JP2012107250A - Plant-derived composition and its cured product - Google Patents
Plant-derived composition and its cured product Download PDFInfo
- Publication number
- JP2012107250A JP2012107250A JP2012020611A JP2012020611A JP2012107250A JP 2012107250 A JP2012107250 A JP 2012107250A JP 2012020611 A JP2012020611 A JP 2012020611A JP 2012020611 A JP2012020611 A JP 2012020611A JP 2012107250 A JP2012107250 A JP 2012107250A
- Authority
- JP
- Japan
- Prior art keywords
- plant
- derived
- epoxy compound
- component
- derived composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
本発明は、植物由来組成物とその硬化物に関するものである。 The present invention relates to a plant-derived composition and a cured product thereof.
近年、地球温暖化などの環境問題に対する関心が高まるにつれ、プラスチック分野においては、石油由来の材料に代替するものとして、低エミッションかつカーボンニュートラルな植物由来の分解物を重合して得られる樹脂に注目が集まってきている。 In recent years, as interest in environmental issues such as global warming has increased, in the plastics field, attention has been focused on resins obtained by polymerizing low-emission, carbon-neutral plant-derived degradation products as an alternative to petroleum-derived materials. Are gathering.
中でも、植物由来の分解物の一種である乳酸を重合して得られたポリ乳酸は、結晶性を有し、他の植物由来樹脂と比較して物性の高い樹脂の一つであり、大量生産も可能で生産コストも比較的低い。 Among them, polylactic acid obtained by polymerizing lactic acid, which is a kind of plant-derived degradation product, has crystallinity and is one of the resins with higher physical properties compared to other plant-derived resins. The production cost is relatively low.
しかし、ポリ乳酸は熱可塑性樹脂であり、汎用の石油由来の熱可塑性樹脂(PE、PP、ABSなど)に比較すると、耐熱性と機械的特性が低いために、広く普及するには至っていない。また、ポリ乳酸は耐熱性の高いエンジニアリングプラスチックや熱硬化性樹脂に代替できるような物性を有していない。 However, polylactic acid is a thermoplastic resin, and has not been widely used because of its low heat resistance and mechanical properties compared to general-purpose petroleum-derived thermoplastic resins (PE, PP, ABS, etc.). In addition, polylactic acid does not have physical properties that can be replaced by engineering plastics or thermosetting resins with high heat resistance.
一方、木材などに多く含まれるポリフェノール類であるリグニンは、植物由来の物質としてはセルロースに次ぐ存在量がある。リグニンはパルプ製造の際に廃棄物となるため、これを有効利用しようという試みが古くからなされてきた。 On the other hand, lignin, which is a polyphenol contained in a large amount in wood and the like, is an abundance next to cellulose as a plant-derived substance. Since lignin becomes waste during pulp production, attempts have been made for a long time to make effective use of it.
たとえば、リグニンは化学構造がフェノール樹脂に類似していることから、フェノール樹脂と同様にリグニンをホルムアルデヒドと反応させ縮合させて接着剤として用いることが検討されてきた。また、樹皮などに含まれるタンニンもリグニンと同様にホルムアルデヒドと反応させ縮合させて接着剤として用いることが検討されてきた。さらに、フェノール樹脂のメチロール基とリグニンのフェノール性水酸基との反応を期待して、フェノール樹脂にリグニンを添加し、リグニンをフェノール樹脂の高分子骨格の中に取り込む検討もなされてきた。 For example, since lignin has a chemical structure similar to that of a phenol resin, it has been studied to use lignin as an adhesive by reacting it with formaldehyde and condensing it in the same manner as a phenol resin. Further, tannin contained in bark and the like has been studied for use as an adhesive by reacting with formaldehyde and condensing in the same manner as lignin. Furthermore, in view of the reaction between the methylol group of the phenol resin and the phenolic hydroxyl group of lignin, studies have been made to add lignin to the phenol resin and incorporate the lignin into the polymer skeleton of the phenol resin.
しかしながら、リグニン等をホルムアルデヒドを用いて反応させる場合、残留したホルムアルデヒドや加水分解によって発生したホルムアルデヒドが放散されるという問題があった。また、リグニンの反応性が従来のフェノール樹脂よりも低いため、物性と生産性が劣り、上記の技術は広く実用化されていないのが現状である。 However, when lignin or the like is reacted with formaldehyde, there is a problem that residual formaldehyde or formaldehyde generated by hydrolysis is diffused. In addition, since the reactivity of lignin is lower than that of conventional phenol resins, physical properties and productivity are inferior, and the above technology is not widely put into practical use.
リグニンを有効利用しようという他の試みとして、リグニンのフェノール性水酸基とポリイソシアナートを反応させてウレタン樹脂とすること(非特許文献1参照)、リグニンのフェノール性水酸基をエポキシ化し、他のエポキシ樹脂と反応させること(非特許文献2参照)、ロジン系成分等およびそれと反応する成分をリグニンに加えること(特許文献1参照)などが検討されている。 As other attempts to effectively use lignin, a phenolic hydroxyl group of lignin and a polyisocyanate are reacted to form a urethane resin (see Non-Patent Document 1), the phenolic hydroxyl group of lignin is epoxidized, and another epoxy resin is used. (See Non-Patent Document 2), adding rosin-based components and the like and components that react with them to lignin (see Patent Document 1), and the like.
しかしながら、これらの従来技術では石油由来成分を多く使用しているため、植物由来成分の比率を高くできず、さらに反応性が低いため物性と生産性が劣るという問題があり、広く実用化されていないのが現状である。また特許文献1では、ロジン系成分を加えずにリグニンとエポキシ化合物を混合した配合は物性が低くなっている。これはリグニンの反応性の低さが原因と考えられる。 However, these conventional technologies use many petroleum-derived components, so the ratio of plant-derived components cannot be increased, and there is a problem that physical properties and productivity are inferior due to low reactivity, which has been widely put into practical use. There is no current situation. Moreover, in patent document 1, the mixing | blending which mixed the lignin and the epoxy compound without adding a rosin-type component has low physical property. This is thought to be due to the low reactivity of lignin.
本発明は、以上の通りの事情に鑑みてなされたものであり、高い耐熱性と機械的特性を有する硬化物を形成することができ、しかも高い反応性を有する植物由来組成物とその硬化物を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, can form a cured product having high heat resistance and mechanical properties, and has a high reactivity and a plant-derived composition and the cured product thereof It is an issue to provide.
本発明は、上記の課題を解決するために、以下のことを特徴としている。 The present invention is characterized by the following in order to solve the above problems.
第1に、本発明の植物由来組成物は、少なくとも1つのフェノール核を有するフェノール性成分を含む、160℃〜400℃、0.8〜30MPaの加圧熱水で処理した植物の抽出成分と、石油由来のエポキシ化合物とを含有することを特徴とする。 1stly, the plant origin composition of this invention contains the phenolic component which has at least 1 phenol nucleus, The extract component of the plant processed with 160 to 400 degreeC and the pressurized hot water of 0.8 to 30 MPa, And an epoxy compound derived from petroleum.
第2に、上記第1の植物由来組成物において、硬化促進剤としてパラトルエンスルホン酸水和物を含有することを特徴とする。 Second, the first plant-derived composition is characterized by containing paratoluenesulfonic acid hydrate as a curing accelerator.
第3に、上記第2の植物由来組成物において、パラトルエンスルホン酸水和物の含有量が、植物の抽出成分およびエポキシ化合物の合計量100質量部に対して0.2〜4質量部の範囲であることを特徴とする。 3rdly, in said 2nd plant origin composition, content of paratoluenesulfonic acid hydrate is 0.2-4 mass parts with respect to 100 mass parts of total amounts of a plant extraction component and an epoxy compound. It is a range.
第4に、本発明の硬化物は、上記第1ないし第3のいずれかの植物由来組成物を硬化してなることを特徴とする。 4thly, the hardened | cured material of this invention hardens | cures the said plant origin composition in any one of the said 1st thru | or 3rd, It is characterized by the above-mentioned.
上記第1の発明によれば、植物を特定条件の加圧熱水で処理し抽出することで、エポキシ化合物との反応性が高いフェノール性成分が抽出物として植物から取り出される。当該フェノール性成分を含む抽出成分は、パルプ製造時に副生されるクラフトリグニン、リグニンスルホン酸、硫酸を用いて抽出されるリグノフェノール等とは異なり、エポキシ化合物との反応性が高い。さらに、高い耐熱性と機械的特性を有する硬化物を形成することができ、成形材料や接着剤等として利用することができる。 According to the said 1st invention, the phenolic component with high reactivity with an epoxy compound is taken out from a plant as an extract by processing and extracting a plant with the pressurized hot water of specific conditions. Unlike the lignophenol extracted using the kraft lignin, the lignin sulfonic acid, and the sulfuric acid which are by-produced at the time of pulp manufacture, the extraction component containing the said phenolic component has high reactivity with an epoxy compound. Furthermore, a cured product having high heat resistance and mechanical properties can be formed, and can be used as a molding material or an adhesive.
上記第2の発明によれば、硬化促進剤としてパラトルエンスルホン酸水和物を用いることで、上記第1の発明の効果に加え、上記のフェノール性成分とエポキシ樹脂との反応を促進し、反応性を向上させることができる。 According to the second invention, by using paratoluenesulfonic acid hydrate as a curing accelerator, in addition to the effect of the first invention, the reaction between the phenolic component and the epoxy resin is promoted, The reactivity can be improved.
上記第3の発明によれば、特定量のパラトルエンスルホン酸水和物を用いたので、上記第2の発明の効果に加え、上記のフェノール性成分とエポキシ樹脂との反応を特に促進し、反応性を大幅に向上させることができる。 According to the third invention, since a specific amount of paratoluenesulfonic acid hydrate is used, in addition to the effect of the second invention, the reaction between the phenolic component and the epoxy resin is particularly promoted, The reactivity can be greatly improved.
上記第4の発明によれば、上記第1ないし第3の発明の植物由来組成物を反応させることで硬化物としており、当該組成物は、従来の硬化性樹脂と同様に加熱、光照射、硬化促進剤の添加などにより反応して三次元網状構造の硬化物となるため、熱可塑性樹脂等と比較してより高い耐熱性と機械的強度が得られる。 According to said 4th invention, it is set as the hardened | cured material by making the plant origin composition of the said 1st thru | or 3rd invention react, The said composition is heating, light irradiation, similarly to the conventional curable resin, Since it reacts by the addition of a curing accelerator or the like to form a cured product having a three-dimensional network structure, higher heat resistance and mechanical strength can be obtained as compared with a thermoplastic resin or the like.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明において、抽出成分の原料としての植物は、特に制限はないが、その具体例としては木本植物(針葉樹、広葉樹)および草本植物の幹、茎、枝、樹皮、葉などの、リグニンやタンニンと呼ばれるポリフェノール類が含まれているものが挙げられる。植物の種類、部位などによって、含まれるポリフェノール類の構造は異なり、現在、これらの構造を特定するための研究が行われている。 In the present invention, the plant as the raw material of the extract component is not particularly limited, but specific examples thereof include tree plants (conifers, broadleaf trees) and herbaceous plant trunks, stems, branches, bark, leaves, etc. Examples include those containing polyphenols called tannins. The structure of the polyphenols contained varies depending on the plant type, site, etc., and studies are currently being conducted to identify these structures.
上記の植物は、これを粉砕して植物材料とした後に、加圧熱水で処理され、そして抽出によってエポキシ化合物との反応性が高いフェノール性成分が抽出成分として取り出される。 The above plant is pulverized into a plant material, treated with pressurized hot water, and a phenolic component having high reactivity with the epoxy compound is extracted as an extraction component by extraction.
加圧熱水による処理は、160℃〜400℃、0.8〜30MPaの条件で行われる。当該処理には、いわゆる蒸煮処理、爆砕処理、亜臨界処理、超臨界処理が含まれる。ここで、「亜臨界処理」とは、亜臨界水中における処理のことであり、亜臨界水とは、水の温度および圧力が水の臨界点(臨界温度374.4℃、臨界圧力22.1MPa)以下であって、かつ、温度が140℃以上、その時の圧力が0.36MPa(140℃の飽和蒸気圧)以上の範囲にある状態の水をいう。また「超臨界処理」とは、超臨界水中における処理のことであり、超臨界水とは、温度および圧力が臨界点を超える水のことをいう。 The treatment with pressurized hot water is performed under the conditions of 160 to 400 ° C. and 0.8 to 30 MPa. The treatment includes so-called steaming treatment, blasting treatment, subcritical treatment, and supercritical treatment. Here, “subcritical treatment” refers to treatment in subcritical water, and subcritical water is a temperature and pressure of water at a critical point (critical temperature 374.4 ° C., critical pressure 22.1 MPa). ) And water in a state where the temperature is 140 ° C. or higher and the pressure at that time is 0.36 MPa (saturated vapor pressure of 140 ° C.) or higher. “Supercritical treatment” means treatment in supercritical water, and supercritical water means water whose temperature and pressure exceed the critical point.
粉砕した植物材料を上記の条件下で処理することによって、加圧熱水による有機物の溶解作用と強い加水分解作用により高分子であるリグニンやタンニンなどが低分子化され、反応性が高いフェノール性成分となる。 By treating the pulverized plant material under the above-mentioned conditions, high-reactivity phenolic compounds such as lignin and tannin, which are high molecular weight molecules, are dissolved by the action of dissolving organic substances and hot hydrolysis with pressurized hot water. Become an ingredient.
加圧熱水による処理が160℃未満または0.8MPa未満の条件で行われると、粉砕した植物材料に含まれるリグニンやタンニンなどの有機物の水への溶解性が低下し、さらに加水分解する能力が低下する。そのため、低分子化が不十分となり、抽出されたフェノール性成分の反応性が低下する。 When the treatment with pressurized hot water is performed under conditions of less than 160 ° C. or less than 0.8 MPa, the solubility of organic substances such as lignin and tannin contained in the pulverized plant material in water is reduced, and the ability to further hydrolyze Decreases. Therefore, the molecular weight reduction becomes insufficient, and the reactivity of the extracted phenolic component decreases.
加圧熱水による処理が400℃を超えるか、または30MPaを超える条件で行われると、粉砕した植物材料に含まれるリグニンやタンニンなどの有機物に対する加水分解作用が強過ぎて、過剰に低分子化され、さらに縮合反応も同時に起こるため、反応性が高いフェノール性成分が得られなくなる。 If the treatment with pressurized hot water exceeds 400 ° C or exceeds 30 MPa, the hydrolyzing action on organic substances such as lignin and tannin contained in the pulverized plant material is too strong, resulting in excessively low molecular weight. In addition, since a condensation reaction occurs simultaneously, a highly reactive phenolic component cannot be obtained.
加圧熱水処理による生成物の抽出条件は、特に制限はなく、生成物の溶解性に応じて水、有機溶媒などの適宜の溶媒が選択され、抽出温度、圧力、時間なども適宜に設定される。抽出操作により、反応性が高いフェノール性成分を含む抽出成分が得られる。 The extraction conditions of the product by the pressurized hot water treatment are not particularly limited, and an appropriate solvent such as water or an organic solvent is selected according to the solubility of the product, and the extraction temperature, pressure, time, etc. are also set appropriately. Is done. An extraction component containing a highly reactive phenolic component is obtained by the extraction operation.
以上のようにして植物から抽出された、少なくとも1つのフェノール核を有するフェノール性成分を含む抽出成分は、その要因は明らかではないが、パルプ製造時に副生されるクラフトリグニン、リグニンスルホン酸、硫酸を用いて抽出されるリグノフェノールなどと異なり、エポキシ化合物との反応性が高くなる。なお、「少なくとも1つのフェノール核を有するフェノール性成分」には、少なくとも1つのフェノール性水酸基を有する芳香族環、特にベンゼン環からなる化合物、当該芳香族環を構造内に少なくとも1つ有する化合物が含まれる。当該芳香族環は、フェノール性水酸基以外の置換基を有していてもよい。 The extraction component containing the phenolic component having at least one phenol nucleus extracted from the plant as described above is not clear in its factor, but craft lignin, lignin sulfonic acid, sulfuric acid by-produced during pulp production Unlike lignophenol and the like extracted using, the reactivity with the epoxy compound is increased. The “phenolic component having at least one phenol nucleus” includes a compound comprising an aromatic ring having at least one phenolic hydroxyl group, particularly a benzene ring, and a compound having at least one aromatic ring in the structure. included. The aromatic ring may have a substituent other than the phenolic hydroxyl group.
本発明の植物由来組成物に含有されるエポキシ化合物としては、エポキシ基を有するものであれば特に制限はないが、特に、植物油脂のエポキシ化合物を用いることで、植物由来組成物とその硬化物中における植物由来成分の比率を高めることができ、カーボンニュートラルな特性をさらに高めることができる。このような植物油脂のエポキシ化合物として、たとえば、市販されている大豆、亜麻、桐、ごま、やしの種子などの植物油脂のエポキシ化合物を用いることができる。 The epoxy compound contained in the plant-derived composition of the present invention is not particularly limited as long as it has an epoxy group. In particular, the plant-derived composition and its cured product can be obtained by using an epoxy compound of vegetable oil. The ratio of the plant-derived component in the inside can be increased, and the carbon neutral characteristics can be further enhanced. As such an epoxy compound for vegetable oils and fats, for example, commercially available epoxy compounds for vegetable oils and fats such as soybean, flax, paulownia, sesame and palm seeds can be used.
その他、本発明の植物由来組成物には、植物油脂のエポキシ化合物以外のもの、たとえば石油由来のものをエポキシ化合物として用いてもよい。このようなエポキシ化合物の具体例としては、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能型エポキシ樹脂などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。 In addition, in the plant-derived composition of the present invention, those other than the epoxy compound of vegetable oils and fats, for example, those derived from petroleum may be used as the epoxy compound. Specific examples of such an epoxy compound include a bisphenol type epoxy resin, a biphenyl type epoxy resin, a cresol novolac type epoxy resin, and a polyfunctional type epoxy resin. These may be used alone or in combination of two or more.
本発明の植物由来組成物は、上記のフェノール性成分を含む抽出成分とエポキシ化合物とを混合することによって調製することができる。当該抽出成分とエポキシ化合物との混合比は、当該抽出成分におけるフェノール性成分の反応性、水酸基当量などを考慮して適宜に設定される。 The plant-derived composition of the present invention can be prepared by mixing an extraction component containing the phenolic component and an epoxy compound. The mixing ratio of the extraction component and the epoxy compound is appropriately set in consideration of the reactivity of the phenolic component in the extraction component, the hydroxyl equivalent, and the like.
本発明の植物由来組成物には、上記の抽出成分とエポキシ化合物に加えて、他の添加成分を配合してもよい。このような添加成分の具体例としては、パラトルエンスルホン酸水和物、トリフェニルホスフィン、イミダゾール、ジアザビシクロウンデセン等の硬化性樹脂に一般に用いられている硬化促進剤、充填材、増量材などが挙げられる。また、本発明の植物由来組成物は、溶媒で希釈したものとしてもよい。 The plant-derived composition of the present invention may contain other additive components in addition to the extraction component and the epoxy compound. Specific examples of such additive components include curing accelerators, fillers, and extenders commonly used in curable resins such as paratoluenesulfonic acid hydrate, triphenylphosphine, imidazole, and diazabicycloundecene. Etc. Moreover, the plant-derived composition of the present invention may be diluted with a solvent.
本発明の植物由来組成物に、硬化促進剤としてパラトルエンスルホン酸水和物を添加すると、上記のフェノール性成分とエポキシ化合物との反応を特に促進し、反応性を大幅に向上させることができる。パラトルエンスルホン酸水和物の含有量は、上記の抽出成分およびエポキシ化合物の合計量100質量部に対して、好ましくは0.2〜4質量部の範囲である。含有量が0.2質量部未満であると、反応の促進効果が小さく、含有量が4質量部を超えると、強酸であるパラトルエンスルホン酸水和物が過剰となるために硬化物が分解し、硬化物の物性が低下する場合がある。 When paratoluenesulfonic acid hydrate is added as a curing accelerator to the plant-derived composition of the present invention, the reaction between the phenolic component and the epoxy compound is particularly accelerated, and the reactivity can be greatly improved. . The content of paratoluenesulfonic acid hydrate is preferably in the range of 0.2 to 4 parts by mass with respect to 100 parts by mass of the total amount of the extraction component and the epoxy compound. When the content is less than 0.2 parts by mass, the effect of promoting the reaction is small. When the content exceeds 4 parts by mass, the paratoluenesulfonic acid hydrate, which is a strong acid, becomes excessive, so that the cured product is decomposed. In addition, the physical properties of the cured product may deteriorate.
本発明の植物由来組成物は、高い耐熱性と機械的特性を有する硬化物を形成することができるため、成形材料として好適に用いることができる。また、紙やガラス繊維等に含浸し、あるいは単板に塗布して積層板として好適に用いることができ、接着剤としても好適に用いることができる。 Since the plant-derived composition of the present invention can form a cured product having high heat resistance and mechanical properties, it can be suitably used as a molding material. Further, it can be impregnated into paper, glass fiber, or the like, or applied to a single plate and suitably used as a laminated plate, and can also be suitably used as an adhesive.
本発明の植物由来組成物は、適宜の条件にて反応させることによって硬化物とされる。硬化反応の反応機構は明らかではないが、主反応としてフェノール性水酸基とエポキシ基との反応が進行し、副反応としてエポキシ基同士の反応が進行することで、三次元網状構造の硬化物となるものと考えられる。硬化反応の条件は、特に制限はなく、従来の硬化性樹脂と同様の条件が適用できる。具体的には、たとえば加熱、光照射、硬化促進剤の添加などにより硬化反応を進行させることができる。 The plant-derived composition of the present invention is cured by reacting under appropriate conditions. Although the reaction mechanism of the curing reaction is not clear, a reaction between a phenolic hydroxyl group and an epoxy group proceeds as a main reaction, and a reaction between epoxy groups proceeds as a side reaction, resulting in a cured product having a three-dimensional network structure. It is considered a thing. The conditions for the curing reaction are not particularly limited, and conditions similar to those for conventional curable resins can be applied. Specifically, for example, the curing reaction can be advanced by heating, light irradiation, addition of a curing accelerator, or the like.
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1>
シラカンバの木粉(平均粒径0.7mm)300gおよび水5Lを耐圧釜に入れ、220℃、4MPa、10分間の条件で、加圧熱水で処理を行った。処理残渣を乾燥後、メチルエチルケトン(ナカライテスク(株)製)で常温、常圧下にて2時間抽出し、可溶部を減圧により濃縮して、植物の抽出成分を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
<Example 1>
300 g of birch wood flour (average particle size 0.7 mm) and 5 L of water were placed in a pressure vessel and treated with pressurized hot water at 220 ° C., 4 MPa for 10 minutes. After the treatment residue was dried, it was extracted with methyl ethyl ketone (manufactured by Nacalai Tesque) at room temperature and normal pressure for 2 hours, and the soluble part was concentrated under reduced pressure to obtain a plant extract component.
得られた抽出成分をGC-MS分析したところ、当該抽出成分は多種類の化合物からなる混合物であり、2−メトキシフェノールやバニリンなどの、少なくとも1つのフェノール核を有するフェノール性成分を含んでいることが確認された。 When the obtained extract component was analyzed by GC-MS, the extract component was a mixture composed of many kinds of compounds and contained a phenolic component having at least one phenol nucleus such as 2-methoxyphenol and vanillin. It was confirmed.
この抽出成分と、石油を原料とするエポキシ化合物(エポキシ樹脂「EP4100」 (株)アデカ)と、硬化促進剤のベンゾイミダゾール(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=75:25:5:200とした。 A plant-derived composition obtained by mixing this extracted component, an epoxy compound made from petroleum (epoxy resin “EP4100” Adeka) and a curing accelerator benzimidazole (Nacalai Tesque) in methyl ethyl ketone as a solvent. It was a thing. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 75: 25: 5: 200.
この植物由来組成物について、JIS K6910のゲル化時間 B法 に準拠して150℃でのゲル化時間を測定した。その結果を表1に示す。
<実施例2>
スギの木粉(平均粒径0.7mm)300gおよび水5Lを耐圧釜に入れ、180℃、1MPa、10分間の条件で、加圧熱水で処理を行った。処理残渣を乾燥後、メチルエチルケトン(ナカライテスク(株))で常温、常圧下にて2時間抽出し、可溶部を減圧により濃縮して、植物の抽出成分を得た。
About this plant origin composition, the gelation time in 150 degreeC was measured based on the gelation time B method of JISK6910. The results are shown in Table 1.
<Example 2>
300 g of cedar wood flour (average particle size 0.7 mm) and 5 L of water were placed in a pressure vessel and treated with hot pressurized water at 180 ° C., 1 MPa for 10 minutes. After the treatment residue was dried, it was extracted with methyl ethyl ketone (Nacalai Tesque Co., Ltd.) at room temperature and normal pressure for 2 hours, and the soluble part was concentrated under reduced pressure to obtain a plant extract component.
得られた抽出成分をGC-MS分析したところ、当該抽出成分は多種類の化合物からなる混合物であり、2−メトキシフェノールやバニリンなどの、少なくとも1つのフェノール核を有するフェノール性成分を含んでいることが確認された。 When the obtained extract component was analyzed by GC-MS, the extract component was a mixture composed of many kinds of compounds and contained a phenolic component having at least one phenol nucleus such as 2-methoxyphenol and vanillin. It was confirmed.
この抽出成分と、石油を原料とするエポキシ化合物(エポキシ樹脂「EP4100」 (株)アデカ)と、硬化促進剤のベンゾイミダゾール(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=75:25:5:200とした。 A plant-derived composition obtained by mixing this extracted component, an epoxy compound made from petroleum (epoxy resin “EP4100” Adeka) and a curing accelerator benzimidazole (Nacalai Tesque) in methyl ethyl ketone as a solvent. It was a thing. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 75: 25: 5: 200.
この植物由来組成物について、JIS K6910のゲル化時間 B法 に準拠して150℃でのゲル化時間を測定した。その結果を表1に示す。
<実施例3>
実施例1と同様にして得た植物の抽出成分と、植物由来のエポキシ化合物(エポキシ化亜麻仁油「ダイマックL−500」 ダイセル化学工業(株))と、硬化促進剤のパラトルエンスルホン酸水和物(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=95:5:2:200とした。
About this plant origin composition, the gelation time in 150 degreeC was measured based on the gelation time B method of JISK6910. The results are shown in Table 1.
<Example 3>
Plant-derived components obtained in the same manner as in Example 1, a plant-derived epoxy compound (epoxidized linseed oil “Daimac L-500”, Daicel Chemical Industries, Ltd.), and a curing accelerator, paratoluenesulfonic acid hydrate The product (Nacalai Tesque Co., Ltd.) was mixed in methyl ethyl ketone as a solvent to obtain a plant-derived composition. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 95: 5: 2: 200.
この植物由来組成物について、JIS K6910のゲル化時間 B法 に準拠して150℃でのゲル化時間を測定した。その結果を表1に示す。
<比較例1>
植物の抽出成分であるリグニンスルホン酸塩(「バニレックスN」 日本製紙ケミカル(株))と、植物由来のエポキシ化合物(エポキシ化亜麻仁油「ダイマックL−500」 ダイセル化学工業(株))と、硬化促進剤のパラトルエンスルホン酸水和物(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=95:5:2:200とした。
About this plant origin composition, the gelation time in 150 degreeC was measured based on the gelation time B method of JISK6910. The results are shown in Table 1.
<Comparative Example 1>
Lignin sulfonate (“Vanilex N” Nippon Paper Chemical Co., Ltd.), a plant extract component, an epoxy compound derived from plants (epoxidized linseed oil “Daimac L-500” Daicel Chemical Industries, Ltd.), and curing Accelerator p-toluenesulfonic acid hydrate (Nacalai Tesque Co., Ltd.) was mixed in a solvent methyl ethyl ketone to obtain a plant-derived composition. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 95: 5: 2: 200.
この植物由来組成物について、JIS K6910のゲル化時間 B法 に準拠して150℃でのゲル化時間を測定した。その結果を表1に示す。
<比較例2>
シラカンバの木粉(平均粒径0.7mm)300gおよび水5Lを耐圧釜に入れ、130℃、0.4MPa、10分間の条件で、加圧熱水で処理を行った。処理残渣を実施例1と同様に乾燥、抽出した後、濃縮して植物の抽出成分を得た。
About this plant origin composition, the gelation time in 150 degreeC was measured based on the gelation time B method of JISK6910. The results are shown in Table 1.
<Comparative example 2>
300 g of birch wood flour (average particle size 0.7 mm) and 5 L of water were placed in a pressure vessel and treated with pressurized hot water at 130 ° C., 0.4 MPa for 10 minutes. The treatment residue was dried and extracted in the same manner as in Example 1, and then concentrated to obtain a plant extract component.
この抽出成分と、石油を原料とするエポキシ化合物(エポキシ樹脂「EP4100」 (株)アデカ)と、硬化促進剤のベンゾイミダゾール(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=75:25:5:200とした。 A plant-derived composition obtained by mixing this extracted component, an epoxy compound made from petroleum (epoxy resin “EP4100” Adeka) and a curing accelerator benzimidazole (Nacalai Tesque) in methyl ethyl ketone as a solvent. It was a thing. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 75: 25: 5: 200.
この植物由来組成物について、JIS K6910のゲル化時間 B法 に準拠して150℃でのゲル化時間を測定した。その結果を表1に示す。 About this plant origin composition, the gelation time in 150 degreeC was measured based on the gelation time B method of JISK6910. The results are shown in Table 1.
表1に示されるように、特定条件の加圧熱水で処理された植物の抽出成分とエポキシ化合物を混合した実施例1,2の植物由来組成物は、加熱によって反応しゲル化した。 As shown in Table 1, the plant-derived compositions of Examples 1 and 2 in which an extract component of a plant treated with pressurized hot water under specific conditions and an epoxy compound were mixed reacted and gelled.
また、植物由来のエポキシ化合物であるエポキシ化亜麻仁油を用いた実施例3においても、特定条件の加圧熱水で処理された植物の抽出成分と植物由来のエポキシ化合物を混合した植物由来組成物は、加熱によって反応しゲル化した。 In Example 3 using epoxidized linseed oil, which is a plant-derived epoxy compound, a plant-derived composition obtained by mixing a plant extract component treated with pressurized hot water under specific conditions and a plant-derived epoxy compound. Reacted and gelled by heating.
これに対して、植物の抽出成分としてリグニンスルホン酸塩を用いた比較例1の植物由来組成物は、加熱してもゲル化しなかった。これは、リグニンスルホン酸塩は加圧熱水で処理されておらず、エポキシ基との反応性が低いことによるものと考えられる。 On the other hand, the plant-derived composition of Comparative Example 1 using lignin sulfonate as the plant extract component did not gel even when heated. This is thought to be due to the fact that lignin sulfonate is not treated with pressurized hot water and has low reactivity with epoxy groups.
また、加圧熱水で処理した植物の抽出成分を用いたが処理温度および処理圧力が低かった比較例2の植物由来組成物は、加熱してもゲル化しなかった。これは、加圧熱水処理による低分子化が不十分であるため抽出成分のエポキシ基に対する反応性が低いことによるものと考えられる。
<実施例4>
実施例3で得た植物由来組成物を積層板用含浸紙(日本製紙(株))に含浸した後、130℃で乾燥した。これを20枚積み重ねて、150℃、120分、4MPa加圧の条件でプレスを行った。
Moreover, the plant-derived composition of Comparative Example 2 which used the extracted component of the plant treated with pressurized hot water but had a low treatment temperature and treatment pressure did not gel even when heated. This is considered to be due to the low reactivity of the extraction component to the epoxy group due to insufficient molecular weight reduction by the pressurized hot water treatment.
<Example 4>
The plant-derived composition obtained in Example 3 was impregnated into impregnated paper for laminate (Nippon Paper Industries Co., Ltd.), and then dried at 130 ° C. 20 sheets were stacked and pressed under the conditions of 150 ° C., 120 minutes, and 4 MPa pressure.
得られた積層板の厚さは2.0mm、比重は1.2、紙と硬化物との重量比は40:60であった。この積層板を切り出し、JIS K6911に準拠して曲げ強さと荷重たわみ温度(荷重1.8MPa)の測定を行った。その結果を表2に示す。
<比較例3>
植物の抽出成分としてリグニンスルホン酸塩(「バニレックスN」 日本製紙ケミカル(株))を石油系フェノール樹脂(「レヂトップPL−2211」 群栄化学工業(株))と、硬化促進剤の炭酸ナトリウム((株)トクヤマ)を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:フェノール樹脂の150℃不揮発分:硬化促進剤:溶媒=95:5:2:200とした。
The thickness of the obtained laminate was 2.0 mm, the specific gravity was 1.2, and the weight ratio of paper and cured product was 40:60. This laminate was cut out and measured for bending strength and deflection temperature under load (load 1.8 MPa) in accordance with JIS K6911. The results are shown in Table 2.
<Comparative Example 3>
Lignin sulfonate ("Vanilex N" Nippon Paper Chemicals Co., Ltd.) as a plant extract component, petroleum phenol resin ("Resitop PL-2211" Gunei Chemical Industry Co., Ltd.) and sodium carbonate ( Tokuyama Co., Ltd.) was mixed in a solvent methyl ethyl ketone to obtain a plant-derived composition. The mixing ratio was: extraction component: phenol resin 150 ° C. non-volatile content: curing accelerator: solvent = 95: 5: 2: 200.
この植物由来組成物を積層板用含浸紙に含浸した後、130℃で乾燥した。これを20枚積み重ねて、150℃、120分、4MPa加圧の条件でプレスを行ったが、適切に成形することができなかった。そのため、上記の混合比を50:50:2:200とし、石油系フェノール樹脂の比率を多くして含浸、乾燥後、プレスを行った。 The plant-derived composition was impregnated into the impregnated paper for laminates and then dried at 130 ° C. Twenty sheets were stacked and pressed under the conditions of 150 ° C., 120 minutes, and 4 MPa pressure, but could not be molded properly. Therefore, the mixing ratio was 50: 50: 2: 200, the ratio of petroleum-based phenol resin was increased, and after impregnation and drying, pressing was performed.
得られた積層板の厚さは2.0mm、比重は1.2、紙と硬化物との重量比は40:60であった。この積層板を切り出し、JIS K6911に準拠して曲げ強さと荷重たわみ温度(荷重1.8MPa)の測定を行った。その結果を表2に示す。
<実施例5>
実施例1と同様にして得た植物の抽出成分と、植物由来のエポキシ化合物(エポキシ化亜麻仁油「ダイマックL−500」 ダイセル化学工業(株))と、硬化促進剤のパラトルエンスルホン酸水和物(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=95:5:5:200とした。
The thickness of the obtained laminate was 2.0 mm, the specific gravity was 1.2, and the weight ratio of paper and cured product was 40:60. This laminate was cut out and measured for bending strength and deflection temperature under load (load 1.8 MPa) in accordance with JIS K6911. The results are shown in Table 2.
<Example 5>
Plant-derived components obtained in the same manner as in Example 1, a plant-derived epoxy compound (epoxidized linseed oil “Daimac L-500”, Daicel Chemical Industries, Ltd.), and a curing accelerator, paratoluenesulfonic acid hydrate The product (Nacalai Tesque Co., Ltd.) was mixed in methyl ethyl ketone as a solvent to obtain a plant-derived composition. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 95: 5: 5: 200.
この植物由来組成物を積層板用含浸紙(日本製紙(株))に含浸した後、130℃で乾
燥した。これを20枚積み重ねて、150℃、120分、4MPa加圧の条件でプレスを行った。
The plant-derived composition was impregnated into a laminated board impregnated paper (Nippon Paper Industries Co., Ltd.) and then dried at 130 ° C. 20 sheets were stacked and pressed under the conditions of 150 ° C., 120 minutes, and 4 MPa pressure.
得られた積層板の厚さは1.8mm、比重は1.2、紙と硬化物との重量比は60:40であった。この積層板を切り出し、JIS K6911に準拠して曲げ強さと荷重たわみ温度(荷重1.8MPa)の測定を行った。その結果を表2に示す。
<実施例6>
実施例1と同様にして得た植物の抽出成分と、植物由来のエポキシ化合物(エポキシ化亜麻仁油「ダイマックL−500」 ダイセル化学工業(株))と、硬化促進剤のパラトルエンスルホン酸水和物(ナカライテスク(株))を溶媒のメチルエチルケトン中で混合して植物由来組成物とした。混合比は抽出成分:エポキシ化合物:硬化促進剤:溶媒=95:5:0.1:200とした。
The thickness of the obtained laminate was 1.8 mm, the specific gravity was 1.2, and the weight ratio of paper to cured product was 60:40. This laminate was cut out and measured for bending strength and deflection temperature under load (load 1.8 MPa) in accordance with JIS K6911. The results are shown in Table 2.
<Example 6>
Plant-derived components obtained in the same manner as in Example 1, a plant-derived epoxy compound (epoxidized linseed oil “Daimac L-500”, Daicel Chemical Industries, Ltd.), and a curing accelerator, paratoluenesulfonic acid hydrate The product (Nacalai Tesque Co., Ltd.) was mixed in methyl ethyl ketone as a solvent to obtain a plant-derived composition. The mixing ratio was extraction component: epoxy compound: curing accelerator: solvent = 95: 5: 0.1: 200.
この植物由来組成物を積層板用含浸紙(日本製紙(株))に含浸した後、130℃で乾燥した。これを20枚積み重ねて、150℃、120分、4MPa加圧の条件でプレスを
行った。
The plant-derived composition was impregnated into a laminated board impregnated paper (Nippon Paper Industries Co., Ltd.) and then dried at 130 ° C. 20 sheets were stacked and pressed under the conditions of 150 ° C., 120 minutes, and 4 MPa pressure.
得られた積層板の厚さは2.0mm、比重は1.2、紙と硬化物との重量比は50:50であった。この積層板を切り出し、JIS K6911に準拠して曲げ強さと荷重たわみ温度(荷重1.8MPa)の測定を行った。その結果を表2に示す。 The thickness of the obtained laminate was 2.0 mm, the specific gravity was 1.2, and the weight ratio of paper and cured product was 50:50. This laminate was cut out and measured for bending strength and deflection temperature under load (load 1.8 MPa) in accordance with JIS K6911. The results are shown in Table 2.
実施例4〜6では、特定条件の加圧熱水で処理した植物の抽出成分とエポキシ化合物を含有する植物由来組成物を反応させることによって積層板を成形することができた。 In Examples 4-6, the laminated board was able to be shape | molded by making the plant-derived composition containing the extract component of the plant processed with the pressurized hot water of the specific conditions, and an epoxy compound react.
また、表2に示されるように、実施例4の積層板は比較例3の積層板を物性で上回っており、高い機械的強度と耐熱性を有していた。さらに実施例4の積層板では、紙を除いた硬化物中の植物由来成分比率が98%と非常に高くすることができ、カーボンニュートラルな特性を高めることができた。 Further, as shown in Table 2, the laminate of Example 4 exceeded the laminate of Comparative Example 3 in physical properties and had high mechanical strength and heat resistance. Furthermore, in the laminated board of Example 4, the plant-derived component ratio in the cured product excluding paper could be as high as 98%, and the carbon neutral characteristics could be improved.
実施例4と実施例5,6を比較すると、硬化促進剤であるパラトルエンスルホン酸水和物の添加率が異なるが、これにより、積層板の強度と耐熱性に大きな差が現れた。実施例5の積層板は、実施例4の積層板と比較してプレス後の厚さが薄く、含浸紙から多くの樹脂がしみだしており、また、非常に脆いものであった。これは、強酸のパラトルエンスルホン酸水和物による分解によって樹脂が低粘度化することで、しみだしが多くなると共に、物性も低下したものと考えられる。 When Example 4 was compared with Examples 5 and 6, the addition rate of paratoluenesulfonic acid hydrate, which is a curing accelerator, was different, but this caused a large difference in the strength and heat resistance of the laminate. The laminated board of Example 5 was thinner than the laminated board of Example 4 after pressing, and a large amount of resin oozed out from the impregnated paper, and was very brittle. This is thought to be due to the decrease in viscosity of the resin due to the decomposition of the strong acid with paratoluenesulfonic acid hydrate, resulting in increased oozing and reduced physical properties.
実施例6の積層板も、含浸紙から樹脂がしみだしており、実施例4と比較すると物性は大きく低下した。これは、硬化反応が遅いためにしみだしが多くなり、結果として物性も低下したものと考えられる。 Also in the laminated board of Example 6, the resin oozed out from the impregnated paper, and the physical properties were greatly reduced as compared with Example 4. This is considered to be due to the slow curing reaction resulting in a large amount of oozing and consequently a decrease in physical properties.
これに対して、実施例4の積層板では、硬化物の分解が起こらない適切な量のパラトルエンスルホン酸水和物を硬化促進剤として用いて、硬化反応を進行させることができたために、優れた物性の積層板を得ることができたものと考えられる。 On the other hand, in the laminated board of Example 4, since an appropriate amount of para-toluenesulfonic acid hydrate that does not cause decomposition of the cured product was used as a curing accelerator, the curing reaction could proceed, It is considered that a laminate having excellent physical properties could be obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012020611A JP2012107250A (en) | 2007-07-23 | 2012-02-02 | Plant-derived composition and its cured product |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007191140 | 2007-07-23 | ||
JP2007191140 | 2007-07-23 | ||
JP2012020611A JP2012107250A (en) | 2007-07-23 | 2012-02-02 | Plant-derived composition and its cured product |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007248230A Division JP5043575B2 (en) | 2007-07-23 | 2007-09-25 | Plant-derived composition and cured product thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012107250A true JP2012107250A (en) | 2012-06-07 |
Family
ID=40499159
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007248230A Expired - Fee Related JP5043575B2 (en) | 2007-07-23 | 2007-09-25 | Plant-derived composition and cured product thereof |
JP2012020611A Pending JP2012107250A (en) | 2007-07-23 | 2012-02-02 | Plant-derived composition and its cured product |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007248230A Expired - Fee Related JP5043575B2 (en) | 2007-07-23 | 2007-09-25 | Plant-derived composition and cured product thereof |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5043575B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009227890A (en) * | 2008-03-25 | 2009-10-08 | Sumitomo Bakelite Co Ltd | Lignin resin composition, and molding material |
JP2011057997A (en) * | 2010-11-17 | 2011-03-24 | Sumitomo Bakelite Co Ltd | Method for producing lignin resin composition |
JP2012092282A (en) * | 2010-09-30 | 2012-05-17 | Hitachi Chemical Co Ltd | Resin composition, and molded body |
JP2013227585A (en) * | 2013-06-26 | 2013-11-07 | Sumitomo Bakelite Co Ltd | Method for producing lignin resin composition |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5322220B2 (en) * | 2009-03-11 | 2013-10-23 | 中部電力株式会社 | Insulating polymer material composition |
JP5390250B2 (en) * | 2009-04-24 | 2014-01-15 | パナソニック株式会社 | Plant-derived composition and cured product thereof |
JP5275888B2 (en) * | 2009-04-24 | 2013-08-28 | パナソニック株式会社 | Plant-derived composition, method for producing the same, and molded product |
JP5322222B2 (en) * | 2009-04-27 | 2013-10-23 | 中部電力株式会社 | Insulating polymer material composition |
JP5424746B2 (en) * | 2009-07-03 | 2014-02-26 | 三菱自動車工業株式会社 | Automotive board |
JP5271221B2 (en) * | 2009-09-25 | 2013-08-21 | パナソニック株式会社 | Plant-derived composition and cured product thereof |
JP5590544B2 (en) * | 2009-10-02 | 2014-09-17 | 中部電力株式会社 | Epoxy resin composite material and manufacturing method thereof |
JP5555520B2 (en) * | 2009-10-27 | 2014-07-23 | パナソニック株式会社 | Plant-derived adhesive, plant-derived composition and wood composite material |
EP3632949A1 (en) | 2018-10-02 | 2020-04-08 | Vito NV | Process for the production of epoxy resins |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215988A (en) * | 1994-01-28 | 1995-08-15 | Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai | Cationic lignin substance and its use |
JP2002047391A (en) * | 2000-07-31 | 2002-02-12 | Hitachi Chem Co Ltd | Thermosetting resin composition for sealing and electronic component device |
JP2003277615A (en) * | 2002-03-25 | 2003-10-02 | Toshiba Corp | Resin composition |
JP2006066237A (en) * | 2004-08-27 | 2006-03-09 | Meidensha Corp | Insulating polymeric material composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5315606B2 (en) * | 2006-12-01 | 2013-10-16 | 株式会社明電舎 | Insulating polymer material composition |
JP4991437B2 (en) * | 2007-08-03 | 2012-08-01 | 株式会社東芝 | Adsorbent and method for producing the same |
-
2007
- 2007-09-25 JP JP2007248230A patent/JP5043575B2/en not_active Expired - Fee Related
-
2012
- 2012-02-02 JP JP2012020611A patent/JP2012107250A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07215988A (en) * | 1994-01-28 | 1995-08-15 | Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai | Cationic lignin substance and its use |
JP2002047391A (en) * | 2000-07-31 | 2002-02-12 | Hitachi Chem Co Ltd | Thermosetting resin composition for sealing and electronic component device |
JP2003277615A (en) * | 2002-03-25 | 2003-10-02 | Toshiba Corp | Resin composition |
JP2006066237A (en) * | 2004-08-27 | 2006-03-09 | Meidensha Corp | Insulating polymeric material composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009227890A (en) * | 2008-03-25 | 2009-10-08 | Sumitomo Bakelite Co Ltd | Lignin resin composition, and molding material |
JP2012092282A (en) * | 2010-09-30 | 2012-05-17 | Hitachi Chemical Co Ltd | Resin composition, and molded body |
JP2011057997A (en) * | 2010-11-17 | 2011-03-24 | Sumitomo Bakelite Co Ltd | Method for producing lignin resin composition |
JP2013227585A (en) * | 2013-06-26 | 2013-11-07 | Sumitomo Bakelite Co Ltd | Method for producing lignin resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP5043575B2 (en) | 2012-10-10 |
JP2009046646A (en) | 2009-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5043575B2 (en) | Plant-derived composition and cured product thereof | |
Li et al. | A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives | |
US11453810B2 (en) | Method for increasing the reactivity of lignin | |
EP2831150B1 (en) | Use of low molecular weight lignin together with lignin for the production of a phenol-formaldehyde binder composition | |
JP5555520B2 (en) | Plant-derived adhesive, plant-derived composition and wood composite material | |
JP5720924B2 (en) | Wood-based decorative board | |
JP4457195B2 (en) | Method for producing cellulosic fiberboard | |
Joseph et al. | Phenolic resin: Preparation, structure, properties, and applications | |
Suzuki et al. | Biological materials as precursors for the production of resins | |
JP5275888B2 (en) | Plant-derived composition, method for producing the same, and molded product | |
Zhao et al. | Recent development in forest biomass derived phenol formaldehyde (PF) resol resin for wood adhesives application | |
Saud et al. | Introduction of eco-friendly adhesives: source, types, chemistry and characterization | |
JP2010031092A (en) | Plant-derived resin molded article | |
JP2010121096A (en) | Vegetable originated composition and cured product of the same | |
JP5271221B2 (en) | Plant-derived composition and cured product thereof | |
JP2009235209A (en) | Plant-derived composition and its cured product | |
Emmanuel | Biobased phenolic adhesive using unmodified lignin and glyoxal | |
JP2009263496A (en) | Plant-derived composition and cured product therefrom | |
FI127750B (en) | Method for producing a binder composition | |
JP5390250B2 (en) | Plant-derived composition and cured product thereof | |
KR20220025743A (en) | Binder Resin Manufacturing Process | |
JP2010126451A (en) | Composition derived from plant, and cured material thereof | |
KR102508349B1 (en) | Thermosetting resin containing repeat unit derived from lignin and composite using thereof | |
WO2015117758A1 (en) | Synthetic resin composition comprising vinasse | |
Koivula | Colloidal lignin particles in plywood adhesives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140128 |