JP2012112057A - Nonwoven fabric and method for producing the same - Google Patents

Nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP2012112057A
JP2012112057A JP2010260180A JP2010260180A JP2012112057A JP 2012112057 A JP2012112057 A JP 2012112057A JP 2010260180 A JP2010260180 A JP 2010260180A JP 2010260180 A JP2010260180 A JP 2010260180A JP 2012112057 A JP2012112057 A JP 2012112057A
Authority
JP
Japan
Prior art keywords
temperature
fiber
nonwoven fabric
crimped
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260180A
Other languages
Japanese (ja)
Other versions
JP5560170B2 (en
Inventor
Yuji Seko
有司 瀬古
Taketoshi Yamashita
武俊 山下
Masaki Takei
正樹 武井
Kazuhiro Hiramitsu
一博 平光
Yasuhiko Kojima
靖彦 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HABIKKUSU KK
Original Assignee
HABIKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HABIKKUSU KK filed Critical HABIKKUSU KK
Priority to JP2010260180A priority Critical patent/JP5560170B2/en
Publication of JP2012112057A publication Critical patent/JP2012112057A/en
Application granted granted Critical
Publication of JP5560170B2 publication Critical patent/JP5560170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Laminated Bodies (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric that can easily ensure characteristics required for a nonwoven fabric used in a final product and has an improved processability.SOLUTION: Provided is a method for producing a nonwoven fabric in which a compression-heating process is performed to a fiber web containing a thermal fusion fiber that exhibits a thermal fusing property by heating, a hydrophilic fiber that does not have a thermal fusing property, and a latent crimpable fiber that is spirally crimped by heating. In the compression-heating process, a nonwoven fabric is produced by heating the fiber web at a temperature equal to or higher than a thermal fusion start temperature at which the thermal fusion fiber exhibits a thermal fusing property and lower than a crimp development temperature of the crimpable fiber, while compressing the fiber web in the thickness direction. The thickness of the nonwoven fabric thus produced is restored by heating at a temperature equal to or higher than the crimp development temperature of the crimpable fiber.

Description

本発明は、構成繊維中に熱融着繊維と親水性繊維とを含有する不織布、及びその製造方法に関する。   The present invention relates to a non-woven fabric containing heat fusion fibers and hydrophilic fibers in constituent fibers, and a method for producing the same.

構成繊維中に熱融着繊維及び親水性繊維を含有する不織布として特許文献1の不織布が提案されている。たとえば、特許文献1の不織布は、加熱することで熱融着性を発揮する熱融着繊維と親水度の高い親水性繊維とを構成繊維中に含有している。この不織布は、熱融着繊維の熱融着性によって各構成繊維の繊維間が接着されており、比較的に高い強度を実現している。そして、特許文献1の不織布は、親水性繊維によって不織布全体としての親水性が向上しており、吸水性や吸湿性の向上が図られている。   The nonwoven fabric of patent document 1 is proposed as a nonwoven fabric which contains a heat-fusion fiber and a hydrophilic fiber in a constituent fiber. For example, the nonwoven fabric of patent document 1 contains the heat-fusible fiber which exhibits heat-fusibility by heating, and the hydrophilic fiber with high hydrophilicity in a constituent fiber. In this nonwoven fabric, the fibers of the constituent fibers are bonded to each other due to the heat-fusibility of the heat-sealing fibers, and a relatively high strength is realized. And as for the nonwoven fabric of patent document 1, the hydrophilic property as the whole nonwoven fabric is improving with the hydrophilic fiber, and the improvement of a water absorption or a hygroscopic property is aimed at.

また、特許文献1の不織布は、熱融着繊維及び親水性繊維に加えて、螺旋状捲縮繊維を含有している。この螺旋状捲縮繊維は、螺旋状の繊維形状を成しており、直線状の繊維に比べて、不織布中で占める体積(嵩)が大きく、また、コイルばねのように伸縮可能である。したがって、螺旋状捲縮繊維を含有する特許文献1の不織布は、螺旋状捲縮繊維を含有しないものに比べて、厚みが大きくて柔らかな触感であるとともに、伸縮性の大きなものとなっている。このような特許文献1の不織布が有する特性は、たとえば、オムツや生理用品といった人体に触れる製品に使用された場合には好ましいものである。   Moreover, the nonwoven fabric of patent document 1 contains the helical crimp fiber in addition to the heat-fusion fiber and the hydrophilic fiber. This helical crimped fiber has a helical fiber shape, and occupies a larger volume (bulk) in the nonwoven fabric than a linear fiber, and can expand and contract like a coil spring. Therefore, the non-woven fabric of Patent Document 1 containing a helical crimped fiber is thicker and softer than the one not containing a helical crimped fiber, and has a large stretchability. . Such characteristics of the non-woven fabric of Patent Document 1 are preferable when used for products that touch the human body such as diapers and sanitary products.

特開2002−285464号公報。JP 2002-285464 A.

ところで、不織布は、たとえば、オムツや生理用品といった最終製品に使用されるような小さな面積の状態ではなく、面積の大きい長尺帯状の不織布として製造され、製造装置とは別の加工機によって、使用目的に応じた形状に切断されることが一般的である。また、長尺帯状に不織布を製造した場合において、その長尺帯状の不織布をロール状に巻き取って不織布ロールとし、その不織布ロールの状態で運搬したり、不織布ロールから所定距離毎に引き出しながら、不織布を加工機へと供給したりすることが行われている。   By the way, non-woven fabrics are manufactured as long strip-shaped non-woven fabrics with a large area, not as small areas as used in final products such as diapers and sanitary products. In general, it is cut into a shape according to the purpose. In addition, when a non-woven fabric is produced in a long band shape, the long non-woven fabric is wound into a roll shape to form a non-woven roll, and conveyed in the state of the non-woven roll, while being pulled out from the non-woven roll every predetermined distance, Supplying a nonwoven fabric to a processing machine is performed.

ここで、長尺帯状の不織布をロール状に巻き取ったり、不織布ロールからの不織布を引き出して加工機に供給したりする際には、不織布に対して相応の引張力が作用することになる。しかしながら、特許文献1の不織布は、その高い伸縮性のため、ロール形状の巻き取りや引き出しに際して相応に大きな程度でもって伸縮してしまう。すると、この不織布の伸縮に起因して巻き取り長さや引き出し長さに誤差が生じやすくなる。このような巻き取り長さや引き出し長さの誤差は、切断加工等の不織布の加工精度の低下に繋がる。また、特許文献1の不織布は、厚みが大きく嵩高であるため、たとえば、同じ径のロール状に巻き取ったとしても、厚みの小さい不織布よりも巻き取り長さが短くなってしまう。一つの不織布ロールあたりの不織布の長さが短いと、それだけ、加工機への不織布ロールの供給頻度が増加することになり、加工効率の低下は避けられない。   Here, when a long strip of nonwoven fabric is wound into a roll shape, or when the nonwoven fabric is pulled out from the nonwoven fabric roll and supplied to the processing machine, a corresponding tensile force acts on the nonwoven fabric. However, the nonwoven fabric of Patent Document 1 is stretched by a correspondingly large degree when it is wound and pulled out due to its high stretchability. Then, an error tends to occur in the winding length and the drawing length due to the expansion and contraction of the nonwoven fabric. Such errors in the winding length and the drawing length lead to a decrease in processing accuracy of the nonwoven fabric such as cutting. Moreover, since the nonwoven fabric of patent document 1 is thick and bulky, for example, even if it winds up in the roll shape of the same diameter, winding length will become shorter than a nonwoven fabric with small thickness. If the length of the nonwoven fabric per one nonwoven fabric roll is short, the supply frequency of the nonwoven fabric roll to a processing machine will increase so much, and the reduction of processing efficiency is inevitable.

このように、特許文献1の不織布が有する厚み(嵩)の大きさや伸縮性といった特性は、最終製品に使用される不織布の特性としては好ましいものであるものの、加工精度や加工効率といった不織布の加工性の観点からは、むしろ好ましくないものである。そのため、最終製品に使用される不織布に求められる厚みや伸縮性等の特性を確保しつつ、不織布の加工性を向上させることは難しい。   As described above, the properties of the nonwoven fabric of Patent Document 1 such as the thickness (bulk) size and stretchability are preferable as the properties of the nonwoven fabric used in the final product, but the nonwoven fabric processing such as processing accuracy and processing efficiency. From the viewpoint of sex, it is rather undesirable. Therefore, it is difficult to improve the processability of the nonwoven fabric while securing the properties such as thickness and stretchability required for the nonwoven fabric used in the final product.

本発明は、このような従来技術の事情を鑑みてなされたものであり、最終製品に使用される不織布に求められる特性を確保しやすく、且つ、不織布の加工性を向上させることを目的とする。   The present invention has been made in view of such circumstances of the prior art, and it is easy to ensure the characteristics required for the nonwoven fabric used in the final product, and to improve the workability of the nonwoven fabric. .

上記の目的を達成するために請求項1に記載の発明は、加熱により熱融着性を発揮する熱融着繊維と、熱融着性を有さない親水性繊維とを構成繊維中に含有する繊維ウェブからなる不織布の製造方法であって、前記繊維ウェブを、その厚み方向において圧縮しながら、前記熱融着繊維が熱融着性を発揮する熱融着開始温度以上で加熱する圧縮加熱工程を有することを特徴とする。   In order to achieve the above object, the invention according to claim 1 includes, in the constituent fibers, a heat-fusible fiber that exhibits heat-fusibility by heating and a hydrophilic fiber that does not have heat-fusibility. A method for producing a nonwoven fabric comprising a fibrous web that compresses and heats the fibrous web at a temperature equal to or higher than a thermal fusion starting temperature at which the thermal fusion fiber exhibits thermal fusion properties while compressing the fibrous web in its thickness direction. It has the process.

この構成によれば、熱融着繊維の熱融着性により各構成繊維を拘束して、厚み及び伸縮性の小さい不織布を製造することができる。また、この製造方法で製造された不織布は、加熱して熱融着繊維の熱融着性による拘束を解くことで厚みを復元させることもできる。したがって、厚みを復元させるための復元加熱工程を施す前については厚み及び伸縮性が小さいため、復元加熱工程を施す前に、不織布の巻き取りや引き出し、不織布の切断を行えば、厚みや伸縮性が大きいことによる加工性の低下を抑制することができる。その一方で、この製造方法で製造された不織布は、復元加熱工程を施すことで厚みが大きくなるため、最終製品として求められる厚みや伸縮性等の特性を確保しやすい。   According to this configuration, it is possible to manufacture a nonwoven fabric having a small thickness and stretchability by restraining each constituent fiber by the heat-fusibility of the heat-sealing fiber. Moreover, the nonwoven fabric manufactured by this manufacturing method can also restore thickness by heating and releasing the restriction | limiting by the heat-fusion property of a heat-fusion fiber. Therefore, since the thickness and stretchability are small before the restoration heating step for restoring the thickness, if the nonwoven fabric is wound and pulled out and the nonwoven fabric is cut before the restoration heating step is performed, the thickness and stretchability are reduced. It is possible to suppress a decrease in workability due to a large value. On the other hand, the nonwoven fabric manufactured by this manufacturing method becomes thick by performing the restoration heating step, and therefore, it is easy to ensure properties such as thickness and stretchability required for the final product.

請求項2に記載の発明は、請求項1に記載の不織布の製造方法において、前記繊維ウェブは、加熱されることで螺旋状に捲縮される潜在型の捲縮繊維を、その捲縮性が潜在している捲縮潜在状態で含有し、前記捲縮繊維の捲縮発現温度は、前記熱融着繊維が溶融して液状化する溶融温度よりも高く設定されており、前記圧縮加熱工程では、前記熱融着開始温度以上、前記捲縮発現温度未満の温度で加熱し、前記圧縮加熱工程よりも前において、前記捲縮繊維に前記捲縮発現温度以上の加熱を行わないことを特徴とする。   The invention according to claim 2 is the method for producing a nonwoven fabric according to claim 1, wherein the fibrous web is a crimped latent type crimped fiber that is crimped in a spiral shape when heated. The crimp expression temperature of the crimped fiber is set higher than the melting temperature at which the heat-fusible fiber melts and liquefies, and the compression heating step Then, heating is performed at a temperature not lower than the crimping temperature and not lower than the crimping temperature, and the crimped fiber is not heated above the crimping temperature before the compression heating step. And

この構成によれば、製造される不織布に含有される捲縮繊維の少なくとも一部を、捲縮潜在状態とすることができる。したがって、製造された不織布を捲縮発現温度以上の温度で加熱して捲縮潜在状態の捲縮繊維の捲縮性を発揮させることで、不織布の厚みを復元させることができる。   According to this configuration, at least a part of the crimped fibers contained in the manufactured nonwoven fabric can be in a crimped latent state. Therefore, the thickness of the nonwoven fabric can be restored by heating the produced nonwoven fabric at a temperature equal to or higher than the crimping expression temperature to exhibit the crimpability of the crimped latent crimped fiber.

請求項3に記載の発明は、請求項2に記載の不織布の製造方法において、前記圧縮加熱工程よりも前に、前記繊維ウェブを前記熱融着開始温度以上、前記捲縮発現温度未満の温度で加熱する仮止め加熱工程を有し、前記圧縮加熱工程では、前記仮止め加熱工程における温度より低い温度で加熱することを特徴とする。   Invention of Claim 3 is the manufacturing method of the nonwoven fabric of Claim 2, Prior to the said compression heating process, the said fiber web is temperature more than the said heat fusion start temperature, and less than the said crimp expression temperature. A temporary fixing heating step of heating at a temperature, and the compression heating step is characterized by heating at a temperature lower than the temperature in the temporary fixing heating step.

この構成によれば、圧縮加熱工程において仮止め加熱工程における温度よりも低い温度で加熱するため、仮止め加熱工程及び圧縮加熱工程という少なくとも2回の加熱工程を施したことで、繊維ウェブに含有される捲縮繊維が過度に加熱されてその捲縮性が発現してしまうことが抑制される。とくに、圧縮加熱工程では、繊維ウェブを圧縮しながら加熱することから、繊維ウェブへの熱伝導性が良い。したがって、圧縮加熱工程における温度を仮止め加熱工程よりも低い温度に設定することで、より効果的に捲縮繊維の捲縮性の発現を抑制することができる。   According to this structure, in order to heat at a temperature lower than the temperature in the temporary fixing heating step in the compression heating step, it is contained in the fiber web by performing at least two heating steps of the temporary fixing heating step and the compression heating step. It is suppressed that the crimped fiber to be heated is excessively heated and its crimpability is expressed. In particular, in the compression heating step, since the fiber web is heated while being compressed, the thermal conductivity to the fiber web is good. Therefore, by setting the temperature in the compression heating process to a temperature lower than that of the temporary fixing heating process, the expression of the crimpability of the crimped fiber can be more effectively suppressed.

請求項4に記載の発明は、請求項2又は請求項3に記載の不織布の製造方法において、前記圧縮加熱工程では、前記熱融着開始温度以上、前記熱融着開始温度と前記溶融温度との中間温度以下の温度で加熱することを特徴とする。   Invention of Claim 4 is the manufacturing method of the nonwoven fabric of Claim 2 or Claim 3, In the said compression heating process, more than the said heat fusion start temperature, The said heat fusion start temperature and the said melting temperature It is characterized by heating at a temperature below the intermediate temperature.

この構成によれば、繊維ウェブの厚みを相応に小さくすることが可能でありながらも、製造された不織布の各構成繊維が過度に接着されて、復元の程度が小さくなったり、不織布が固くなって風合いが悪くなったりすることを抑制することができる。   According to this configuration, although it is possible to reduce the thickness of the fiber web correspondingly, each component fiber of the manufactured nonwoven fabric is excessively bonded, and the degree of restoration is reduced or the nonwoven fabric is hardened. It is possible to prevent the texture from getting worse.

上記の目的を達成するために請求項5に記載の発明は、加熱により熱融着性を発揮する熱融着繊維と、熱融着性を有さない親水性繊維とを構成繊維中に含有する不織布であって、前記熱融着繊維が溶融して液状化する溶融温度以上の温度で加熱することにより、加熱前に比べて厚みが200%以上になるように前記構成繊維が圧縮されていることを特徴とする。   In order to achieve the above object, the invention according to claim 5 includes, in the constituent fibers, a heat-fusible fiber that exhibits heat-fusibility by heating and a hydrophilic fiber that does not have heat-fusibility. A non-woven fabric that is heated to a temperature equal to or higher than a melting temperature at which the heat-fusible fiber is melted and liquefied, so that the constituent fibers are compressed to have a thickness of 200% or more as compared to before heating. It is characterized by being.

この構成によれば、溶融温度以上の温度で加熱されて厚みが復元された状態に対して、厚みを50%以下とすることができ、それに伴って伸縮性も低下させることができる。したがって、厚みを復元させるための復元加熱工程を施す前であれば、厚みや伸縮性が大きいことによる加工性の低下を抑制することができる。その一方で、上記構成の不織布を溶融温度以上の温度で加熱すれば、加熱前に比べて厚みが200%以上になるため、最終製品としての不織布として求められる厚みや伸縮性等の特性を確保しやすい。   According to this configuration, the thickness can be reduced to 50% or less with respect to the state where the thickness is restored by heating at a temperature equal to or higher than the melting temperature, and accordingly, the stretchability can be reduced. Therefore, if it is before performing the decompression | restoration heating process for decompressing | restoring thickness, the fall of workability by thickness and stretchability can be suppressed. On the other hand, if the nonwoven fabric with the above configuration is heated at a temperature equal to or higher than the melting temperature, the thickness will be 200% or more compared to before heating, so the properties such as thickness and stretchability required for the nonwoven fabric as the final product are secured. It's easy to do.

請求項6に記載の発明は、請求項5に記載の不織布において、加熱されることで螺旋状に捲縮される潜在型の捲縮繊維を前記構成繊維中に含み、前記捲縮繊維の捲縮発現温度は、前記溶融温度よりも高く、前記捲縮繊維は、捲縮性の少なくとも一部が潜在した捲縮潜在状態で含有されており、前記捲縮発現温度以上の温度で加熱することにより、加熱前に比べて厚みが250%以上になるように前記構成繊維が圧縮されていることを特徴とする。   The invention according to claim 6 includes, in the non-woven fabric according to claim 5, latent crimped fibers that are crimped spirally by being heated, and the crimped fibers of the crimped fibers. The crimping temperature is higher than the melting temperature, and the crimped fiber is contained in a crimped latent state where at least a part of the crimping property is latent, and is heated at a temperature equal to or higher than the crimping temperature. Thus, the constituent fibers are compressed so that the thickness is 250% or more as compared with that before heating.

この構成によれば、捲縮潜在状態の捲縮繊維が含まれているため、加熱前については、捲縮繊維を含まない不織布に比べてそれほど厚みは大きくならない。一方、捲縮発現温度以上の温度で加熱することで、捲縮潜在状態にある捲縮繊維が捲縮性を発現して捲縮発現状態となるため、捲縮繊維を含まない不織布よりも大きな厚みの復元が期待できる。   According to this configuration, since the crimped latent state of the crimped fiber is included, the thickness is not so large before heating as compared to the nonwoven fabric not including the crimped fiber. On the other hand, by heating at a temperature equal to or higher than the crimping expression temperature, the crimped fiber in the crimped latent state develops crimpability and becomes a crimped expression state, and thus is larger than the nonwoven fabric not containing the crimped fiber. The restoration of thickness can be expected.

請求項7に記載の発明は、請求項6に記載の不織布において、厚み方向において前記親水性繊維の含有率が高い第1層と、前記第1層よりも親水性繊維の含有率の少ない第2層とが形成されており、前記第1層における前記捲縮繊維の含有率よりも前記第2層における前記捲縮繊維の含有率の方が高いことを特徴とする。   The invention according to claim 7 is the non-woven fabric according to claim 6, wherein the first layer has a high content of the hydrophilic fiber in the thickness direction, and the content of the hydrophilic fiber is less than the first layer. Two layers are formed, and the content ratio of the crimped fibers in the second layer is higher than the content ratio of the crimped fibers in the first layer.

上記の構成によれば、親水性繊維の含有率が低い第2層において捲縮繊維の含有率が高いため、少なくとも第2層においては、厚みを復元させる際に、捲縮繊維の捲縮性の発現が親水性繊維によって阻害されることが抑制できる。   According to said structure, since the content rate of a crimped fiber is high in the 2nd layer with a low content rate of a hydrophilic fiber, when restoring a thickness at least in a 2nd layer, the crimpability of a crimped fiber Can be suppressed from being inhibited by hydrophilic fibers.

以上、本発明によれば、最終製品に使用される不織布に求められる特性を確保しやすく、且つ、不織布の加工性を向上させることができる。   As mentioned above, according to this invention, the characteristic calculated | required by the nonwoven fabric used for a final product is easy to be ensured, and the workability of a nonwoven fabric can be improved.

以下、本発明の不織布及び不織布の製造方法を具体化した実施形態を説明する。
先ず、不織布について説明する。構成繊維がほぼ均一に分散された単一層から成る本実施形態の不織布には、加熱により熱融着性を発揮する熱融着繊維が構成繊維中に含有されている。熱融着繊維としては、たとえば、ポリエチレンテレフタレート及びポリエチレンテレブチレートなどのPET系合成繊維、ポリエチレン及びポリプロピレンなどのポリオレフィン系合成繊維が採用できる。また、熱融着繊維は、単一材質繊維に限らず、ポリプロピレン/ポリエチレンからなる芯鞘型複合繊維、PET/PETからなる芯鞘型複合繊維などのような複合繊維を採用することもできる。これらの繊維のうち、本実施形態の不織布においては、比較的低い温度で熱融着性を発揮しつつ、高い強度を維持できる芯鞘型複合繊維が好ましい。また、熱融着繊維は、所定の熱融着開始温度T1以上に加熱することでその表面が軟化して熱融着性を発揮するようになっている。熱融着開始温度T1は、熱融着繊維が溶融して液状化する溶融温度T2(融点)よりも十数℃〜数十℃低くなっており、たとえば、ユニチカ株式会社によって販売されている熱融着繊維「R080(商品名)」の場合、融点T2が110℃であるのに対して、熱融着開始温度T1は70℃である。
Hereinafter, the embodiment which materialized the manufacturing method of the nonwoven fabric and nonwoven fabric of this invention is described.
First, the nonwoven fabric will be described. In the nonwoven fabric of this embodiment, which is composed of a single layer in which the constituent fibers are dispersed almost uniformly, the constituent fibers contain heat-sealing fibers that exhibit heat-fusibility when heated. Examples of the heat-sealable fiber that can be used include PET-based synthetic fibers such as polyethylene terephthalate and polyethylene terebutylate, and polyolefin-based synthetic fibers such as polyethylene and polypropylene. Further, the heat-sealable fiber is not limited to a single material fiber, and a composite fiber such as a core-sheath type composite fiber made of polypropylene / polyethylene or a core-sheath type composite fiber made of PET / PET can also be adopted. Among these fibers, the non-woven fabric of this embodiment is preferably a core-sheath type composite fiber that can maintain high strength while exhibiting heat-fusibility at a relatively low temperature. Moreover, the surface of the heat-fusible fiber is heated to a temperature equal to or higher than a predetermined heat-fusing start temperature T1, so that the surface is softened to exhibit heat-fusibility. The heat fusion start temperature T1 is lower than the melting temperature T2 (melting point) at which the heat fusion fiber melts and liquefies, and is, for example, heat sold by Unitika Corporation. In the case of the fusion fiber “R080 (trade name)”, the melting point T2 is 110 ° C., whereas the thermal fusion start temperature T1 is 70 ° C.

熱融着繊維の含有率は、不織布を構成する全構成繊維の全重量に対して10〜60重量%とされている。熱融着繊維の含有率が10重量%未満であると、熱融着繊維の熱融着性による繊維間の接着力が過度に弱くなるおそれがある。一方、熱融着繊維の含有率が60重量%を超えると、繊維間の接着力が過度に強くなるおそれがある。   The content of the heat-sealing fiber is set to 10 to 60% by weight with respect to the total weight of all the constituent fibers constituting the nonwoven fabric. If the content of the heat-fusible fiber is less than 10% by weight, the adhesive force between the fibers due to the heat-fusibility of the heat-fusible fiber may be excessively weakened. On the other hand, if the content of the heat-sealing fiber exceeds 60% by weight, the adhesive force between the fibers may become excessively strong.

不織布には、熱融着性を有さない親水性繊維が構成繊維中に含有されている。ここで、親水性繊維とは、その分子構造上に、極性の高い官能基(たとえば、ヒドロキシル基)を豊富に含有しており、上述した熱融着繊維よりも水との親和性が高い繊維である。この種の親水性繊維としては、たとえば、パルプ繊維、木綿繊維、ケナフ繊維及び麻繊維などの植物由来繊維、レーヨン繊維などの植物由来繊維の再生繊維、絹繊維などの動物由来繊維が採用できる。これらの繊維のうち、本実施形態の不織布においては、比較的に価格が安く、高い親水性を有していることからパルプ繊維が好ましい。   In the nonwoven fabric, hydrophilic fibers not having heat-fusibility are contained in the constituent fibers. Here, the hydrophilic fiber contains abundant functional groups (for example, hydroxyl groups) having a high polarity in its molecular structure, and has a higher affinity with water than the above-mentioned heat-bonded fiber. It is. Examples of this type of hydrophilic fiber include plant-derived fibers such as pulp fiber, cotton fiber, kenaf fiber and hemp fiber, regenerated fibers of plant-derived fibers such as rayon fibers, and animal-derived fibers such as silk fibers. Among these fibers, the nonwoven fabric of this embodiment is preferably pulp fiber because it is relatively inexpensive and has high hydrophilicity.

親水性繊維の含有率は、不織布を構成する全構成繊維の全重量に対して40〜90重量%とされている。不織布に親水性を付与するという観点からは、親水性繊維の含有率は高い方がよいが、含有率が90重量%を超えると相対的に熱融着繊維の含有率が低くなってしまうため好ましくない。   The content of the hydrophilic fiber is 40 to 90% by weight with respect to the total weight of all the constituent fibers constituting the nonwoven fabric. From the viewpoint of imparting hydrophilicity to the nonwoven fabric, it is better that the content of the hydrophilic fiber is high, but if the content exceeds 90% by weight, the content of the heat-sealing fiber is relatively low. It is not preferable.

また、本実施形態の不織布は、加熱されることで螺旋状に捲縮される潜在型の捲縮繊維が構成繊維中に含有されている。この捲縮繊維は、加熱される前の捲縮潜在状態では、直線状や緩やかな螺旋状の形状を成している。そして、捲縮繊維は、捲縮発現温度T3以上の温度で加熱されることで捲縮潜在状態より急な螺旋形状を成すようになる。なお、本実施形態では、捲縮性の全てを発揮した状態を捲縮発現状態とし、捲縮性の少なくとも一部が潜在している状態を捲縮潜在状態としている。   Moreover, the nonwoven fabric of this embodiment contains the latent type crimp fiber which is crimped helically by heating in the constituent fiber. This crimped fiber has a linear or gentle spiral shape in the crimped latent state before being heated. The crimped fibers are heated at a temperature equal to or higher than the crimp expression temperature T3 to form a spiral shape that is steeper than the crimp latent state. In the present embodiment, a state in which all the crimpability is exhibited is a crimp expression state, and a state in which at least a part of the crimp property is latent is a crimp latent state.

捲縮繊維は、たとえば、熱収縮率の異なる複数の材質による複合紡糸繊維として形成されており、偏心芯鞘構造やサイドバイサイド構造等を成すように形成されている。そして、捲縮繊維としては、たとえば、ポリエチレンテレフタラートとポリエチレンテレブチレートとの組み合わせ、ポリエチレンテレフタラートと5−金属スルホイソフタル酸変性ポリエチレンテレフタラートとの組み合わせ、6−ナイロンと6,6−ナイロンとの組み合わせ、ポリエステルとポリアミドとの組み合わせによって形成されたものが採用できる。本実施形態においては、捲縮繊維として、その捲縮発現温度T3が上述した熱融着開始温度T1よりも高く、その捲縮弾性率が80%以上であるものを採用している。たとえば、熱融着開始温度T1が70℃である上述したユニチカ社製の熱融着繊維「R080」に対しては、捲縮発現温度T3が150°であるユニチカ社製の捲縮繊維「C81(商品名)」が使用できる。なお、捲縮発現温度T3とは、その温度で加熱を続ければ捲縮繊維の捲縮性の全てが発揮できる温度であり、捲縮発現温度T3以下であっても、加熱時間等によっては、捲縮繊維の一部の捲縮性が発現する。また、捲縮弾性率(%)とは、「JIS L 1015」に準じて測定及び算出される値である。   The crimped fiber is formed, for example, as a composite spun fiber made of a plurality of materials having different heat shrinkage rates, and is formed to have an eccentric core-sheath structure, a side-by-side structure, or the like. Examples of crimped fibers include a combination of polyethylene terephthalate and polyethylene terephthalate, a combination of polyethylene terephthalate and 5-metal sulfoisophthalic acid-modified polyethylene terephthalate, 6-nylon and 6,6-nylon, Or a combination of polyester and polyamide can be employed. In the present embodiment, a crimped fiber having a crimped expression temperature T3 higher than the above-described heat fusion start temperature T1 and a crimped elastic modulus of 80% or more is employed. For example, for the above-mentioned heat-bonding fiber “R080” manufactured by Unitika, whose heat sealing start temperature T1 is 70 ° C., a crimped fiber “C81” manufactured by Unitika, whose crimping temperature T3 is 150 °. (Product name) "can be used. The crimp expression temperature T3 is a temperature at which all of the crimpability of the crimped fiber can be exhibited if heating is continued at that temperature. Depending on the heating time or the like, A part of the crimped fiber is crimped. The crimped elastic modulus (%) is a value measured and calculated according to “JIS L 1015”.

捲縮繊維の含有率は、不織布を構成する全構成繊維の全重量に対して50重量%以下とされている。後述する不織布の厚みの復元率という観点からは、捲縮繊維の含有率は高い方がよいが、含有率が50重量%を超えると、相対的に熱融着繊維の含有率及び親水性繊維の含有率が低くなってしまうため好ましくない。なお、本実施形態では、上述した熱融着繊維、親水性繊維及び捲縮繊維で全構成繊維を占めている。   The content of the crimped fiber is 50% by weight or less based on the total weight of all the constituent fibers constituting the nonwoven fabric. From the viewpoint of the restoration rate of the thickness of the nonwoven fabric described later, the higher the content of the crimped fibers, the better. However, when the content exceeds 50% by weight, the content of the heat-sealing fibers and the hydrophilic fibers are relatively high. Since the content rate of becomes low, it is not preferable. In this embodiment, all the constituent fibers are occupied by the above-mentioned heat-sealing fibers, hydrophilic fibers, and crimped fibers.

本実施形態の不織布において、とくに、親水性繊維は、加熱圧縮されて曲げられたり折り畳まれたりした状態で存在している。そのため、親水性繊維には曲げられたり折り畳まれたりした状態から元に戻ろうとする反発力が作用している。一方、熱融着繊維の熱融着性による繊維間の接着力によって、親水性繊維が反発力で元に戻ろうとすることを拘束している。また、本実施形態おいて捲縮繊維は、捲縮発現温度以上で加熱されておらず、その捲縮性の少なくとも一部が潜在した捲縮潜在状態で不織布中に含有されている。   In the nonwoven fabric of this embodiment, particularly, the hydrophilic fibers are present in a state of being heated and compressed and bent or folded. For this reason, a repulsive force is exerted on the hydrophilic fiber to return it from the bent or folded state. On the other hand, it is constrained that the hydrophilic fiber tries to return to its original state by a repulsive force due to the adhesive force between the fibers due to the heat fusion property of the heat fusion fiber. Moreover, in this embodiment, the crimp fiber is not heated above the crimp expression temperature, and is contained in the nonwoven fabric in a crimp latent state in which at least a part of the crimp property is latent.

次に、本実施形態の不織布の製造方法について説明する。
本実施形態の不織布の製造方法では、上述した熱融着繊維、親水性繊維及び捲縮繊維を用いて作成された繊維ウェブから不織布を製造する。とくに、捲縮繊維は、その捲縮性の少なくとも一部が潜在した捲縮潜在状態として繊維ウェブに含有されている。なお、繊維ウェブの作成方法としては、湿式でも乾式でも構わず、たとえば、カード方式、エアレイド方式、水流交絡方式、ニードルパンチ方式など、公知の繊維ウェブ作成方法のいずれでも適用できる。
Next, the manufacturing method of the nonwoven fabric of this embodiment is demonstrated.
In the manufacturing method of the nonwoven fabric of this embodiment, a nonwoven fabric is manufactured from the fiber web produced using the heat-fusion fiber, hydrophilic fiber, and crimped fiber mentioned above. In particular, the crimped fiber is contained in the fiber web as a crimped latent state in which at least a part of the crimpability is latent. In addition, as a creation method of a fiber web, it may be wet or dry, and any of known fiber web creation methods such as a card method, an airlaid method, a hydroentanglement method, and a needle punch method can be applied.

上記の構成繊維を含む繊維ウェブに対し、先ず、熱風乾燥機や赤外線ヒータなどにより、仮止め加熱工程を施す。この仮止め加熱工程においては、繊維ウェブを、熱融着繊維の溶融温度T2以上、捲縮繊維の捲縮発現温度T3以下の温度で加熱する。なお、本実施形態では、仮止め加熱工程においては、繊維ウェブを圧縮していない。   First, a temporary heating process is performed on the fiber web containing the above-described constituent fibers by a hot air dryer or an infrared heater. In this temporary fixing heating step, the fiber web is heated at a temperature not lower than the melting temperature T2 of the heat-bonding fiber and not higher than the crimping temperature T3 of the crimped fiber. In the present embodiment, the fiber web is not compressed in the temporary fixing heating step.

次に、仮止め加熱工程後の繊維ウェブに対して、加熱されたローラで挟み込むことにより圧縮加熱工程を施し、不織布を製造する。圧縮加熱工程では、繊維ウェブの厚み方向おいて、0.5〜3.0g/cmの圧力を繊維ウェブに作用させつつ、繊維ウェブを熱融着繊維の熱融着開始温度T1以上の温度で加熱する。とくに、本実施形態では、熱融着開始温度T1以上の温度であって、熱融着開始温度T1と熱融着繊維の溶融温度T2との中間温度((T1+T2)/2)以下の温度で繊維ウェブを加熱する。したがって、本実施形態の圧縮加熱工程では、仮止め加熱工程における加熱温度(溶融温度T2以上)よりも低い温度で加熱していることになる。 Next, the nonwoven fabric is manufactured by subjecting the fiber web after the temporary fixing heating step to a compression heating step by sandwiching it with a heated roller. In the compression heating process, in the thickness direction of the fiber web, a temperature of 0.5 to 3.0 g / cm 2 is applied to the fiber web, and the temperature of the fiber web is equal to or higher than the heat fusion start temperature T1 of the heat fusion fiber. Heat with. In particular, in this embodiment, the temperature is equal to or higher than the thermal fusion start temperature T1 and is equal to or lower than the intermediate temperature ((T1 + T2) / 2) between the thermal fusion start temperature T1 and the fusion temperature T2 of the thermal fusion fiber. Heat the fiber web. Therefore, in the compression heating process of this embodiment, it heats at the temperature lower than the heating temperature (melting temperature T2 or more) in the temporary fixing heating process.

次に、本実施形態の不織布及び不織布の製造方法の作用について説明する。
仮止め加熱工程における加熱温度(熱融着繊維の溶融温度T2以上、捲縮繊維の捲縮発現温度T3以下)は、熱融着繊維の熱融着開始温度T1よりも高いため、仮止め加熱工程において熱融着繊維が熱融着性を発揮する。したがって、仮止め加熱工程後の繊維ウェブは、熱融着繊維の熱融着性によって各構成繊維が接着された状態にあり、各構成繊維がほつれたり、破断されたりすることが抑制される。なお、仮止め加熱工程においては、繊維ウェブを圧縮していないため、仮止め加熱工程の前後で繊維ウェブの厚みはそれほど小さくはならない。
Next, the effect | action of the manufacturing method of the nonwoven fabric and nonwoven fabric of this embodiment is demonstrated.
Since the heating temperature in the temporary fixing heating process (the melting temperature T2 of the heat-sealing fiber is equal to or higher than the crimping temperature T3 of the crimped fiber) is higher than the thermal fusion start temperature T1 of the heat-sealing fiber. In the process, the heat-fusible fiber exhibits heat-fusibility. Therefore, the fiber web after the temporary fixing heating step is in a state in which the constituent fibers are bonded by the heat-fusibility of the heat-sealing fibers, and the constituent fibers are prevented from being frayed or broken. In addition, in the temporary fixing heating process, since the fiber web is not compressed, the thickness of the fibrous web does not become so small before and after the temporary fixing heating process.

圧縮加熱工程において繊維ウェブは厚み方向に圧縮されて、各構成繊維が曲げられたり折り畳まれたりした状態となり、厚みの小さい不織布が製造される。熱融着繊維については、圧縮加熱工程で軟化し、曲げられたり折り畳まれたりした状態で硬化するため、製造された不織布において熱融着繊維には、元に戻ろうとする反発力はそれほど作用していない。一方、親水性繊維は、曲げられたり折り畳まれたりした状態のまま、熱融着繊維の熱融着性により接着され、熱融着繊維によって曲げられたり折り畳まれたりされた状態で拘束される。したがって、製造された不織布において親水性繊維には、曲げられたり折り畳まれたりした状態からより直線状の状態に戻ろうとする反発力が作用しており、この反発力を熱融着繊維の熱融着性による繊維間の接着で押え付けている状態である。   In the compression heating process, the fiber web is compressed in the thickness direction so that each constituent fiber is bent or folded, and a nonwoven fabric having a small thickness is manufactured. Because heat-bonded fibers are softened in the compression heating process and harden in a bent or folded state, the rebound force to return them to the heat-bonded fibers in the manufactured nonwoven fabric is not so much. Not. On the other hand, the hydrophilic fiber is bonded by the heat-fusible property of the heat-fusible fiber while being bent or folded, and is restrained in a state of being bent or folded by the heat-fusible fiber. Accordingly, in the manufactured nonwoven fabric, the hydrophilic fiber is subjected to a repulsive force that tries to return to a more linear state from the bent or folded state, and this repulsive force is applied to the heat fusion fiber. It is in a state of being pressed down by adhesion between fibers due to adhesion.

また、捲縮繊維は、少なくとも一部の捲縮性が残存している捲縮潜在状態として繊維ウェブに含有されている。そして、繊維ウェブの捲縮繊維は、製造される過程(仮止め加熱工程及び圧縮加熱工程)において、捲縮発現温度以上の温度で加熱されていない。したがって、製造された不織布において捲縮繊維は、少なくとも一部の捲縮性が潜在した捲縮潜在状態で存在している。   Further, the crimped fiber is contained in the fiber web as a crimped latent state in which at least a part of the crimpability remains. And the crimped fiber of the fiber web is not heated at a temperature equal to or higher than the crimping expression temperature in the manufacturing process (temporary fixing heating step and compression heating step). Therefore, in the manufactured nonwoven fabric, the crimped fiber exists in a crimped latent state in which at least a part of the crimpability is latent.

本実施形態の不織布は、捲縮繊維の捲縮発現温度T3以上の温度で加熱することにより、その厚みが復元する。捲縮発現温度T3は、熱融着繊維の熱融着開始温度T1(及び溶融温度T2)よりも高いため、捲縮発現温度T3以上の温度で加熱することにより、熱融着繊維が再軟化、再溶融する。このとき、親水性繊維の元に戻ろうとする反発力を拘束していた熱融着繊維による繊維間の接着力が弱くなり、親水性繊維は、拘束から開放されて自身の反発力によって曲げられたり折り畳まれたりした状態から、より直線状の状態へと戻る。一方、捲縮潜在状態にある捲縮繊維は、捲縮発現温度T3以上の温度で加熱されることにより、捲縮性を発現して捲縮発現状態となる。これら親水性繊維の反発力と捲縮繊維の捲縮性の発現によって不織布の嵩が大きくなり、不織布は、加熱前に比べて厚みが250%以上になる。   The thickness of the nonwoven fabric of this embodiment is restored by heating at a temperature equal to or higher than the crimp expression temperature T3 of the crimped fibers. Since the crimp development temperature T3 is higher than the thermal fusion start temperature T1 (and the melting temperature T2) of the thermal fusion fiber, the thermal fusion fiber is re-softened by heating at a temperature higher than the crimp development temperature T3. , Remelt. At this time, the adhesive force between the fibers by the heat-sealing fiber that restrains the repulsive force to return to the original hydrophilic fiber becomes weak, and the hydrophilic fiber is released from the restraint and bent by its own repulsive force. It returns to a more linear state from the folded or folded state. On the other hand, a crimped fiber in a crimped latent state is heated at a temperature equal to or higher than the crimping expression temperature T3, thereby exhibiting crimping properties and a crimped expression state. The volume of the nonwoven fabric increases due to the repulsive force of these hydrophilic fibers and the expression of the crimping properties of the crimped fibers, and the nonwoven fabric has a thickness of 250% or more compared to before heating.

以上、本実施形態の不織布及び不織布の製造方法によれば、次のような作用効果を得ることができる。
(1)上記実施形態の不織布の製造方法で製造された不織布は、熱融着繊維の熱融着性により各構成繊維が拘束されて、厚み及び伸縮性が小さくなっている。また、不織布は、加熱して熱融着繊維の熱融着性による拘束を解くことで厚みを復元させることもできる。したがって、厚みを復元させるための復元加熱工程を施す前については厚み及び伸縮性が小さいため、復元加熱工程を施す前に、不織布の巻き取りや引き出し、不織布の切断を行えば、厚みや伸縮性が大きいことによる加工性の低下を抑制することができる。その一方で、不織布は、復元加熱工程を施すことで厚みが大きくなるため、最終製品として求められる厚みや伸縮性等の特性を確保しやすい。
As mentioned above, according to the nonwoven fabric of this embodiment and the manufacturing method of a nonwoven fabric, the following effects can be obtained.
(1) In the nonwoven fabric produced by the nonwoven fabric production method of the above embodiment, each constituent fiber is constrained by the heat-fusibility of the heat-fusible fiber, and the thickness and stretchability are reduced. In addition, the nonwoven fabric can be restored in thickness by heating to release the constraint due to the heat-fusibility of the heat-fusible fiber. Therefore, since the thickness and stretchability are small before the restoration heating step for restoring the thickness, if the nonwoven fabric is wound and pulled out and the nonwoven fabric is cut before the restoration heating step is performed, the thickness and stretchability are reduced. It is possible to suppress a decrease in workability due to a large value. On the other hand, since the thickness of the nonwoven fabric is increased by performing the restoration heating step, it is easy to ensure characteristics such as thickness and stretchability required for the final product.

(2)上記実施形態では、構成繊維中に捲縮潜在状態の捲縮繊維が含有されており、不織布の全製造過程が終了するまでに、捲縮繊維には捲縮発現温度T3以上の温度で加熱が行われていない。したがって、本実施形態の不織布には、捲縮繊維が捲縮潜在状態で含有されている。そのため、上記実施形態の不織布を捲縮発現温度T3以上の温度で加熱して、捲縮繊維を捲縮発現状態とさせることで、不織布の厚みをより大きく復元させることができる。また、捲縮発現状態の捲縮繊維は、その螺旋形状によって高い伸縮性を有するため、加熱された後の不織布については、高い伸縮性が期待できる。   (2) In the above-described embodiment, the crimped fibers in the crimped latent state are contained in the constituent fibers, and the crimped fibers have a temperature equal to or higher than the crimping expression temperature T3 by the end of the entire production process of the nonwoven fabric. There is no heating. Therefore, the nonwoven fabric of this embodiment contains crimped fibers in a crimped latent state. Therefore, the nonwoven fabric of the said embodiment is heated at the temperature of crimp expression temperature T3 or more, and a crimped fiber is made into a crimp expression state, The thickness of a nonwoven fabric can be restored more largely. Moreover, since the crimp fiber in the crimped state has high stretchability due to its helical shape, high stretchability can be expected for the nonwoven fabric after being heated.

(3)本実施形態では、仮止め加熱工程で熱融着繊維の熱融着性により各構成繊維の繊維間が接着される。したがって、繊維ウェブを圧縮加熱工程に供するために搬送する際や圧縮加熱工程中に、構成繊維がほつれて繊維ウェブが破断することを抑制できる。   (3) In this embodiment, the fibers of the constituent fibers are bonded to each other by the heat-fusibility of the heat-sealing fibers in the temporary fixing heating step. Therefore, it is possible to prevent the fiber web from being broken due to the constituent fibers being frayed when the fiber web is conveyed to be subjected to the compression heating process or during the compression heating process.

(4)本実施形態では、圧縮加熱工程における加熱温度として、熱融着開始温度T1以上の温度であって、熱融着開始温度T1と熱融着繊維の溶融温度T2との中間温度((T1+T2)/2)以下の温度を採用している。したがって、熱融着繊維を熱融着繊維の熱融着性を発揮させて繊維ウェブの厚みを相応に小さくすることが可能でありながらも、製造された不織布の各構成繊維が過度に接着されて、復元の程度が小さくなったり風合いが悪くなったりすることを抑制することができる。   (4) In the present embodiment, the heating temperature in the compression heating step is a temperature equal to or higher than the thermal fusion start temperature T1, and is an intermediate temperature between the thermal fusion start temperature T1 and the fusion temperature T2 of the thermal fusion fiber (( T1 + T2) / 2) The following temperature is adopted. Therefore, the constituent fibers of the manufactured nonwoven fabric are excessively bonded to each other while the heat-fusible fibers can exhibit the heat-fusibility of the heat-sealable fibers to reduce the thickness of the fiber web accordingly. Thus, it is possible to prevent the degree of restoration from becoming smaller or the texture from getting worse.

(5)本実施形態では、圧縮加熱工程における加熱温度が仮止め加熱工程における加熱温度よりも低く設定されている。そのため、仮止め加熱工程及び圧縮加熱工程という2回の加熱工程を施したことで、繊維ウェブに含有される捲縮繊維が過度に加熱されてその捲縮性が発現してしまうことが抑制される。とくに、圧縮加熱工程では、繊維ウェブを圧縮しながら加熱することから、繊維ウェブへの熱伝導性が良い。したがって、圧縮加熱工程における温度を仮止め加熱工程よりも低い温度に設定することで、より効果的に捲縮繊維の捲縮性の発現を抑制することができる。   (5) In this embodiment, the heating temperature in the compression heating process is set lower than the heating temperature in the temporary fixing heating process. Therefore, by performing the two heating steps of the temporary fixing heating step and the compression heating step, it is possible to prevent the crimped fibers contained in the fiber web from being excessively heated and exhibiting its crimpability. The In particular, in the compression heating step, since the fiber web is heated while being compressed, the thermal conductivity to the fiber web is good. Therefore, by setting the temperature in the compression heating process to a temperature lower than that of the temporary fixing heating process, the expression of the crimpability of the crimped fiber can be more effectively suppressed.

(6)本実施形態の仮止め加熱工程及び圧縮加熱工程は、従来、不織布の製造方法に用いられている熱風乾燥機や赤外線ヒータ、加熱ローラを用いて行うことができる。したがって、本実施形態の不織布の製造方法を実施するにあたって、従来の装置構成から大幅な変更を強いられることはない。   (6) The temporary fixing heating process and the compression heating process of the present embodiment can be performed using a hot air dryer, an infrared heater, or a heating roller conventionally used in a nonwoven fabric manufacturing method. Therefore, when implementing the manufacturing method of the nonwoven fabric of this embodiment, a big change is not forced from the conventional apparatus structure.

なお、上記実施形態は以下のように変更してもよく、また、以下の変更例を組み合わせて適用してもよい。
・ 熱融着繊維は、1種類の繊維ではなく、複数の繊維の混合物であってもよい。また、熱融着繊維は、上記実施形態で例示した材質に限らず、熱融着性を発揮できる繊維であればどのようなものでも適用可能である。親水性繊維及び捲縮繊維についても同様で、複数の繊維の混合物であってもよいし、上記実施形態で例示した繊維に限らず、上記実施形態で提示した条件を満たす繊維であればどのようなものでも構わない。
In addition, the said embodiment may be changed as follows and may apply it combining the following modifications.
-The heat-fusible fiber may be a mixture of a plurality of fibers instead of a single type of fiber. The heat-sealable fiber is not limited to the material exemplified in the above embodiment, and any fiber that can exhibit heat-sealability can be applied. The same applies to hydrophilic fibers and crimped fibers, which may be a mixture of a plurality of fibers, and is not limited to the fibers exemplified in the above embodiment, but any fiber that satisfies the conditions presented in the above embodiment. It does n’t matter.

・ 構成繊維中に捲縮繊維を含有していなくともよい。圧縮加熱工程において親水性繊維が曲げられたり折り畳まれたりして反発力を有しているため、捲縮繊維を含有していなくとも熱融着繊維の熱融着開始温度T1以上の温度で復元加熱工程を施すことで、熱融着繊維の熱融着性による拘束を弱めて、不織布の厚みを復元させることができる。なお、この場合、捲縮繊維を含有する場合よりも厚みの復元率が低下することが予想されるが、それでも200%以上の厚みの復元率が期待できる。   -It does not need to contain crimped fibers in the constituent fibers. Since the hydrophilic fiber is bent or folded in the compression heating process and has a repulsive force, it is restored at a temperature equal to or higher than the thermal fusion start temperature T1 of the thermal fusion fiber even if it does not contain crimped fiber. By applying the heating step, the restraint due to the heat-fusibility of the heat-fusible fiber can be weakened, and the thickness of the nonwoven fabric can be restored. In this case, the thickness recovery rate is expected to be lower than when crimped fibers are contained, but a thickness recovery rate of 200% or more can still be expected.

・ 熱融着繊維、親水性繊維、及び捲縮繊維以外の繊維が構成繊維中に含有されていてもよい。このような繊維としては、たとえば、不織布に含まれる熱融着繊維の溶融温度では熱融着性を発揮しないような熱融着開始温度の高い化学繊維や、撥水性が付与された繊維等が挙げられる。また、繊維以外の添加物が不織布に含有されていてもよい。このような添加物としては、たとえば、各繊維に親水性を付与するための液剤や、吸水性を向上させるための高吸水性高分子(いわゆる、SAP)が挙げられる。   -Fibers other than heat-fusible fibers, hydrophilic fibers, and crimped fibers may be contained in the constituent fibers. Examples of such fibers include chemical fibers having a high heat fusion start temperature that does not exhibit heat fusion properties at the melting temperature of the heat fusion fibers contained in the nonwoven fabric, fibers imparted with water repellency, and the like. Can be mentioned. Moreover, additives other than fibers may be contained in the nonwoven fabric. Examples of such additives include a liquid agent for imparting hydrophilicity to each fiber and a superabsorbent polymer (so-called SAP) for improving water absorption.

・ 本実施形態の不織布は単層のものに限らず、複数の層を有する不織布として構成されていてもよい。この場合、たとえば、2つ(2枚)の繊維ウェブを重ね合わせ、その状態で仮止め加熱工程及び圧縮加熱工程を施すことで、複数層を有する不織布を製造することができる。   -The nonwoven fabric of this embodiment is not restricted to a single layer thing, You may be comprised as a nonwoven fabric which has several layers. In this case, for example, a nonwoven fabric having a plurality of layers can be produced by superimposing two (two sheets) fiber webs and performing a temporary fixing heating step and a compression heating step in that state.

・ 複数層を有する不織布として構成する場合、各層の各構成繊維の含有率に変化を付けてもよい。上述したとおり、親水性繊維は、その反発力により厚みを復元させる作用を有するが、捲縮繊維の捲縮性発現に起因する厚みの復元よりも程度が小さいことが考えられる。そして、親水性繊維の含有率が高い場合、かえって捲縮繊維の捲縮性の発現を妨げる可能性がある。そこで、たとえば、親水性繊維の含有率が高い第1層と、その第1層よりも親水性繊維の含有率が小さい第2層とを設け、第1層における捲縮繊維の含有率よりも第2層における捲縮繊維の含有率を高くしてもよい。この構成によれば、少なくとも第2層において捲縮繊維の捲縮性の発現が親水性繊維によって妨げられるおそれが小さくなる。なお、複数層を有する不織布として製造した場合、各構成繊維の含有率は、複数層全てを合わせた不織布全体としての含有率である。   -When comprising as a nonwoven fabric which has multiple layers, you may change the content rate of each constituent fiber of each layer. As described above, the hydrophilic fiber has an action of restoring the thickness by its repulsive force, but it is considered that the degree is smaller than the restoration of the thickness due to the expression of the crimped fiber. And when the content rate of a hydrophilic fiber is high, the expression of the crimping property of a crimped fiber may be prevented on the contrary. Therefore, for example, a first layer having a high content of hydrophilic fibers and a second layer having a lower content of hydrophilic fibers than the first layer are provided, and the content of crimped fibers in the first layer is higher than that. You may make the content rate of the crimped fiber in a 2nd layer high. According to this configuration, the possibility that the expression of the crimping property of the crimped fiber is hindered by the hydrophilic fiber at least in the second layer is reduced. In addition, when manufacturing as a nonwoven fabric which has multiple layers, the content rate of each component fiber is the content rate as the whole nonwoven fabric which combined all the multiple layers.

・ 圧縮加熱工程における加熱温度は、熱融着繊維の熱融着開始温度T1以上、捲縮繊維の捲縮発現温度T3未満の温度範囲内で変更できる。たとえば、仮止め加熱工程における加熱温度よりも高くすることができる。さらに、構成繊維中に捲縮繊維を含まれないのであれば、熱融着開始温度T1以上で各構成繊維の物性等に悪影響を与えない温度範囲内で圧縮加熱工程における加熱温度を自由に設定できる。   The heating temperature in the compression heating step can be changed within a temperature range of not less than the thermal fusion start temperature T1 of the thermal fusion fiber and lower than the crimp expression temperature T3 of the crimped fiber. For example, it can be higher than the heating temperature in the temporary fixing heating step. In addition, if the crimped fiber is not included in the constituent fibers, the heating temperature in the compression heating process can be freely set within a temperature range that does not adversely affect the physical properties of each constituent fiber at the heat fusion start temperature T1 or higher. it can.

・ 仮止め加熱工程における加熱温度も、圧縮加熱工程における加熱温度と同様に変更できる。すなわち、構成繊維中に捲縮繊維が含まれるのであれば、熱融着繊維の熱融着開始温度T1以上、捲縮繊維の捲縮発現温度T3未満の温度範囲内で変更できる。また、構成繊維中に捲縮繊維が含まれないのであれば、熱融着開始温度T1以上で各構成繊維の物性等に悪影響を与えない温度範囲内で変更できる。   -The heating temperature in the temporary fixing heating process can also be changed in the same manner as the heating temperature in the compression heating process. That is, if the crimped fiber is contained in the constituent fibers, it can be changed within a temperature range of the heat-sealing start temperature T1 of the heat-sealing fiber and lower than the crimping expression temperature T3 of the crimped fiber. Moreover, if the crimped fiber is not contained in the constituent fibers, the temperature can be changed within a temperature range that does not adversely affect the physical properties of each constituent fiber at the heat fusion start temperature T1 or higher.

・ 仮止め加熱工程を省略することができる。繊維ウェブ(不織布)の厚みを小さくするという作用は、そのほとんどが圧縮加熱工程によるものであり、仮止め加熱工程がなくとも製造された不織布の厚みを小さくすることができる。   -The temporary fixing heating process can be omitted. The effect of reducing the thickness of the fiber web (nonwoven fabric) is mostly due to the compression heating process, and the thickness of the manufactured nonwoven fabric can be reduced without the temporary fixing heating process.

・ 圧縮加熱工程よりも前に、仮止め加熱工程以外の工程を追加することもできる。たとえば、仮止め加熱工程後、圧縮加熱工程よりも前に、不織布にフィルムを貼付ける工程を追加してもよい。ただし、構成繊維中に捲縮繊維が含まれる場合、圧縮加熱工程よりも前の工程で捲縮繊維の捲縮発現温度以上の温度で捲縮繊維が加熱されることは好ましくない。   -Processes other than the temporary fixing heating process can be added before the compression heating process. For example, you may add the process of sticking a film to a nonwoven fabric after a temporary fixing heating process and before a compression heating process. However, when the crimped fiber is included in the constituent fibers, it is not preferable that the crimped fiber is heated at a temperature equal to or higher than the crimping expression temperature of the crimped fiber in the step before the compression heating step.

・ 本実施形態の不織布の製造方法に供される繊維ウェブは、上記実施形態で例示した方法に限らず、どのような方法で製造されていてもよい。また、たとえば、各構成繊維の繊維間が既に接着されており、一般に不織布として製造販売されているものを繊維ウェブとして使用して、本実施形態の不織布の製造方法に供してもよい。   -The fiber web used for the nonwoven fabric manufacturing method of the present embodiment is not limited to the method exemplified in the above embodiment, and may be manufactured by any method. Moreover, for example, the fibers of the constituent fibers may already be bonded, and a fiber web that is generally manufactured and sold as a nonwoven fabric may be used for the nonwoven fabric manufacturing method of the present embodiment.

次に、本実施形態の不織布についての試験例を説明する。
[厚み復元試験]
実施例1の試験では、熱融着繊維としてユニチカ株式会社によって販売されている熱融着繊維「R080」を含有し、親水性繊維としてパルプ繊維を含有する繊維ウェブ使用した。不織布中の上記構成繊維の含有率は、全構成繊維の重量に対し、熱融着繊維50重量%、親水性繊維50重量%とした。なお、実施例1では、捲縮繊維を含有しないようにした。また、実施例1の試験では、仮止め加熱工程を施さず、圧縮加熱工程のみを施して不織布を製造した。圧縮加熱工程における繊維ウェブの厚み方向の圧力は1.75kg/cmとし、加熱温度は85℃とした。実施例2の試験では、繊維含有率、圧縮加熱工程及び復元加熱工程については実施例1と同様とし、圧縮加熱工程を施す前に、130℃の温度で仮止め加熱工程を行った。
Next, the test example about the nonwoven fabric of this embodiment is demonstrated.
[Thickness restoration test]
In the test of Example 1, a fiber web containing heat fusion fiber “R080” sold by Unitika Co., Ltd. as the heat fusion fiber and pulp fiber as the hydrophilic fiber was used. The content rate of the said constituent fiber in a nonwoven fabric was 50 weight% of heat-fusion fibers and 50 weight% of hydrophilic fibers with respect to the weight of all the constituent fibers. In Example 1, crimped fibers were not included. Moreover, in the test of Example 1, the temporary fixing heating process was not performed but only the compression heating process was performed and the nonwoven fabric was manufactured. The pressure in the thickness direction of the fiber web in the compression heating step was 1.75 kg / cm 2 and the heating temperature was 85 ° C. In the test of Example 2, the fiber content, the compression heating process, and the restoration heating process were the same as in Example 1, and the temporary fixing heating process was performed at a temperature of 130 ° C. before the compression heating process.

実施例3及び実施例4の試験では、熱融着繊維として「R080」を含有し、親水性繊維としてパルプ繊維を含有し、捲縮繊維としてユニチカ社製の捲縮繊維「C81」を含有する繊維ウェブを使用した。不織布中の上記構成繊維の含有率は、全構成繊維の重量に対し、熱融着繊維20重量%、親水性繊維50重量%、捲縮繊維30重量%とした。そして、実施例3については、実施例1と同様にして仮止め加熱工程を施さず圧縮加熱工程のみを施し、実施例4については、実施例2と同様に仮止め加熱工程、圧縮加熱工程を施して不織布を製造した。これら実施例1〜実施例4の不織布に対して、180℃の温度で加熱する復元加熱工程を施すことで、厚みを復元させた。   In the tests of Example 3 and Example 4, “R080” is contained as the heat-fusible fiber, pulp fiber is contained as the hydrophilic fiber, and crimped fiber “C81” manufactured by Unitika is contained as the crimped fiber. A fiber web was used. The content of the constituent fibers in the nonwoven fabric was 20% by weight of heat-sealing fibers, 50% by weight of hydrophilic fibers, and 30% by weight of crimped fibers with respect to the weight of all the constituent fibers. And about Example 3, it does not give a temporary fixing heating process like Example 1, and gives only a compression heating process, and about Example 4, like Example 2, a temporary fixing heating process and a compression heating process are performed. To produce a nonwoven fabric. The thickness was restored by performing a restoration heating process in which the nonwoven fabrics of Examples 1 to 4 were heated at a temperature of 180 ° C.

一方、比較例1として、実施例3及び実施例4と同じ構成繊維及び繊維含有率において、仮止め加熱工程及び圧縮加熱工程を施さず、復元加熱工程のみを施した試験を行った。これら実施例1〜実施例4及び比較例1の厚みの復元率に関する試験結果を表1に示す。   On the other hand, as Comparative Example 1, a test was performed in which only the restoration heating process was performed without performing the temporary heating process and the compression heating process in the same constituent fibers and fiber content as those of Example 3 and Example 4. Table 1 shows the test results relating to the restoration rate of the thicknesses of Examples 1 to 4 and Comparative Example 1.

Figure 2012112057
表1に示すように、実施例1〜実施例4においては、捲縮繊維の有無、及び仮止め加熱工程の有無に拘らず、圧縮加熱工程後の不織布の厚みに比べ、復元加熱工程後の厚みが260%以上となった。とくに、捲縮繊維が含有されている実施例3及び実施例4においては、捲縮繊維が含有されていない実施例1及び実施例2に比べ、圧縮加熱工程後の厚みがやや大きい(およそ0.3〜0.4mm)ものの、復元加熱工程後においては、1mm以上厚みが大きくなった。したがって、復元加熱工程後の最終製品の不織布としては、捲縮繊維が含有されている方が好ましいと考えられる。
Figure 2012112057
As shown in Table 1, in Examples 1 to 4, regardless of the presence or absence of crimped fibers and the presence or absence of a temporary fixing heating step, the thickness after the restoration heating step was compared with the thickness of the nonwoven fabric after the compression heating step. The thickness was 260% or more. In particular, in Example 3 and Example 4 in which the crimped fiber is contained, the thickness after the compression heating process is slightly larger than that in Example 1 and Example 2 in which the crimped fiber is not contained (approximately 0). However, after the restoration heating process, the thickness increased by 1 mm or more. Therefore, it is considered that the crimped fiber is preferably contained as the final product nonwoven fabric after the restoration heating step.

なお、表1に示すように、捲縮繊維が含有されている実施例3及び実施例4の方が厚みの復元率が大きかったものの、その差は数%〜30%程度であった。これは、圧縮加熱工程後、すぐに復元加熱工程を施したことによると考えられる。具体的には、たとえば、捲縮繊維が含有されていない実施例1及び実施例2において、長期間復元加熱工程を施さなかった場合、曲げられたり折り畳まれたりした親水性繊維がその状態で癖付けされたようになって、反発力が小さくなることが考えられる。この場合、実施例1及び実施例2においては厚みの復元率が小さくなることが予想できる。一方、捲縮繊維を含有する実施例3及び実施例4においては、そのような経時的な厚み復元率の低下は起きにくいと予想される。したがって、圧縮加熱工程後、復元加熱工程までの期間が長い場合には、捲縮繊維が含まれていることが望ましいと考えられる。なお、捲縮繊維が含まれていない実施例1及び実施例2において、圧縮加熱工程後、復元加熱工程までの期間が相応に長くとも、200%以上の厚みの復元率は期待できる。   In addition, as shown in Table 1, although Example 3 and Example 4 in which crimped fibers were contained had a greater thickness recovery rate, the difference was about several percent to 30%. This is considered to be because the restoration heating process was performed immediately after the compression heating process. Specifically, for example, in Example 1 and Example 2 in which no crimped fiber is contained, when the restoration heating step is not performed for a long time, the bent or folded hydrophilic fiber is in that state. It can be considered that the repulsive force becomes smaller. In this case, in Example 1 and Example 2, it can be expected that the rate of restoration of thickness becomes small. On the other hand, in Examples 3 and 4 containing crimped fibers, it is expected that such a decrease in the thickness recovery rate over time is unlikely to occur. Therefore, when the period from the compression heating process to the restoration heating process is long, it is considered desirable to contain crimped fibers. In Examples 1 and 2 that do not contain crimped fibers, a restoration rate of 200% or more can be expected even if the period from the compression heating step to the restoration heating step is reasonably long.

[圧縮加熱温度試験]
次に、実施例4を基準として、圧縮加熱工程における温度を変化させて試験を行った。実施例4の圧縮加熱工程の温度85℃に対し、実施例5、6、7、8、9では、それぞれ70℃、75℃、80℃、90℃、95℃で圧縮加熱工程を行った。また、比較例2として、熱融着繊維の熱融着開始温度T1以下の60℃で圧縮加熱工程を施した。なお、各実施例及び比較例において、各構成繊維の含有率は上述した実施例4と同一とし、仮止め加熱工程及び復元加熱工程も実施例4と同様の条件で施した。これらの試験の結果を表2に示す。
[Compression heating temperature test]
Next, using Example 4 as a reference, the test was performed by changing the temperature in the compression heating process. In Examples 5, 6, 7, 8, and 9, the compression heating process was performed at 70 ° C., 75 ° C., 80 ° C., 90 ° C., and 95 ° C. with respect to the temperature of 85 ° C. in the compression heating process of Example 4. Further, as Comparative Example 2, the compression heating process was performed at 60 ° C. which is equal to or lower than the thermal fusion start temperature T1 of the thermal fusion fiber. In each example and comparative example, the content of each constituent fiber was the same as in example 4 described above, and the temporary fixing heating step and the restoration heating step were performed under the same conditions as in example 4. The results of these tests are shown in Table 2.

Figure 2012112057
表2に示すように、実施例4〜実施例9において、圧縮加熱工程の温度が高いほど、圧縮加熱工程後の不織布の厚み、及び復元加熱工程後の厚みが小さくなった。とくに、実施例5の圧縮加熱工程の温度である70℃から、実施例8の圧縮加熱工程の温度である90℃までは、圧縮加熱工程における温度が高くなるほど圧縮加熱工程後の厚みが相応の割合で小さくなる。一方、それ以上の温度(実施例9、圧縮加熱温度95℃)では、圧縮加熱工程における温度を上昇させたとしても、大幅に圧縮加熱後の厚みを小さくすることは期待できない。なお、実施例5の圧縮加熱工程の温度である70℃は、熱融着性繊維の熱融着開始温度T1に相当し、実施例8の圧縮加熱工程の温度である90℃は、熱融着開始温度T1と溶融温度T2との中間温度に相当する。
Figure 2012112057
As shown in Table 2, in Examples 4 to 9, the higher the temperature of the compression heating step, the smaller the thickness of the nonwoven fabric after the compression heating step and the thickness after the restoration heating step. In particular, from 70 ° C., which is the temperature of the compression heating process of Example 5, to 90 ° C., which is the temperature of the compression heating process of Example 8, the higher the temperature in the compression heating process, the more the thickness after the compression heating process is appropriate. Decrease in proportion. On the other hand, at a temperature higher than that (Example 9, compression heating temperature 95 ° C.), even if the temperature in the compression heating step is increased, it is not expected to significantly reduce the thickness after compression heating. Note that 70 ° C., which is the temperature of the compression heating process of Example 5, corresponds to the heat fusion start temperature T1 of the heat-fusible fiber, and 90 ° C., which is the temperature of the compression heating process of Example 8, is the heat fusion temperature. This corresponds to an intermediate temperature between the deposition start temperature T1 and the melting temperature T2.

また、圧縮加熱工程における温度が70〜90℃(実施例4〜実施例8)の場合には、厚みの復元率が約280%以上という高い復元率を示した。一方、圧縮加熱工程における温度が85℃よりも高い場合は、温度が高くなるほど厚みの復元率が低下し、とくに、圧縮加熱工程の温度が90℃を超えると(実施例9、圧縮加熱温度95℃)、厚みに復元率の低下の度合いが大きかった。したがって、圧縮加熱工程後の厚みを小さくしつつ、相応の厚みの復元率を確保するという観点からも、圧縮加熱工程における温度は、熱融着繊維の熱融着開始温度T1である70℃以上、熱融着開始温度T1と溶融温度T2との中間温度である90℃以下であることが好ましいと考えられる。なお、圧縮加熱工程における温度が60℃(比較例2)の場合、各実施例に比べて圧縮加熱工程後の厚みが大幅に大きくなった。これは、圧縮加熱工程において熱融着繊維が熱融着性を発揮できず、親水性繊維の反発力を拘束することができず、瞬時に厚みが復元してしまったからだと考えられる。   Moreover, when the temperature in a compression heating process was 70-90 degreeC (Example 4-Example 8), the high restoration rate that the restoration rate of thickness was about 280% or more was shown. On the other hand, when the temperature in the compression heating process is higher than 85 ° C., the rate of restoration of thickness decreases as the temperature increases. In particular, when the temperature in the compression heating process exceeds 90 ° C. (Example 9, compression heating temperature 95 C.), the degree of decrease in the restoration rate was large in the thickness. Therefore, the temperature in the compression heating process is 70 ° C. or more, which is the heat fusion start temperature T1 of the heat-fusible fiber, from the viewpoint of reducing the thickness after the compression heating process and securing the restoration rate of the corresponding thickness. It is considered preferable that the temperature is 90 ° C. or lower, which is an intermediate temperature between the thermal fusion start temperature T1 and the melting temperature T2. In addition, when the temperature in a compression heating process is 60 degreeC (comparative example 2), the thickness after a compression heating process became large significantly compared with each Example. This is considered to be because the heat-fusible fiber cannot exhibit heat-fusibility in the compression heating process, the repulsive force of the hydrophilic fiber cannot be constrained, and the thickness is instantly restored.

[強度・風合い試験]
次に、上述した実施例4〜7、実施例9及び比較例2について、復元加熱工程後の引張強度と風合いとを試験した。なお、引張強度は、「JIS P 8113」に基づき、その単位をgf/25mmとして算出した。また、風合いは、厚み復元後の不織布の手触りを試験した。これらの試験の結果を表3に示す。
[Strength / Feel Test]
Next, with respect to Examples 4 to 7, Example 9 and Comparative Example 2 described above, the tensile strength and texture after the restoration heating step were tested. The tensile strength was calculated based on “JIS P 8113” with the unit of gf / 25 mm. Moreover, the texture tested the touch of the nonwoven fabric after thickness restoration. The results of these tests are shown in Table 3.

Figure 2012112057
表3に示すように、実施例4〜7及び実施例9において、いずれも500gf/25mm以上の高い引張強度を示した。引張強度が500gf/25mm以上は、たとえば、オムツや生理用品に使用される不織布として十分な強度である。
Figure 2012112057
As shown in Table 3, in Examples 4 to 7 and Example 9, all showed high tensile strength of 500 gf / 25 mm or more. The tensile strength of 500 gf / 25 mm or more is sufficient strength as a nonwoven fabric used for diapers and sanitary products, for example.

また、各実施例においては、圧縮加熱工程における温度が高いほど、より大きな引張強度を示した。とくに、実施例8の圧縮加熱工程の温度90℃までは、圧縮加熱工程における温度が高くなるほど相応の割合で引張強度が大きくなる。一方、それ以上の温度(実施例9、95℃)では、圧縮加熱工程における温度を上昇させたとしても、大幅に引張強度を大きくすることは期待できない。また、圧縮加熱工程における温度を高くするほど、復元加熱工程の不織布の風合いが固くなり、圧縮加熱工程における温度が95℃(実施例9)では、その風合いが固くてごわごわとしたものになる。したがって、相応の引張強度を確保しつつ、柔らかな風合いを得るのであれば、圧縮加熱工程における温度は、熱融着繊維の熱融着開始温度T1(70℃)以上、熱融着開始温度T1と溶融温度T2との中間温度(90℃)以下であることが好ましく、とくに、実施例7の圧縮加熱工程の温度である80℃から実施例4の圧縮加熱工程の温度である85℃までの範囲が好適である。なお、圧縮加熱工程における温度が60℃(比較例2)の場合、風合いは柔らかであるものの、復元加熱工程後の引張強度が他の実施例のものよりも極端に低く、オムツや生理用品の不織布としては使用しにくいものであった。したがって、圧縮加熱工程を熱融着繊維の熱融着開始温度T1(70℃)以上の温度で施すことが復元加熱工程後の不織布の強度を確保する上で重要である。   Moreover, in each Example, the higher tensile strength was shown, so that the temperature in a compression heating process was high. In particular, up to the temperature of 90 ° C. in the compression heating process of Example 8, the tensile strength increases at a corresponding ratio as the temperature in the compression heating process increases. On the other hand, at a temperature higher than that (Example 9, 95 ° C.), even if the temperature in the compression heating step is increased, it is not expected to significantly increase the tensile strength. Moreover, the higher the temperature in the compression heating step, the harder the texture of the nonwoven fabric in the restoration heating step, and the higher the temperature in the compression heating step is 95 ° C. (Example 9), the harder the texture is. Therefore, if a soft texture is obtained while securing a suitable tensile strength, the temperature in the compression heating step is equal to or higher than the thermal fusion start temperature T1 (70 ° C.) of the thermal fusion fiber, and the thermal fusion start temperature T1. And the melting temperature T2 is preferably an intermediate temperature (90 ° C.) or less, in particular, from 80 ° C., which is the temperature of the compression heating process of Example 7, to 85 ° C., which is the temperature of the compression heating process of Example 4. A range is preferred. In addition, when the temperature in a compression heating process is 60 degreeC (comparative example 2), although the texture is soft, the tensile strength after a decompression | restoration heating process is extremely lower than the thing of another Example, and a diaper and sanitary goods It was difficult to use as a non-woven fabric. Therefore, it is important to perform the compression heating step at a temperature equal to or higher than the heat fusion start temperature T1 (70 ° C.) of the heat fusion fiber in order to ensure the strength of the nonwoven fabric after the restoration heating step.

[ウェブ態様試験]
次に、実施例4を基準として、様々な繊維ウェブに対して厚みの復元試験を行った。実施例10では、実施例4と同様の繊維含有率の繊維ウェブに対して、さらに全構成繊維の重量の25重量%の高吸水性高分子ビーズ(SAPビーズ)を添加し、その他の点については実施例4と同様の条件で試験を行った。なお、 SAPビーズの重量は繊維重量には含まれない。
[Web mode test]
Next, on the basis of Example 4, thickness restoration tests were performed on various fiber webs. In Example 10, a superabsorbent polymer bead (SAP bead) of 25% by weight of the total constituent fibers was further added to the fiber web having the same fiber content as in Example 4, and the other points. Were tested under the same conditions as in Example 4. Note that the weight of the SAP beads is not included in the fiber weight.

実施例11では、実施例4と同様の繊維含有率でもって、一旦エアレイド法で不織布を製造し、この不織布を繊維ウェブとして圧縮加熱工程及び復元加熱工程を施した。なお、実施例11では、仮止め加熱工程を施さなかった。一方、実施例12では、実施例4と同様の繊維含有率でもって、一旦エアレイド法で不織布を製造し、この不織布を繊維ウェブとして仮止め加熱工程、圧縮加熱工程及び復元加熱工程を施した。なお、実施例11及び実施例12において施した各加熱工程の条件は、実施例4と同様の条件である。これらの試験の結果を表4に示す。   In Example 11, the nonwoven fabric was once manufactured by the airlaid method with the same fiber content as in Example 4, and the nonwoven fabric was used as a fiber web for the compression heating process and the restoration heating process. In Example 11, the temporary fixing heating process was not performed. On the other hand, in Example 12, a nonwoven fabric was once manufactured by the airlaid method with the same fiber content as in Example 4, and this nonwoven fabric was used as a fiber web for a temporary fixing heating process, a compression heating process, and a restoration heating process. In addition, the conditions of each heating process performed in Example 11 and Example 12 are the same conditions as Example 4. The results of these tests are shown in Table 4.

Figure 2012112057
表4に示すように、先ず、SAPビーズを添加した実施例10の場合、圧縮加熱工程後の厚みがSAPビーズを添加していない実施例4よりも大きくなった。これは、SAPビーズ自体の体積によるものと推測される。また、SAPビーズを添加した実施例10の場合、復元加熱工程後の厚みの復元率がSAPビーズを添加していない実施例4よりも低下した。これは、SAPビーズにより、元に戻ろうとする親水性繊維の反発力が吸収されたり、捲縮繊維の捲縮性の発現が阻害されたりしたことによるものと推測される。しかしながら、SAPビーズの添加量が全構成繊維の重量の25重量%以下であれば、厚みの復元率として250%以上を確保できる。
Figure 2012112057
As shown in Table 4, first, in Example 10 in which SAP beads were added, the thickness after the compression heating step was larger than in Example 4 in which SAP beads were not added. This is presumably due to the volume of the SAP beads themselves. In the case of Example 10 to which SAP beads were added, the thickness restoration rate after the restoration heating step was lower than that in Example 4 to which SAP beads were not added. This is presumably due to the SAP beads absorbing the repulsive force of the hydrophilic fibers to be restored and inhibiting the expression of the crimping properties of the crimped fibers. However, if the addition amount of SAP beads is 25% by weight or less of the weight of all the constituent fibers, it is possible to ensure 250% or more as the thickness recovery rate.

また、表4に示すように、エアレイド法で製造した不織布を繊維ウェブとして使用した実施例11及び実施例12の場合でも、仮止め加熱工程の有無に拘らず、350%以上の高い厚みの復元率を示した。このことより、繊維ウェブとしては、特定の構成のものに限らず、既に不織布として構成されているものであっても、圧縮加熱工程及び復元加熱工程を施すことにより、高い厚みの復元率が得られると考えられる。   Moreover, as shown in Table 4, even in the case of Example 11 and Example 12 in which the nonwoven fabric produced by the airlaid method was used as the fiber web, restoration of a high thickness of 350% or more was performed regardless of the presence or absence of the temporary fixing heating step. Showed the rate. From this, the fiber web is not limited to a specific configuration, and even if it is already configured as a non-woven fabric, a high restoration rate can be obtained by performing the compression heating step and the restoration heating step. It is thought that.

Claims (7)

加熱により熱融着性を発揮する熱融着繊維と、熱融着性を有さない親水性繊維とを構成繊維中に含有する繊維ウェブからなる不織布の製造方法であって、
前記繊維ウェブを、その厚み方向において圧縮しながら、前記熱融着繊維が熱融着性を発揮する熱融着開始温度以上で加熱する圧縮加熱工程を有することを特徴とする不織布の製造方法。
A method for producing a nonwoven fabric comprising a fiber web containing heat-fusible fibers that exhibit heat-fusibility by heating and hydrophilic fibers that do not have heat-fusibility in constituent fibers,
A method for producing a nonwoven fabric, comprising: a compression heating step of heating the fiber web at a temperature equal to or higher than a heat fusion start temperature at which the heat-fusible fibers exhibit heat-fusibility while being compressed in the thickness direction.
前記繊維ウェブは、加熱されることで螺旋状に捲縮される潜在型の捲縮繊維を、その捲縮性が潜在している捲縮潜在状態で含有し、前記捲縮繊維の捲縮発現温度は、前記熱融着繊維が溶融して液状化する溶融温度よりも高く設定されており、
前記圧縮加熱工程では、前記熱融着開始温度以上、前記捲縮発現温度未満の温度で加熱し、
前記圧縮加熱工程よりも前において、前記捲縮繊維に前記捲縮発現温度以上の加熱を行わないことを特徴とする請求項1に記載の不織布の製造方法。
The fiber web contains latent-type crimped fibers that are crimped spirally by being heated, in a crimped latent state in which the crimpability is latent, and the crimped expression of the crimped fibers The temperature is set higher than the melting temperature at which the heat-fusible fiber melts and liquefies,
In the compression heating step, heating at a temperature not lower than the crimping expression temperature, not less than the heat fusion start temperature,
The method for producing a nonwoven fabric according to claim 1, wherein the crimped fiber is not heated above the crimping expression temperature before the compression heating step.
前記圧縮加熱工程よりも前に、前記繊維ウェブを前記熱融着開始温度以上、前記捲縮発現温度未満の温度で加熱する仮止め加熱工程を有し、
前記圧縮加熱工程では、前記仮止め加熱工程における温度より低い温度で加熱することを特徴とする請求項2に記載の不織布の製造方法。
Prior to the compression heating step, the fiber web has a temporary fixing heating step of heating the fiber web at a temperature not lower than the crimping temperature and not lower than the crimping temperature.
In the said compression heating process, it heats at the temperature lower than the temperature in the said temporary fixing heating process, The manufacturing method of the nonwoven fabric of Claim 2 characterized by the above-mentioned.
前記圧縮加熱工程では、前記熱融着開始温度以上、前記熱融着開始温度と前記溶融温度との中間温度以下の温度で加熱することを特徴とする請求項2又は請求項3に記載の不織布の製造方法。   The nonwoven fabric according to claim 2 or 3, wherein in the compression heating step, the nonwoven fabric is heated at a temperature not lower than the thermal fusion start temperature and not higher than an intermediate temperature between the thermal fusion start temperature and the melt temperature. Manufacturing method. 加熱により熱融着性を発揮する熱融着繊維と、熱融着性を有さない親水性繊維とを構成繊維中に含有する不織布であって、
前記熱融着繊維が溶融して液状化する溶融温度以上の温度で加熱することにより、加熱前に比べて厚みが200%以上になるように前記構成繊維が圧縮されていることを特徴とする不織布。
A non-woven fabric containing a heat-fusible fiber that exhibits heat-fusibility by heating and a hydrophilic fiber that does not have heat-fusibility in the constituent fibers,
The component fibers are compressed by heating at a temperature equal to or higher than a melting temperature at which the heat-fusible fibers are melted and liquefied, so that the thickness becomes 200% or more as compared to before heating. Non-woven fabric.
加熱されることで螺旋状に捲縮される潜在型の捲縮繊維を前記構成繊維中に含み、前記捲縮繊維の捲縮発現温度は、前記溶融温度よりも高く、
前記捲縮繊維は、捲縮性の少なくとも一部が潜在した捲縮潜在状態で含有されており、前記捲縮発現温度以上の温度で加熱することにより、加熱前に比べて厚みが250%以上になるように前記構成繊維が圧縮されていることを特徴とする請求項5に記載の不織布。
A latent-type crimped fiber that is crimped spirally by being heated is included in the constituent fibers, and the crimp expression temperature of the crimped fiber is higher than the melting temperature,
The crimped fiber is contained in a crimped latent state in which at least a part of the crimpability is latent, and is heated at a temperature equal to or higher than the crimp expression temperature to have a thickness of 250% or more as compared to before heating. The nonwoven fabric according to claim 5, wherein the constituent fibers are compressed so as to become.
厚み方向において前記親水性繊維の含有率が高い第1層と、前記第1層よりも親水性繊維の含有率の少ない第2層とが形成されており、
前記第1層における前記捲縮繊維の含有率よりも前記第2層における前記捲縮繊維の含有率の方が高いことを特徴とする請求項6に記載の不織布。
A first layer having a high content of the hydrophilic fiber in the thickness direction and a second layer having a lower content of the hydrophilic fiber than the first layer are formed,
The nonwoven fabric according to claim 6, wherein the content of the crimped fibers in the second layer is higher than the content of the crimped fibers in the first layer.
JP2010260180A 2010-11-22 2010-11-22 Nonwoven fabric and method for producing the same Active JP5560170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260180A JP5560170B2 (en) 2010-11-22 2010-11-22 Nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260180A JP5560170B2 (en) 2010-11-22 2010-11-22 Nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012112057A true JP2012112057A (en) 2012-06-14
JP5560170B2 JP5560170B2 (en) 2014-07-23

Family

ID=46496573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260180A Active JP5560170B2 (en) 2010-11-22 2010-11-22 Nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP5560170B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220355A (en) * 1989-06-20 1991-09-27 Japan Vilene Co Ltd Bulkiness-recoverable nonwoven fabric, its production and method for recovering bulkiness
JPH08302551A (en) * 1995-05-10 1996-11-19 Takagi Kagaku Kenkyusho:Kk Fiber structure and method for producing fiber forming using the structure
JP2001329432A (en) * 2000-05-22 2001-11-27 Chisso Corp Thermo-adhesive conjugate fiber, fiber aggregate and nonwoven fabric made thereof
JP3276578B2 (en) * 1997-02-18 2002-04-22 大和紡績株式会社 Thermally bonded nonwoven fabric and method for producing the same
JP2002285464A (en) * 2001-03-23 2002-10-03 Habikkusu Kk Hydrophilic nonwoven fabric
JP2004159786A (en) * 2002-11-11 2004-06-10 Kao Corp Absorptive article
WO2008079236A1 (en) * 2006-12-22 2008-07-03 E. I. Du Pont De Nemours And Company Abrasion resistant fire blocking fabric
JP2008231619A (en) * 2007-03-20 2008-10-02 Kao Corp Fiber sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220355A (en) * 1989-06-20 1991-09-27 Japan Vilene Co Ltd Bulkiness-recoverable nonwoven fabric, its production and method for recovering bulkiness
JPH08302551A (en) * 1995-05-10 1996-11-19 Takagi Kagaku Kenkyusho:Kk Fiber structure and method for producing fiber forming using the structure
JP3276578B2 (en) * 1997-02-18 2002-04-22 大和紡績株式会社 Thermally bonded nonwoven fabric and method for producing the same
JP2001329432A (en) * 2000-05-22 2001-11-27 Chisso Corp Thermo-adhesive conjugate fiber, fiber aggregate and nonwoven fabric made thereof
JP2002285464A (en) * 2001-03-23 2002-10-03 Habikkusu Kk Hydrophilic nonwoven fabric
JP2004159786A (en) * 2002-11-11 2004-06-10 Kao Corp Absorptive article
WO2008079236A1 (en) * 2006-12-22 2008-07-03 E. I. Du Pont De Nemours And Company Abrasion resistant fire blocking fabric
JP2008231619A (en) * 2007-03-20 2008-10-02 Kao Corp Fiber sheet

Also Published As

Publication number Publication date
JP5560170B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
TWI286515B (en) High bulk composite sheets and method for preparing
JP5557365B2 (en) Fiber bundle and web
JP6069554B2 (en) Revealed crimpable composite short fiber and method for producing the same, fiber assembly and sanitary article
KR101183146B1 (en) non-woven fabric with high elasticity and recoverability, and material for cushion utilizing the same
AU2015307582A1 (en) Absorbent and absorbent article including absorbent
JP6110089B2 (en) Nonwoven fabric and cushion material using the same
JP4589417B2 (en) Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
CN106794086B (en) Surgical swab consisting of a non-woven fabric and a woven polymer mesh
JP5560170B2 (en) Nonwoven fabric and method for producing the same
JP3331221B2 (en) Elastic composite and its manufacturing method
JP2006518427A (en) Filament nonwoven bandage
JP5665210B2 (en) Method for producing unidirectional stretch laminated nonwoven fabric
JP2951549B2 (en) Nonwoven fabric excellent in bulk recovery and method for winding the nonwoven fabric
JP2008144321A (en) Nonwoven fabric
JP2009520123A (en) Hydroentangled elastic nonwoven sheet
JP2023057092A (en) Base cloth of cosmetic sheet
KR102487678B1 (en) Fiber sheet
JP5548041B2 (en) Non-woven
JP2691320B2 (en) Stretchable non-woven fabric
CN111748911B (en) Nonwoven fabric, method for producing the same, fastening tape, wound covering material, and absorbent article
US10316445B2 (en) Extensible non-woven, method for producing an extensible non-woven and use of same
JP6342536B2 (en) Nonwoven fabric and cushion material using the same
JP4454553B2 (en) Non-woven
JP4774900B2 (en) Elastic nonwoven fabric and article using the same
JPH1088456A (en) Elastic nonwoven fabric of filament and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250