apparatus 100 includes at least a reaction vessel 101 and a control device 104 that performs various controls related to automatic measurement of COD such as introduction and discharge of a sample solution and a reagent solution into the reaction vessel. is there.

まず、反応槽101の各部について説明する。   First, each part of the reaction vessel 101 will be described.

前記反応槽101は、図1に示すように試料液を貯留する試料容器11が挿入される伝熱体12と、前記伝熱体12を加熱するヒータ13と、を備えたものである。   As shown in FIG. 1, the reaction vessel 101 includes a heat transfer body 12 into which a sample container 11 that stores a sample solution is inserted, and a heater 13 that heats the heat transfer body 12.

前記試料容器11は、底面側がコーン形状で上面側が円筒形状のガラス製の容器であり、上面の開口から当該試料容器11内へ、各種導入管、測定電極15、撹拌翼16、排出管18が挿入してある。前記試料容器11内は、コーン状(概略逆円錐状)となっている底面側の部分、すなわち、底面側から上面側へ向かうに連れて横断面の面積が大きくなっている部分にのみ前記試料液を貯留するようにしてあり、試料液の量が少なくてもある程度の液位が出るようにしてある。このようにすることで、試料液が少なくても前記測定電極15や撹拌翼16を試料液内に浸漬することができる。さらに、上面の開口において横断面積が最も大きくなるようにしてあるので、前述した各種機器を挿入する際にも機器同士が干渉することを防ぎ、容易に当該試料容器11内に挿入することができる。   The sample container 11 is a glass container having a cone shape on the bottom surface side and a cylindrical shape on the upper surface side. Inserted. In the sample container 11, the sample is only present on the bottom-side portion that has a cone shape (substantially inverted conical shape), that is, the portion whose cross-sectional area increases from the bottom surface side to the top surface side. The liquid is stored so that a certain level of liquid can be obtained even if the amount of the sample liquid is small. By doing in this way, even if there is little sample liquid, the said measurement electrode 15 and the stirring blade 16 can be immersed in a sample liquid. Further, since the cross-sectional area is maximized at the opening on the upper surface, it is possible to prevent the devices from interfering with each other even when the various devices described above are inserted, and to be easily inserted into the sample container 11. .

前記各種試薬液導入管24、25のうち、逆滴定工程において微小量の過マンガン酸カリウムを試料液に導入する滴定用試薬液導入管25については、その先端が試料液の貯留されている状態での液位よりも下方に位置するように設けてある。その他の試薬液導入管24の先端については試料液の液位よりも上方に位置するように設けてある。   Among the various reagent solution introduction tubes 24 and 25, the tip of the titration reagent solution introduction tube 25 that introduces a minute amount of potassium permanganate into the sample solution in the back titration step is stored in the sample solution. It is provided so that it may be located below the liquid level. The tip of the other reagent solution introduction tube 24 is provided so as to be positioned above the liquid level of the sample solution.

前記測定電極15は、いわゆる双白金電極15であり請求項での電極体に相当するものである。前記双白金電極15は、ガラス製のボディ151と、前記ボディ151に取り付けられた2つの白金電極153と、ボディ151の先端部に設けられた温度センサ154と、を備えたものである。この双白金電極15は、定電流分極電位差法により後述する過マンガン酸カリウムによる逆滴定の終点を検出するために用いる。   The measurement electrode 15 is a so-called biplatinum electrode 15 and corresponds to the electrode body in the claims. The biplatinum electrode 15 includes a glass body 151, two platinum electrodes 153 attached to the body 151, and a temperature sensor 154 provided at the tip of the body 151. The biplatinum electrode 15 is used to detect the end point of back titration with potassium permanganate, which will be described later, by the constant current polarization potential difference method.

より具体的には、図2の縦断面図に示すように前記ボディ151は、概略直管状のものであり、その内部に前記白金電極153及び前記温度センサ154に取り付けられる信号線を収容するように構成されている。そして、前記ボディ151の側周面には前記白金電極153が取り付けられる一対の取付穴152が、当該ボディ151の先端から所定の高さに形成してあり、前記一対の取付穴152はそれぞれ前記ボディ151において対向するように設けてある。   More specifically, as shown in the longitudinal sectional view of FIG. 2, the body 151 has a substantially straight tube shape, and accommodates signal wires attached to the platinum electrode 153 and the temperature sensor 154 therein. It is configured. A pair of attachment holes 152 to which the platinum electrode 153 is attached are formed at a predetermined height from the tip of the body 151 on the side peripheral surface of the body 151, and the pair of attachment holes 152 are respectively The body 151 is provided so as to face each other.

前記取付穴152は、前記ボディ151の側面に対して垂直に内側へ向かって延びる概略円筒形状の底を有する穴として形成してある。前記取付穴152の底には、中心に小穴が内部へと貫通させて形成してあり、この小穴に信号線を通して前記白金電極153に接続するようにしてある。   The mounting hole 152 is formed as a hole having a substantially cylindrical bottom extending inwardly perpendicular to the side surface of the body 151. A small hole is formed in the bottom of the mounting hole 152 so as to penetrate into the center, and the small hole is connected to the platinum electrode 153 through a signal line.

前記白金電極153は、概略円板形状のものであり、その厚さ寸法を径方向寸法よりも小さくした膜状電極である。各白金電極153はそれぞれ前記取付穴152に隙間なく嵌め込んであり、前記取付穴152の内側周面及び底に接触させて、当該取付穴152内に収容してある。従って、図3のA−A線を通る横断面図に示すように、一対の電極153をそれぞれ通るように切断した断面においては、各白金電極153の間には前記ボディ151の断面が表れることになる。また、前記一対の白金電極153間には、後述する終点検出部により前記試料液を介して一定値の電流が流れるように定電流制御が行われている。   The platinum electrode 153 has a substantially disk shape, and is a film electrode whose thickness is smaller than the radial dimension. Each platinum electrode 153 is fitted in the mounting hole 152 without a gap, and is accommodated in the mounting hole 152 so as to contact the inner peripheral surface and the bottom of the mounting hole 152. Therefore, as shown in the cross-sectional view taken along line AA in FIG. 3, the cross section of the body 151 appears between the platinum electrodes 153 in the cross section cut through the pair of electrodes 153. become. In addition, constant current control is performed between the pair of platinum electrodes 153 so that a constant current flows through the sample solution by an end point detector described later.

前記温度センサ154は、前記ボディ151の先端部に接着剤により形成した収容室内に設けてあり、前記ヒータ13による試料液の温度制御のためや、試料容器11内に試料液がなく空だきしてしまうのを防ぐために用いられる。   The temperature sensor 154 is provided in a storage chamber formed of an adhesive at the front end of the body 151, and is used for controlling the temperature of the sample solution by the heater 13 or emptying the sample container 11 without any sample solution. It is used to prevent

前記撹拌翼16は、ガラス製のものであり、前記試料容器11内の試料液をかき混ぜることによりその濃度を均一にする、あるいは塩化銀が沈殿して固化するのを防ぐために用いるものである。   The stirring blade 16 is made of glass, and is used to make the concentration uniform by stirring the sample solution in the sample container 11 or to prevent silver chloride from precipitating and solidifying.

前記液体排出管18は、図1に示すように、試料容器11の最底部近傍にその一端が配置されており、COD測定が終了した時点で、不要となった試料液を試料容器11外へと排出するのに用いられる。
なお、後述するように測定の前処理として試料液へ硝酸銀水溶液を添加する際に発生する塩化銀が、試料容器11の内部で固化するのを防ぐために最底部近傍から微小な気泡によるバブリングを行う図示しない配管も前記試料容器11内に挿入してある。
As shown in FIG. 1, one end of the liquid discharge pipe 18 is disposed in the vicinity of the bottom of the sample container 11. When the COD measurement is finished, the sample liquid that is no longer needed is moved out of the sample container 11. Used to discharge.
As will be described later, in order to prevent silver chloride generated when a silver nitrate aqueous solution is added to the sample solution as a pretreatment for measurement to solidify inside the sample container 11, bubbling with minute bubbles is performed from the vicinity of the bottom. A pipe (not shown) is also inserted into the sample container 11.

前記試料容器11が挿入される前記伝熱体12は、図1に示すようにアルミの薄板により形成された外形が概略円筒形状のものであり、その断面が概略M字形状のものである。より具体的には、シート状のヒータ13が前記伝熱体12の外側周面123を覆うように設けてあり、当該伝熱体12の上面側に前記試料容器11が挿入され、当該試料容器11と接触する収容部121が形成してあるとともに、前記伝熱体12の底面側に凹部122が形成してある。   As shown in FIG. 1, the heat transfer body 12 into which the sample container 11 is inserted has a substantially cylindrical outer shape formed by an aluminum thin plate, and has a substantially M-shaped cross section. More specifically, a sheet-like heater 13 is provided so as to cover the outer peripheral surface 123 of the heat transfer body 12, the sample container 11 is inserted on the upper surface side of the heat transfer body 12, and the sample container 11 is formed, and a recess 122 is formed on the bottom surface side of the heat transfer body 12.

次に前記制御装置104について説明する。この制御装置104は、例えば、CPU、メモリ、入出力インターフェース、A/D、D/Aコンバータ等を備えたいわゆるコンピュータである。そして前記制御装置104は、図示しない圧力供給機構を介して各種液体の移動を制御する、又は、前記双白金電極15へ印加する電圧等を制御することにより、試料液を計量し前記試料容器11内に導入する試料液導入工程、前記試料液の塩素を除去する前処理工程、過マンガン酸カリウムを試料液へ導入し、試料液中の被酸化物を酸化する酸化工程、過剰のシュウ酸ナトリウムを試料液に導入し、酸化を止める酸化停止工程、逆適定により酸化に必要となった過マンガン酸カリウムの量を測定する定量工程、COD値算出後に試料容器内の液体を排出する後処理工程をこの順で行うように構成してある。   Next, the control device 104 will be described. The control device 104 is a so-called computer including a CPU, a memory, an input / output interface, an A / D, a D / A converter, and the like. The control device 104 controls the movement of various liquids via a pressure supply mechanism (not shown), or controls the voltage applied to the biplatinum electrode 15 to measure the sample liquid, thereby the sample container 11. A sample solution introduction step for introducing into the sample solution, a pretreatment step for removing chlorine from the sample solution, an oxidation step for introducing potassium permanganate into the sample solution and oxidizing the oxide in the sample solution, excess sodium oxalate Is introduced into the sample solution to stop the oxidation, an oxidation stop process to stop oxidation, a quantitative process to measure the amount of potassium permanganate required for oxidation by reverse titration, and a post-treatment to discharge the liquid in the sample container after calculating the COD value It is comprised so that a process may be performed in this order.

しかして、この制御装置104の定量工程及び後処理工程における機能について注目すると、当該制御装置は少なくとも終点検知部41と、試料液検知部42としての機能を発揮するように構成してある。   When attention is paid to the functions of the control device 104 in the quantitative process and the post-processing process, the control device is configured to exhibit at least the functions of the end point detection unit 41 and the sample liquid detection unit 42.

前記終点検知部41は、定量工程において前記白金電極153間に一定電流が流れ続けるように電圧を逐次変化させて印加するように構成してある。そして、前記終点検知部41は、印加される電圧が最も大きくなった滴定点をシュウ酸ナトリウムと過マンガン酸カリウムが当量となった終点として検知するように構成してある。この終点検知部41により滴定の終点が検知されると、滴定で加えられた過マンガン酸カリウムの量から、試料液を酸化するのに必要であった過マンガン酸カリウムの量が算出され、COD値の算出に用いられる。   The end point detection unit 41 is configured to sequentially change and apply a voltage so that a constant current continues to flow between the platinum electrodes 153 in the determination step. The end point detection unit 41 is configured to detect the titration point at which the applied voltage is maximized as the end point at which sodium oxalate and potassium permanganate are equivalent. When the end point of the titration is detected by the end point detection unit 41, the amount of potassium permanganate necessary to oxidize the sample solution is calculated from the amount of potassium permanganate added by titration, and COD Used for value calculation.

前記試料液検知部42は、例えば前記後処理工程において、少なくとも前記双白金電極15の白金電極153が設けてある高さから、前記試料容器11内に試料液の液位が低下したかどうかを検知するものである。より具体的には、試料容器11内から試料液が排出される後処理工程において、前記試料液検知部42はそれぞれの白金電極153間に交流電圧を印加し、その際の導電率(電気伝導度)を測定するように構成してある。このように白金電極153間に交流電流を印加することにより、試料液中にある場合において白金電極153表面に分極が生じるのを防ぎ、電流値を測定することができる。また、試料液の有無を検知する具体的な構成としては、例えば試料液として用いられる河川の水や、工場排水等における基準導電率を予め測定しておき、測定された導電率と基準導電率を比較することによって判定するように前記試料液検知部42を構成してある。このように双白金電極15を利用して、当該双白金電極15が試料液に浸漬しているかどうか、すなわち、試料容器11内から試料液が排出され、その液位が低下しはじめたかどうかを、フォトセンサや検出用の別の電極等を用いることなく検出できる。従って、例えば塩化銀が前記液体排出管18内に詰まる等して排液が開始できないといった異常を付加センサなしで検出することができ、しかも、余分なセンサを試料容器11内に挿入する必要がないので、試料容器11の小型化が可能となる。   For example, in the post-processing step, the sample liquid detection unit 42 determines whether or not the liquid level of the sample liquid has decreased in the sample container 11 from at least the height at which the platinum electrode 153 of the biplatinum electrode 15 is provided. It is something to detect. More specifically, in the post-processing step in which the sample solution is discharged from the sample container 11, the sample solution detection unit 42 applies an alternating voltage between the platinum electrodes 153, and the conductivity (electric conduction) at that time is applied. Degree). By applying an alternating current between the platinum electrodes 153 in this way, polarization can be prevented from occurring on the surface of the platinum electrode 153 when it is in the sample solution, and the current value can be measured. In addition, as a specific configuration for detecting the presence or absence of the sample solution, for example, the reference conductivity in river water or factory wastewater used as the sample solution is measured in advance, and the measured conductivity and the reference conductivity are measured. The sample liquid detection unit 42 is configured to make a determination by comparing the two. In this way, by using the biplatinum electrode 15, whether the biplatinum electrode 15 is immersed in the sample liquid, that is, whether the sample liquid is discharged from the sample container 11 and the liquid level starts to decrease. It can be detected without using a photo sensor or another electrode for detection. Therefore, for example, an abnormality such that silver chloride is clogged in the liquid discharge pipe 18 and the drainage cannot be started can be detected without an additional sensor, and an extra sensor needs to be inserted into the sample container 11. Therefore, the sample container 11 can be downsized.

このように構成されたCOD自動測定装置100及び双白金電極15によれば、膜状の前記白金電極153を前記ボディ151の取付穴152内に設けてあり、白金電極153がボディ151から外側へと突出していないので、塩化銀が前記白金電極153に引っ掛かりにくく、付着しにくい。従って、塩化銀が大量に試料液中に存在している場合でも、塩化銀が前記白金電極153間を橋渡しするように付着し、導通してしまう事態を防ぐことができる。つまり、塩化銀の影響を受けることなく定電流分極電位差法により滴定の終点を検出することができるので、高塩素濃度の試料液であっても問題無くCOD測定を行うことが可能となる。   According to the COD automatic measuring apparatus 100 and the biplatinum electrode 15 configured as described above, the film-like platinum electrode 153 is provided in the mounting hole 152 of the body 151, and the platinum electrode 153 is outward from the body 151. Therefore, silver chloride is not easily caught on the platinum electrode 153 and is difficult to adhere. Therefore, even when a large amount of silver chloride is present in the sample solution, it is possible to prevent a situation in which silver chloride adheres so as to bridge between the platinum electrodes 153 and becomes conductive. That is, since the end point of titration can be detected by the constant current polarization potential difference method without being affected by silver chloride, COD measurement can be performed without any problem even for a sample solution having a high chlorine concentration.

その他の実施形態について説明する。   Other embodiments will be described.

前記実施形態では定電流分極電位差法による滴定の終点を検知するために電極体である双白金電極153を用いていたが、その他の電極体であっても構わない。例えば、前記一対の電極153は、白金電極153であったが、金、銀、鉄等その他の金属で形成された電極であっても構わない。また、前記一対の電極153の形状も前記実施形態に限られるものではない。例えば、図4(a)の拡大図に示すように前記取付穴152から電極の一部が微小に突出するものであっても構わない。また、図4(b)に示すように前記ボディ151に取付穴152を形成せずにその表面に電極153が形成されていても構わない。要するに、径寸法よりも厚さ寸法の方が小さく、塩化銀が付着しにくい程度の厚さ寸法であればよい。さらに、前記一対の電極153は、ボディ151を挟んで対向させて設けるだけでなく、例えば上下に一定距離離間させて並べて設けてもよい。加えて、前記ボディ151が管状のものであって、その軸方向に複数のリング状の電極153が並べて所定間隔ごとに取り付けてあるものであってもよい。例えば、図5(a)の側面図、図5(b)の縦断面図に示すように、前記ボディ151に形成された取付穴152の形状が概略薄肉円筒形状に形成されており、その取付穴152の空間内にリング状の前記電極153とリング状の絶縁体155とが交互に積層して取り付けられている。より具体的には、前記電極153は、図面視において上下方向の外側にある2つの外極153(a)と中央部にある内極153(b)で対になっており、これら外極153(a)と内極153(b)の間にそれぞれ絶縁体155が設けてあり、前記外極153(a)と前記内極153(b)との間の電位差により滴定の終点を知ることができる。このようなものであっても、前記取付穴内155から前記電極153からほとんど突出しないように構成してあるので、塩化銀等が付着しにくいという効果を得ることができる。   In the embodiment, the biplatinum electrode 153 that is an electrode body is used to detect the end point of titration by the constant current polarization potential difference method, but other electrode bodies may be used. For example, the pair of electrodes 153 are the platinum electrodes 153, but may be electrodes formed of other metals such as gold, silver, and iron. Further, the shape of the pair of electrodes 153 is not limited to the above embodiment. For example, as shown in the enlarged view of FIG. 4A, a part of the electrode may protrude slightly from the mounting hole 152. Further, as shown in FIG. 4B, the electrode 151 may be formed on the surface of the body 151 without forming the mounting hole 152. In short, it is sufficient that the thickness dimension is smaller than the diameter dimension and the thickness dimension is such that silver chloride does not easily adhere. Furthermore, the pair of electrodes 153 may be provided not only so as to face each other with the body 151 interposed therebetween, but also, for example, arranged side by side at a predetermined distance apart. In addition, the body 151 may be tubular, and a plurality of ring-shaped electrodes 153 may be arranged in the axial direction and attached at predetermined intervals. For example, as shown in the side view of FIG. 5A and the longitudinal cross-sectional view of FIG. 5B, the shape of the mounting hole 152 formed in the body 151 is formed in a substantially thin cylindrical shape, Ring-shaped electrodes 153 and ring-shaped insulators 155 are alternately stacked and attached in the space of the hole 152. More specifically, the electrode 153 is paired with two outer poles 153 (a) on the outside in the vertical direction in the drawing and an inner pole 153 (b) in the center, and these outer poles 153 are paired. An insulator 155 is provided between each of (a) and the inner electrode 153 (b), and the end point of the titration can be known from the potential difference between the outer electrode 153 (a) and the inner electrode 153 (b). it can. Even in such a case, since it is configured such that it hardly protrudes from the electrode 153 from the inside 155 of the mounting hole, an effect that silver chloride or the like hardly adheres can be obtained.

前記実施形態ではボディは管状に形成してあったが、例えば中実のものであっても構わない。   In the embodiment, the body is formed in a tubular shape, but may be a solid body, for example.

その他、本発明の趣旨に反しない限りにおいて、様々な変形や実施形態の組み合わせを行っても構わない。   In addition, various modifications and combinations of embodiments may be performed without departing from the spirit of the present invention.

100・・・COD自動測定装置
15 ・・・双白金電極(電極体)
151・・・ボディ
152・・・取付穴
153・・・白金電極(電極)
42 ・・・試料液検知部
100: COD automatic measuring device 15: Biplatinum electrode (electrode body)
151 ... Body 152 ... Mounting hole 153 ... Platinum electrode (electrode)
42 ・ ・ ・ Sample liquid detector

Claims (7)

基準電極を用いずに一対の電極のみで電位差を測定する方法により滴定の終点を検出するための電極体であって、
前記一対の電極と、
前記一対の電極が取り付けられるボディと、を備え、
前記電極の厚さ寸法が、当該電極の径寸法よりも小さく設定されていることを特徴とする電極体。
An electrode body for detecting the end point of titration by a method of measuring a potential difference with only a pair of electrodes without using a reference electrode,
The pair of electrodes;
A body to which the pair of electrodes are attached,
An electrode body, wherein a thickness dimension of the electrode is set smaller than a diameter dimension of the electrode.
前記ボディに一対の取付穴が形成されており、各電極が各取付穴の内部に取り付けられている請求項1記載の電極体。   The electrode body according to claim 1, wherein a pair of attachment holes are formed in the body, and each electrode is attached inside each attachment hole. 前記ボディが管状に形成されたものであり、前記取付穴が前記ボディの壁面を貫通するように形成されており、
前記電極が前記取付穴と略同じ形状であり、当該取付穴を塞ぐように取り付けられている請求項2記載の電極体。
The body is formed in a tubular shape, and the attachment hole is formed to penetrate the wall surface of the body,
The electrode body according to claim 2, wherein the electrode has substantially the same shape as the attachment hole and is attached so as to close the attachment hole.
前記電極が平板状のものであり、前記ボディに形成された取付穴の内部側を塞ぐように取り付けられた請求項2又は3記載の電極体。   The electrode body according to claim 2 or 3, wherein the electrode has a flat plate shape and is attached so as to close an inner side of an attachment hole formed in the body. 前記一対の電極を通るように切断した断面において、各電極間に前記ボディの切断面がある請求項1、2、3又は4記載の電極体。   5. The electrode body according to claim 1, wherein the body has a cut surface between the electrodes in a cross section cut through the pair of electrodes. 前記一対の電極が、前記ボディを挟んで対向するように取り付けられている請求項1、2、3、4又は5記載の電極体。   The electrode body according to claim 1, wherein the pair of electrodes are attached to face each other with the body interposed therebetween. 請求項1乃至6いずれかに記載の電極体と
前記一対の電極間に交流電圧を印加し、その際の当該一対の電極間における導電率に基づいて前記電極体に接触する試料液の有無を検知する試料液検知部と、を備えた測定装置。
An AC voltage is applied between the electrode body according to any one of claims 1 to 6 and the pair of electrodes, and the presence or absence of a sample solution in contact with the electrode body is determined based on conductivity between the pair of electrodes at that time. A sample liquid detection unit for detecting.
JP2010260685A 2010-11-22 2010-11-22 Electrode body and measuring apparatus using the electrode body Active JP5477913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260685A JP5477913B2 (en) 2010-11-22 2010-11-22 Electrode body and measuring apparatus using the electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260685A JP5477913B2 (en) 2010-11-22 2010-11-22 Electrode body and measuring apparatus using the electrode body

Publications (2)

Publication Number Publication Date
JP2012112736A true JP2012112736A (en) 2012-06-14
JP5477913B2 JP5477913B2 (en) 2014-04-23

Family

ID=46497116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260685A Active JP5477913B2 (en) 2010-11-22 2010-11-22 Electrode body and measuring apparatus using the electrode body

Country Status (1)

Country Link
JP (1) JP5477913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425687A (en) * 2017-08-30 2019-03-05 东亚Dkk株式会社 COD measurement device and COD measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079135U (en) * 1983-11-08 1985-06-01 京都電子工業株式会社 Sample quantitative collection device
JPS61262651A (en) * 1984-12-19 1986-11-20 Sumitomo Chem Co Ltd Method for electrochemically measure final point of organic/inorganic reaction and electrode therefor
JPH0933484A (en) * 1995-07-14 1997-02-07 Mitsubishi Chem Corp Method for measuring moisture
JP2005283294A (en) * 2004-03-29 2005-10-13 Iijima Denshi Kogyo Kk Measurement method for reducing sugar and its instrument
JP2009139119A (en) * 2007-12-04 2009-06-25 Kureha Ecology Management Co Ltd Cod automatic measuring instrument and cod measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079135U (en) * 1983-11-08 1985-06-01 京都電子工業株式会社 Sample quantitative collection device
JPS61262651A (en) * 1984-12-19 1986-11-20 Sumitomo Chem Co Ltd Method for electrochemically measure final point of organic/inorganic reaction and electrode therefor
JPH0933484A (en) * 1995-07-14 1997-02-07 Mitsubishi Chem Corp Method for measuring moisture
JP2005283294A (en) * 2004-03-29 2005-10-13 Iijima Denshi Kogyo Kk Measurement method for reducing sugar and its instrument
JP2009139119A (en) * 2007-12-04 2009-06-25 Kureha Ecology Management Co Ltd Cod automatic measuring instrument and cod measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425687A (en) * 2017-08-30 2019-03-05 东亚Dkk株式会社 COD measurement device and COD measuring method
JP2019045187A (en) * 2017-08-30 2019-03-22 東亜ディーケーケー株式会社 Cod measurement device, and program

Also Published As

Publication number Publication date
JP5477913B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5641646B2 (en) Titration device
JP5622063B1 (en) Chemical oxygen consumption (COD) automatic measuring device
US11125714B2 (en) Potentiometric sensor
JP4991683B2 (en) Electrochemical potential automatic correction device
JP6163202B2 (en) Method and apparatus for measuring the total organic content of an aqueous stream
KR101488438B1 (en) Electrochemical gas sensor
JP5477913B2 (en) Electrode body and measuring apparatus using the electrode body
AU2016375264B2 (en) Pulsed potential gas sensors
JP6683230B2 (en) measuring device
US20070227908A1 (en) Electrochemical cell sensor
CN109239144B (en) Current type chlorine dioxide sensor
JP4714209B2 (en) COD automatic measuring instrument and COD measuring method using the same
JP4585267B2 (en) Trace analysis method
WO2012114706A1 (en) Biological sample measuring device
JP5276604B2 (en) Electrochemical sensor diagnostic method and electrochemical sensor
JP5935037B2 (en) Polarographic residual chlorine sensor
JP2005017173A (en) Oxygen sensor
CN107850562B (en) Electrochemical measuring cell for measuring the content of chlorine compounds in water
JP4216846B2 (en) Electrodes for electrochemical measurements and electrochemical measurement methods
Demirtas Enhancing the sensitivity of nanopipette biosensors for protein analysis
JP3813606B2 (en) Combined electrode of electrolysis electrode and redox potential measurement electrode
JPH04204365A (en) Liquid detection method
JP4603782B2 (en) Residual chlorine measuring device
JPS61225643A (en) Measurement of concentration of strong acid or strong base in solution with water
JPS6311849A (en) Dissolved hydrogen peroxide sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Ref document number: 5477913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250