JP2012107267A - Plating apparatus - Google Patents

Plating apparatus Download PDF

Info

Publication number
JP2012107267A
JP2012107267A JP2010254776A JP2010254776A JP2012107267A JP 2012107267 A JP2012107267 A JP 2012107267A JP 2010254776 A JP2010254776 A JP 2010254776A JP 2010254776 A JP2010254776 A JP 2010254776A JP 2012107267 A JP2012107267 A JP 2012107267A
Authority
JP
Japan
Prior art keywords
plating
plating solution
chamber
base material
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010254776A
Other languages
Japanese (ja)
Inventor
Motomichi Ito
元通 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010254776A priority Critical patent/JP2012107267A/en
Publication of JP2012107267A publication Critical patent/JP2012107267A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plating apparatus which forms a plating layer having a uniform thickness on each base material particle having an electroconductive surface in a high yield.SOLUTION: The plating apparatus includes: a plating tank 1j having a plating chamber which is equipped with a bottom surface on which base material particles revolve while being brought into contact with the bottom surface and a peripheral wall surface erected along the peripheral edge of the bottom surface, and accommodates a particle group 9 including the base material particles and a plating solution; a plating solution supply pipe 1e which has a supply port 1f opening at an upper part of the bottom surface of the plating chamber and supplies the plating solution from the supply port so that the plating solution may revolve along the peripheral wall surface of the plating chamber; a plating solution discharge pipe 1c having a discharge port 1d opening in the plating chamber; a cathode 1n which is brought into contact with base material particles being arranged on the bottom surface of the plating chamber 1m; an anode 1o arranged at a position immersed in the plating solution accommodated in the plating chamber; and a power source 1h connected to the cathode and the anode. The discharge port 1d of the plating solution discharge pipe is closed with a plating solution permeable member 4 through which the plating solution permeates but the base material particles do not permeate.

Description

本発明は、表面に導電性を有する基材粒子のメッキ装置に関する。   The present invention relates to a plating apparatus for base particles having conductivity on the surface.

表面に導電性を有する基材粒子にメッキを施す技術の一例として、Cuを主体としたコアボールの表面に半田をメッキして半田被覆Cuコアボール(以下Cuコアボールと略して記載する。)を形成する技術がある。なお、従来技術の問題点を明確にするために、Cuコアボールを例として本発明のメッキ技術を説明するが、本発明はCuコアボールに限定されるものではない。   As an example of a technique for plating base material particles having conductivity on the surface, solder is coated on the surface of a core ball mainly composed of Cu and solder-coated Cu core ball (hereinafter abbreviated as Cu core ball). There is technology to form. In order to clarify the problems of the prior art, the plating technique of the present invention will be described using a Cu core ball as an example, but the present invention is not limited to the Cu core ball.

近年の多ピッチ化・狭ピッチ化による高密度実装の進むBGA(Ball Grid Array)やCSP(Chip Scale Package)などの半導体パッケージでは、入出力端子用バンプとして小径のCuコアボールが採用されている。Cuコアボールは、そのコアボールがリフロー時に溶融しないため、半導体素子と基板との間に一定の距離を維持でき、半導体素子の起動・停止により生じる熱サイクル負荷等に対して接続信頼性を確保することができる。   In recent semiconductor packages such as BGA (Ball Grid Array) and CSP (Chip Scale Package) where high-density mounting is progressing due to multi-pitch and narrow pitch, small-diameter Cu core balls are adopted as bumps for input / output terminals. . Cu core ball does not melt at the time of reflow, so it can maintain a certain distance between the semiconductor element and the substrate, ensuring connection reliability against thermal cycle load caused by starting and stopping of semiconductor element can do.

Cuコアボールの製造技術として、メッキ液が流通可能な多数の開口を有するバレル内にコアボールを収納し、バレルをメッキ浴に配置し自転させることで半田を被覆するバレル電気メッキ法が知られている。しかしながら、特に直径が100μm以下の小径のCuコアボールを製造する場合、バレルの自転にともなうコアボールの転動だけではコアボールの攪拌が不十分になる。その結果、コアボール同士がメッキ層を介して連結し凝集したり、メッキ層の表面が粗面化したりすることで、メッキ層の厚みが部分的に不均一となり、歩留まりが低下するという問題が生じていた。   As a Cu core ball manufacturing technique, a barrel electroplating method is known in which a core ball is housed in a barrel having a large number of openings through which a plating solution can flow, and the barrel is placed in a plating bath and rotated to coat the solder. ing. However, particularly when a small-diameter Cu core ball having a diameter of 100 μm or less is manufactured, the core ball is not sufficiently stirred only by the rolling of the core ball accompanying the rotation of the barrel. As a result, the core balls are connected and agglomerated through the plating layer, or the surface of the plating layer is roughened, resulting in a problem that the thickness of the plating layer becomes partially non-uniform and the yield decreases. It was happening.

このバレル式電気メッキ法の問題を解消する技術の一例が特許文献1に記載されている。特許文献1には、充分かつ均一なメッキ層を短時間で得るため、「上端が開放した下開き椀形の樹脂ドームの外周部下面と、樹脂底板の外周部上面の間に被めっき物が回転中に押付けられるコンタクトリングと、処理液が流通飛散するポーラスリングを一体に結合してセルを形成し、上記セルを相対回転不能に支持しコンタクトリングと通電する導電ロータリープレートの中央部下面に垂直な導電駆動シャフトの上端を固定し、上記シャフトにコンタクトブラシを押圧してマイナス極に接続し、上記ドーム内に陽極バスケットを配置し、セルを覆うカバーを設けた」、小物の回転メッキ装置が記載されている。そして、かかる構成の回転メッキ装置によれば、セル内に収納された被メッキ物は、セルの回転により生ずる遠心力の作用によりコンタクトリングに強制的に押し付けられ、セルの回転と、停止又は減速を繰り返すことにより均一に混合され、被メッキ物の表面におけるメッキ液の更新も活発となり、均一な厚みのメッキ層を形成することができると記載されている。   An example of a technique for solving the problem of the barrel type electroplating method is described in Patent Document 1. In Patent Document 1, in order to obtain a sufficient and uniform plating layer in a short time, “the object to be plated is placed between the lower surface of the outer peripheral portion of the bottom-opened bowl-shaped resin dome with the upper end open and the upper surface of the outer peripheral portion of the resin bottom plate. A contact ring that is pressed during rotation and a porous ring through which the treatment liquid circulates are integrally combined to form a cell. `` Rotary plating device for small items, fixing the upper end of a vertical conductive drive shaft, pressing a contact brush on the shaft and connecting it to the negative pole, placing an anode basket in the dome, and covering the cell '' Is described. According to the rotary plating apparatus having such a configuration, the object to be plated accommodated in the cell is forcibly pressed against the contact ring by the action of the centrifugal force generated by the rotation of the cell, and the rotation and stop or deceleration of the cell. By repeating the above, it is described that the mixture is uniformly mixed, the plating solution on the surface of the object to be plated is renewed actively, and a plating layer having a uniform thickness can be formed.

また、バレル式電気メッキ法の問題を解消する他の技術例が特許文献2に記載されている。特許文献2には、特に曲がり易い性質を持ったワークのメッキ時の変形等を防止することを目的とし、「上面開口としたメッキ槽と、そのメッキ槽の上面開口を閉塞する着脱蓋とを有し、前記メッキ槽の底面に陰極を備え、着脱蓋の裏面に陽極を備えるとともに、前記メッキ槽の底面沿いの周壁に、その周壁の内面方向に向けたメッキ液の噴射ノズルを備えていることを特徴とする」、メッキ装置が記載されている。そして特許文献2には、かかる構成を採用することにより、メッキ槽内に投入されたワークは噴射ノズルから噴射されるメッキ液とともにメッキ槽内を回り、その回転を伴いながらメッキ処理が施されるため、曲がりや変形を生じるようなワーク同士の衝突がなくなり、すべてのワークが原形を保持したままメッキ加工処理を終了できる、と記載されている。   Another technical example for solving the problem of the barrel type electroplating method is described in Patent Document 2. In Patent Document 2, the purpose is to prevent deformation or the like of a workpiece having a particularly easy-to-bend property, and “a plating tank having an upper surface opening and a detachable lid for closing the upper surface opening of the plating tank are provided. And having a cathode on the bottom surface of the plating tank, an anode on the back surface of the detachable lid, and a nozzle for spraying a plating solution directed toward the inner surface of the peripheral wall on the peripheral wall along the bottom surface of the plating tank. A plating apparatus is described. And in patent document 2, by employ | adopting such a structure, the workpiece | work thrown in in the plating tank turns into the inside of a plating tank with the plating liquid injected from an injection nozzle, and a plating process is given accompanying the rotation. For this reason, it is described that there is no collision between workpieces that cause bending or deformation, and the plating process can be completed while all the workpieces retain their original shapes.

特開平8−239799号公報JP-A-8-239799 実開平7−6267号公報Japanese Utility Model Publication No. 7-6267

本発明は、上記従来技術を鑑みてなされた発明であり、表面に導電性を有する基材粒子に均一な厚みのメッキ層を、高い収率で形成可能なメッキ装置を提供することを目的としている。   The present invention has been made in view of the above prior art, and an object of the present invention is to provide a plating apparatus capable of forming a plating layer having a uniform thickness on a surface of conductive substrate particles with a high yield. Yes.

上記課題を解決する本発明に係わるメッキ装置は、表面に導電性を有する基材粒子のメッキ装置であって、前記基材粒子が接触しつつ周回可能な底面とその底面の周縁に沿い立設した周壁面とを備え前記基材粒子を含む粒子群とメッキ液とを収納可能なメッキ室を有するメッキ槽と、前記メッキ室の底面より上方に開口する供給口を有し前記メッキ室の周壁面に沿い旋回するように前記供給口からメッキ液を供給するメッキ液供給管と、前記メッキ室に開口する排出口を有するメッキ液排出管と、前記メッキ室の底面に配置された前記基材粒子に接触する陰極と、前記メッキ室に収納されたメッキ液に浸漬する位置に配置された陽極と、前記陰極及び陽極に接続された電源とを有し、前記メッキ液排出管の排出口は、メッキ液は透過するが基材粒子は透過しないメッキ液透過部材で塞がれているメッキ装置である。   A plating apparatus according to the present invention for solving the above-mentioned problems is a plating apparatus for base particles having conductivity on the surface, and is erected along the bottom surface that can be circulated while the base material particles are in contact with the periphery of the bottom surface. A plating tank having a plating chamber that can store a particle group including the base material particles and a plating solution, and a supply port that opens upward from the bottom surface of the plating chamber. A plating solution supply pipe for supplying a plating solution from the supply port so as to swirl along the wall surface; a plating solution discharge pipe having a discharge port opened to the plating chamber; and the base material disposed on the bottom surface of the plating chamber. A cathode in contact with the particles; an anode disposed at a position immersed in a plating solution housed in the plating chamber; and a power source connected to the cathode and the anode; The plating solution is permeated Particles are plating apparatus is closed by the plating liquid passage member which does not transmit.

かかるメッキ装置では、メッキ室の底面が円形状であるとともに前記メッキ室の周壁面は前記メッキ室の底面に向い縮径した円錐台形状をなし、前記メッキ液排出管が前記円錐台形状の軸芯と同軸に配置されるのが好ましく、前記排出口が前記供給口よりも下方に配置されるメッキ装置にすることでより顕著な効果が発揮される。   In such a plating apparatus, the bottom surface of the plating chamber has a circular shape, the peripheral wall surface of the plating chamber has a truncated cone shape with a diameter reduced toward the bottom surface of the plating chamber, and the plating solution discharge pipe has an axis of the truncated cone shape. It is preferable to be arranged coaxially with the core, and a more remarkable effect can be achieved by using a plating apparatus in which the discharge port is disposed below the supply port.

さらに、メッキ液排出口を塞ぐメッキ液透過部材は、基材粒子が接触する接触面を有し、接触面は、少なくとも前記メッキ液排出管の軸芯と垂直でない傾斜面を有するのが好ましい。   Furthermore, it is preferable that the plating solution permeable member for closing the plating solution discharge port has a contact surface with which the base particle contacts, and the contact surface has at least an inclined surface that is not perpendicular to the axis of the plating solution discharge pipe.

かかるメッキ装置は、次のような作用を奏する。すなわち、メッキ液供給管の供給口から供給されたメッキ液は、メッキ室の周壁面に沿い旋回しつつその底面側に向い流下する。そして、メッキ室がメッキ液で満たされると、メッキ室に開口する排出口を通じメッキ液排出管から排出され、メッキ液供給管から新たなメッキ液を供給することによりメッキ室は常に新鮮なメッキ液で満たされる。   Such a plating apparatus has the following effects. That is, the plating solution supplied from the supply port of the plating solution supply pipe flows down toward the bottom surface while turning along the peripheral wall surface of the plating chamber. Then, when the plating chamber is filled with the plating solution, it is discharged from the plating solution discharge pipe through the discharge port opened to the plating chamber, and the plating chamber is always kept fresh by supplying new plating solution from the plating solution supply pipe. Filled with.

メッキ室の底面に達した旋回流動するメッキ液は、メッキ室に収納された粒子群をメッキ室の底面に接触させつつ旋回運動させる。この底面において陰極に接触した基材粒子は、メッキ液に浸漬する位置に配置された陽極との間でメッキ処理され、メッキ層が基材粒子の表面に形成される。粒子群は、旋回流動するメッキ液により分散することなく互いに混合されながら底面に接触して転動しつつ底面上を旋回運動するので、基材粒子の凝集が抑止されるとともに基材粒子の表面の各部位がメッキ液に触れる機会が均等となり、その結果均一な厚みのメッキ層が形成される。なお、一旦旋回運動を始めた粒子は浮遊することなく、底面に間欠的な接触を繰り返しながら旋回運動を継続する。さらに、メッキ液の旋回流により基材粒子はメッキ室の底面に接触しつつ転動するため、基材粒子は他の基材粒子と接触する確率が高まり、よって陰極と接触した基材粒子と高頻度で電気的に接続され、連続メッキに近い処理を行うことが可能となり、基材粒子に効率的にメッキ層を形成することができ、さらに基材粒子同士の接触により形成されたメッキ層が平滑化され、表面が極めて平滑でかつ均一な厚みのメッキ層が形成される。   The swirling and flowing plating solution that has reached the bottom surface of the plating chamber causes the particle group stored in the plating chamber to swirl while contacting the bottom surface of the plating chamber. The base material particles in contact with the cathode on the bottom surface are subjected to a plating treatment with an anode disposed at a position immersed in the plating solution, and a plating layer is formed on the surface of the base material particles. The particles are swirling on the bottom surface while rolling while contacting the bottom surface while being mixed with each other without being dispersed by the swirling flowing plating solution. Evenly, each of the parts touches the plating solution, and as a result, a plating layer having a uniform thickness is formed. In addition, the particle | grains which started the turning motion will continue a turning motion, repeating intermittent contact with the bottom face, without floating. Furthermore, since the substrate particles roll while being in contact with the bottom surface of the plating chamber due to the swirling flow of the plating solution, the substrate particles are more likely to come into contact with other substrate particles, and thus the substrate particles in contact with the cathode It is electrically connected with high frequency, and it is possible to perform a process close to continuous plating, and it is possible to efficiently form a plating layer on the base particles, and further, a plating layer formed by contact between the base particles Is smoothed to form a plating layer having a very smooth surface and a uniform thickness.

ここで、メッキ室の底面を旋回運動している基材粒子は、メッキ液排出管に向うメッキ液の流れに乗り当該底面を離れ、メッキ液とともにメッキ液排出管から流出する可能性がある。しかしながら、メッキ液排出管の排出口は、メッキ液は透過するが基材粒子は透過しないメッキ液透過部材で塞がれているので、メッキ液透過部材はメッキ室からのメッキ液の排出を阻害することなく、基材粒子の流出を阻止する。メッキ液透過部材で流出が阻止された基材粒子は、上記したメッキ室の周壁面に沿う旋回流に捕捉され再びメッキ室の底面まで運ばれ、メッキ処理が施される。このようにメッキ液透過部材を設けることでメッキ室から基材粒子が流出することを防止でき、高い収率で基材粒子にメッキ処理を行うことができる。   Here, there is a possibility that the base material particles swirling around the bottom surface of the plating chamber ride on the flow of the plating solution toward the plating solution discharge pipe, leave the bottom surface, and flow out of the plating solution discharge tube together with the plating solution. However, the discharge port of the plating solution discharge pipe is blocked by a plating solution permeable member that allows the plating solution to permeate but does not allow the base material particles to penetrate. Therefore, the plating solution permeable member obstructs the discharge of the plating solution from the plating chamber. Without causing the base particles to flow out. The base material particles that have been prevented from flowing out by the plating solution permeable member are captured by the swirling flow along the peripheral wall surface of the plating chamber and transported again to the bottom surface of the plating chamber, where the plating process is performed. Thus, by providing the plating solution permeable member, the base material particles can be prevented from flowing out of the plating chamber, and the base material particles can be plated with a high yield.

上記説明のとおり、本発明に係るメッキ装置によれば、表面に導電性を有する基材粒子に均一な厚みのメッキ層を高い収率で形成可能なメッキ装置を提供するという本発明の目的を達成することができる。なお、上記メッキ装置の好ましい態様及びその効果は以下で詳細に説明する。   As described above, according to the plating apparatus according to the present invention, the object of the present invention is to provide a plating apparatus capable of forming a plating layer having a uniform thickness on a surface of conductive substrate particles with high yield. Can be achieved. In addition, the preferable aspect and effect of the said plating apparatus are demonstrated in detail below.

本発明に係わる一実施態様のメッキ装置の概略構成を示す図である。It is a figure which shows schematic structure of the plating apparatus of one embodiment concerning this invention. 図1のメッキ装置及びその好ましい態様のメッキ装置の平面図である。It is a top view of the plating apparatus of FIG. 1 and the plating apparatus of the preferable aspect. 図1のメッキ装置及びその好ましい態様のメッキ装置の部分拡大断面図である。It is the elements on larger scale of the plating apparatus of FIG. 1, and the plating apparatus of the preferable aspect.

以下、本発明に係るメッキ装置をその実施態様に基づき図面を参照しつつ説明する。下記の実施態様では、基材粒子であるCuを主体とした球形のコアボールの表面にSnを主体としたメッキ層を被覆するメッキ装置を例として説明するが、本発明はこれに限定されることなく、例えば無電解メッキでニッケル等の導電性を有する金属層を表面に形成した樹脂又はセラミックス粒子その他表面に導電性を有する基材粒子の表面に金属被覆層を電気メッキ法で形成する場合に適用することもできる。また、コアボールのように球状の基材粒子のみならず、例えば長軸と短軸を有する針状の基材粒子や形状的特徴のない不定形の基材粒子にも適用することができる。さらに、下記で説明するメッキ装置の各構成要素は、単独に又は適宜組み合わせて使用することもできる。   Hereinafter, a plating apparatus according to the present invention will be described based on its embodiments with reference to the drawings. In the following embodiment, a description will be given of a plating apparatus that coats the surface of a spherical core ball mainly composed of Cu, which is a base particle, with a plating layer mainly composed of Sn, but the present invention is limited to this. Without forming the metal coating layer on the surface of the resin or ceramic particles or other conductive particles on the surface by electroless plating, for example, electroless plating or other conductive metal layer such as nickel It can also be applied to. Further, the present invention can be applied not only to spherical base particles such as a core ball, but also to, for example, needle-like base particles having a major axis and a minor axis, and amorphous base particles having no shape characteristics. Furthermore, each component of the plating apparatus described below can be used alone or in appropriate combination.

メッキ装置の概略構成である図1の正面図と、図1の密閉蓋1Lを取り外した状態である図2(a)の平面図に示されるように、メッキ装置1は、本体部1a、メッキ液供給管1e及びメッキ液排出管1cを介して本体部1aに接続されたメッキ液循環手段1b、直流電源回路1hを基本的な構成として備えている。   As shown in the front view of FIG. 1 which is a schematic configuration of the plating apparatus and the plan view of FIG. 2A in which the sealing lid 1L of FIG. 1 is removed, the plating apparatus 1 includes a main body 1a, plating A plating solution circulation means 1b and a DC power supply circuit 1h, which are connected to the main body 1a via a solution supply pipe 1e and a plating solution discharge pipe 1c, are provided as a basic configuration.

本体部1aにおいて、符号1jは、円形状の底面1pとその底面1pに向い縮径した円錐台形状の周壁面1qを有するメッキ室1mが形成されたメッキ槽である。メッキ液に対し耐食性を有する非導電性の絶縁物である樹脂等で構成されたメッキ槽1jは、上部が開口した碗型の容器1kと、上部開口を閉塞するように容器1kの上面に密着された密閉蓋1Lとを有している。この容器1kと密閉蓋1Lとで形成される空間がメッキ室1mを構成し、多数のコアボール91を含むボール群(粒子群)9と所定量のメッキ液Lとがメッキ室1mに収納される。なお、メッキ室を構成している底面及び周壁面は、上記構成に限定されず、底面は楕円形状などコアボールが接触しつつ周回可能な形状を有していればよく、また周壁面は底面に立設され当該底面とともにメッキ室を構成できるものであれば良い。   In the main body 1a, reference numeral 1j denotes a plating tank in which a plating chamber 1m having a circular bottom surface 1p and a frustoconical peripheral wall surface 1q having a diameter reduced toward the bottom surface 1p is formed. A plating tank 1j made of a resin or the like, which is a non-conductive insulator having corrosion resistance to the plating solution, is closely attached to a bowl-shaped container 1k having an upper opening and an upper surface of the container 1k so as to close the upper opening. And a sealed lid 1L. A space formed by the container 1k and the sealing lid 1L constitutes a plating chamber 1m, and a ball group (particle group) 9 including a large number of core balls 91 and a predetermined amount of plating solution L are stored in the plating chamber 1m. The The bottom surface and the peripheral wall surface constituting the plating chamber are not limited to the above configuration, and the bottom surface only needs to have a shape that allows the core ball to circulate while being in contact with the core ball, and the peripheral wall surface is the bottom surface. As long as the plating chamber can be formed together with the bottom surface, it is sufficient.

メッキ液供給管1eは、メッキ室1mの周壁面1qの接線方向にその軸心が沿い、メッキ室1mの上部にメッキ液供給口1fが開口するようにメッキ槽1jにその一端が水平に接続され、メッキ液排出管1cは、密閉蓋1Lの中央部においてメッキ室1mの軸芯と同軸にメッキ液排出口1dがメッキ室1mに開口するようにメッキ槽1jにその一端が接続され、それぞれの他端はメッキ液循環手段1bに接続されている。メッキ液排出管1cはメッキ室1mの軸芯と同軸に配置されることで、旋回流aに与える影響を抑制でき、底面1pにおけるコアボール91の旋回運動を安定させることが可能となる。なお、メッキ液供給管1eは、旋回流aが形成されるよう、その一端をメッキ槽1jに対して水平でなく、上下に一定の角度をなすようメッキ液供給口1fを開口して接続しても良い。また、単にメッキ室1mからオーバーフローするメッキ液Lを排出させるだけであればメッキ液排出管1cは密閉蓋1Lの外周部に配置しても良い。   The plating solution supply pipe 1e is horizontally connected at one end thereof to the plating tank 1j so that the axis of the plating solution extends along the tangential direction of the peripheral wall 1q of the plating chamber 1m, and the plating solution supply port 1f opens above the plating chamber 1m. One end of the plating solution discharge pipe 1c is connected to the plating tank 1j so that the plating solution discharge port 1d opens in the plating chamber 1m coaxially with the axial center of the plating chamber 1m at the center of the sealing lid 1L. Is connected to the plating solution circulating means 1b. By disposing the plating solution discharge pipe 1c coaxially with the axial center of the plating chamber 1m, the influence on the swirling flow a can be suppressed, and the swirling motion of the core ball 91 on the bottom surface 1p can be stabilized. In addition, the plating solution supply pipe 1e is connected to the plating solution supply port 1f by opening the plating solution supply port 1f so that one end thereof is not horizontal with respect to the plating tank 1j but at a certain angle so that the swirling flow a is formed. May be. Further, if the plating solution L overflowing from the plating chamber 1m is simply discharged, the plating solution discharge pipe 1c may be disposed on the outer periphery of the sealing lid 1L.

本態様のメッキ液排出管1cは、密閉蓋1Lの中央部を貫通しメッキ室1mの中に突き出た状態となるように配置され、メッキ液排出口1dが軸芯方向においてメッキ室1mの中間部、具体的にはメッキ液供給口1fよりも下方に位置させ、更にメッキ液排出管1cを矢印dで示すように軸心方向に沿い移動できるようにした態様である。かかるメッキ液排出管1cを備えたメッキ装置1によれば、メッキ液排出口1dはメッキ室1mの底面1pに近接しているので、メッキ液Lの上昇流bは底面1pの近くで排出され、上昇流bが旋回流aに与える影響が抑制され、底面1pにおけるコアボール91の旋回運動を安定させることが可能となる。メッキ液排出管1cは、旋回流aの流れを阻害しない外壁と、上昇流bの流れを阻害しない内壁からなる形状の管であれば良いが、円筒状の管が好ましい。   The plating solution discharge pipe 1c of this embodiment is disposed so as to pass through the central portion of the sealing lid 1L and protrude into the plating chamber 1m, and the plating solution discharge port 1d is in the middle of the plating chamber 1m in the axial direction. In this embodiment, the plating solution discharge pipe 1c can be moved along the axial direction as indicated by an arrow d. According to the plating apparatus 1 provided with such a plating solution discharge pipe 1c, the plating solution discharge port 1d is close to the bottom surface 1p of the plating chamber 1m, so that the upward flow b of the plating solution L is discharged near the bottom surface 1p. The influence of the upward flow b on the swirling flow a is suppressed, and the swirling motion of the core ball 91 on the bottom surface 1p can be stabilized. The plating solution discharge pipe 1c may be a pipe having an outer wall that does not hinder the flow of the swirling flow a and an inner wall that does not hinder the flow of the upward flow b, but is preferably a cylindrical pipe.

メッキ液循環手段1bは、図示しないメッキ液貯蔵タンク、メッキ液循環用ポンプ、メッキ液浄化用フィルタ及び流量制御弁等で構成されており、メッキ液循環手段1bから送り出されたメッキ液Lは、メッキ液供給管1eを流通してメッキ液供給口1fからメッキ室1mに供給され、図1及び図2(a)において破線で示される旋回流aを形成してメッキ室1mの周壁面1qに沿い流下する。また、メッキ液循環手段1bのメッキ液循環用ポンプや流量制御弁を調整すればメッキ室1mに供給されるメッキ液Lの流速や流量を経時的に変化させることができる。また、上記メッキ液供給管1eは複数本設けても良い。この場合、メッキ室1mの周壁面1qの同一円周上に例えば一定の角度ピッチで複数のメッキ液供給口1fが開口するようメッキ液供給管を配置しても良いし、旋回流aを形成して流下するメッキ液Lの流れに沿い、複数のメッキ液供給口1fが開口するようメッキ液供給管1eを配置しても良い。以上の構成によりメッキ液Lは、図1に示すように、下方に傾斜した周壁面1qに沿い旋回流動しつつ螺旋状に流下し、メッキ室1mの底面1pに達し、その後、図において破線bで示すような上昇流となり、メッキ液排出口1dを通じてメッキ液排出管1cから排出されてメッキ液循環手段1bに戻る。   The plating solution circulation means 1b includes a plating solution storage tank, a plating solution circulation pump, a plating solution purification filter, a flow rate control valve, and the like (not shown). The plating solution L sent from the plating solution circulation means 1b is: It flows through the plating solution supply pipe 1e and is supplied from the plating solution supply port 1f to the plating chamber 1m, and forms a swirling flow a indicated by a broken line in FIGS. 1 and 2A to form the circumferential wall 1q of the plating chamber 1m. Down the river. Further, the flow rate and flow rate of the plating solution L supplied to the plating chamber 1m can be changed with time by adjusting the plating solution circulation pump and the flow rate control valve of the plating solution circulation means 1b. A plurality of the plating solution supply pipes 1e may be provided. In this case, the plating solution supply pipes may be arranged on the same circumference of the peripheral wall surface 1q of the plating chamber 1m so that, for example, a plurality of plating solution supply ports 1f are opened at a constant angular pitch, and the swirling flow a is formed. The plating solution supply pipe 1e may be arranged so that a plurality of plating solution supply ports 1f are opened along the flow of the plating solution L flowing down. With the above configuration, as shown in FIG. 1, the plating solution L spirally flows along the circumferential wall 1q inclined downward and flows down spirally to reach the bottom surface 1p of the plating chamber 1m. As shown in the figure, the flow increases, and is discharged from the plating solution discharge pipe 1c through the plating solution discharge port 1d and returns to the plating solution circulation means 1b.

ここで、本発明の特徴の一つであるメッキ液透過部材について、図1及び図1の部分拡大断面図である図3(a)を参照しつつ説明する。メッキ液排出管1cの下方底面に固定され、その排出口1dを塞いでいる板状のメッキ液透過部材3は、メッキ液Lは透過してコアボール91は透過しない、例えばコアボール91よりも小さな空隙を有するメッシュ状の非導電性のフィルタにより形成されている。フィルタのメッシュ形状は四角、六角、多角、円形等の形状とすることが可能であり、メッキ液排出管1cへの固定は接着剤で直接固定しても良いし、部材を介してメッキ液排出管1cと嵌合固定しても良い。メッキ液透過部材3は、図3(a)に示すように、メッキ液を透過させてメッキ液排出管1cを通じてメッキ室1mからメッキ液Lを円滑に排出するとともに、コアボール91が接触するボール接触面3aであるその底面で、上昇するメッキ液の流れbに捕捉されメッキ液排出管1cから流出しようとするコアボール91aの流れを阻止するものである。なお、メッキ液透過部材3としては、コアボール91が透過しない所定の空隙を有する金属、樹脂、セラミックスその他の素材からなるフィルタが使用できる。また、メッキ液透過部材3として空隙がほぼ直線状に配置された蜂巣状のフィルタを用いれば、メッキ液透過部材3をメッキ液が透過する際の流動抵抗を低下せしめ、メッキ液の排出を円滑に行うことができるので好ましい。   Here, the plating solution transmitting member which is one of the features of the present invention will be described with reference to FIG. 1 and FIG. 3A which is a partially enlarged sectional view of FIG. The plate-like plating solution transmitting member 3 fixed to the lower bottom surface of the plating solution discharge pipe 1c and closing the discharge port 1d transmits the plating solution L and does not transmit the core ball 91. It is formed by a mesh-like nonconductive filter having a small gap. The mesh shape of the filter can be square, hexagonal, polygonal, circular, or the like, and can be fixed directly to the plating solution discharge pipe 1c with an adhesive, or the plating solution can be discharged through a member. It may be fitted and fixed to the tube 1c. As shown in FIG. 3A, the plating solution permeable member 3 allows the plating solution to pass therethrough and smoothly discharges the plating solution L from the plating chamber 1m through the plating solution discharge pipe 1c. At the bottom surface, which is the contact surface 3a, the flow of the core ball 91a which is trapped by the rising plating solution flow b and flows out of the plating solution discharge pipe 1c is prevented. As the plating solution permeable member 3, a filter made of a metal, resin, ceramics or other material having a predetermined gap through which the core ball 91 does not pass can be used. In addition, if a honeycomb-shaped filter having voids arranged substantially linearly is used as the plating solution permeable member 3, the flow resistance when the plating solution passes through the plating solution permeable member 3 is reduced, and the plating solution can be smoothly discharged. This is preferable.

そして、メッキ液透過部材3のボール接触面(底面)3aで動きが阻止されたコアボール91aは、メッキ液の上昇流bがボール接触面3aに衝突し横方向への向きを変えた流れ(図示矢印c参照)に押されて接触面3aに接しつつメッキ室1mの周壁面1qの方向へ移動する。周壁面1qの側に移動したコアボール91bは、メッキ室1mの周壁面1qに沿い流れるメッキ液Lの旋回流aに捕捉されその底面1pに運ばれ、再びメッキ処理される。したがって、ボール接触面3aにおけるコアボール91aの移動が阻害されないように、ボール接触面3aは平滑な面であるか、或いはボール接触面3aの外周に向って放射状のパターンが形成された面であることが好ましい。なお、ボール接触面3aの断面視は必ずしも直線的である必要は無く、底面に向かって凸に膨らむ曲線的な断面であっても良い。   The core ball 91a whose movement is prevented by the ball contact surface (bottom surface) 3a of the plating solution permeable member 3 is a flow in which the upward flow b of the plating solution collides with the ball contact surface 3a and changes its direction in the lateral direction ( It is pushed by the arrow c) and moves toward the peripheral wall 1q of the plating chamber 1m while being in contact with the contact surface 3a. The core ball 91b that has moved to the side of the peripheral wall surface 1q is captured by the swirling flow a of the plating solution L flowing along the peripheral wall surface 1q of the plating chamber 1m, is carried to the bottom surface 1p, and is again plated. Therefore, the ball contact surface 3a is a smooth surface or a surface on which a radial pattern is formed toward the outer periphery of the ball contact surface 3a so that the movement of the core ball 91a on the ball contact surface 3a is not hindered. It is preferable. The cross-sectional view of the ball contact surface 3a is not necessarily linear, and may be a curved cross-section that bulges toward the bottom.

メッキ液透過部材の好ましい態様について、図3(b)〜(e)を参照しつつ説明する。図3(b)〜(e)に示すメッキ液透過部材4〜7は、そのボール接触面4a〜7aが、水平面内においてメッキ液排出口1dの中央4b〜7bから周壁面1qへ向い延び、かつ周壁面1qと相対してメッキ液排出管の軸芯に垂直でない傾斜面4c〜7cを有する点で共通している。まず、メッキ液透過部材4について説明するが、各図において図3(a)と同一の構成については同一符号を付しており、詳細な説明を省略する。   A preferred embodiment of the plating solution permeable member will be described with reference to FIGS. 3 (b) to (e), the plating solution transmitting members 4 to 7 have their ball contact surfaces 4a to 7a extending from the center 4b to 7b of the plating solution discharge port 1d toward the peripheral wall surface 1q in the horizontal plane. And it is common in the point which has the inclined surfaces 4c-7c which are not perpendicular | vertical to the axial center of a plating solution discharge pipe opposite to the surrounding wall surface 1q. First, the plating solution permeable member 4 will be described. In each figure, the same components as those in FIG. 3A are denoted by the same reference numerals, and detailed description thereof will be omitted.

第1の好ましい態様のメッキ液透過部材4は、図3(b)に示すように、メッキ室1mの底面1pの側に中央の先端鋭部が向いた略傘形状をなし、水平面内において先端鋭部がメッキ液排出口1dの中央に位置してメッキ液排出口1dを塞ぐようにメッキ液排出管1cの下部底面に接着剤で固定されている。本態様のメッキ液透過部材4において、その底面、つまり、水平面内においてメッキ液排出口1dの中央4bから周壁面1qの全円周に向い等角度で延びかつ周壁面1qと相対している錐形状をなすボール接触面4aは、その全ての面がメッキ液排出管の軸芯に垂直でない傾斜面4cとなっている。   As shown in FIG. 3 (b), the plating liquid permeable member 4 of the first preferred embodiment has a substantially umbrella shape with a sharp tip at the center facing the bottom surface 1p side of the plating chamber 1m, and has a tip in a horizontal plane. The sharp portion is fixed to the bottom surface of the plating solution discharge pipe 1c with an adhesive so as to close the plating solution discharge port 1d at the center of the plating solution discharge port 1d. In the plating solution permeable member 4 of this aspect, a cone extending from the center 4b of the plating solution discharge port 1d toward the entire circumference of the peripheral wall surface 1q at an equal angle and facing the peripheral wall surface 1q in the bottom surface, that is, in a horizontal plane. The ball contact surface 4a having a shape is an inclined surface 4c whose entire surface is not perpendicular to the axis of the plating solution discharge pipe.

かかる傾斜面4cを有するメッキ液透過部材4は、以下のような好ましい作用を奏する。すなわち、メッキ液の上昇流bに捕捉されてメッキ液排出管1cに向うコアボール91aは、メッキ液透過部材4の接触面4aで流動が阻止される。ボール接触面4aで動きが阻止されたコアボール91は、メッキ液の上昇流bが傾斜面4cに衝突し、傾斜面4cの傾斜に沿い向きを変えた流れ(図示矢印d参照)に押されて傾斜面4cに接しつつメッキ室1mの周壁面1qの方向へ移動するが、このときのコアボール91の移動は、図3(a)のメッキ透過部材3を用いた場合に比べて速やかな移動となる。周壁面1qの側に移動したコアボール91bは、メッキ室1mの周壁面1qに沿い流れるメッキ液Lの旋回流aに捕捉されその底面1pに運ばれ、再びメッキ処理される。なお、本態様のメッキ液透過部材4では、ボール接触面4aの全てが傾斜面4cとなるよう構成されているので、ボール接触面4aのいずれの箇所でコアボール91aを捕捉したとしても、上記した作用を奏することができる。   The plating solution permeable member 4 having such an inclined surface 4c has the following preferable effects. That is, the core ball 91 a that is captured by the rising flow b of the plating solution and faces the plating solution discharge pipe 1 c is prevented from flowing at the contact surface 4 a of the plating solution transmitting member 4. The core ball 91 whose movement is blocked by the ball contact surface 4a is pushed by a flow (see arrow d in the drawing) in which the upward flow b of the plating solution collides with the inclined surface 4c and changes its direction along the inclination of the inclined surface 4c. While moving in the direction of the peripheral wall 1q of the plating chamber 1m while in contact with the inclined surface 4c, the movement of the core ball 91 at this time is quicker than in the case of using the plating transmission member 3 of FIG. Move. The core ball 91b that has moved to the side of the peripheral wall surface 1q is captured by the swirling flow a of the plating solution L flowing along the peripheral wall surface 1q of the plating chamber 1m, is carried to the bottom surface 1p, and is again plated. In the plating solution permeable member 4 of this aspect, since all of the ball contact surface 4a is configured to be the inclined surface 4c, the core ball 91a can be captured at any location on the ball contact surface 4a. The effect which it did can be show | played.

なお、傾斜面は、上記メッキ液透過部材4の傾斜面4cのように断面視が直線で構成されるものに限定されず、例えば図3(c)に示すメッキ液透過部材5の傾斜面5cのように曲線で構成される傾斜面であってもよく、また中央に平坦面5dが形成されその平坦面5dの外周縁5bから傾斜面5cが延びる形態であっても問題ない。   The inclined surface is not limited to the inclined surface 4c of the plating solution permeable member 4 and the inclined surface 5c of the plating solution permeable member 5 shown in FIG. It may be an inclined surface constituted by a curved line, and there is no problem even if the flat surface 5d is formed at the center and the inclined surface 5c extends from the outer peripheral edge 5b of the flat surface 5d.

図1において、符号1nは容器1kの底部に配置された円板状の陰極であり、陰極1nの上面がメッキ室1mの底面1pとなるよう構成されている。直流電源回路1hの負極に接続された陰極1nは、例えばステンレススチール、チタン、白金メッキされたチタン等で形成されている。ボール群9は、メッキ室1mを旋回流動するメッキ液Lにより、図において符号Cで示すように外周端から半径方向に所定の範囲の中で底面1pと接触しつつ旋回運動し、これによりコアボール91は底面1pの上を攪拌されながら転動する。   In FIG. 1, reference numeral 1n denotes a disk-like cathode disposed at the bottom of the container 1k, and the upper surface of the cathode 1n is configured to be the bottom surface 1p of the plating chamber 1m. The cathode 1n connected to the negative electrode of the DC power supply circuit 1h is made of, for example, stainless steel, titanium, platinum-plated titanium, or the like. The ball group 9 is swung by the plating liquid L swirling in the plating chamber 1m while being in contact with the bottom surface 1p in a predetermined range in the radial direction from the outer peripheral end, as indicated by reference numeral C in the figure. The ball 91 rolls on the bottom surface 1p while being stirred.

底面1pに配置された多数のコアボール91のうちのごく一部にのみ接するよう陰極を配しても良いが、陰極に直に接しないコアボール91は陰極に接するコアボール91を介して通電されるため、コアボール91同士の接触抵抗により陰極から離れた位置にあるコアボール91の電位が低下して当該コアボール91における電流密度が低くなり、メッキ効率が低下する可能性がある。したがって、平面視で見たとき、図2(a)に示すように、陰極はボール群9と十分な接触面積を有することが好ましく、本実施態様のように円板形状に形成しておくことが好ましい。この場合には、容器1kそのものを陰極材料で形成し、容器1kの内側面に耐食性及び絶縁性のある樹脂被覆を施し、容器1kの底面が陰極1nとして作用するように構成しても良い。   Although the cathode may be arranged so as to be in contact with only a part of the many core balls 91 arranged on the bottom surface 1p, the core ball 91 not in direct contact with the cathode is energized through the core ball 91 in contact with the cathode. Therefore, the potential of the core ball 91 at a position away from the cathode due to the contact resistance between the core balls 91 is lowered, the current density in the core ball 91 is lowered, and the plating efficiency may be lowered. Therefore, when viewed in a plan view, as shown in FIG. 2A, the cathode preferably has a sufficient contact area with the ball group 9, and is formed in a disk shape as in this embodiment. Is preferred. In this case, the container 1k itself may be formed of a cathode material, and the inner surface of the container 1k may be coated with a corrosion-resistant and insulating resin coating so that the bottom surface of the container 1k acts as the cathode 1n.

一方で、図1及び図2(a)に示すように、メッキ室1mの底面1pの全てを陰極1nで構成した場合には、メッキ層の形成速度が低下するおそれがある。すなわち、ボール群9は、旋回流動するメッキ液Lで底面1p(陰極1nの上面)の外周縁部の所定の領域Cを旋回運動するため、ボール群9の存在しない陰極1nの上面の中央部にもメッキが無駄に析出してしまうからである。したがって、図2(b)及びその中心線に沿う断面図である図2(c)において符号2nで示すように、陰極は、ボール群9が旋回運動する領域に対応し底面2pの外周縁に円環状に設けておき、底面2pの中央部2zは電気的絶縁材で構成しておくことが好ましい。なお、図2(b)(c)の場合には、中央部2zは容器1kと一体に構成されているが、例えば中央部2zを絶縁性セラミックスなどで別体に形成し、容器1kに組み込むようにしても良い。   On the other hand, as shown in FIGS. 1 and 2 (a), when all of the bottom surface 1p of the plating chamber 1m is constituted by the cathode 1n, the formation rate of the plating layer may be lowered. That is, since the ball group 9 swirls in a predetermined region C on the outer peripheral edge of the bottom surface 1p (the upper surface of the cathode 1n) with the plating solution L that swirls and flows, the central portion of the upper surface of the cathode 1n without the ball group 9 exists. This is also because the plating is deposited in vain. Therefore, as shown by reference numeral 2n in FIG. 2B and FIG. 2C, which is a cross-sectional view along the center line thereof, the cathode corresponds to the region in which the ball group 9 swivels and is located on the outer periphery of the bottom surface 2p. It is preferably provided in an annular shape, and the central portion 2z of the bottom surface 2p is preferably made of an electrically insulating material. In the case of FIGS. 2B and 2C, the central portion 2z is integrally formed with the container 1k. For example, the central portion 2z is formed separately from insulating ceramics and incorporated into the container 1k. You may do it.

さらに、図2(c)に示すように、陰極2nは、その表面が底面2pと同一平面を形成するように露出する第1の陰極2yのみならず、その表面が周壁面1qと同一の内周面を形成するように露出する第2の陰極2xを容器1kの基端部に備えていても良い。この陰極2xと2yは、図示するように、横断面がくの字状となるよう各々の一端において結合させた陰極2nとして容器1kに組み込むことができる。かかる第2の陰極2xを設けることによりボール群9が接触することが可能な陰極2nの面積を増加させることができ、高いメッキ効率を維持したまま均一なメッキ層をコアボール91に形成することが可能となる。なお、陰極2nの表面におけるメッキの析出を防止しメッキ効率を高めるためには、図2(c)に示すように、陰極2nは、ボール群9が旋回流動する範囲Cの中に含まれるのが好ましい。また、図2(b)で示す陰極2nは円周方向において連続的な円環形状に形成してあるが、一部に不連続部分があっても実質的に円環状に形成されていれば良い。   Furthermore, as shown in FIG. 2 (c), the cathode 2n is not only the first cathode 2y exposed so that its surface forms the same plane as the bottom surface 2p, but also its inner surface is the same as the peripheral wall 1q. You may equip the base end part of the container 1k with the 2nd cathode 2x exposed so that a surrounding surface may be formed. As shown in the figure, the cathodes 2x and 2y can be incorporated into the container 1k as a cathode 2n coupled at one end so as to have a cross-sectional cross section. By providing the second cathode 2x, the area of the cathode 2n with which the ball group 9 can contact can be increased, and a uniform plating layer can be formed on the core ball 91 while maintaining high plating efficiency. Is possible. In order to prevent the deposition of plating on the surface of the cathode 2n and increase the plating efficiency, the cathode 2n is included in the range C in which the ball group 9 swirls as shown in FIG. Is preferred. Further, the cathode 2n shown in FIG. 2 (b) is formed in a continuous annular shape in the circumferential direction, but if it is formed in a substantially annular shape even if there is a discontinuous portion in part. good.

図1において符号1oは、陰極1nと相対するよう、メッキ液排出管1cの外周面に配置された錫を含む陽極である。陽極1oは、メッキ室1mを満たすメッキ液Lに浸漬する位置に位置するよう、ステンレススチール、チタン、白金メッキされたチタン等の支持部材を介して密閉蓋1Lに固定され、直流電源回路1hの正極に接続されている。   In FIG. 1, reference numeral 1o denotes an anode containing tin disposed on the outer peripheral surface of the plating solution discharge pipe 1c so as to face the cathode 1n. The anode 1o is fixed to the hermetic lid 1L via a support member such as stainless steel, titanium, platinum-plated titanium or the like so as to be positioned at a position where the anode 1o is immersed in the plating solution L that fills the plating chamber 1m. Connected to the positive electrode.

上記メッキ装置1の動作について、図1及び図3(a)を参照して説明する。まず、準備工程である。準備工程では、密閉蓋1Lを開けて所定数のコアボール91をメッキ室1mの底面1p(陰極1nの上面)に載置し、メッキ液Lをメッキ液循環手段1bのメッキ液貯蔵タンクに格納する。なお、コアボール91としては、酸洗処理し表面を清浄化したものを使用し、更に必要に応じ表面に下地層としてニッケルメッキ層を形成したものを使用しても良い。また、半田メッキするためのメッキ液は、例えばSn−Ag−Cu系の液組成を有する大和化成製の商品名「DAIN TINSIL SBB 2」やローム&ハース製の商品名「SOLDERON BP SAC5000」等に添加剤を添加して、例えばホウフッ化浴など周知のメッキ浴に適宜調整して使用することができる。ボール群9を構成する粒子はコアボール91に限定されず、例えばボール群9の攪拌を促進するための攪拌促進体として、例えば半田や鋼を主体とした導電性ダミーボール、樹脂やセラミックス等を主体とした非導電性ダミーボールを適量加えても良い。   The operation of the plating apparatus 1 will be described with reference to FIGS. 1 and 3 (a). First, it is a preparation process. In the preparation step, the sealing lid 1L is opened, a predetermined number of core balls 91 are placed on the bottom surface 1p of the plating chamber 1m (the top surface of the cathode 1n), and the plating solution L is stored in the plating solution storage tank of the plating solution circulation means 1b. To do. In addition, as the core ball 91, a pickled surface cleaned surface may be used, and if necessary, a surface in which a nickel plating layer is formed as a base layer may be used. The plating solution for solder plating is, for example, the trade name “DAIN TINSIL SBB 2” manufactured by Daiwa Kasei Co., Ltd. having a Sn—Ag—Cu based liquid composition, the product name “SOLDERON BP SAC5000” manufactured by Rohm & Haas, etc. Additives can be added to a known plating bath such as a borofluoride bath, for example, and used as appropriate. The particles constituting the ball group 9 are not limited to the core ball 91. For example, as a stirring accelerator for promoting the stirring of the ball group 9, for example, conductive dummy balls mainly made of solder or steel, resin, ceramics, etc. An appropriate amount of a non-conductive dummy ball as a main component may be added.

密閉蓋1Lを閉じてメッキ室1mを密閉空間にした後、メッキ装置1を作動させる。メッキ装置1は、メッキ液循環手段1bを作動させてメッキ液供給管1eを通じてメッキ室1mへ所定の流量でメッキ液Lを供給する。メッキ室1mがメッキ液Lで満たされると、メッキ液Lは、メッキ室1mの周壁面1qに沿い旋回するとともに周壁面1qの傾きに沿い底面1pに向い螺旋状に流下する旋回流aとなる。なお、メッキ液Lの供給の初期段階ではメッキ液Lの流れが不安定であるため、不安定なメッキ液Lの流れに乗りメッキ室1mの外にコアボール91が流出する場合があるが、メッキ装置1にはメッキ液透過部材3が設けられているのでこの初期段階での流出を防止することができる。   After closing the sealing lid 1L and making the plating chamber 1m into a sealed space, the plating apparatus 1 is operated. The plating apparatus 1 operates the plating solution circulating means 1b to supply the plating solution L at a predetermined flow rate to the plating chamber 1m through the plating solution supply pipe 1e. When the plating chamber 1m is filled with the plating solution L, the plating solution L turns along the peripheral wall surface 1q of the plating chamber 1m and turns into a swirling flow a that flows spirally along the inclination of the peripheral wall surface 1q toward the bottom surface 1p. . In addition, since the flow of the plating solution L is unstable at the initial stage of the supply of the plating solution L, the core ball 91 may flow out of the plating chamber 1m due to the unstable flow of the plating solution L. Since the plating apparatus 1 is provided with the plating solution permeable member 3, the outflow at this initial stage can be prevented.

下方に向い縮径する円錐台形状をなすメッキ室1mの周壁面1qに沿いメッキ室1mを旋回流下するメッキ液Lは底面1pに近づくに従い旋回速度が増加し、底面1pに達する。底面1pに達したメッキ液Lの旋回流aは、底面1pに接触しているボール群9を当該底面1pに押し付けつつ旋回運動させる。ここで、ボール群9に含まれるコアボール91は、底面1p、すなわち直流電源回路1hの負極に接続された陰極1nの上面に接触しているので、陽極1oとの間でメッキ処理され、その表面にはメッキ層が形成される。そして、メッキ室1mの底面1pに達したメッキ液Lは、底面1pの中央部で上昇流bとなりメッキ液排出口1dを通じてメッキ液排出管1cから排出されメッキ液循環手段1bに戻るため、常に新鮮なメッキ液Lがメッキ室1mに供給され、メッキ室1mの中のメッキ液Lの状態を常に一定とすることができ、その結果コアボール91の表面に均一な厚みのメッキ層が形成される。   The plating liquid L swirling down the plating chamber 1m along the circumferential wall surface 1q of the plating chamber 1m having a truncated cone shape which is reduced in diameter toward the bottom increases in swirling speed as it approaches the bottom surface 1p and reaches the bottom surface 1p. The swirl flow a of the plating solution L that has reached the bottom surface 1p causes the ball group 9 in contact with the bottom surface 1p to swivel while pressing against the bottom surface 1p. Here, since the core ball 91 included in the ball group 9 is in contact with the bottom surface 1p, that is, the upper surface of the cathode 1n connected to the negative electrode of the DC power supply circuit 1h, the core ball 91 is plated with the anode 1o, A plating layer is formed on the surface. Since the plating solution L that has reached the bottom surface 1p of the plating chamber 1m becomes an upward flow b at the center of the bottom surface 1p and is discharged from the plating solution discharge pipe 1c through the plating solution discharge port 1d and returns to the plating solution circulation means 1b. The fresh plating solution L is supplied to the plating chamber 1m, and the state of the plating solution L in the plating chamber 1m can always be kept constant. As a result, a plating layer having a uniform thickness is formed on the surface of the core ball 91. The

ここで、メッキ液排出管1cの排出口1dを塞いでいるメッキ液透過部材3は、メッキ液Lは透過させるがコアボール91は透過させないので、図3(a)に示すように、メッキ液排出管1cを通じてメッキ室1mからメッキ液Lは円滑に排出され、メッキ液排出管1cから流出しようとするコアボール91aの流れはボール接触面3aで阻止される。そして、ボール接触面3aで阻止されたコアボール91aは、ボール接触面3aに沿うメッキ液の流れcに押されメッキ室1mの周壁面1qの方向へ移動する。周壁面1qの側に移動したコアボール91bは、メッキ室1mの周壁面1qに沿い流れるメッキ液Lの旋回流aに捕捉され底面1pに運ばれ、メッキ処理される。これにより、投入したコアボール91のメッキ室1mからの流出が抑制され、コアボール91がメッキ処理されたCuコアボールを高い収率で得ることができる。   Here, the plating solution permeable member 3 closing the discharge port 1d of the plating solution discharge pipe 1c transmits the plating solution L but does not transmit the core ball 91. Therefore, as shown in FIG. The plating solution L is smoothly discharged from the plating chamber 1m through the discharge pipe 1c, and the flow of the core ball 91a that is about to flow out of the plating solution discharge pipe 1c is blocked by the ball contact surface 3a. The core ball 91a blocked by the ball contact surface 3a is pushed by the plating solution flow c along the ball contact surface 3a and moves toward the peripheral wall surface 1q of the plating chamber 1m. The core ball 91b that has moved to the side of the peripheral wall surface 1q is captured by the swirling flow a of the plating solution L flowing along the peripheral wall surface 1q of the plating chamber 1m, and is carried to the bottom surface 1p to be plated. Thereby, the outflow from the plating chamber 1m of the thrown core ball 91 is suppressed, and the Cu core ball in which the core ball 91 is plated can be obtained with high yield.

なお、メッキ室1mの底面1pに接触しつつ旋回運動するコアボール91は底面1pの上を転動し、コアボール91同士が擦り合うように衝突するので、コアボール91同士が付着しがたくコアボール91の凝集が防止され、かつ転動によりコアボール91の表面が底面1pに触れる機会が均等になるので、均一な厚みのメッキ層が形成される。また、コアボール91を充分に転動させ、コアボール91同士が擦り合うように衝突させることにより、コアボール91の表面の一部に形成されたメッキ層を、転動する他のコアボール91で擦り合わせて押し広げるというメッキ層の表面の平滑化効果が生じて表面の一部に選択的にメッキ層が形成されることを防止し、表面が極めて平滑でメッキ層の内部にボイドの少ない均一な厚みのメッキ層を形成することができる。本発明のメッキ装置は、100μm以下の小径のコアボールにメッキ層を形成するのに好適な装置であり、かかる装置で製造した小径のCuコアボールはメッキ層が平滑で真球度が極めて高く、フリップチップ用の接続部材として特に好適である。   In addition, since the core ball 91 that rotates while contacting the bottom surface 1p of the plating chamber 1m rolls on the bottom surface 1p and collides so that the core balls 91 rub against each other, the core balls 91 hardly adhere to each other. Aggregation of the core ball 91 is prevented, and the chance of the surface of the core ball 91 touching the bottom surface 1p due to rolling becomes uniform, so that a plating layer having a uniform thickness is formed. Further, the core ball 91 is sufficiently rolled and collided so that the core balls 91 rub against each other, whereby another plated core layer 91 formed on a part of the surface of the core ball 91 is rolled. This prevents the plating layer from being selectively formed on a part of the surface by rubbing and spreading the surface to prevent the plating layer from being selectively formed. The surface is extremely smooth and has few voids inside the plating layer. A plating layer having a uniform thickness can be formed. The plating apparatus of the present invention is an apparatus suitable for forming a plating layer on a core ball having a small diameter of 100 μm or less. The small diameter Cu core ball manufactured by such an apparatus has a smooth plating layer and extremely high sphericity. Particularly suitable as a connecting member for flip chip.

1:メッキ装置
1a:本体部
1b:メッキ液循環手段
1c:メッキ液排出管
1d:メッキ液排出口
1e:メッキ液供給管
1f:メッキ液供給口
1h:直流電源回路
1j:メッキ槽
1k:容器
1L:密閉蓋
1m:メッキ室
1n(2n):陰極
1o:陽極
1p(2p):底面
1q:周壁面
3、4、5:メッキ液透過部材
3a、4a、5a:接触面
4c、5c:傾斜面
9:ボール群(粒子群)
91:コアボール(基材粒子)
a:旋回流
b:上昇流
L:メッキ液

DESCRIPTION OF SYMBOLS 1: Plating apparatus 1a: Main-body part 1b: Plating liquid circulation means 1c: Plating liquid discharge pipe 1d: Plating liquid discharge port 1e: Plating liquid supply pipe 1f: Plating liquid supply port 1h: DC power supply circuit 1j: Plating tank 1k: Container 1L: Sealing lid 1m: Plating chamber 1n (2n): Cathode 1o: Anode 1p (2p): Bottom 1q: Peripheral wall surface 3, 4, 5: Plating solution permeable member 3a, 4a, 5a: Contact surface 4c, 5c: Inclined Surface 9: Ball group (particle group)
91: Core ball (base particle)
a: swirl flow b: upward flow L: plating solution

Claims (4)

表面に導電性を有する基材粒子のメッキ装置であって、前記基材粒子が接触しつつ周回可能な底面とその底面の周縁に沿い立設した周壁面とを備え前記基材粒子を含む粒子群とメッキ液とを収納可能なメッキ室を有するメッキ槽と、前記メッキ室の底面より上方に開口する供給口を有し前記メッキ室の周壁面に沿い旋回するように前記供給口からメッキ液を供給するメッキ液供給管と、前記メッキ室に開口する排出口を有するメッキ液排出管と、前記メッキ室の底面に配置された前記基材粒子に接触する陰極と、前記メッキ室に収納されたメッキ液に浸漬する位置に配置された陽極と、前記陰極及び陽極に接続された電源とを有し、前記メッキ液排出管の排出口は、メッキ液は透過するが基材粒子は透過しないメッキ液透過部材で塞がれているメッキ装置。   A device for plating base material particles having conductivity on the surface, the base particle comprising a bottom surface capable of rotating while contacting with the base material particle, and a peripheral wall surface erected along the periphery of the bottom surface. A plating tank having a plating chamber capable of storing a group and a plating solution; a supply port that opens upward from the bottom surface of the plating chamber; and a plating solution from the supply port so as to turn along the peripheral wall surface of the plating chamber. A plating solution supply pipe for supplying the plating solution, a plating solution discharge pipe having a discharge opening that opens into the plating chamber, a cathode that contacts the base material particles disposed on the bottom surface of the plating chamber, and is accommodated in the plating chamber. An anode disposed at a position to be immersed in the plating solution, and the cathode and a power source connected to the anode, and the discharge port of the plating solution discharge pipe transmits the plating solution but does not transmit the substrate particles. Clogged with plating solution permeable member Plating apparatus. 前記メッキ室の底面は円形状であるとともに前記メッキ室の周壁面は前記メッキ室の底面に向い縮径した円錐台形状をなし、前記メッキ液排出管は前記円錐台形状の軸芯と同軸に配置されている請求項1に記載のメッキ装置。   The bottom surface of the plating chamber has a circular shape, and the peripheral wall surface of the plating chamber has a truncated cone shape with a diameter reduced toward the bottom surface of the plating chamber, and the plating solution discharge pipe is coaxial with the axis of the truncated cone shape. The plating apparatus according to claim 1, which is arranged. 前記排出口は前記供給口よりも下方に配置されている請求項2に記載のメッキ装置。   The plating apparatus according to claim 2, wherein the discharge port is disposed below the supply port. 前記メッキ液透過部材は、前記基材粒子が接触する接触面を有し、前記接触面は、少なくとも前記メッキ液排出管の軸芯に垂直でない傾斜面を有する請求項2または3のいずれかに記載のメッキ装置。


The plating solution permeable member has a contact surface with which the substrate particles come into contact, and the contact surface has at least an inclined surface that is not perpendicular to the axis of the plating solution discharge pipe. The plating apparatus as described.


JP2010254776A 2010-11-15 2010-11-15 Plating apparatus Pending JP2012107267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254776A JP2012107267A (en) 2010-11-15 2010-11-15 Plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254776A JP2012107267A (en) 2010-11-15 2010-11-15 Plating apparatus

Publications (1)

Publication Number Publication Date
JP2012107267A true JP2012107267A (en) 2012-06-07

Family

ID=46493177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254776A Pending JP2012107267A (en) 2010-11-15 2010-11-15 Plating apparatus

Country Status (1)

Country Link
JP (1) JP2012107267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169488A (en) * 2013-03-05 2014-09-18 Hitachi Metals Ltd Plating device
KR20170091379A (en) * 2016-02-01 2017-08-09 재단법인 포항산업과학연구원 Anode for electrolysis, electrolytic cell comprising the same, and electrolysis process using the electrolytic cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169488A (en) * 2013-03-05 2014-09-18 Hitachi Metals Ltd Plating device
KR20170091379A (en) * 2016-02-01 2017-08-09 재단법인 포항산업과학연구원 Anode for electrolysis, electrolytic cell comprising the same, and electrolysis process using the electrolytic cell
KR102562722B1 (en) 2016-02-01 2023-08-03 재단법인 포항산업과학연구원 Anode for electrolysis, electrolytic cell comprising the same, and electrolysis process using the electrolytic cell

Similar Documents

Publication Publication Date Title
JP5435355B2 (en) Plating equipment
JP3874911B2 (en) Plating method for micro plastic balls
JP3126867B2 (en) Plating apparatus and plating method for small items
TW201131012A (en) Plating apparatus
CN1842881A (en) Stacked ceramic electronic component and manufacturing method thereof
JP2019525000A (en) Electrodeposition of uniform thickness metal layers on semiconductor wafers
JP2012107267A (en) Plating apparatus
JP5440958B2 (en) Plating equipment
CN1701649B (en) Method for supplying solder and solder projection forming method
JPH08239799A (en) Rotary plating device for small articles
JP5598754B2 (en) Plating equipment
CN103628105A (en) Electroplating device
JP5633781B2 (en) Plating equipment
US4498967A (en) Device for producing dispersion coatings
JP4635221B2 (en) Electroplating apparatus and plating method for minute objects
US20040104119A1 (en) Small volume electroplating cell
JP5610128B2 (en) Plating equipment
JP7340441B2 (en) Rotary plating equipment and plating method using it
CN207327364U (en) Anode material of lithium battery prilling granulator
CN202263661U (en) Novel structure for atomized water or granulated water in shower head
CN103290446A (en) Diamond surface electroplating device and electroplating method
CN107858741A (en) Automatic plating machine
JPS62170500A (en) Method and apparatus for supplying metallic ion in electroplating
CN213794202U (en) Equipment for preparing superfine silver-plated composite conductive particles
JP2002220700A (en) Substrate plating equipment