JP2012112506A - Spacer for bearing - Google Patents

Spacer for bearing Download PDF

Info

Publication number
JP2012112506A
JP2012112506A JP2010264249A JP2010264249A JP2012112506A JP 2012112506 A JP2012112506 A JP 2012112506A JP 2010264249 A JP2010264249 A JP 2010264249A JP 2010264249 A JP2010264249 A JP 2010264249A JP 2012112506 A JP2012112506 A JP 2012112506A
Authority
JP
Japan
Prior art keywords
spacer
bearing
circumferential direction
along
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010264249A
Other languages
Japanese (ja)
Other versions
JP5821178B2 (en
Inventor
Masaki Sadamura
正紀 定村
Hiromichi Takemura
浩道 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010264249A priority Critical patent/JP5821178B2/en
Priority to PCT/JP2011/077171 priority patent/WO2012070642A1/en
Priority to US13/498,065 priority patent/US20130004111A1/en
Priority to KR1020127007682A priority patent/KR101389164B1/en
Priority to EP11826107.2A priority patent/EP2660486A4/en
Priority to CN2011800034943A priority patent/CN102639885A/en
Publication of JP2012112506A publication Critical patent/JP2012112506A/en
Application granted granted Critical
Publication of JP5821178B2 publication Critical patent/JP5821178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight and low-cost spacer for a bearing which can reduce a torque loss during bearing rotation by reducing a sliding resistance with a counter member.SOLUTION: The spacer 4 for the bearing includes a pair of flange parts 14, 16 oppositely arranged making a ring shape, a plurality of column parts 18 which continuously extend over these flange parts and are arranged at predetermined intervals along the circumferential direction, and a plurality of opening pockets 20 constituted at predetermined intervals along the circumferential direction in the part surrounded by the pair of flange parts and the plurality of column parts. In the state incorporated between the bearings, the spacer 4 for the bearing relatively slides with its outer surface touching the bearing constitution being the counter member. By recessing the outer surfaces of both or one of flange parts and column parts in a predetermined range, the area of the outer surface of the spacer touching the bearing constitution as the counter member is made smaller, and the sliding resistance with the counter member is reduced.

Description

本発明は、相手部材との摺動抵抗を低減させることにより軸受回転時におけるトルク損失を低減させることを可能にする軽量でかつ低コストの軸受用スペーサを実現するための技術に関する。   The present invention relates to a technique for realizing a lightweight and low-cost bearing spacer that makes it possible to reduce torque loss during rotation of a bearing by reducing sliding resistance with a counterpart member.

従来、例えば自動車のオートマチックトランスミッション(AT)や各種減速機構をはじめ部材相互が相対回転する部分には、主にラジアル荷重を支えて回転する各種のラジアルころ軸受が適用されている(特許文献1参照)。一例として図12(a)には、一対のラジアルころ軸受2相互間に軸受用スペーサ4を組み込んだ遊星歯車回転支持装置が示されている。   2. Description of the Related Art Conventionally, various types of radial roller bearings that rotate while supporting a radial load have been applied to parts where members rotate relative to each other, for example, an automatic transmission (AT) of an automobile and various reduction mechanisms (see Patent Document 1). ). As an example, FIG. 12A shows a planetary gear rotation support device in which a bearing spacer 4 is incorporated between a pair of radial roller bearings 2.

遊星歯車回転支持装置は、太陽歯車(図示しない)を中心として、当該太陽歯車と噛み合いながら回転しつつ公転する遊星歯車6を回転可能に支持するための装置である。遊星歯車6は、中空円筒状を成しており、円柱状に形成された支持軸8の外周に沿って同心円状に配置構成されている。遊星歯車6と支持軸8との間には、その軸方向(遊星歯車6の回転軸Axに沿う方向)両側に、周方向に沿って複数の転動体(ころ)10が組み込まれており、双方の各転動体(ころ)10は、保持器12によってそれぞれ回転自在に保持されている。   The planetary gear rotation support device is a device for rotatably supporting the planetary gear 6 that revolves around the sun gear (not shown) while rotating in mesh with the sun gear. The planetary gear 6 has a hollow cylindrical shape, and is concentrically arranged along the outer periphery of the support shaft 8 formed in a columnar shape. Between the planetary gear 6 and the support shaft 8, a plurality of rolling elements (rollers) 10 are incorporated along the circumferential direction on both sides in the axial direction (the direction along the rotational axis Ax of the planetary gear 6). Both rolling elements (rollers) 10 are rotatably held by a cage 12.

この場合、遊星歯車6と支持軸8との間には、例えば遊星歯車6を外輪、支持軸8を内輪とすると、一対の保持器12で保持された複数の転動体(ころ)10が外内輪6,8間に組み込まれた一対のラジアルころ軸受2が構成されている。そして、スペーサ4は、遊星歯車6と支持軸8との間において、一対のラジアルころ軸受2相互間(具体的には、一対の保持器12相互間)に、相手部材(例えば、遊星歯車6、一対の保持器12)に対して接触(摺接)した状態で組み込まれている。   In this case, between the planetary gear 6 and the support shaft 8, for example, when the planetary gear 6 is an outer ring and the support shaft 8 is an inner ring, a plurality of rolling elements (rollers) 10 held by a pair of cages 12 are outside. A pair of radial roller bearings 2 incorporated between the inner rings 6 and 8 is configured. The spacer 4 is disposed between the planetary gear 6 and the support shaft 8 between the pair of radial roller bearings 2 (specifically, between the pair of cages 12) (for example, the planetary gear 6). And a pair of cages 12) are assembled in contact (sliding contact) with each other.

図12(b)に示すように、スペーサ4は、円環状を成して対向配置された一対のフランジ部14,16と、これらのフランジ部14,16相互間に亘って連続して延在し、かつ周方向に沿って所定間隔で配列された複数の柱部18とを備えており、一対のフランジ部14,16と複数の柱部18とで囲まれた部位には、周方向に沿って所定間隔(例えば、等間隔)で複数の開口ポケット20が構成されている。   As shown in FIG. 12 (b), the spacer 4 has a pair of flange portions 14, 16 arranged in an annular shape and opposed to each other, and extends continuously between the flange portions 14, 16. And a plurality of pillar portions 18 arranged at predetermined intervals along the circumferential direction, and a portion surrounded by the pair of flange portions 14 and 16 and the plurality of pillar portions 18 is provided in the circumferential direction. A plurality of opening pockets 20 are formed at a predetermined interval (for example, at equal intervals).

このようなスペーサ4は、軸受回転中において、その外表面が相手部材としての軸受構成に接触(摺接)して相対的に摺動する。具体的には、各フランジ部14,16の外径面14f,16f、各柱部18の外径面18fが、相手部材としての軸受構成(例えば、遊星歯車6)に接触(摺接)して相対的に摺動すると共に、各柱部18とは反対側の各フランジ部14,16の側周面14t,16tが、相手部材としての軸受構成(例えば、一対の保持器12)に接触(摺接)して相対的に摺動する。   Such a spacer 4 slides relatively while the outer surface of the spacer 4 is in contact (sliding contact) with the bearing structure as a counterpart member during the rotation of the bearing. Specifically, the outer diameter surfaces 14f and 16f of the flange portions 14 and 16 and the outer diameter surface 18f of the column portions 18 are in contact (sliding contact) with a bearing configuration (for example, the planetary gear 6) as a counterpart member. The side peripheral surfaces 14t and 16t of the flange portions 14 and 16 on the opposite side to the column portions 18 are in contact with a bearing configuration (for example, a pair of cages 12) as a counterpart member. (Sliding contact) and sliding relatively.

特開2008−101725号公報JP 2008-101725 A

ところで、上記した特許文献1の軸受を含めた各種軸受(例えば、図12(a)参照)において、一対のラジアルころ軸受2相互間(一対の保持器12相互間)に組み込まれるスペーサ4に複数の開口ポケット20を構成することで、当該スペーサ4自体の軽量化を図ると共に、例えば当該開口ポケット20の数量分だけスペーサ4に要する材料の削減等によって当該スペーサ4の低コスト化を図ることができる。   By the way, in various bearings (for example, see FIG. 12A) including the bearing of Patent Document 1 described above, a plurality of spacers 4 incorporated between a pair of radial roller bearings 2 (a pair of cages 12) are provided. By configuring the opening pocket 20, the weight of the spacer 4 itself can be reduced, and the cost of the spacer 4 can be reduced by, for example, reducing the material required for the spacer 4 by the number of the opening pocket 20. it can.

しかしながら、上記した各種軸受(例えば、図12(a)参照)では、軸受回転中にトルク損失が生ずることが知られている。ここで、トルク損失を引き起こす要因の割合としては、保持器12と転動体(ころ)10との転がり抵抗が60%、保持器12及びスペーサ4と潤滑剤との攪拌抵抗が20%、保持器12と相手部材(例えば、スペーサ4、外内輪6,8)との摺動(摩擦)抵抗が20%程度と考えられている。   However, in the various bearings described above (for example, see FIG. 12A), it is known that torque loss occurs during bearing rotation. Here, the ratio of the factor causing torque loss is 60% for the rolling resistance between the cage 12 and the rolling elements (rollers) 10, 20% for the stirring resistance between the cage 12, the spacer 4 and the lubricant, and the cage. 12 and the mating member (for example, the spacer 4 and the outer inner rings 6, 8) are considered to have a sliding (friction) resistance of about 20%.

そこで、相手部材との摺動抵抗を低減させることにより軸受回転時におけるトルク損失を低減させることを可能にする軽量でかつ低コストの軸受用スペーサの開発が要望されている。具体的には、相手部材(例えば、遊星歯車6、一対の保持器12)に接触(摺接)するスペーサ4の接触(摺接)面積を小さくすることで、当該スペーサ4と相手部材との間の摺動抵抗(摩擦抵抗とも言う)を軽減し、かかる抵抗によるトルク損失を引き起こす要因の割合を軽減することが要望されている。   Accordingly, there is a demand for the development of a lightweight and low-cost bearing spacer that can reduce torque loss during rotation of the bearing by reducing sliding resistance with the mating member. Specifically, by reducing the contact (sliding contact) area of the spacer 4 that contacts (sliding contact) with the mating member (for example, the planetary gear 6 and the pair of cages 12), the spacer 4 and the mating member It is desired to reduce the sliding resistance (also referred to as frictional resistance) between them, and to reduce the ratio of factors causing torque loss due to such resistance.

本発明は、このような要望に応えるためになされており、その目的は、相手部材との摺動抵抗を低減させることにより軸受回転時におけるトルク損失を低減させることを可能にする軽量でかつ低コストの軸受用スペーサを提供することにある。   The present invention has been made to meet such demands, and its purpose is to reduce the torque loss during rotation of the bearing by reducing the sliding resistance with the counterpart member, and to reduce the torque loss. The object is to provide a low cost bearing spacer.

このような目的を達成するために、本発明は、円環状を成して対向配置された一対のフランジ部と、これらのフランジ部相互間に亘って連続して延在し、かつ周方向に沿って所定間隔で配列された複数の柱部と、一対のフランジ部と複数の柱部とで囲まれた部位に、周方向に沿って所定間隔で構成された複数の開口ポケットとを備え、軸受相互間に組み込んだ状態において、その外表面が相手部材としての軸受構成に接触して相対的に摺動する軸受用スペーサであって、各フランジ部及び各柱部の双方、或いは、いずれか一方の外表面を所定範囲で窪ませることにより、相手部材としての軸受構成に接触する当該スペーサの外表面の面積を小さくし、相手部材との摺動抵抗を低減させる。
本発明において、各柱部は、周方向に沿って互いに平行に、或いは、傾斜して配列構成されている。
本発明において、各柱部には、その周方向に沿った周方向幅が各開口ポケットの周方向に沿った開口幅よりも小さくなるように、当該柱部を周方向に沿って部分的或いは全体的に窪ませて形成した凹部が構成されている。
本発明において、各フランジ部には、その周方向に沿って連続的或いは断続的に窪ませて形成した凹部が構成されている。
本発明において、各柱部は、その外表面の全体を各フランジ部の外表面よりも窪ませて構成されている。
本発明において、各柱部は、一対のフランジ部相互間に周方向に亘って配置され、かつ周方向に沿って隣り合う柱部相互間に介在させた連結部材によって、相互に連結されている。
In order to achieve such an object, the present invention provides a pair of flange portions arranged in an annular shape and facing each other, and continuously extending between these flange portions, and in the circumferential direction. A plurality of pillars arranged at predetermined intervals along a plurality of opening pockets configured at predetermined intervals along the circumferential direction in a portion surrounded by a pair of flange parts and a plurality of pillars; A spacer for a bearing that slides relatively in contact with a bearing structure as a counterpart member in a state where it is incorporated between bearings, and either or both of each flange part and each pillar part. By denting one outer surface within a predetermined range, the area of the outer surface of the spacer in contact with the bearing structure as the counterpart member is reduced, and the sliding resistance with the counterpart member is reduced.
In the present invention, the pillars are arranged in parallel with each other along the circumferential direction or in an inclined manner.
In the present invention, each column portion is partially or partially arranged along the circumferential direction so that the circumferential width along the circumferential direction is smaller than the opening width along the circumferential direction of each opening pocket. A concave portion formed by being generally recessed is formed.
In the present invention, each flange portion is formed with a recess formed by being continuously or intermittently recessed along its circumferential direction.
In the present invention, each column portion is configured such that the entire outer surface thereof is recessed from the outer surface of each flange portion.
In the present invention, the respective pillar portions are arranged between the pair of flange portions in the circumferential direction, and are connected to each other by a connecting member interposed between the adjacent pillar portions along the circumferential direction. .

本発明によれば、相手部材との摺動抵抗を低減させることにより軸受回転時におけるトルク損失を低減させることを可能にする軽量でかつ低コストの軸受用スペーサを実現することができる。   According to the present invention, it is possible to realize a lightweight and low-cost bearing spacer that makes it possible to reduce torque loss during rotation of the bearing by reducing sliding resistance with the counterpart member.

本発明の第1実施形態に係る軸受用スペーサの構成(相手部材に対する柱部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (structure which made small the contact area of the pillar part with respect to the other party member) of the bearing spacer which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る軸受用スペーサの構成(相手部材に対する柱部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (The structure which made small the contact area of the pillar part with respect to the other party member) of the bearing spacer which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る軸受用スペーサの構成(相手部材に対する柱部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (The structure which made small the contact area of the pillar part with respect to the other party member) of the bearing spacer which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る軸受用スペーサの構成(相手部材に対する柱部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (The structure which made small the contact area of the pillar part with respect to the other party member) of the bearing spacer which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る軸受用スペーサの構成(相手部材に対するフランジ部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (The structure which made small the contact area of the flange part with respect to the other party member) of the bearing spacer which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る軸受用スペーサの構成(相手部材に対するフランジ部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (The structure which made small the contact area of the flange part with respect to the other party member) of the bearing spacer which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る軸受用スペーサの構成(相手部材に対するフランジ部の接触面積を小さくした構成)を示す斜視図。The perspective view which shows the structure (The structure which made small the contact area of the flange part with respect to the other party member) of the bearing spacer which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る軸受用スペーサの構成(開口ポケットを広げた構成)を示す斜視図。The perspective view which shows the structure (structure which extended the opening pocket) of the spacer for bearings concerning 8th Embodiment of this invention. 本発明の第9実施形態に係る軸受用スペーサの構成(柱部相互を連結部材で連結した構成)を示す斜視図。The perspective view which shows the structure (structure which connected the pillar parts with the connection member) of the spacer for bearings concerning 9th Embodiment of this invention. 本発明の第10実施形態に係る軸受用スペーサの構成(各柱部を傾斜させた構成)を示す斜視図。The perspective view which shows the structure (structure which inclined each pillar part) of the bearing spacer which concerns on 10th Embodiment of this invention. (a)は、本発明の第11実施形態に係る軸受用スペーサの構成(相手部材に対して柱部を非接触とした構成)を示す斜視図、(b)は、同図(a)に示された軸受用スペーサを一部拡大して示す断面図。(a) is a perspective view which shows the structure (structure which made the pillar part non-contact with respect to the other member) of the bearing spacer which concerns on 11th Embodiment of this invention, (b) is the figure (a). Sectional drawing which expands and shows a part of the shown spacer for bearings. (a)は、一対のラジアルころ軸受相互間(一対の保持器相互間)に、従来の軸受用スペーサが組み込まれた構成例を示す断面図、(b)は、従来の軸受用スペーサの構成を示す斜視図。(a) is a sectional view showing a configuration example in which a conventional bearing spacer is incorporated between a pair of radial roller bearings (between a pair of cages), and (b) is a configuration of a conventional bearing spacer. FIG.

以下、本発明の実施形態に係る軸受用スペーサについて参照して説明する。なお、後述する各実施形態に係る軸受用スペーサの使用態様としては、例えば図12(a)に示すように、当該スペーサ4が、一対のラジアルころ軸受2相互間(具体的には、一対の保持器12相互間)に、相手部材(例えば、遊星歯車(外輪)6、一対の保持器12)に対して接触(摺接)した状態で組み込まれる場合を想定する。   Hereinafter, the bearing spacer according to the embodiment of the present invention will be described with reference to the drawings. In addition, as a use aspect of the spacer for bearings which concerns on each embodiment mentioned later, as shown, for example to Fig.12 (a), the said spacer 4 is between a pair of radial roller bearings 2 (specifically, a pair of pair A case is assumed in which the members are assembled in a state of being in contact (sliding contact) with each other member (for example, the planetary gear (outer ring) 6 and the pair of cages 12).

また、後述する各実施形態の軸受用スペーサは、図12(b)に示された従来の軸受用スペーサ4を基準とし、これに改良を施したものであるため、以下、改良部分の説明にとどめる。この場合、上記した軸受用スペーサ4(図12(b))と同一の構成については、その構成に付された参照符号と同一の符号を、後述する各実施形態に用いた図面上に付すことで、その説明を省略する。   In addition, since the bearing spacer of each embodiment to be described later is based on the conventional bearing spacer 4 shown in FIG. 12B and has been improved, this will be described in the following. Stay. In this case, for the same configuration as the above-described bearing spacer 4 (FIG. 12B), the same reference numerals as those used in the configuration are attached to the drawings used in the embodiments described later. Therefore, the description is omitted.

なお、後述する各実施形態の基準となる軸受用スペーサ4(図12(b))の諸元の一例として、当該スペーサの大きさを、内径5〜30mm、肉厚0.3〜3.0mm、全幅2〜30mmとし、開口ポケット20の周方向に沿った開口幅20hを1mm以上、フランジ部14,16の外径面14f,16fの幅14w,16wを1mm以上に設定する場合を想定する。   In addition, as an example of the specifications of the bearing spacer 4 (FIG. 12B) serving as a reference for each embodiment described later, the size of the spacer has an inner diameter of 5 to 30 mm and a wall thickness of 0.3 to 3.0 mm. Suppose that the total width is 2 to 30 mm, the opening width 20 h along the circumferential direction of the opening pocket 20 is set to 1 mm or more, and the outer diameter surfaces 14 f and 16 f of the flange portions 14 and 16 are set to 14 w and 16 w of 1 mm or more. .

この場合、当該スペーサ4の形成材料としては、例えば、冷間圧延鋼板(SPCC)、超低炭素鋼(AISI−1010)、クロムモリブデン鋼(SCM415)等の未熱処理品、或いは、浸炭又は浸炭窒化の熱処理品などを適用してもよいし、また、軽量化のために、ポリアセタール、ポリアミド樹脂(ナイロン46、ナイロン66)、ポリフェニレンサルファイド樹脂(PPS)などを適用してもよい。   In this case, examples of the material for forming the spacer 4 include unheat-treated products such as cold rolled steel plate (SPCC), ultra-low carbon steel (AISI-1010), chromium molybdenum steel (SCM415), or carburizing or carbonitriding. For example, polyacetal, polyamide resin (nylon 46, nylon 66), polyphenylene sulfide resin (PPS), or the like may be applied.

また、当該スペーサの外表面の粗さとしては、各フランジ部14,16の外径面14f,16f及び側周面14t,16t、並びに、各柱部18の外径面18fを、それぞれ6.3Ra以下に設定する。なお、Raは、中心線平均粗さ、或いは、算術平均粗さを表すパラメータとして規定されている。   Further, as the roughness of the outer surface of the spacer, the outer diameter surfaces 14f and 16f and the side peripheral surfaces 14t and 16t of the flange portions 14 and 16, and the outer diameter surface 18f of the column portions 18 are each 6. Set to 3 Ra or less. In addition, Ra is prescribed | regulated as a parameter showing centerline average roughness or arithmetic average roughness.

「第1実施形態」
図1に示すように、第1実施形態に係る軸受用スペーサ4は、周方向に沿って互いに平行に配列された複数の柱部18の外表面(即ち、外径面18f)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“First Embodiment”
As shown in FIG. 1, the bearing spacer 4 according to the first embodiment has an outer surface (that is, an outer diameter surface 18f) of a plurality of column portions 18 arranged in parallel to each other along a circumferential direction within a predetermined range. By being recessed, the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing structure (for example, the planetary gear (outer ring) 6) as the counterpart member is reduced.

具体的には、各柱部18には、それぞれ、その周方向に沿った周方向幅18wが各開口ポケット20の周方向に沿った開口幅20wよりも小さくなるように、当該柱部18を周方向に沿って部分的に窪ませて形成した凹部18pが構成されている。この場合、凹部18pは、各柱部18の中央部分を、当該柱部18に沿って長手方向に延長して連続した単一の窪み形状を成して構成されている。   Specifically, each column portion 18 is provided with the column portion 18 so that the circumferential width 18 w along the circumferential direction is smaller than the opening width 20 w along the circumferential direction of each opening pocket 20. A recess 18p formed by being partially recessed along the circumferential direction is configured. In this case, the concave portion 18p is configured to have a single hollow shape that extends in the longitudinal direction along the column portion 18 at the central portion of each column portion 18 and is continuous.

ここで、凹部18pの大きさは、例えば柱部18の大きさ、凹部18pを形成した後に残存する柱部18の強度等を考慮して設定されるため、ここでは特に限定しない。また、凹部18pの形状として、図面では一例として台形状に窪ませた凹部18pが示されているが、これに限定されることはなく、例えば円弧状、楕円状、矩形状など任意の形状を適用することができる。また、図面では一例として、各柱部18の周方向両側にそれぞれ凹部18pを形成しているが、いずれか片側にのみ凹部18pを形成してもよい。   Here, the size of the recess 18p is not particularly limited because it is set in consideration of, for example, the size of the column 18 and the strength of the column 18 remaining after the recess 18p is formed. In addition, as the shape of the recess 18p, the recess 18p recessed in a trapezoidal shape is shown as an example in the drawing, but is not limited to this, and for example, an arbitrary shape such as an arc shape, an ellipse shape, a rectangular shape, etc. Can be applied. Moreover, although the recessed part 18p is each formed in the circumferential direction both sides of each pillar part 18 as an example in drawing, you may form the recessed part 18p only in either one side.

かかる構成によれば、各柱部18の中央部分の周方向幅18wは、その周方向両側の凹部18pによって、従来のスペーサ4(図12(b))の各柱部18よりも小さくなり、これに対して、各開口ポケット20の開口幅20wは、凹部18pによって各柱部18が窪んだ分だけ、従来のスペーサ4(図12(b))の各開口ポケット20の開口幅20hよりも大きくなる。   According to such a configuration, the circumferential width 18w of the central portion of each column 18 is smaller than each column 18 of the conventional spacer 4 (FIG. 12B) due to the recesses 18p on both sides in the circumferential direction. On the other hand, the opening width 20w of each opening pocket 20 is larger than the opening width 20h of each opening pocket 20 of the conventional spacer 4 (FIG. 12B) by an amount corresponding to the depression of each column 18 by the recess 18p. growing.

以上、本実施形態によれば、各柱部18に凹部18pを形成したことにより、その分だけ、当該各柱部18の外径面18fの面積を小さくすることができる。この場合、スペーサ4を一対のラジアルころ軸受2相互間(具体的には、一対の保持器12相互間)に組み込んだ状態において(図12(a))、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触する当該各柱部18の外径面18fの面積を、従来のスペーサ4(図12(b))に比べて更に小さくすることができる。これにより、当該各柱部18の外径面18fと相手部材との摺動抵抗を、従来のスペーサ4(図12(b))に比べて大幅に低減させることができる。   As described above, according to the present embodiment, since the concave portions 18p are formed in each column portion 18, the area of the outer diameter surface 18f of each column portion 18 can be reduced by that amount. In this case, in a state in which the spacer 4 is incorporated between the pair of radial roller bearings 2 (specifically, between the pair of cages 12) (FIG. 12A), a bearing configuration as a mating member (for example, The area of the outer diameter surface 18f of each column 18 that contacts the planetary gear (outer ring) 6) can be made smaller than that of the conventional spacer 4 (FIG. 12B). As a result, the sliding resistance between the outer diameter surface 18f of each column 18 and the mating member can be greatly reduced as compared with the conventional spacer 4 (FIG. 12B).

そうなると、各柱部18の外径面18fの面積を小さくした分だけ、当該スペーサ4の外表面(各フランジ部14,16の外径面14f,16f及び側周面14t,16t、各柱部18の外径面18f)の全体に亘る面積を、従来のスペーサ4(図12(b))に比べて更に小さくすることができる。これにより、相手部材(例えば、遊星歯車(外輪)6、一対の保持器12)に接触(摺接)するスペーサ4の接触(摺接)面積を小さくすることができる。このため、当該スペーサ4と相手部材との間の摺動抵抗(摩擦抵抗)を、従来のスペーサ4(図12(b))に比べて大幅に軽減することができ、その結果、かかる抵抗によるトルク損失を引き起こす要因の割合を飛躍的に軽減することができる。   As a result, the outer surface of the spacer 4 (the outer diameter surfaces 14f and 16f and the side peripheral surfaces 14t and 16t of the flange portions 14 and 16 and the column portions are reduced by an amount corresponding to a reduction in the area of the outer diameter surface 18f of each column portion 18. The area over the entire outer diameter surface 18f) of 18 can be further reduced as compared with the conventional spacer 4 (FIG. 12B). Thereby, the contact (sliding contact) area of the spacer 4 that contacts (sliding contact) with the mating member (for example, the planetary gear (outer ring) 6 and the pair of cages 12) can be reduced. For this reason, the sliding resistance (friction resistance) between the spacer 4 and the mating member can be greatly reduced as compared with the conventional spacer 4 (FIG. 12B). The ratio of factors that cause torque loss can be drastically reduced.

また、本実施形態によれば、各柱部18に凹部18pを形成したことにより、当該各柱部18の軽量化を図ることができる。これにより、各柱部18を軽量化した分だけ、当該スペーサ4の自重を、従来のスペーサ4(図12(b))に比べて大幅に軽量化することができる。この場合、当該凹部18pの数量分だけスペーサ4全体に要する材料を削減することが可能となり、その結果、当該スペーサ4の低コスト化を図ることができる。   Moreover, according to this embodiment, since the recessed part 18p was formed in each pillar part 18, the weight reduction of each said pillar part 18 can be achieved. Thereby, the weight of the spacer 4 can be significantly reduced as compared with the conventional spacer 4 (FIG. 12B) by the amount of weight reduction of each column portion 18. In this case, the material required for the entire spacer 4 can be reduced by the number of the concave portions 18p. As a result, the cost of the spacer 4 can be reduced.

また、本実施形態によれば、遊星歯車回転支持装置(図12(a))の稼働中に生じた遠心力によって、一対のラジアルころ軸受2と共にスペーサ4が外方に付勢され、これにより支持軸(内輪)8に曲げ応力が作用した場合でも、当該スペーサ4によって、遊星歯車(外輪)6と支持軸(内輪)8との間隔を一定に維持することができる。このとき、支持軸(内輪)8の曲がりが最も大きくなる中央に組み込まれたスペーサ4には、複数の開口ポケット20が設けられているため、これにより、慣性力が低下して、支持軸(内輪)8の曲がりを効果的に抑制することができる。   Further, according to this embodiment, the spacer 4 together with the pair of radial roller bearings 2 is urged outward by the centrifugal force generated during the operation of the planetary gear rotation support device (FIG. 12A). Even when a bending stress acts on the support shaft (inner ring) 8, the spacer 4 can maintain a constant distance between the planetary gear (outer ring) 6 and the support shaft (inner ring) 8. At this time, since the spacer 4 incorporated in the center where the bending of the support shaft (inner ring) 8 becomes the largest is provided with a plurality of opening pockets 20, this reduces the inertial force, and the support shaft ( The bending of the inner ring) 8 can be effectively suppressed.

この場合、スペーサ4自体は、遊星歯車(外輪)6の回転を支持する機能はなく、本来的に大きなラジアル力が付与されないため、軽量化のために、当該各ポケット20や上記した凹部18pを形成しても、一対のラジアルころ軸受2相互間にスペーサ4を組み込んだ遊星歯車回転支持装置の機能や寿命を低下させることはない。   In this case, the spacer 4 itself does not have a function of supporting the rotation of the planetary gear (outer ring) 6 and is not inherently provided with a large radial force. Therefore, in order to reduce the weight, each of the pockets 20 and the recesses 18p described above are provided. Even if it forms, the function and lifetime of the planetary gear rotation support device incorporating the spacer 4 between the pair of radial roller bearings 2 will not be reduced.

「第2実施形態」
図2に示すように、第2実施形態に係る軸受用スペーサ4は、周方向に沿って互いに平行に配列された複数の柱部18の外表面(即ち、外径面18f)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Second Embodiment”
As shown in FIG. 2, the bearing spacer 4 according to the second embodiment has an outer surface (that is, an outer diameter surface 18f) of a plurality of pillars 18 arranged in parallel to each other along a circumferential direction within a predetermined range. By being recessed, the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing structure (for example, the planetary gear (outer ring) 6) as the counterpart member is reduced.

具体的には、各柱部18には、それぞれ、その周方向に沿った周方向幅18wが各開口ポケット20の周方向に沿った開口幅20wよりも小さくなるように、当該柱部18を周方向に沿って部分的に窪ませて形成した凹部18pが構成されている。この場合、凹部18pは、各柱部18の長手方向両側部分を、当該柱部18に沿って一部窪ませた形状を成して構成されている。   Specifically, each column portion 18 is provided with the column portion 18 so that the circumferential width 18 w along the circumferential direction is smaller than the opening width 20 w along the circumferential direction of each opening pocket 20. A recess 18p formed by being partially recessed along the circumferential direction is configured. In this case, the concave portion 18p is configured to have a shape in which both side portions in the longitudinal direction of each column portion 18 are partially depressed along the column portion 18.

以上、本実施形態によれば、各柱部18の長手方向両側部分の周方向幅18wは、その周方向両側の凹部18pによって、従来のスペーサ4(図12(b))の各柱部18よりも小さくなり、これにより、上記した第1実施形態と同様の効果を実現することができる。なお、これ以外の構成、及び、当該効果については、上記した第1実施形態と同様であるためその説明は省略する。   As described above, according to the present embodiment, the circumferential width 18w of each side portion in the longitudinal direction of each column portion 18 is equal to each column portion 18 of the conventional spacer 4 (FIG. 12B) due to the recess portions 18p on both sides in the circumferential direction. Thus, the same effect as that of the first embodiment described above can be realized. Other configurations and the effects are the same as those in the first embodiment described above, and thus the description thereof is omitted.

「第3実施形態」
図3に示すように、第3実施形態に係る軸受用スペーサ4は、周方向に沿って互いに平行に配列された複数の柱部18の外表面(即ち、外径面18f)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Third Embodiment”
As shown in FIG. 3, the bearing spacer 4 according to the third embodiment has an outer surface (that is, an outer diameter surface 18f) of a plurality of pillars 18 arranged in parallel to each other along a circumferential direction within a predetermined range. By being recessed, the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing structure (for example, the planetary gear (outer ring) 6) as the counterpart member is reduced.

具体的には、各柱部18には、それぞれ、その周方向に沿った周方向幅18wが各開口ポケット20の周方向に沿った開口幅20wよりも小さくなるように、当該柱部18を周方向に沿って部分的に窪ませて形成した凹部18pが構成されている。この場合、凹部18pは、各柱部18の中央部分と長手方向両側部分とを、当該柱部18に沿って一部窪ませた形状を成して構成されている。   Specifically, each column portion 18 is provided with the column portion 18 so that the circumferential width 18 w along the circumferential direction is smaller than the opening width 20 w along the circumferential direction of each opening pocket 20. A recess 18p formed by being partially recessed along the circumferential direction is configured. In this case, the concave portion 18p is configured to have a shape in which the central portion of each column portion 18 and both side portions in the longitudinal direction are partially recessed along the column portion 18.

以上、本実施形態によれば、各柱部18の中央部分及び長手方向両側部分の3箇所の周方向幅18wは、その周方向両側の凹部18pによって、従来のスペーサ4(図12(b))の各柱部18よりも小さくなり、これにより、上記した第1実施形態と同様の効果を実現することができる。なお、これ以外の構成、及び、当該効果については、上記した第1実施形態と同様であるためその説明は省略する。   As described above, according to the present embodiment, the circumferential width 18w of the three portions of the central portion and the both side portions in the longitudinal direction of each pillar portion 18 is determined by the conventional spacer 4 (FIG. 12B) by the recess portions 18p on both sides in the circumferential direction. ), The same effects as those of the first embodiment described above can be realized. Other configurations and the effects are the same as those in the first embodiment described above, and thus the description thereof is omitted.

「第4実施形態」
図4に示すように、第4実施形態に係る軸受用スペーサ4は、周方向に沿って互いに平行に配列された複数の柱部18の外表面(即ち、外径面18f)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Fourth Embodiment”
As shown in FIG. 4, the bearing spacer 4 according to the fourth embodiment has an outer surface (that is, an outer diameter surface 18 f) of a plurality of pillars 18 arranged in parallel to each other along a circumferential direction within a predetermined range. By being recessed, the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing structure (for example, the planetary gear (outer ring) 6) as the counterpart member is reduced.

具体的には、各柱部18には、それぞれ、その周方向に沿った周方向幅18wが各開口ポケット20の周方向に沿った開口幅20wよりも小さくなるように、当該柱部18を周方向に沿って部分的に窪ませて形成した凹部18pが構成されている。この場合、凹部18pは、各柱部18の中央部分寄りの長手方向両側部分を、当該柱部18に沿って一部窪ませた形状を成して構成されている。   Specifically, each column portion 18 is provided with the column portion 18 so that the circumferential width 18 w along the circumferential direction is smaller than the opening width 20 w along the circumferential direction of each opening pocket 20. A recess 18p formed by being partially recessed along the circumferential direction is configured. In this case, the concave portion 18 p is configured to have a shape in which both side portions in the longitudinal direction near the central portion of each column portion 18 are partially recessed along the column portion 18.

以上、本実施形態によれば、各柱部18の中央部分寄りの長手方向両側部分の2箇所の周方向幅18wは、その周方向両側の凹部18pによって、従来のスペーサ4(図12(b))の各柱部18よりも小さくなり、これにより、上記した第1実施形態と同様の効果を実現することができる。なお、これ以外の構成、及び、当該効果については、上記した第1実施形態と同様であるためその説明は省略する。   As described above, according to the present embodiment, the two circumferential widths 18w of the two longitudinal side portions near the central portion of each columnar portion 18 have the conventional spacers 4 (FIG. 12B) by the concave portions 18p on both circumferential sides. )), Which is smaller than each column portion 18, thereby achieving the same effects as those of the first embodiment described above. Other configurations and the effects are the same as those in the first embodiment described above, and thus the description thereof is omitted.

「第5実施形態」
図5に示すように、第5実施形態に係る軸受用スペーサ4は、一対のフランジ部14,16の外表面(即ち、外径面14f,16f、側周面14t,16t)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6、一対の保持器12)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Fifth Embodiment”
As shown in FIG. 5, the bearing spacer 4 according to the fifth embodiment has the outer surfaces (that is, the outer diameter surfaces 14 f and 16 f and the side peripheral surfaces 14 t and 16 t) of the pair of flange portions 14 and 16 within a predetermined range. By recessing, it is configured to reduce the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing configuration (for example, the planetary gear (outer ring) 6 and the pair of cages 12) as a counterpart member. .

具体的には、各フランジ部14,16には、それぞれ、その周方向に沿って連続的に窪ませて形成した凹部14p,16pが構成されている。この場合、凹部14p,16pは、外径面14f,16fから側周面14t,16tに向かうに従って先細り状に傾斜し、かつ周方向に沿って連続した円錐状のテーパ面として構成されている。   Specifically, the flange portions 14 and 16 are respectively provided with concave portions 14p and 16p formed by being continuously depressed along the circumferential direction thereof. In this case, the recesses 14p, 16p are configured as conical tapered surfaces that are tapered in a tapered manner as they go from the outer diameter surfaces 14f, 16f to the side peripheral surfaces 14t, 16t and continue along the circumferential direction.

ここで、凹部14p,16pの大きさ(広さ)は、例えば各フランジ部14,16の大きさ(外径面14f,16f及び側周面14t,16tの広さ)に応じて設定されるため、ここでは特に限定しない。また、凹部14p,16pの傾斜角度は、0°を含めないでそれ以上90°未満の範囲で任意に設定することができる。また、他の構成は、図12(b)に示されたスペーサ4と同様であるため、その説明は省略する。   Here, the sizes (widths) of the recesses 14p, 16p are set according to the sizes of the flange portions 14, 16 (widths of the outer diameter surfaces 14f, 16f and the side peripheral surfaces 14t, 16t), for example. Therefore, there is no particular limitation here. Further, the inclination angles of the recesses 14p, 16p can be arbitrarily set within a range of more than 90 ° without including 0 °. Other configurations are the same as those of the spacer 4 shown in FIG.

以上、本実施形態によれば、各フランジ部14,16に凹部14p,16pを形成したことにより、その分だけ、当該各フランジ部14,16の外表面(即ち、外径面14f,16f、側周面14t,16t)の面積を、従来のスペーサ4(図12(b))の各フランジ部14,16よりも小さくすることができる。   As described above, according to the present embodiment, since the concave portions 14p and 16p are formed in the flange portions 14 and 16, the outer surfaces of the flange portions 14 and 16 (that is, the outer diameter surfaces 14f and 16f, The area of the side peripheral surfaces 14t and 16t can be made smaller than the flange portions 14 and 16 of the conventional spacer 4 (FIG. 12B).

この場合、スペーサ4を一対のラジアルころ軸受2相互間(具体的には、一対の保持器12相互間)に組み込んだ状態において(図12(a))、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触する当該各フランジ部14,16の外径面14f,16fの面積を、従来のスペーサ4(図12(b))に比べて更に小さくすることができると共に、相手部材としての軸受構成(例えば、一対の保持器12)に接触する当該各フランジ部14,16の側周面14t,16tの面積を、従来のスペーサ4(図12(b))に比べて更に小さくすることができる。これにより、当該各フランジ部14,16の外径面14f,16f及び側周面14t,16tと相手部材との摺動抵抗を、従来のスペーサ4(図12(b))に比べて大幅に低減させることができる。   In this case, in a state in which the spacer 4 is incorporated between the pair of radial roller bearings 2 (specifically, between the pair of cages 12) (FIG. 12A), a bearing configuration as a mating member (for example, The area of the outer diameter surfaces 14f and 16f of the flange portions 14 and 16 in contact with the planetary gear (outer ring) 6) can be further reduced as compared with the conventional spacer 4 (FIG. 12B), Compared to the conventional spacer 4 (FIG. 12B), the area of the side peripheral surfaces 14t and 16t of the flange portions 14 and 16 contacting the bearing structure (for example, a pair of cages 12) as the counterpart member is larger. It can be further reduced. As a result, the sliding resistance between the outer diameter surfaces 14f and 16f and the side peripheral surfaces 14t and 16t of the flange portions 14 and 16 and the mating member is significantly larger than that of the conventional spacer 4 (FIG. 12B). Can be reduced.

そうなると、各フランジ部14,16の外径面14f,16f及び側周面14t,16tの面積を小さくした分だけ、当該スペーサ4の外表面(各フランジ部14,16の外径面14f,16f及び側周面14t,16t、各柱部18の外径面18f)の全体に亘る面積を、従来のスペーサ4(図12(b))に比べて更に小さくすることができる。これにより、相手部材(例えば、遊星歯車(外輪)6、一対の保持器12)に接触(摺接)するスペーサ4の接触(摺接)面積を小さくすることができる。このため、当該スペーサ4と相手部材との間の摺動抵抗(摩擦抵抗)を、従来のスペーサ4(図12(b))に比べて大幅に軽減することができ、その結果、かかる抵抗によるトルク損失を引き起こす要因の割合を飛躍的に軽減することができる。   As a result, the outer surface of the spacer 4 (the outer diameter surfaces 14f and 16f of the flange portions 14 and 16 is reduced by the area of the outer diameter surfaces 14f and 16f and the side peripheral surfaces 14t and 16t of the flange portions 14 and 16, respectively. In addition, the entire area of the side peripheral surfaces 14t and 16t and the outer diameter surface 18f of each column 18 can be further reduced as compared with the conventional spacer 4 (FIG. 12B). Thereby, the contact (sliding contact) area of the spacer 4 that contacts (sliding contact) with the mating member (for example, the planetary gear (outer ring) 6 and the pair of cages 12) can be reduced. For this reason, the sliding resistance (friction resistance) between the spacer 4 and the mating member can be greatly reduced as compared with the conventional spacer 4 (FIG. 12B). The ratio of factors that cause torque loss can be drastically reduced.

また、本実施形態によれば、各フランジ部14,16に凹部14p,16pを形成したことにより、当該各フランジ部14,16の軽量化を図ることができる。これにより、各フランジ部14,16を軽量化した分だけ、当該スペーサ4の自重を、従来のスペーサ4(図12(b))に比べて大幅に軽量化することができる。この場合、当該凹部14p,16pの数量分だけスペーサ4全体に要する材料を削減することが可能となり、その結果、当該スペーサ4の低コスト化を図ることができる。   Moreover, according to this embodiment, since the recessed parts 14p and 16p were formed in each flange part 14 and 16, the weight reduction of each said flange part 14 and 16 can be achieved. Thereby, the weight of the spacer 4 can be significantly reduced compared with the conventional spacer 4 (FIG. 12B) by the amount of weight reduction of the flange portions 14 and 16. In this case, the material required for the entire spacer 4 can be reduced by the number of the concave portions 14p, 16p, and as a result, the cost of the spacer 4 can be reduced.

なお、他の効果は、上記した第1実施形態と同様であるため、その説明は省略する。この場合、本実施形態の構成(即ち、各フランジ部14,16に凹部14p,16pを形成する構成)を、上記した第1〜4実施形態に適用してもよい。これにより、当該第1〜4実施形態に係る効果と、本実施形態に係る効果とを合わせ持ったスペーサ4を実現することができる。   Since other effects are the same as those in the first embodiment, the description thereof is omitted. In this case, the configuration of the present embodiment (that is, the configuration in which the concave portions 14p and 16p are formed in the flange portions 14 and 16) may be applied to the first to fourth embodiments described above. Thereby, the spacer 4 which has the effect which concerns on the said 1st-4th embodiment, and the effect which concerns on this embodiment is realizable.

「第6実施形態」
図6に示すように、第6実施形態に係る軸受用スペーサ4は、一対のフランジ部14,16の外表面(即ち、外径面14f,16f、側周面14t,16t)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6、一対の保持器12)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Sixth Embodiment”
As shown in FIG. 6, the bearing spacer 4 according to the sixth embodiment has the outer surfaces of the pair of flange portions 14 and 16 (that is, the outer diameter surfaces 14 f and 16 f and the side peripheral surfaces 14 t and 16 t) within a predetermined range. By recessing, it is configured to reduce the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing configuration (for example, the planetary gear (outer ring) 6 and the pair of cages 12) as a counterpart member. .

具体的には、各フランジ部14,16には、それぞれ、その周方向に沿って断続的に窪ませて形成した凹部14s,16sが構成されている。この場合、凹部14s,16sは、側周面14t,16tから外径面14f,16fに一部入り込むように窪ませた矩形状を成しており、これを周方向に沿って所定間隔で配列して構成されている。   Specifically, the flange portions 14 and 16 are respectively provided with recess portions 14s and 16s formed by being intermittently recessed along the circumferential direction. In this case, the recesses 14s and 16s have a rectangular shape that is recessed from the side peripheral surfaces 14t and 16t so as to partially enter the outer diameter surfaces 14f and 16f, and are arranged at predetermined intervals along the circumferential direction. Configured.

ここで、凹部14s,16sの大きさは、例えばフランジ部14,16の大きさ、凹部14s,16sを形成した後に残存するフランジ部14,16の強度等を考慮して設定されるため、ここでは特に限定しない。また、凹部14s,16sの形状として、図面では一例として矩形状に窪ませた凹部14s,16sが示されているが、これに限定されることはなく、例えば円弧状、楕円状、三角形状など任意の形状を適用することができる。また、図面では一例として、各柱部18の両側位置に整列するように凹部14s,16sを形成しているが、各開口ポケット20の両側位置、或いは、柱部18及び開口ポケット20の双方に重なり合う両側位置に整列するように凹部14s,16sを形成してもよい。   Here, the sizes of the recesses 14s and 16s are set in consideration of, for example, the size of the flanges 14 and 16 and the strength of the flanges 14 and 16 remaining after forming the recesses 14s and 16s. Then there is no particular limitation. Further, as the shapes of the recesses 14s and 16s, the recesses 14s and 16s recessed in a rectangular shape are shown as an example in the drawing, but the invention is not limited to this, and for example, an arc shape, an elliptical shape, a triangular shape, and the like Any shape can be applied. In the drawings, as an example, the recesses 14 s and 16 s are formed so as to align with both side positions of each column part 18, but both side positions of each opening pocket 20 or both the column part 18 and the opening pocket 20. The recesses 14s and 16s may be formed so as to align with the overlapping positions on both sides.

また、本実施形態では、上記した第5実施形態の凹部14p,16pに代えて、凹部14s,16sが構成されており、他の構成は、上記した第5実施形態に係るスペーサ4と同様であるため、その説明は省略する。また、本実施形態の効果についても、上記した第5実施形態と同様であるため、その説明は省略する。この場合、本実施形態の構成(即ち、各フランジ部14,16に凹部14s,16sを形成する構成)を、上記した第1〜4実施形態に適用してもよい。これにより、当該第1〜4実施形態に係る効果と、本実施形態に係る効果とを合わせ持ったスペーサ4を実現することができる。   Moreover, in this embodiment, it replaces with the recessed parts 14p and 16p of above-described 5th Embodiment, and the recessed parts 14s and 16s are comprised, The other structure is the same as that of the spacer 4 which concerns on above-mentioned 5th Embodiment. Therefore, the description thereof is omitted. Further, the effects of this embodiment are the same as those of the fifth embodiment described above, and thus the description thereof is omitted. In this case, the configuration of the present embodiment (that is, the configuration in which the concave portions 14s and 16s are formed in the flange portions 14 and 16) may be applied to the first to fourth embodiments described above. Thereby, the spacer 4 which has the effect which concerns on the said 1st-4th embodiment, and the effect which concerns on this embodiment is realizable.

「第7実施形態」
図7に示すように、第7実施形態に係る軸受用スペーサ4は、一対のフランジ部14,16の外表面(即ち、外径面14f,16f、側周面14t,16t)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6、一対の保持器12)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Seventh Embodiment”
As shown in FIG. 7, the bearing spacer 4 according to the seventh embodiment has the outer surfaces of the pair of flange portions 14 and 16 (that is, the outer diameter surfaces 14f and 16f and the side peripheral surfaces 14t and 16t) within a predetermined range. By recessing, it is configured to reduce the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing configuration (for example, the planetary gear (outer ring) 6 and the pair of cages 12) as a counterpart member. .

具体的には、各フランジ部14,16には、それぞれ、その周方向に沿って断続的に窪ませて形成した凹部14g,16gが構成されている。この場合、凹部14g,16gは、当該各フランジ部14,16を所定間隔で、かつ互い違いに一部切り欠く(切除、除去する)ことで、その切欠部分の側周面14t,16t及び外径面14f,16fを窪ませて構成されている。   Specifically, the flange portions 14 and 16 are respectively provided with concave portions 14g and 16g formed by being intermittently recessed along the circumferential direction. In this case, the recesses 14g and 16g are formed by notching (removing and removing) the flange portions 14 and 16 alternately at predetermined intervals and alternately so that the side peripheral surfaces 14t and 16t and the outer diameter of the notch portions are formed. The surfaces 14f and 16f are configured to be recessed.

ここで、周方向に隣り合う開口ポケット20について着目すると、隣り合う一方の開口ポケット20の両側に位置するフランジ部14,16において、例えば片側のフランジ部14の一部を切り欠いて、当該開口ポケット20に連通した1つの凹部14gを形成した場合、隣り合う他方の開口ポケット20の両側に位置するフランジ部14,16においては、例えば上記した凹部14gとは互い違いの位置関係となる反対側のフランジ部16の一部を切り欠いて、当該開口ポケット20に連通した1つの凹部16gを形成する。このような形成手順を繰り返すことで、各フランジ部14,16に沿って互い違いに切り欠かれた凹部14g,16gが構成されている。   Here, paying attention to the opening pockets 20 adjacent in the circumferential direction, in the flange portions 14 and 16 located on both sides of the one adjacent opening pocket 20, for example, a part of the flange portion 14 on one side is notched to open the opening pocket 20. When one concave portion 14g communicating with the pocket 20 is formed, the flange portions 14 and 16 located on both sides of the other adjacent opening pocket 20 have, for example, the opposite side which is in a different positional relationship with the concave portion 14g described above. A part of the flange portion 16 is cut out to form one concave portion 16 g communicating with the opening pocket 20. By repeating such a forming procedure, recesses 14g and 16g cut out alternately along the flange portions 14 and 16 are formed.

以上、本実施形態は、上記した第5実施形態の凹部14p,16pに代えて、凹部14g,16gを構成したものであり、他の構成は、上記した第5実施形態に係るスペーサ4と同様であるため、その説明は省略する。また、本実施形態の効果についても、上記した第5実施形態と同様であるため、その説明は省略する。この場合、本実施形態の構成(即ち、各フランジ部14,16に凹部14g,16gを形成する構成)を、上記した第1〜4実施形態に適用してもよい。これにより、当該第1〜4実施形態に係る効果と、本実施形態に係る効果とを合わせ持ったスペーサ4を実現することができる。   As described above, in the present embodiment, the recesses 14g and 16g are configured instead of the recesses 14p and 16p of the above-described fifth embodiment, and other configurations are the same as those of the spacer 4 according to the above-described fifth embodiment. Therefore, the description thereof is omitted. Further, the effects of this embodiment are the same as those of the fifth embodiment described above, and thus the description thereof is omitted. In this case, the configuration of the present embodiment (that is, the configuration in which the concave portions 14g and 16g are formed in the flange portions 14 and 16) may be applied to the first to fourth embodiments described above. Thereby, the spacer 4 which has the effect which concerns on the said 1st-4th embodiment, and the effect which concerns on this embodiment is realizable.

「第8実施形態」
図8に示すように、第8実施形態に係る軸受用スペーサ4は、周方向に沿って互いに平行に配列された複数の柱部18の外表面(即ち、外径面18f)を所定範囲で窪ませることにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を小さくして構成されている。
“Eighth Embodiment”
As shown in FIG. 8, the bearing spacer 4 according to the eighth embodiment has an outer surface (that is, an outer diameter surface 18 f) of a plurality of pillars 18 arranged in parallel to each other along a circumferential direction within a predetermined range. By being recessed, the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing structure (for example, the planetary gear (outer ring) 6) as the counterpart member is reduced.

具体的には、各柱部18には、それぞれ、その周方向に沿った周方向幅18wが各開口ポケット20の周方向に沿った開口幅20wよりも小さくなるように、当該柱部18を周方向に沿って全体的に窪ませて形成した凹部18pが構成されている。この場合、凹部18pを構成する方法としては、各柱部18の長手方向の全長に亘って全体的に窪ませる方法や、各柱部18を例えば1本置き、或いは、複数本置きに間引き(除去、削除)する方法を適用することができる。   Specifically, each column portion 18 is provided with the column portion 18 so that the circumferential width 18 w along the circumferential direction is smaller than the opening width 20 w along the circumferential direction of each opening pocket 20. A recess 18p is formed which is formed to be entirely recessed along the circumferential direction. In this case, as a method of forming the recess 18p, a method of recessing the entire length of each column 18 over the entire length in the longitudinal direction, thinning out each column 18 for every one or a plurality of others (for example, (Removal, deletion) can be applied.

以上、本実施形態によれば、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を従来のスペーサ4(図12(b))よりも小さくすることができるため、これにより、上記した第1実施形態と同様の効果を実現することができる。なお、他の構成は、図12(b)に示されたスペーサ4と同様であるため、その説明は省略する。   As described above, according to this embodiment, the area of the outer surface of the spacer 4 that comes into contact (sliding contact) with the bearing configuration (for example, the planetary gear (outer ring) 6) as the counterpart member is the same as that of the conventional spacer 4 (FIG. )), It is possible to achieve the same effect as in the first embodiment. The other configuration is the same as that of the spacer 4 shown in FIG.

「第9実施形態」
図9に示すように、第9実施形態に係る軸受用スペーサ4において、各柱部18は、一対のフランジ部14,16相互間に周方向に亘って配置され、かつ周方向に沿って隣り合う柱部18相互間に介在させた連結部材22によって、相互に連結されている。なお、各連結部材22は、それぞれ略円弧形状を成しており、各柱部18相互を連結した状態において、その全体の輪郭が各フランジ部14,16と一致或いは同等の円環状となるように構成されている。
“Ninth Embodiment”
As shown in FIG. 9, in the bearing spacer 4 according to the ninth embodiment, each column portion 18 is disposed across the circumferential direction between the pair of flange portions 14 and 16 and is adjacent along the circumferential direction. They are connected to each other by a connecting member 22 interposed between the matching column portions 18. Each connecting member 22 has a substantially arc shape, and in a state where the column portions 18 are connected to each other, the entire contour thereof is identical to or equivalent to each flange portion 14, 16. It is configured.

具体的には、当該連結部材22は、上記した第8実施形態において、各柱部18の長手方向の全長に亘って全体的に窪ませて凹部18pを構成した(即ち、各開口ポケット20の占有面積が拡げられた)スペーサ4の強度を向上させるために設けられている。この場合、当該連結部材22は、周方向に沿って配置させてもよいし、或いは、傾斜させてもよい。要するに、当該連結部材22を柱部18相互間に介在させることでスペーサ4の強度が向上できるように構成されていればよい。なお、他の構成及び効果は、上記した第8実施形態に係るスペーサ4と同様であるため、その説明は省略する。   Specifically, in the above-described eighth embodiment, the connecting member 22 is recessed throughout the entire length in the longitudinal direction of each column portion 18 to form a recess 18p (that is, each opening pocket 20). It is provided in order to improve the strength of the spacer 4 (the occupied area is expanded). In this case, the connecting member 22 may be arranged along the circumferential direction or may be inclined. In short, what is necessary is just to be comprised so that the intensity | strength of the spacer 4 can be improved by interposing the said connection member 22 between the pillar parts 18. FIG. Since other configurations and effects are the same as those of the spacer 4 according to the above-described eighth embodiment, description thereof is omitted.

「第10実施形態」
図10に示すように、第10実施形態に係る軸受用スペーサ4において、各柱部18は、周方向に沿って互いに傾斜して配列構成されている。具体的には、上記した第8実施形態において、各柱部18の長手方向の全長に亘って全体的に窪ませて凹部18pを構成したスペーサ4の強度を向上させるために、各柱部18を互いに傾斜させている。なお、他の構成は、上記した第8実施形態に係るスペーサ4と同様であるため、その説明は省略する。
“Tenth Embodiment”
As shown in FIG. 10, in the bearing spacer 4 according to the tenth embodiment, the column portions 18 are arranged in an inclined manner along the circumferential direction. Specifically, in the above-described eighth embodiment, in order to improve the strength of the spacer 4 that is recessed throughout the entire length in the longitudinal direction of each column 18 to form the recess 18p, each column 18 Are inclined to each other. Since the other configuration is the same as that of the spacer 4 according to the above-described eighth embodiment, the description thereof is omitted.

以上、本実施形態によれば、各フランジ部14,16と、互いに傾斜した各柱部18とによって、周方向に沿って三角形を基本にして組んだ所謂「トラス構造」を構築することができるため、スペーサ4の強度を格段に向上させることができる。この場合、本実施形態のトラス構造(即ち、各柱部18を周方向に沿って互いに傾斜させた配列構成)を、上記した第1〜4実施形態に適用してもよい。これにより、当該第1〜4実施形態に係る効果と、本実施形態に係る効果とを合わせ持ったスペーサ4を実現することができる。   As described above, according to the present embodiment, a so-called “truss structure” constructed based on triangles along the circumferential direction can be constructed by the flange portions 14 and 16 and the column portions 18 inclined with respect to each other. Therefore, the strength of the spacer 4 can be significantly improved. In this case, you may apply the truss structure of this embodiment (namely, the arrangement | positioning structure which mutually inclined each pillar part 18 along the circumferential direction) to the above-mentioned 1st-4th embodiment. Thereby, the spacer 4 which has the effect which concerns on the said 1st-4th embodiment, and the effect which concerns on this embodiment is realizable.

「第11実施形態」
図11(a),(b)に示すように、第11実施形態に係る軸受用スペーサ4において、各柱部18は、その外表面(即ち、外径面18f)の全体を各フランジ部14,16の外表面(即ち、外径面14f,16f)よりも窪ませて構成されている。この場合、各柱部18の肉厚を薄くし、その外径面18fを各フランジ部14,16の外径面14f,16fよりも凹ませることで、各柱部18の外径面18f上にそれぞれ凹部(特に参照符号は付さない)が構成されることになる。
“Eleventh Embodiment”
As shown in FIGS. 11A and 11B, in the bearing spacer 4 according to the eleventh embodiment, each columnar portion 18 has the entire outer surface (that is, the outer diameter surface 18 f) of each flange portion 14. 16 are recessed from the outer surface (that is, the outer diameter surfaces 14f and 16f). In this case, the thickness of each column 18 is reduced, and the outer diameter surface 18f thereof is recessed from the outer diameter surfaces 14f, 16f of the flange portions 14, 16, so that the outer diameter surface 18f of each column 18 is Each of the first and second recesses is formed with a recess (in particular, no reference numeral is attached).

以上、本実施形態によれば、各柱部18の外径面18f上にそれぞれ凹部を構成したことにより、相手部材としての軸受構成(例えば、遊星歯車(外輪)6)に接触(摺接)する当該スペーサ4の外表面の面積を従来のスペーサ4(図12(b))よりも小さくすることができるため、これにより、上記した第1実施形態と同様の効果を実現することができる。なお、他の構成は、図12(b)に示されたスペーサ4と同様であるため、その説明は省略する。   As described above, according to the present embodiment, the concave portions are formed on the outer diameter surfaces 18f of the respective column portions 18, thereby making contact (sliding contact) with the bearing configuration (for example, the planetary gear (outer ring) 6) as the counterpart member. Since the area of the outer surface of the spacer 4 can be made smaller than that of the conventional spacer 4 (FIG. 12B), the same effect as in the first embodiment can be realized. The other configuration is the same as that of the spacer 4 shown in FIG.

4 スペーサ
14、16 フランジ部
18 柱部
20 開口ポケット
4 Spacers 14, 16 Flange 18 Column 20 Opening pocket

Claims (6)

円環状を成して対向配置された一対のフランジ部と、
これらのフランジ部相互間に亘って連続して延在し、かつ周方向に沿って所定間隔で配列された複数の柱部と、
一対のフランジ部と複数の柱部とで囲まれた部位に、周方向に沿って所定間隔で構成された複数の開口ポケットとを備え、
軸受相互間に組み込んだ状態において、その外表面が相手部材としての軸受構成に接触して相対的に摺動する軸受用スペーサであって、
各フランジ部及び各柱部の双方、或いは、いずれか一方の外表面を所定範囲で窪ませることにより、相手部材としての軸受構成に接触する当該スペーサの外表面の面積を小さくし、相手部材との摺動抵抗を低減させることを特徴とする請求項1に記載の軸受用スペーサ。
A pair of flange portions arranged opposite each other in an annular shape;
A plurality of pillar portions extending continuously between the flange portions and arranged at predetermined intervals along the circumferential direction;
Provided with a plurality of opening pockets configured at predetermined intervals along the circumferential direction in a portion surrounded by a pair of flange portions and a plurality of pillar portions,
A spacer for a bearing that slides relatively in contact with the bearing structure as a counterpart member in a state where the bearings are assembled between the bearings,
By reducing the outer surface of each flange part and each pillar part, or any one of the outer surfaces within a predetermined range, the area of the outer surface of the spacer in contact with the bearing structure as the counterpart member is reduced. The bearing spacer according to claim 1, wherein the sliding resistance of the bearing is reduced.
各柱部は、周方向に沿って互いに平行に、或いは、傾斜して配列構成されていることを特徴とする請求項1に記載の軸受用スペーサ。   The bearing spacer according to claim 1, wherein the pillar portions are arranged in parallel with each other along the circumferential direction or in an inclined manner. 各柱部には、その周方向に沿った周方向幅が各開口ポケットの周方向に沿った開口幅よりも小さくなるように、当該柱部を周方向に沿って部分的或いは全体的に窪ませて形成した凹部が構成されていることを特徴とする請求項2に記載の軸受用スペーサ。   Each pillar is partially or entirely recessed along the circumferential direction so that the circumferential width along the circumferential direction is smaller than the opening width along the circumferential direction of each opening pocket. The bearing spacer according to claim 2, wherein a concave portion formed by bending is formed. 各フランジ部には、その周方向に沿って連続的或いは断続的に窪ませて形成した凹部が構成されていることを特徴とする請求項1〜3のいずれかに記載の軸受用スペーサ。   The bearing spacer according to any one of claims 1 to 3, wherein each flange portion includes a recess formed by being continuously or intermittently recessed along a circumferential direction thereof. 各柱部は、その外表面の全体を各フランジ部の外表面よりも窪ませて構成されていることを特徴とする請求項1又は2に記載の軸受用スペーサ。   The bearing spacer according to claim 1, wherein each column portion is configured such that an entire outer surface thereof is recessed from an outer surface of each flange portion. 各柱部は、一対のフランジ部相互間に周方向に亘って配置され、かつ周方向に沿って隣り合う柱部相互間に介在させた連結部材によって、相互に連結されていることを特徴とする請求項3に記載の軸受用スペーサ。   Each column part is arranged over a peripheral direction between a pair of flange parts, and is mutually connected by a connecting member interposed between adjacent column parts along the circumferential direction. The spacer for a bearing according to claim 3.
JP2010264249A 2010-11-26 2010-11-26 Bearing spacer Active JP5821178B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010264249A JP5821178B2 (en) 2010-11-26 2010-11-26 Bearing spacer
PCT/JP2011/077171 WO2012070642A1 (en) 2010-11-26 2011-11-25 Spacer for radial needle bearing
US13/498,065 US20130004111A1 (en) 2010-11-26 2011-11-25 Spacer for Radial Needle Roller Bearing
KR1020127007682A KR101389164B1 (en) 2010-11-26 2011-11-25 Spacer for a radial needle roller bearing
EP11826107.2A EP2660486A4 (en) 2010-11-26 2011-11-25 Spacer for radial needle bearing
CN2011800034943A CN102639885A (en) 2010-11-26 2011-11-25 Spacer for radial needle bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264249A JP5821178B2 (en) 2010-11-26 2010-11-26 Bearing spacer

Publications (2)

Publication Number Publication Date
JP2012112506A true JP2012112506A (en) 2012-06-14
JP5821178B2 JP5821178B2 (en) 2015-11-24

Family

ID=46496937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264249A Active JP5821178B2 (en) 2010-11-26 2010-11-26 Bearing spacer

Country Status (1)

Country Link
JP (1) JP5821178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334747A (en) * 2018-06-29 2021-02-05 Ntn株式会社 Pre-pressure sensor, bearing device, bearing, and spacer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568925U (en) * 1979-07-03 1981-01-26
JPS5654323U (en) * 1979-10-03 1981-05-12
JPS61126146U (en) * 1985-01-28 1986-08-08
JP2002081528A (en) * 2000-09-05 2002-03-22 Koyo Seiko Co Ltd Gear supporting structure
JP2008303992A (en) * 2007-06-08 2008-12-18 Nsk Ltd Radial needle roller bearing
JP2009287772A (en) * 2008-05-01 2009-12-10 Nsk Ltd Needle roller bearing
JP2010002029A (en) * 2008-06-23 2010-01-07 Nsk Ltd Radial needle roller bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568925U (en) * 1979-07-03 1981-01-26
JPS5654323U (en) * 1979-10-03 1981-05-12
JPS61126146U (en) * 1985-01-28 1986-08-08
JP2002081528A (en) * 2000-09-05 2002-03-22 Koyo Seiko Co Ltd Gear supporting structure
JP2008303992A (en) * 2007-06-08 2008-12-18 Nsk Ltd Radial needle roller bearing
JP2009287772A (en) * 2008-05-01 2009-12-10 Nsk Ltd Needle roller bearing
JP2010002029A (en) * 2008-06-23 2010-01-07 Nsk Ltd Radial needle roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334747A (en) * 2018-06-29 2021-02-05 Ntn株式会社 Pre-pressure sensor, bearing device, bearing, and spacer

Also Published As

Publication number Publication date
JP5821178B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US7220060B2 (en) Roller bearing
KR101389164B1 (en) Spacer for a radial needle roller bearing
EP2669540A1 (en) Rolling bearing cage consisting of a plurality of parts and rolling bearing with such a cage
JP2004301203A (en) Needle roller bearing, and speed reducer using the same needle roller bearing
JP6146013B2 (en) Roller bearing cage and rolling bearing provided with the cage
EP2713068A2 (en) Pin-type cage and rolling bearing including the pin-type cage
US10267357B2 (en) Tapered roller bearing
JP5821178B2 (en) Bearing spacer
JP5273442B2 (en) Radial needle roller bearings
JP2008019922A (en) Planetary gear supporting structure for construction machine planetary gear reduction gear
JP5909918B2 (en) Roller bearing cage
JP2011085153A (en) Rolling bearing
CN111566367B (en) Roller with retainer and planetary gear supporting structure
JP6422364B2 (en) Eccentric oscillation type speed reducer
JP6146026B2 (en) Roller bearing cage and rolling bearing provided with the cage
JP6269021B2 (en) Radial roller bearing cage
JP5909893B2 (en) Radial needle bearing
JP2014202315A (en) Cage for roller bearing, roller bearing including the same, and wind power generator
JP2012172784A (en) Ball bearing
JP2006029522A (en) Tapered roller bearing
JP2010270884A (en) Cage for radial needle bearing and radial needle bearing
JP2010060008A (en) Roller bearing of planetary gear mechanism
JP2008281065A (en) Ball bearing
JP2014095458A (en) Roller holder and thrust roller bearing with the same
JP2009063047A (en) Roller with retainer for incorporating eccentric shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150