JP2012112569A - Combustion method to prevent contamination of combustion chamber of petroleum residue fired boiler - Google Patents

Combustion method to prevent contamination of combustion chamber of petroleum residue fired boiler Download PDF

Info

Publication number
JP2012112569A
JP2012112569A JP2010261208A JP2010261208A JP2012112569A JP 2012112569 A JP2012112569 A JP 2012112569A JP 2010261208 A JP2010261208 A JP 2010261208A JP 2010261208 A JP2010261208 A JP 2010261208A JP 2012112569 A JP2012112569 A JP 2012112569A
Authority
JP
Japan
Prior art keywords
combustion
temperature
combustion zone
combustion chamber
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261208A
Other languages
Japanese (ja)
Other versions
JP5496862B2 (en
Inventor
Nobuo Suemitsu
信夫 末光
Sadayuki Muto
貞行 武藤
Kitetsu Shimizu
敬哲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2010261208A priority Critical patent/JP5496862B2/en
Publication of JP2012112569A publication Critical patent/JP2012112569A/en
Application granted granted Critical
Publication of JP5496862B2 publication Critical patent/JP5496862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a combustion method to prevent contamination of a combustion chamber of a petroleum residue fired boiler, capable of preventing degradation of heat exchanging performance and contamination of the combustion chamber due to attachment of melted combustion ash including vanadium oxide to a water pipe of the combustion chamber, when deteriorated fuel such as petroleum residue of high content of vanadium is used as a fuel.SOLUTION: In the combustion chamber 1 including a high-temperature reduction combustion zone 2 having a throttle section 4 at its outlet, and a low-temperature oxidation combustion zone 3 having a cooling section 9 in a region from the throttle section 4 of the high-temperature reduction combustion zone to a position of an air supply nozzle 7 for two-stage combustion, an average gas temperature in the high-temperature reduction combustion zone 2 is within a range of 1,450-1,550°C, and the air for two-stage combustion is supplied when an exhaust gas temperature of the reduction combustion zone is cooled to 1,200-1,350°C at the cooling section 9 to perform the combustion in an oxidation atmosphere, thus a ratio of a component of low-melting point in the vanadium oxide is reduced.

Description

本発明は、オイルコークスのようなバナジウムを含む石油系残渣を燃料として用いるボイラにおいて、バナジウムアタックを防止し燃焼室の汚れを防止する燃焼方法に関する。   The present invention relates to a combustion method for preventing vanadium attack and preventing fouling of a combustion chamber in a boiler using petroleum-based residue containing vanadium such as oil coke as fuel.

石油資源の保全や燃料コストの節約の観点から、たとえば、アスファルト、オイルコークスなどの劣質燃料をボイラ燃料として用いることがある。しかし、オイルコークスなどの石油系残渣はバナジウム含有量が高いため、通常のボイラにおいて石油残渣を燃料として酸化燃焼させると、低融点の5価のバナジウム酸化物を含む灰が生成する。バナジウム酸化物はボイラ燃焼室の高温で溶融して飴のようになって伝熱面に付着し、伝熱係数を低下させボイラの収熱量を低下させたり、金属面の酸化皮膜を破壊して加速高温酸化(バナジウムアタック)により金属を腐食させたりして、ボイラの継続運転を困難にする。   For example, inferior fuels such as asphalt and oil coke may be used as boiler fuel from the viewpoint of saving petroleum resources and saving fuel costs. However, since petroleum-based residues such as oil coke have a high vanadium content, ash containing a low melting point pentavalent vanadium oxide is produced when the petroleum residue is oxidized and burned as fuel in a normal boiler. Vanadium oxide melts at a high temperature in the boiler combustion chamber and becomes soot and adheres to the heat transfer surface, lowering the heat transfer coefficient, reducing the heat recovery of the boiler, and destroying the oxide film on the metal surface. Accelerated high-temperature oxidation (vanadium attack) corrodes metals, making continuous boiler operation difficult.

バナジウム酸化物が伝熱面に付着することを防止する方法として、マグネシウム系の添加剤を燃料に混入して燃焼灰の融点を高め、燃焼室の温度では溶融しにくくして水管表面への灰付着を軽減させる手法がある。しかし、この手法は、燃焼灰量を増大させるばかりでなく、NOxの発生量が増加するという弊害を伴う。   As a method to prevent vanadium oxide from adhering to the heat transfer surface, a magnesium-based additive is mixed into the fuel to increase the melting point of the combustion ash, making it difficult to melt at the temperature of the combustion chamber, making the ash on the surface of the water tube There are techniques to reduce adhesion. However, this method not only increases the amount of combustion ash, but also has the harmful effect of increasing the amount of NOx generated.

また、特許文献1には、舶用ボイラにおいて、バナジウムなどを含む粗悪重油を利用するときに、低融点のバナジウム化合物の灰が融解して熱交換器の外面に飴のようになって付着して加速高温酸化により金属を腐食させるいわゆるバナジウムアタックに対し減肉に耐えられるようにするため、バナジウム含有燃焼灰が付着する伝熱管部分にバナジウムアタックの影響が小さい保護部材を当てる方法が開示されている。
特許文献1記載の方法は、保護部材が高価であるばかりでなく、伝熱管毎に伝熱管を覆う複数の板状保護部材を添設するため工事費用も大きい。
Further, in Patent Document 1, when a crude heavy oil containing vanadium or the like is used in a marine boiler, the ash of the low melting point vanadium compound melts and adheres to the outer surface of the heat exchanger as a flea. In order to be able to withstand thinning against so-called vanadium attack that corrodes metal by accelerated high-temperature oxidation, a method is disclosed in which a protective member that is less affected by vanadium attack is applied to the heat transfer tube portion to which vanadium-containing combustion ash adheres. .
In the method described in Patent Document 1, not only is the protective member expensive, but a plurality of plate-shaped protective members that cover the heat transfer tubes are provided for each heat transfer tube, so that the construction cost is high.

なお、出願人は、既に、アスファルト、オイルコークスなどの劣質燃料をボイラ燃料として用いることができる、高温還元燃焼ゾーンと低温酸化燃焼ゾーンを備えた低NOxボイラを開発している。特許文献2は出願人が開示したもので、特に、炉底に溜まる燃焼灰を連続排出できるようにして長期の連続運転を可能にした倒立形の低NOxボイラを開示するものである。
特許文献2に開示された低NOxボイラは、還元雰囲気中で燃料を燃焼させる高温還元燃焼ゾーンを燃焼室の最上流部に形成し、その下流に燃焼ガス流路の絞り部を介して内周壁を水冷壁構造とし側壁に2段燃焼用空気ノズルを取り付けた低温酸化燃焼ゾーンを形成した構成になっている。
The applicant has already developed a low NOx boiler having a high temperature reduction combustion zone and a low temperature oxidation combustion zone, which can use inferior fuels such as asphalt and oil coke as boiler fuel. Patent Document 2 discloses an inverted low-NOx boiler that has been disclosed by the applicant, and in particular, enables continuous operation for a long period of time by continuously discharging the combustion ash accumulated in the furnace bottom.
The low NOx boiler disclosed in Patent Document 2 forms a high temperature reduction combustion zone for burning fuel in a reducing atmosphere at the most upstream part of the combustion chamber, and an inner peripheral wall downstream thereof via a throttle part of the combustion gas flow path. The water-cooled wall structure is used, and a low-temperature oxidation combustion zone is formed in which a two-stage combustion air nozzle is attached to the side wall.

高温還元燃焼ゾーンにおいて燃料過濃の状態で平均約1450〜1550℃の高温を維持して燃焼を行わせ、絞り部を通って低温酸化燃焼ゾーンに侵入してきた燃焼ガスに2段燃焼用空気ノズルから新たに燃焼用空気を供給して低温酸化燃焼ゾーンの下部で1100℃となるような比較的低温の酸化雰囲気で燃焼を完結させるものである。
石油系残渣等の燃焼におけるNOxの発生量は、還元雰囲気中では高温になるほど少なく、酸化雰囲気中では低温になるほど少なくなるので、石油系残渣等を高温還元燃焼と低温酸化燃焼の2段階に燃焼させることで、効果的にNOx発生量を削減することができる。
In the high temperature reduction combustion zone, the fuel is burned while maintaining an average high temperature of about 1450 to 1550 ° C. in the state of fuel richness, and the combustion gas that has entered the low temperature oxidation combustion zone through the constricted portion is used as a two-stage combustion air nozzle From this, combustion air is newly supplied to complete combustion in a relatively low-temperature oxidizing atmosphere at 1100 ° C. below the low-temperature oxidation combustion zone.
The amount of NOx generated in the combustion of petroleum residues, etc., decreases as the temperature increases in the reducing atmosphere and decreases as the temperature decreases in the oxidizing atmosphere. Therefore, petroleum residues are burned in two stages: high temperature reduction combustion and low temperature oxidation combustion. By doing so, the amount of NOx generation can be effectively reduced.

バナジウム還元燃焼灰は1600℃以上の融点を持つが、還元燃焼においても1400℃以上の高温状態に長時間滞留させたり、酸化燃焼雰囲気で1200℃以上に長時間保持すると、バナジウム酸化物が5価の酸化物に変化して、バナジウム燃焼灰は融点が700℃以下の低融点灰になり、バナジウムアタックを活性化する。   Vanadium reduced combustion ash has a melting point of 1600 ° C. or higher, but even in reducing combustion, if it is kept at a high temperature of 1400 ° C. or higher for a long time, or if it is kept at 1200 ° C. or higher for a long time in an oxidizing combustion atmosphere, the vanadium oxide becomes pentavalent. The vanadium combustion ash becomes a low melting point ash having a melting point of 700 ° C. or lower and activates the vanadium attack.

特開2009−198117号公報JP 2009-198117 A 特開2010−139176号公報JP 2010-139176 A

本発明は、バナジウムアタックの原因となるバナジウム含有量の大きな石油残渣などの劣質燃料を燃料として利用するときに、バナジウム酸化物を含む燃焼灰が溶解して燃焼室水管に付着して熱交換特性を劣化させたり燃焼室内を汚したりしないようにする、石油残渣焚きボイラの燃焼室汚れ防止燃焼方法を提供することを課題とする。   The present invention, when using inferior fuel such as petroleum residue having a large vanadium content that causes vanadium attack as a fuel, combustion ash containing vanadium oxide dissolves and adheres to the combustion chamber water pipe and heat exchange characteristics It is an object of the present invention to provide a combustion chamber contamination-preventing combustion method for an oil residue-fired boiler that does not deteriorate the quality or contaminate the combustion chamber.

上記課題を解決するため、本発明の石油残渣焚きボイラの燃焼室汚れ防止燃焼方法は、出口に絞り部を有する高温還元燃焼ゾーンと、高温還元燃焼ゾーンの絞り部から2段燃焼用空気の吹き込みノズルの位置までの領域に冷却部を形成した低温酸化燃焼ゾーンとを備えた燃焼室において、高温還元燃焼ゾーンにおける平均ガス温度を1450〜1550℃の範囲とし、冷却部において還元燃焼ゾーン排出ガス温度を1200〜1350℃まで冷却したところで2段燃焼用空気を吹き込んで酸化雰囲気中で燃焼させることを特徴とする。なお、冷却部は、水流の量と流速、熱ガスの量と流速などを調整することにより、上記冷却を実現することができる。   In order to solve the above-mentioned problems, a combustion chamber contamination preventing combustion method for a petroleum residue-fired boiler according to the present invention includes a high-temperature reduction combustion zone having a throttle at the outlet, and blowing of air for two-stage combustion from the throttle of the high-temperature reduction combustion zone In a combustion chamber having a low temperature oxidation combustion zone in which a cooling part is formed in a region up to the nozzle position, the average gas temperature in the high temperature reduction combustion zone is in the range of 1450 to 1550 ° C., and the reduction combustion zone exhaust gas temperature in the cooling part Is cooled to 1200 to 1350 ° C., and air for two-stage combustion is blown and burned in an oxidizing atmosphere. Note that the cooling unit can realize the cooling described above by adjusting the amount and flow rate of the water flow, the amount and flow rate of the hot gas, and the like.

温度1450〜1550℃で酸素の乏しい雰囲気にある高温還元燃焼ゾーンにおいて生成されるバナジウム燃焼灰には、融点1790℃の2価の酸化バナジウム(VO)、融点1970℃の3価の酸化バナジウム(V)、融点1640℃の4価の酸化バナジウム(V)など、融点が高いものが多く含まれ、融点が690℃と低い5価の酸化バナジウム(V)の含有量は少ない。
さらに、2段燃焼用空気を吹き込んで酸化燃焼をさせる前に、ガス温度を1200〜1350℃まで冷却することにより、5価の酸化バナジウムの生成を抑制しながら、完全燃焼をさせて熱効率を確保することができる。
The vanadium combustion ash produced in the high temperature reduction combustion zone in the oxygen-poor atmosphere at a temperature of 1450 to 1550 ° C includes divalent vanadium oxide (VO) having a melting point of 1790 ° C and trivalent vanadium oxide (V) having a melting point of 1970 ° C. 2 O 3 ), tetravalent vanadium oxide (V 2 O 4 ) having a melting point of 1640 ° C., and many others having a high melting point, including pentavalent vanadium oxide (V 2 O 5 ) having a melting point as low as 690 ° C. The amount is small.
In addition, by cooling the gas temperature to 1200 to 1350 ° C before blowing in the air for two-stage combustion and suppressing the formation of pentavalent vanadium oxide, complete combustion is ensured to ensure thermal efficiency. can do.

このような燃焼条件下では、殆どが高融点の酸化バナジウムで成るバナジウム酸化物は、高温還元燃焼ゾーンと低温酸化燃焼ゾーンとで構成される燃焼室内において融解せず粉体を保つので、炉壁や水管の表面に融着せず、燃焼室の汚れが発生しない。したがって、燃焼室において収熱量を維持した安定な運転を継続することができる。   Under such combustion conditions, the vanadium oxide, which is mostly composed of high melting point vanadium oxide, does not melt in the combustion chamber composed of the high-temperature reduction combustion zone and the low-temperature oxidation combustion zone, and maintains the powder. It does not fuse to the surface of the water pipe and the combustion chamber is not contaminated. Therefore, it is possible to continue a stable operation while maintaining the amount of heat collected in the combustion chamber.

なお、低NOxボイラは、倒立形であることがより好ましい。
倒立形低NOxボイラでは、燃料が燃焼室の上端における高温の還元雰囲気中で燃焼し絞り部から噴出して冷却部で冷やされた後に2段燃焼用空気を混合して完全燃焼する間に生成したバナジウム燃焼灰は、融解せずに粉体を維持して伝熱面を汚さず、燃焼室の底に沈積する。底に堆積したバナジウム燃焼灰は、ボイラ運転中であっても運転しながら底の開口から排出させることができるので、ボイラの長期連続運転が可能になる。
The low NOx boiler is more preferably an inverted type.
In an inverted low-NOx boiler, fuel is burned in a high-temperature reducing atmosphere at the upper end of the combustion chamber, spouted from the throttle and cooled in the cooling unit, and then generated while the two-stage combustion air is mixed and completely burned The vanadium combustion ash does not melt and maintains the powder, does not contaminate the heat transfer surface, and deposits on the bottom of the combustion chamber. Since the vanadium combustion ash deposited on the bottom can be discharged from the opening at the bottom while the boiler is in operation, the boiler can be operated continuously for a long time.

本発明の石油残渣焚きボイラの燃焼室汚れ防止燃焼方法は、バナジウム含有量の大きな石油残渣などを燃料として利用するとき、バナジウム燃焼灰が溶解して燃焼室水管に付着し金属を腐食するバナジウムアタックを抑制することにより、高い熱効率を維持してボイラ運転を継続させることができる。   The combustion method for preventing combustion chamber contamination of a petroleum residue fired boiler according to the present invention is a vanadium attack in which vanadium combustion ash dissolves and adheres to a combustion chamber water pipe and corrodes metal when petroleum residue having a high vanadium content is used as fuel. By suppressing the above, boiler operation can be continued while maintaining high thermal efficiency.

本発明の1実施形態における第1実施例に係る倒立形低NOxボイラの概略機能図である。1 is a schematic functional diagram of an inverted low NOx boiler according to a first example of one embodiment of the present invention. FIG. 本実施形態の倒立形低NOxボイラの概略斜視透視図である。It is a schematic perspective perspective view of the inverted low NOx boiler of this embodiment. バナジウム酸化物の融点を示すグラフである。It is a graph which shows melting | fusing point of vanadium oxide. 本実施形態の倒立形低NOxボイラの燃焼室における燃焼ガス温度の変化を概念的に説明するグラフである。It is a graph which illustrates notionally the change of the combustion gas temperature in the combustion chamber of the inverted low NOx boiler of this embodiment. 燃料の燃え切り性と灰付着量の関係を説明するグラフである。It is a graph explaining the relationship between fuel burnout and ash adhesion amount.

以下、図面を参照して本発明の実施形態について説明する。なお、図番の異なる図面においても、同一の構成要素には同一の参照番号を付して、理解の容易化を図った。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings with different drawing numbers, the same reference numerals are assigned to the same components to facilitate understanding.

(第1実施例)
図1は本実施形態の第1実施例に係る低NOxボイラの概略機能図であり、図2はその概略斜視透視図である。本実施例では、倒立形低NOxボイラを対象としている。図3はバナジウム酸化物の融点を示すグラフ、図4は燃焼室内の燃焼ガス温度の変化を概念的に説明するグラフ、図5は燃料の燃え切り性と灰付着量の関係を説明するグラフである。
(First embodiment)
FIG. 1 is a schematic functional diagram of a low NOx boiler according to a first example of the present embodiment, and FIG. 2 is a schematic perspective perspective view thereof. In this embodiment, an inverted low NOx boiler is targeted. FIG. 3 is a graph showing the melting point of vanadium oxide, FIG. 4 is a graph for conceptually explaining changes in the combustion gas temperature in the combustion chamber, and FIG. 5 is a graph for explaining the relationship between fuel burnout and ash adhesion amount. is there.

本実施例における倒立形低NOxボイラは、縦型の燃焼室1の上端部に高温還元燃焼ゾーン2、下段に低温酸化燃焼ゾーン3が形成されており、高温還元燃焼ゾーン2と低温酸化燃焼ゾーン3は高温還元燃焼ゾーン2の絞り部4で接続している。絞り部4は、燃焼室水平断面積を20〜50%減少させる開口比を持たせることが好ましい。
高温還元燃焼ゾーン2には、側壁にバーナ5が設けられており、内壁は1450℃から1550℃の炉内温度に対応する程度の耐火材6で覆われている。高温還元燃焼ゾーン2に設置するバーナ5は、複数のバーナ5が、対向する2側面に水平に並列し、かつ火炎軸が交差しないように配置することが好ましい。
The inverted low NOx boiler in the present embodiment is formed with a high temperature reduction combustion zone 2 at the upper end of a vertical combustion chamber 1 and a low temperature oxidation combustion zone 3 at the lower stage, and the high temperature reduction combustion zone 2 and the low temperature oxidation combustion zone. 3 is connected by the throttle part 4 of the high temperature reduction combustion zone 2. The throttle unit 4 preferably has an opening ratio that reduces the horizontal cross-sectional area of the combustion chamber by 20 to 50%.
The high temperature reduction combustion zone 2 is provided with a burner 5 on the side wall, and the inner wall is covered with a refractory material 6 corresponding to the furnace temperature of 1450 ° C. to 1550 ° C. It is preferable that the burner 5 installed in the high temperature reduction combustion zone 2 is arranged such that a plurality of burners 5 are horizontally parallel to the two opposing side surfaces and the flame axes do not intersect.

低温酸化燃焼ゾーン3には、冷却部9と2段燃焼部10と灰排出部8とが形成される。
冷却部9は、図1にレベルAとレベルBで仕切られた斜めハッチングで示す領域、すなわち、低温酸化燃焼ゾーン3の入り口になる絞り部4と側壁に設けられた2段燃焼用空気ノズル7の間に形成され、高温還元燃焼ゾーン2から絞り部4を介して供給される1450℃から1550℃の範囲にある燃焼ガスを、1200℃から1350℃の範囲まで冷却する。
冷却部9は、冷却部の形状や側壁の水管について設計することにより、冷却面の熱交換効率、冷却面の面積、水流の温度と量と流速、熱ガスの温度と量と流速などに基づいて、燃焼ガスの温度低下量を調整して、上記冷却を実現するように構成される。
In the low temperature oxidation combustion zone 3, a cooling unit 9, a two-stage combustion unit 10, and an ash discharge unit 8 are formed.
The cooling unit 9 includes a region shown by oblique hatching divided by level A and level B in FIG. 1, that is, a throttle unit 4 serving as an entrance of the low-temperature oxidation combustion zone 3 and a two-stage combustion air nozzle 7 provided on the side wall. The combustion gas in the range of 1450 ° C. to 1550 ° C. formed between the high temperature reduction combustion zone 2 and supplied via the throttle 4 is cooled to the range of 1200 ° C. to 1350 ° C.
The cooling unit 9 is designed based on the shape of the cooling unit and the water pipe on the side wall, based on the heat exchange efficiency of the cooling surface, the area of the cooling surface, the temperature, amount and flow velocity of the water flow, the temperature, amount and flow velocity of the hot gas, etc. Thus, the cooling is realized by adjusting the temperature drop amount of the combustion gas.

2段燃焼用空気ノズル7は、2段燃焼部10の上端部であって冷却部9の最下部に接する炉壁に配置され、冷却された燃焼ガスに新たに空気を供給して、未燃のガスを低温の酸化雰囲気中で2段燃焼させる。2段燃焼部10は、側壁に水管が配された水冷壁構造となっていて、熱交換により水管中の水から蒸気を発生させる。
水管は燃焼室1の底部で図示しない非加熱降水管に接続され、燃焼室1より高い位置に設けられた図示しない汽水胴から非加熱降水管を介して高温還元燃焼ゾーン1にも十分高圧な冷却水を供給できるように構成されている。
The two-stage combustion air nozzle 7 is arranged on the furnace wall at the upper end portion of the two-stage combustion section 10 and in contact with the lowermost portion of the cooling section 9, and supplies fresh air to the cooled combustion gas so that it remains unburned. Is burned in two stages in a low-temperature oxidizing atmosphere. The two-stage combustion unit 10 has a water-cooled wall structure in which a water pipe is arranged on a side wall, and generates steam from the water in the water pipe by heat exchange.
The water pipe is connected to a non-heated downcomer (not shown) at the bottom of the combustion chamber 1, and a sufficiently high pressure is applied to the high-temperature reduction combustion zone 1 through a nonheated downcomer from a brackish water cylinder (not shown) provided at a position higher than the combustion chamber 1. The cooling water can be supplied.

低温酸化燃焼ゾーン3の底部には、灰排出部8が形成される。灰排出部8は、燃焼室の炉底を鉛直線に対して45°以下、望ましくは35°程度の傾斜面で形成し、傾斜面の下端に灰排出機構を配設したもので、炉底に溜まった燃焼灰を簡素な構造で効率的に炉外に排出することができる。
2段燃焼部10の下側面にガス流出口11が設けられ、ガス通路12に通じている。ガス通路12は、燃焼ガスを蒸気過熱器管13とエコノマイザ14を通った後、後処理工程に搬送する。蒸気過熱器管13とエコノマイザ14が配設されたガス通路の底部にも灰排出口15が備わっている。
At the bottom of the low temperature oxidation combustion zone 3, an ash discharge part 8 is formed. The ash discharge unit 8 is formed by forming the furnace bottom of the combustion chamber with an inclined surface of 45 ° or less, preferably about 35 ° with respect to the vertical line, and an ash discharge mechanism disposed at the lower end of the inclined surface. It is possible to efficiently discharge the combustion ash collected in the outside of the furnace with a simple structure.
A gas outlet 11 is provided on the lower surface of the two-stage combustion section 10 and communicates with the gas passage 12. The gas passage 12 conveys the combustion gas to the post-processing step after passing through the steam superheater tube 13 and the economizer 14. An ash discharge port 15 is also provided at the bottom of the gas passage in which the steam superheater tube 13 and the economizer 14 are disposed.

本実施例の倒立形低NOxボイラは、液状、ガス状、微粉状の燃料を燃焼させ、燃焼ガスから熱エネルギを回収する火力ボイラで、燃焼ガス中に含まれるNOxの量を抑制することができる。また、本実施例の倒立形低NOxボイラは、燃焼灰を容易に処理することができるので、アスファルト、オイルコークスなどの劣質燃料もボイラ燃料として用いることができる。
本実施例の倒立形低NOxボイラは、燃焼室1の上端部に燃料と空気を供給して高温還元雰囲気で燃焼させ、燃焼を上端部から下方に向かって進行させ、燃焼室1の中程でより低温の酸化雰囲気中で未燃ガスの燃焼を完結させ、燃焼ガスを下部から取り出すことに特徴がある。
The inverted low NOx boiler of this embodiment is a thermal power boiler that recovers thermal energy from combustion gas by burning liquid, gaseous, and finely powdered fuel, and suppresses the amount of NOx contained in the combustion gas. it can. Further, since the inverted low NOx boiler of this embodiment can easily process the combustion ash, inferior fuels such as asphalt and oil coke can also be used as boiler fuel.
The inverted low NOx boiler of the present embodiment supplies fuel and air to the upper end portion of the combustion chamber 1 and burns it in a high temperature reducing atmosphere, and advances the combustion downward from the upper end portion. Thus, the combustion of unburned gas is completed in a lower temperature oxidizing atmosphere, and the combustion gas is taken out from the lower part.

本実施例の倒立形低NOxボイラで石油系残渣などの劣質燃料を使用するときは、まず、高温還元燃焼ゾーン2におけるバーナ5に燃料と空気を導入して燃焼を開始する。高温還元燃焼ゾーン2では、空気の導入を抑制し、空気比を1以下の、たとえば0.6〜0.8程度の還元雰囲気に維持して、燃料に応じて選択される1450℃から1550℃の範囲内の高温で燃料を燃焼させる。
高温還元燃焼ゾーン2では、水平に軸をずらせて配されたバーナ5からの火炎により、燃焼ガスが水平方向に渦を巻いて対流する。さらに、高温還元燃焼ゾーン2が高温のため燃焼ガスの密度が低いことと相俟って、燃焼ガスは高温還元燃焼ゾーン2に長時間留まり、耐火材6に保温されて安定的に燃焼が行き渡る。
When using an inferior fuel such as petroleum residue in the inverted low NOx boiler of this embodiment, first, fuel and air are introduced into the burner 5 in the high temperature reduction combustion zone 2 to start combustion. In the high-temperature reduction combustion zone 2, the introduction of air is suppressed, the air ratio is maintained at a reducing atmosphere of 1 or less, for example, about 0.6 to 0.8, and selected from 1450 ° C. to 1550 ° C. depending on the fuel. Burn the fuel at a high temperature in the range.
In the high-temperature reduction combustion zone 2, the combustion gas vortexes in the horizontal direction and convects due to the flame from the burner 5 arranged with the axis shifted horizontally. Further, in combination with the low temperature of the high temperature reduction combustion zone 2 and the low density of the combustion gas, the combustion gas stays in the high temperature reduction combustion zone 2 for a long time, and is kept warm by the refractory material 6 so that the combustion spreads stably. .

高温還元燃焼ゾーン2での燃焼で高温になった燃焼ガスは、新たに投入される燃料により燃焼ガスが増加するため高温還元燃焼ゾーン2から押し出されて絞り部4を通って低温酸化燃焼ゾーン3に流下する。
低温酸化燃焼ゾーン3に流下した燃焼ガスは、冷却部9を通る間に1200℃から1350℃の範囲内の温度まで冷却され、2段燃焼部10に供給される。
2段燃焼部10では、2段燃焼用空気ノズル7から比較的低温の2段燃焼用空気が十分に供給され空気比が1.1程度になり、燃焼ガスの未燃分が酸化雰囲気内で完全に燃焼される。
2段燃焼部10で燃焼が完結する燃焼ガスは、2段燃焼部10内壁の水管と熱交換して1000℃から1100℃程度まで温度低下し、燃焼室の下側側面に設けられたガス流出口11からガス通路12に流出する。ガス通路12では、蒸気過熱器管13およびエコノマイザ14においてボイラ蒸気及び給水と熱交換を行った後、後処理工程に流出する。
The combustion gas that has become high temperature in the combustion in the high temperature reduction combustion zone 2 is pushed out from the high temperature reduction combustion zone 2 through the throttle portion 4 because the combustion gas is increased by the newly introduced fuel, and the low temperature oxidation combustion zone 3. To flow down.
The combustion gas flowing down to the low temperature oxidation combustion zone 3 is cooled to a temperature in the range of 1200 ° C. to 1350 ° C. while passing through the cooling unit 9, and is supplied to the two-stage combustion unit 10.
In the two-stage combustion section 10, a relatively low-temperature two-stage combustion air is sufficiently supplied from the two-stage combustion air nozzle 7 so that the air ratio becomes about 1.1, and the unburned portion of the combustion gas is within the oxidizing atmosphere. It is completely burned.
The combustion gas that completes combustion in the two-stage combustion section 10 exchanges heat with the water pipe on the inner wall of the two-stage combustion section 10 and drops in temperature from about 1000 ° C. to about 1100 ° C. The gas flow provided on the lower side surface of the combustion chamber The gas flows out from the outlet 11 to the gas passage 12. In the gas passage 12, the steam superheater pipe 13 and the economizer 14 exchange heat with boiler steam and feed water, and then flow out to the post-treatment process.

このように、本実施例の倒立形低NOxボイラでは、燃料が高温還元燃焼ゾーン2において高温還元雰囲気で初期燃焼し、さらに低温酸化燃焼ゾーン3において低温酸化雰囲気で2段燃焼する。
石油系残渣などの燃料が燃焼するときのNOx発生量は、燃焼温度と空気比に強く依存している。空気比1未満すなわち還元雰囲気下では高温になるほどNOx発生量が少なく、空気比1以上の酸化雰囲気下では低温になるほどNOx発生量が少ない。
本実施例の倒立形低NOxボイラでは、この特性を利用して、高温還元燃焼ゾーン2の高温還元雰囲気下で中間生成物と反応して窒素に還元されるようにしてNOxの生成を抑制し、低温酸化燃焼ゾーン3においてガス温度が下がった段階で2段燃焼用空気を投入して未燃分を完全に燃焼させることでサーマルNOxの生成を抑制するから、効果的にNOx発生量を削減することができる。
Thus, in the inverted low NOx boiler of this embodiment, the fuel is initially burned in the high temperature reducing atmosphere in the high temperature reducing combustion zone 2 and further burned in two stages in the low temperature oxidizing combustion zone 3 in the low temperature oxidizing atmosphere.
The amount of NOx generated when fuel such as petroleum residue burns strongly depends on the combustion temperature and the air ratio. The lower the air ratio, that is, the lower the amount of NOx generated, the lower the temperature in the reducing atmosphere, and the lower the temperature in the oxidizing atmosphere, the lower the amount of NOx generated.
In the inverted low NOx boiler of the present embodiment, this characteristic is used to suppress the generation of NOx by reacting with the intermediate product in the high temperature reducing atmosphere of the high temperature reducing combustion zone 2 and being reduced to nitrogen. In the low-temperature oxidative combustion zone 3, when the gas temperature falls, the second stage combustion air is introduced to completely burn the unburned portion, thereby suppressing the generation of thermal NOx, effectively reducing the amount of NOx generated can do.

オイルコークスなどの劣質燃料をボイラ燃料として用いる場合には、燃料に含まれるバナジウム金属に注意しなければならない。石油残渣を酸化燃焼させると発生する低融点のバナジウム酸化物はボイラ燃焼室の高温で溶融して伝熱面に付着し、伝熱係数を低下させたり、加速高温酸化(バナジウムアタック)により金属を腐食させたりする。
本実施例の倒立形低NOxボイラでは、高温還元燃焼ゾーン2において、燃料に含まれるバナジウムは還元雰囲気中で燃焼するため、生成するバナジウム燃焼灰は、原子価5の5酸化2バナジウム(V)の含有量が少なく、原子価が4以下のバナジウム酸化物が多く含まれるものとなる。
When using inferior fuel such as oil coke as boiler fuel, attention must be paid to vanadium metal contained in the fuel. The low melting point vanadium oxide generated when oxidizing and burning petroleum residues melts at the high temperature in the boiler combustion chamber and adheres to the heat transfer surface, lowering the heat transfer coefficient, and accelerating high temperature oxidation (vanadium attack) Corrosion.
In the inverted low NOx boiler of the present embodiment, vanadium contained in the fuel burns in a reducing atmosphere in the high temperature reduction combustion zone 2, so that the generated vanadium combustion ash is valence 5 pentoxide 2 vanadium (V 2 The content of O 5 ) is small, and a large amount of vanadium oxide having a valence of 4 or less is contained.

図3は、バナジウム酸化物の融点を示すグラフである。図3に示すように、酸化度の高い5価の酸化バナジウム(V)の融点が690℃と比較的低温であるのに対して、2価の酸化バナジウム(VO)の融点は1790℃、3価の酸化バナジウム(V)の融点は1970℃、4価の酸化バナジウム(V)の融点は1640℃と高温である。
したがって、1450℃から1550℃の高温還元燃焼ゾーン2ではバナジウム燃焼灰が溶融せず固相を維持するので、伝熱面に粘着して伝熱効率を劣化させたり金属を腐食させたりすることが十分抑制される。
FIG. 3 is a graph showing the melting point of vanadium oxide. As shown in FIG. 3, the melting point of pentavalent vanadium oxide (V 2 O 5 ) having a high degree of oxidation is relatively low at 690 ° C., whereas the melting point of divalent vanadium oxide (VO) is 1790. The melting point of trivalent vanadium oxide (V 2 O 3 ) is 1970 ° C., and the melting point of tetravalent vanadium oxide (V 2 O 4 ) is as high as 1640 ° C.
Therefore, in the high temperature reduction combustion zone 2 from 1450 ° C. to 1550 ° C., the vanadium combustion ash does not melt and maintains the solid phase, so that it is sufficient to adhere to the heat transfer surface and deteriorate the heat transfer efficiency or corrode the metal. It is suppressed.

さらに、高温還元燃焼ゾーン2において発生したバナジウム燃焼灰は、燃焼ガスに伴い、あるいは自重により落下して、低温酸化燃焼ゾーン3に流入する。原子価が小さく融点の高い成分を多く含むバナジウム燃焼灰は、低温酸化燃焼ゾーン3に入ると、初めに冷却部9で1200℃から1350℃の範囲内の温度まで冷却された後に、2段燃焼部10において酸化雰囲気中で低温燃焼される。   Further, the vanadium combustion ash generated in the high temperature reduction combustion zone 2 falls into the low temperature oxidation combustion zone 3 along with the combustion gas or falls due to its own weight. Vanadium combustion ash containing a large amount of components having a small valence and a high melting point enters the low-temperature oxidation combustion zone 3 and is first cooled to a temperature in the range of 1200 ° C. to 1350 ° C. The part 10 is burned at a low temperature in an oxidizing atmosphere.

低温酸化燃焼ゾーン3では酸素が過剰な環境下にあるため、高温燃焼すれば原子価の小さい酸化バナジウムはさらに酸化して、融点が690℃と低く融解しやすい5価の酸化バナジウム(V)に変化するところであるが、2段燃焼部10では比較的低温で燃焼するため、原子価の小さい酸化バナジウムを5価の酸化バナジウムに変化させる酸化反応は活発でない。このように、速やかに燃焼ガスを冷却することによって、5価の酸化バナジウムの増加を抑え、伝熱管への付着を抑制することができる。
したがって、低温酸化燃焼ゾーン3においてもバナジウム燃焼灰の融解が少なく、多くが灰のまま沈降して燃焼室1の底部の灰排出部8に堆積する。
In the low temperature oxidative combustion zone 3, oxygen is in an excessive environment. Therefore, when high temperature combustion is performed, vanadium oxide having a small valence is further oxidized, and the pentavalent vanadium oxide (V 2 O) having a melting point as low as 690 ° C. is easily melted. 5 ) However, since the two-stage combustion section 10 burns at a relatively low temperature, the oxidation reaction for changing vanadium oxide having a small valence to pentavalent vanadium oxide is not active. Thus, by rapidly cooling the combustion gas, an increase in pentavalent vanadium oxide can be suppressed and adhesion to the heat transfer tube can be suppressed.
Therefore, in the low temperature oxidation combustion zone 3, the melting of vanadium combustion ash is small, and most of it settles as ash and deposits in the ash discharge part 8 at the bottom of the combustion chamber 1.

図4は、本実施例の倒立形低NOxボイラの燃焼室における燃焼ガス温度の変化を概念的に説明するグラフである。図4のグラフは、燃焼室における燃焼ガスの移動経路を横軸にとり、燃焼ガスの温度を縦軸にとって、還元燃焼ゾーンから酸化燃焼ゾーンに移動するときの燃焼ガスの温度変化を表したものである。グラフ中、還元燃焼ゾーンと酸化燃焼ゾーンの境界に引いた縦線は絞り部の位置、矢印は2次空気を投入する2段燃焼用空気ノズルの位置を示す。   FIG. 4 is a graph conceptually illustrating changes in the combustion gas temperature in the combustion chamber of the inverted low NOx boiler of the present embodiment. The graph of FIG. 4 shows the temperature change of the combustion gas when moving from the reduction combustion zone to the oxidation combustion zone with the horizontal axis representing the movement path of the combustion gas in the combustion chamber and the vertical axis representing the combustion gas temperature. is there. In the graph, the vertical line drawn at the boundary between the reduction combustion zone and the oxidation combustion zone indicates the position of the throttle portion, and the arrow indicates the position of the air nozzle for two-stage combustion that inputs the secondary air.

実線で表した線図は、本実施例の石油残渣焚きボイラの燃焼室汚れ防止燃焼方法を用いる場合の燃焼ガス温度変化の設計ラインを示す。
燃焼ガスは、空気比λが約0.7になる高温還元燃焼ゾーンで燃焼して1450℃から1550℃の温度になり、絞り部を通って低温酸化燃焼ゾーンに流れ下り、冷却部で冷却されガス温度が1200℃から1350℃程度になる領域Aにおいて、新たに2段燃焼用空気ノズルから冷えた2次空気を供給されて、空気比が約1.1の低温酸化燃焼をする。燃焼室を出るところでは、ガス温度は1000℃から1100℃になっている。
なお、還元燃焼ゾーンで生成するバナジウム燃焼灰の融点は1640℃以上あり、還元燃焼温度より高いので、粉体を維持している。
A diagram represented by a solid line shows a design line for changes in combustion gas temperature when the combustion chamber contamination prevention combustion method of the oil residue-fired boiler of this embodiment is used.
Combustion gas burns in the high temperature reduction combustion zone where the air ratio λ becomes about 0.7, reaches a temperature of 1450 ° C. to 1550 ° C., flows down to the low temperature oxidation combustion zone through the throttle, and is cooled in the cooling unit. In the region A where the gas temperature is about 1200 ° C. to 1350 ° C., newly cooled secondary air is supplied from the two-stage combustion air nozzle, and low temperature oxidation combustion with an air ratio of about 1.1 is performed. At the exit of the combustion chamber, the gas temperature is from 1000 ° C to 1100 ° C.
In addition, since melting | fusing point of vanadium combustion ash produced | generated in a reduction | restoration combustion zone is 1640 degreeC or more and is higher than a reduction | restoration combustion temperature, the powder is maintained.

図中の設計ラインは、倒立形低NOxボイラにおいて、超低NOx・低煤塵性能を満たし、さらに燃焼室における未燃分を減少させ灰付着量を低減することを目的として設計したものであり、低温酸化燃焼ゾーンで2次空気を吹き込む前のガス温度は、領域Aとして表した1200℃から1350℃程度にすることが好ましい。
これに対して、図4の領域Bとして表した1200℃以下にした場合は、未燃分が大量に発生して不都合であり、領域Cとして表した1350℃以上にした場合は、灰付着量が増大して不都合である。
The design line in the figure is designed for the purpose of satisfying ultra-low NOx / low dust performance in an inverted low NOx boiler, and further reducing the amount of ash adhesion by reducing the unburned content in the combustion chamber. The gas temperature before the secondary air is blown in the low-temperature oxidation combustion zone is preferably about 1200 to 1350 ° C. expressed as the region A.
On the other hand, when the temperature is set to 1200 ° C. or lower represented as the region B in FIG. 4, a large amount of unburned portion is inconvenient. When the temperature is set to 1350 ° C. or higher represented as the region C, the ash adhesion amount Is inconvenient.

図5は、燃料の燃え切り性と灰付着量の関係を説明するグラフである。グラフは横軸に燃え切り性と灰付着量を任意目盛りで表し、縦軸に酸化燃焼におけるガス温度をとっている。
還元燃焼によって生成したバナジウムの燃焼灰(バナジウム還元灰)は、酸化燃焼により一部が融点の低い5価のバナジウム酸化物(V)に変化する。
ガス温度を低くすると、5価のバナジウム酸化物の生成速度が遅くなり、バナジウム酸化物の融着による灰付着量が減少する。しかし、ボイラにおける燃焼温度が低下すると燃え切りが悪くなり未燃分が大量に発生するので、ボイラの効率が低下する。
たとえば、図4,5において領域Bとして示したように、燃焼ガスを冷却部で急冷して2次空気投入位置において1200℃以下800℃付近になるようにした場合は、燃焼ガス中の未燃分が多くなるため運転条件として適当でない。
FIG. 5 is a graph illustrating the relationship between fuel burnout and ash adhesion. In the graph, the horizontal axis represents burnout and the amount of ash adhesion on an arbitrary scale, and the vertical axis represents the gas temperature in oxidation combustion.
Vanadium combustion ash (vanadium reduced ash) generated by reductive combustion partially changes to pentavalent vanadium oxide (V 2 O 5 ) having a low melting point by oxidative combustion.
When the gas temperature is lowered, the production rate of pentavalent vanadium oxide is slowed, and the amount of ash deposited by fusion of vanadium oxide is reduced. However, if the combustion temperature in the boiler is lowered, the burning out becomes worse and a large amount of unburned matter is generated, so that the efficiency of the boiler is lowered.
For example, as shown as region B in FIGS. 4 and 5, when the combustion gas is rapidly cooled in the cooling section so that it becomes 1200 ° C. or lower and around 800 ° C. at the secondary air charging position, unburned in the combustion gas As the amount of time increases, it is not suitable as an operating condition.

また、逆に、領域Cで示すように、絞り部から2段燃焼用空気ノズルまでの冷却部で特に積極的に冷却しないで2次空気投入位置におけるガス温度を1350℃以上1400℃程度の高温にする場合は、燃え切り性が良化して未燃分が減少するが、5価のバナジウム酸化物の生成が盛んになるため、灰付着量が増大しバナジウムアタックを受けるようになるので、運転条件として適当でない。
これに対して、本実施例の場合、1450℃から1550℃の温度の燃焼ガスを冷却部で冷却して2段燃焼用空気ノズルの位置で1200℃から1350℃にする領域Aで表されるように、燃え切り性と灰付着量の関係のバランスがとれて、燃焼ガス中に未燃分が少なく、燃焼灰中に5価のバナジウム酸化物が少なく燃焼室内の汚れが極めて少なくなり、好ましい。
Conversely, as shown in region C, the gas temperature at the secondary air input position is a high temperature of about 1350 ° C. or more and about 1400 ° C. without particularly actively cooling in the cooling unit from the throttle unit to the two-stage combustion air nozzle. , The burn-out performance is improved and the unburned content is reduced, but since the production of pentavalent vanadium oxide becomes active, the amount of ash adhesion increases and the vanadium attack is received. Not suitable as a condition.
On the other hand, in the case of the present embodiment, the combustion gas having a temperature of 1450 ° C. to 1550 ° C. is cooled by the cooling unit and is represented by a region A from 1200 ° C. to 1350 ° C. at the position of the two-stage combustion air nozzle. Thus, the relationship between burn-out and ash adhesion amount is balanced, the combustion gas contains less unburned matter, the combustion ash contains less pentavalent vanadium oxide, and the combustion chamber is extremely less contaminated. .

オイルコークスの燃焼灰組成のおよそ60〜70%が酸化バナジウムであるが、その他の主成分としてニッケルやシリコンの酸化物が混入しても、本実施例の低NOxボイラの燃焼室で速やかにガス冷却することにより溶融が抑制されるので、水管表面に付着する燃焼灰の量は極めて少ない。   About 60 to 70% of the combustion ash composition of oil coke is vanadium oxide, but even if nickel or silicon oxide is mixed in as the other main component, it is quickly gasified in the combustion chamber of the low NOx boiler of this embodiment. Since the melting is suppressed by cooling, the amount of combustion ash adhering to the surface of the water tube is extremely small.

灰排出部8は急勾配の傾斜面になっているため、炉底に向かって落下する固体の燃焼灰は灰排出部8の底部に集まり、底部に堆積した燃焼灰は、灰排出機構により排出することができる。灰排出機構は、常時開口する形態としても良いし、たとえば蓋状の底板を備えて開閉可能とし、必要時に底板を開いて灰を排出、回収するようにしてもよい。
なお、燃焼ガス中に同伴された残留灰分は、蒸気過熱器管13およびエコノマイザ14のあるガス通路12で燃焼ガスが低速になるとガスから分離して落下し、ガス通路12に設けられたガス通路用の灰排出口15で回収される。
Since the ash discharge part 8 has a steep inclined surface, the solid combustion ash falling toward the furnace bottom gathers at the bottom of the ash discharge part 8, and the combustion ash deposited on the bottom is discharged by the ash discharge mechanism. can do. The ash discharge mechanism may be configured to always open, or may be provided with a lid-like bottom plate so that it can be opened and closed, and when necessary, the bottom plate may be opened to discharge and collect ash.
The residual ash entrained in the combustion gas is separated from the gas and dropped when the combustion gas becomes low speed in the gas passage 12 where the steam superheater pipe 13 and the economizer 14 are provided, and the gas passage provided in the gas passage 12. It is collected at the ash discharge port 15 for use.

また、灰排出部8付近を流通する燃焼ガスは、2段燃焼部10で完全に燃焼しているため、不完全燃焼により生じる一酸化炭素や硫化物等の有害物質が少なく毒性が低い。また、灰排出機構が2段燃焼部10の外にあるため、開口部から大気が流入しても冷却による燃焼の阻害や、空気比が崩れることによる脱硝効果の低下の恐れが少ない。   Further, since the combustion gas circulating in the vicinity of the ash discharge part 8 is completely burned in the two-stage combustion part 10, there are few harmful substances such as carbon monoxide and sulfide generated by incomplete combustion, and the toxicity is low. In addition, since the ash discharge mechanism is outside the two-stage combustion unit 10, even if air flows from the opening, there is little risk of inhibition of combustion due to cooling and a reduction in the denitration effect due to collapse of the air ratio.

本実施例では、ボイラに灰排出部8を設けたことにより、炉の稼働中にも安全に灰を排出することができるため、従来の低NOxボイラでは成し得なかった長期間連続運転が可能となり、保守コストが削減される。また、例えばC重油、アスファルト、オイルコークスなどの、灰分を多く含む劣質燃料を使用することができるため、燃料コストを低減することができる。
さらに、燃料にバナジウム金属が含まれる場合にも、融解しにくい種類のバナジウム燃焼灰を生成させるので、熱交換面に融着することを防いで熱交換効率を維持させ、バナジウムアタックを防止して水管などの金属の腐食を抑制することができる。
In this embodiment, since the ash discharge unit 8 is provided in the boiler, the ash can be discharged safely even while the furnace is in operation. Therefore, long-term continuous operation that cannot be achieved with a conventional low NOx boiler is possible. And maintenance costs are reduced. Moreover, since inferior fuel containing many ash content, such as C heavy oil, asphalt, oil coke, etc., can be used, fuel cost can be reduced.
In addition, even when vanadium metal is included in the fuel, a kind of vanadium combustion ash that is difficult to melt is generated, so that it prevents fusion to the heat exchange surface, maintains heat exchange efficiency, and prevents vanadium attack. Corrosion of metals such as water pipes can be suppressed.

本発明の石油残渣焚きボイラの燃焼室汚れ防止燃焼方法は、バナジウム含有量の大きな石油残渣などをボイラ燃料として利用するとき、バナジウム燃焼灰が溶解して燃焼室水管に付着し金属を腐食するバナジウムアタックを抑制することにより、高い熱効率を維持してボイラ運転を継続させることができる。   Combustion chamber dirt prevention combustion method of petroleum residue fired boiler of the present invention is a vanadium that dissolves vanadium combustion ash and adheres to the combustion chamber water pipe and corrodes metal when using petroleum residue with high vanadium content as boiler fuel. By suppressing the attack, the boiler operation can be continued while maintaining high thermal efficiency.

1 燃焼室
2 高温還元燃焼ゾーン
3 低温酸化燃焼ゾーン
4 絞り部
5 バーナ
6 耐火材
7 2段燃焼用空気ノズル
8 灰排出部
9 冷却部
10 2段燃焼部
11 ガス流出口
12 ガス通路
13 蒸気過熱器管
14 エコノマイザ
15 灰排出口
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 High temperature reduction combustion zone 3 Low temperature oxidation combustion zone 4 Constriction part 5 Burner 6 Refractory material 7 Two-stage combustion air nozzle 8 Ash discharge part 9 Cooling part 10 Two-stage combustion part 11 Gas outlet 12 Gas passage 13 Steam overheating Tube 14 Economizer 15 Ash outlet

Claims (4)

出口に絞り部を有する高温還元燃焼ゾーンと、該高温還元燃焼ゾーンの絞り部から2段燃焼用空気吹き込みノズルの位置までの領域に冷却部を形成した低温酸化燃焼ゾーンとを備えた燃焼室において、前記高温還元燃焼ゾーンにおける平均ガス温度を1450〜1550℃の範囲とし、前記冷却部において高温還元燃焼ゾーン排出ガス温度を1200〜1350℃まで冷却してから2段燃焼用空気を吹き込んで酸化雰囲気中で燃焼させることを特徴とする石油残渣焚きボイラの燃焼室汚れ防止燃焼方法。   In a combustion chamber comprising a high-temperature reduction combustion zone having a throttle at the outlet, and a low-temperature oxidation combustion zone in which a cooling part is formed in a region from the throttle of the high-temperature reduction combustion zone to the position of the air blowing nozzle for two-stage combustion The average gas temperature in the high-temperature reduction combustion zone is set to a range of 1450 to 1550 ° C., the high-temperature reduction combustion zone exhaust gas temperature is cooled to 1200 to 1350 ° C. in the cooling section, and then the two-stage combustion air is blown into the oxidizing atmosphere. A combustion method for preventing contamination of a combustion chamber of a petroleum residue-fired boiler, characterized in that the combustion is performed in a combustion chamber. 出口に絞り部を有する高温還元燃焼ゾーンと、該高温還元燃焼ゾーンの絞り部から2段燃焼用空気吹き込みノズルの位置までの領域に冷却部を形成した低温酸化燃焼ゾーンとを備えた燃焼室であって、該冷却部が、平均ガス温度が1450〜1550℃の範囲になる還元燃焼ゾーン排出ガスを1200〜1350℃まで冷却するように構成された、石油残渣焚きボイラの燃焼室。   A combustion chamber comprising a high-temperature reduction combustion zone having a throttle at the outlet, and a low-temperature oxidation combustion zone in which a cooling part is formed in a region from the throttle of the high-temperature reduction combustion zone to the position of the air blowing nozzle for two-stage combustion A combustion chamber of a petroleum residue-fired boiler, wherein the cooling section is configured to cool the reduced combustion zone exhaust gas having an average gas temperature in the range of 1450 to 1550 ° C to 1200 to 1350 ° C. 前記高温還元燃焼ゾーンの絞り部が前記燃焼室水平断面積を20〜50%減少させる、請求項2に記載の石油残渣焚きボイラの燃焼室。   The combustion chamber of an oil residue-fired boiler according to claim 2, wherein the constricted part of the high-temperature reduction combustion zone reduces the horizontal cross-sectional area of the combustion chamber by 20 to 50%. 前記石油残渣焚きボイラは、上端に前記高温還元燃焼ゾーン、該高温還元燃焼ゾーンの下に前記低温酸化燃焼ゾーン、該低温酸化燃焼ゾーンの下端に燃焼灰を排出する排出部を有する燃焼室を備えた、倒立形低NOxボイラである、請求項2または3記載の石油残渣焚きボイラの燃焼室。   The oil residue-fired boiler includes a combustion chamber having an upper end of the high-temperature reduction combustion zone, a low-temperature oxidation combustion zone below the high-temperature reduction combustion zone, and a discharge unit that discharges combustion ash at the lower end of the low-temperature oxidation combustion zone. The combustion chamber of a petroleum residue-fired boiler according to claim 2 or 3, which is an inverted low NOx boiler.
JP2010261208A 2010-11-24 2010-11-24 Combustion method and combustion chamber for oil residue fired boiler Active JP5496862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261208A JP5496862B2 (en) 2010-11-24 2010-11-24 Combustion method and combustion chamber for oil residue fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261208A JP5496862B2 (en) 2010-11-24 2010-11-24 Combustion method and combustion chamber for oil residue fired boiler

Publications (2)

Publication Number Publication Date
JP2012112569A true JP2012112569A (en) 2012-06-14
JP5496862B2 JP5496862B2 (en) 2014-05-21

Family

ID=46496987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261208A Active JP5496862B2 (en) 2010-11-24 2010-11-24 Combustion method and combustion chamber for oil residue fired boiler

Country Status (1)

Country Link
JP (1) JP5496862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093341A1 (en) * 2014-12-12 2016-06-16 川崎重工業株式会社 Combustion system
CN111594817A (en) * 2020-03-10 2020-08-28 上海皖祥商务咨询有限公司 Control device of full-load supercritical water cooling wall
CN114110559A (en) * 2021-11-12 2022-03-01 东方电气集团东方锅炉股份有限公司 Smoke baffle arrangement structure of double reheat boiler and reheat steam temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272207A (en) * 1988-09-10 1990-11-07 Kansai Electric Power Co Inc:The Water tube boiler and burning method therefor
JPH05272704A (en) * 1992-03-25 1993-10-19 Kawasaki Heavy Ind Ltd Structure of low nox boiler
JP2010139176A (en) * 2008-12-12 2010-06-24 Kawasaki Plant Systems Ltd Inverted low nox boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272207A (en) * 1988-09-10 1990-11-07 Kansai Electric Power Co Inc:The Water tube boiler and burning method therefor
JPH05272704A (en) * 1992-03-25 1993-10-19 Kawasaki Heavy Ind Ltd Structure of low nox boiler
JP2010139176A (en) * 2008-12-12 2010-06-24 Kawasaki Plant Systems Ltd Inverted low nox boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093341A1 (en) * 2014-12-12 2016-06-16 川崎重工業株式会社 Combustion system
JP2016114268A (en) * 2014-12-12 2016-06-23 川崎重工業株式会社 Combustion system
US10563863B2 (en) 2014-12-12 2020-02-18 Kawasaki Jukogyo Kabushiki Kaisha Combustion system
CN111594817A (en) * 2020-03-10 2020-08-28 上海皖祥商务咨询有限公司 Control device of full-load supercritical water cooling wall
CN114110559A (en) * 2021-11-12 2022-03-01 东方电气集团东方锅炉股份有限公司 Smoke baffle arrangement structure of double reheat boiler and reheat steam temperature control method
CN114110559B (en) * 2021-11-12 2023-05-23 东方电气集团东方锅炉股份有限公司 Flue gas baffle arrangement structure of secondary reheating boiler and reheat steam temperature control method

Also Published As

Publication number Publication date
JP5496862B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5340716B2 (en) Inverted low NOx boiler
AU2005200690B9 (en) Burner, fuel combustion method and boiler retrofit method
JP3781706B2 (en) Operation method of ash melting type U firing combustion boiler
JP6461588B2 (en) Combustion system
JP5496862B2 (en) Combustion method and combustion chamber for oil residue fired boiler
EP2663620B1 (en) Process for operating a furnace with a bituminous coal and method for reducing slag formation therewith
CN102563688A (en) Boiler thermodynamic system for burning fuel with low ash melting point and high sodium-potassium content
JP2007154213A (en) DEVICE USING Ni-BASED HEAT RESISTANT ALLOY FOR INCINERATION OR GASIFICATION
JP3782334B2 (en) Exhaust gas treatment equipment for gasifier
JP7153431B2 (en) Boiler corrosion prevention device and corrosion prevention method
JP5478997B2 (en) Combustion device operation control method and combustion device
JP4620613B2 (en) Air blowing nozzle for combustion melting furnace
CN208205033U (en) A kind of alkali metal containing organic liquid waste and waste water incineration heat recovery system
Nimbalkar et al. Technologies and materials for recovering waste heat in harsh environments
CN104949131A (en) Biomass garbage combustion system and method
JP3243843U (en) Opposite combustion liquid slag discharge boiler
JP5144447B2 (en) Boiler equipment
JP2005308272A (en) Fire grate type waste incinerator
JPWO2002035151A1 (en) Incineration or gasification equipment using high temperature corrosion resistant alloy
CN202581381U (en) Boiler thermodynamic system which combusts fuels with low ash fusion point and high potassium and sodium contents
CN203731389U (en) Blast furnace gas and coke furnace gas mixed burning boiler
CN218510910U (en) Waste liquid incinerator
RU2798328C1 (en) Biomass heating plant and its components
CN115654480A (en) Transformation method for coupling solid-state slag discharge and liquid-state slag discharge of once-through boiler
CN115307166A (en) Method for changing direct-current boiler solid-state slag discharge into liquid-state slag discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250