JP2012107135A - Polyamide resin composition and molded article comprising the same - Google Patents

Polyamide resin composition and molded article comprising the same Download PDF

Info

Publication number
JP2012107135A
JP2012107135A JP2010257790A JP2010257790A JP2012107135A JP 2012107135 A JP2012107135 A JP 2012107135A JP 2010257790 A JP2010257790 A JP 2010257790A JP 2010257790 A JP2010257790 A JP 2010257790A JP 2012107135 A JP2012107135 A JP 2012107135A
Authority
JP
Japan
Prior art keywords
mass
polyamide
magnesium oxide
polyamide resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010257790A
Other languages
Japanese (ja)
Other versions
JP5736740B2 (en
Inventor
Akio Miyamoto
昭夫 宮本
Manjun Ichikawa
満淳 市川
Tetsuya Yasui
哲也 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010257790A priority Critical patent/JP5736740B2/en
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to CN201180047213.4A priority patent/CN103140552B/en
Priority to BR112013007553-8A priority patent/BR112013007553B1/en
Priority to EP11829193.9A priority patent/EP2623562B1/en
Priority to ES11829193.9T priority patent/ES2665528T3/en
Priority to PCT/JP2011/072205 priority patent/WO2012043640A1/en
Priority to US13/876,517 priority patent/US9177692B2/en
Publication of JP2012107135A publication Critical patent/JP2012107135A/en
Application granted granted Critical
Publication of JP5736740B2 publication Critical patent/JP5736740B2/en
Priority to US14/875,852 priority patent/US9624416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyamide resin composition giving a molded article exhibiting uniform thermal conductivity, which can be stably produced by a general kneader without opening the head part of an extruder (kneader).SOLUTION: The polyamide resin composition includes a polyamide resin (A) and a metal oxide particle (B), wherein the metal oxide particle (B) contains 10-50 mass% of one having particle diameters of 70 μm or larger, and contains 1-50 mass% of one having 20 μm or less, based on the total amount thereof, and the metal oxide particle (B) is contained by 70-85 mass% in the polyamide resin composition.

Description

熱伝導性に優れたポリアミド樹脂組成物及びそれからなる成形品に関する。   The present invention relates to a polyamide resin composition excellent in thermal conductivity and a molded article comprising the same.

熱可塑性樹脂に酸化マグネシウムを配合すると、その量に応じて熱伝導性が向上するが、溶融混練にて、溶融しない酸化マグネシウムを熱可塑性樹脂に大量に配合させることは、溶融する熱可塑性樹脂の割合が少なくなる為、単軸や二軸の押出機で生産性を維持することが困難である。特許文献1には、導電性フィラーを安定して高充填する方法として、押出機のヘッド部を開放した状態で混練することが開示されているが、押出機のヘッド部を開放することなく導電性フィラーを安定して高充填する方法については開示されてない。
また特許文献2には特定粒径の酸化マグネシウムを特定量配合することにより、成形性や外観、熱伝導性を向上させる方法が開示されているが、成形品の測定位置により熱伝導率が異なり、測定位置に関わらず均一な熱伝導率を示す成形品を安定して得ることについては開示されていない。
When magnesium oxide is blended with a thermoplastic resin, the thermal conductivity is improved according to the amount, but adding a large amount of unmelted magnesium oxide to the thermoplastic resin by melt-kneading means that the molten thermoplastic resin Since the ratio decreases, it is difficult to maintain productivity with a single-screw or twin-screw extruder. Patent Document 1 discloses that as a method for stably and highly filling the conductive filler, kneading in a state where the head portion of the extruder is opened, the conductive material is opened without opening the head portion of the extruder. There is no disclosure of a method for stably and highly filling a conductive filler.
Patent Document 2 discloses a method for improving moldability, appearance, and thermal conductivity by blending a specific amount of magnesium oxide having a specific particle diameter, but the thermal conductivity varies depending on the measurement position of the molded product. There is no disclosure about stably obtaining a molded product showing a uniform thermal conductivity regardless of the measurement position.

特開平8−1663号公報Japanese Patent Laid-Open No. 8-1663 特開平3−81366号公報Japanese Patent Laid-Open No. 3-81366

本発明の課題は、押出機(混練機)のヘッド部を開放することなく、一般的な混練機で安定して製造することができ、均一な熱伝導性を示す成形品が得られるポリアミド樹脂組成物を提供することである。   An object of the present invention is to provide a polyamide resin that can be stably produced by a general kneader without opening the head portion of an extruder (kneader), and a molded product having uniform thermal conductivity can be obtained. It is to provide a composition.

上記の課題は、以下に示す本発明によって解決される。
即ち、本発明は、ポリアミド樹脂(A)と、金属酸化物粒子(B)を含むポリアミド樹脂組成物であって、
金属酸化物粒子(B)は、その全量に対し、粒子径が70μm以上であるものを10質量%以上50質量%以下含み、粒子径が20μm以下であるものを1質量%以上50質量%以下含み、
ポリアミド樹脂組成物に対し、金属酸化物粒子(B)を、70質量%以上85質量%以下含むポリアミド樹脂組成物に関するものである。
The above problems are solved by the present invention described below.
That is, the present invention is a polyamide resin composition comprising a polyamide resin (A) and metal oxide particles (B),
The metal oxide particles (B) contain 10% by mass or more and 50% by mass or less of particles having a particle size of 70 μm or more and 1% by mass or more and 50% by mass or less of particles having a particle size of 20 μm or less with respect to the total amount. Including
The present invention relates to a polyamide resin composition containing 70% by mass or more and 85% by mass or less of metal oxide particles (B) with respect to the polyamide resin composition.

本発明により、混練機のヘッド部を開放することなく、一般的な混練機で安定して製造することができ、均一な熱伝導性を示す成形品が得られるポリアミド樹脂組成物が提供できる。   According to the present invention, it is possible to provide a polyamide resin composition that can be stably produced with a general kneader without opening the head portion of the kneader, and that can provide a molded product exhibiting uniform thermal conductivity.

熱伝導性を評価するための熱伝導率の測定箇所を示した図である。It is the figure which showed the measurement location of the thermal conductivity for evaluating thermal conductivity.

本発明は、ポリアミド樹脂(A)と、金属酸化物粒子(B)を含むポリアミド樹脂組成物であって、
金属酸化物粒子(B)は、その全量に対し、粒子径が70μm以上であるものを10質量%以上50質量%以下含み、粒子径が20μm以下であるものを1質量%以上50質量%以下含み、
ポリアミド樹脂組成物に対し、金属酸化物粒子(B)を、70質量%以上85質量%以下含むポリアミド樹脂組成物である。
The present invention is a polyamide resin composition comprising a polyamide resin (A) and metal oxide particles (B),
The metal oxide particles (B) contain 10% by mass or more and 50% by mass or less of particles having a particle size of 70 μm or more and 1% by mass or more and 50% by mass or less of particles having a particle size of 20 μm or less with respect to the total amount. Including
A polyamide resin composition containing 70% by mass or more and 85% by mass or less of metal oxide particles (B) with respect to the polyamide resin composition.

[ポリアミド樹脂(A)]
本発明に用いられるポリアミド樹脂(A)は、溶融重合、溶液重合や固相重合等の公知の方法で重合、又は共重合することにより得られ、具体的には、ポリカプロラクタム(ポリアミド6)、ポリウンデカンラクタム(ポリアミド11)、ポリドデカンラクタム(ポリアミド12)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンウンデカミド(ポリアミド611)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンヘキサヒドロテレフタラミド(ポリアミド6T(H))、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリノナメチレンテレフタラミド(ポリアミド9T)、ポリトリメチルヘキサメチレンテレフタラミド(ポリアミドTMHT)、ポリノナメチレンヘキサヒドロテレフタラミド(ポリアミド9T(H))、ポリノナメチレンナフタラミド(ポリアミド9N)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリデカメチレンテレフタラミド(ポリアミド10T)、ポリデカメチレンヘキサヒドロテレフタラミド(ポリアミド10T(H))、ポリデカメチレンナフタラミド(ポリアミド10N)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリドデカメチレンテレフタラミド(ポリアミド12T)、ポリドデカメチレンヘキサヒドロテレフタラミド(ポリアミド12T(H))、ポリドデカメチレンナフタラミド(ポリアミド12N)、ポリメタキシリレンアジパミド(ポリアミドMXD6)、ポリメタキシリレンスベラミド(ポリアミドMXD8)、ポリメタキシリレンアゼラミド(ポリアミドMXD9)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカミド(ポリアミドMXD12)、ポリメタキシリレンテレフタラミド(ポリアミドMXDT)、ポリメタキシリレンイソフタラミド(ポリアミドMXDI)、ポリメタキシリレンナフタラミド(ポリアミドMXDN)、ポリビス(4−アミノシクロヘキシル)メタンドデカミド(ポリアミドPACM12)、ポリビス(4−アミノシクロヘキシル)メタンテレフタラミド(ポリアミドPACMT)、ポリビス(4−アミノシクロヘキシル)メタンイソフタラミド(ポリアミドPACMI)、ポリビス(3−メチル−4−アミノシクロヘキシル)メタンドデカミド(ポリアミドジメチルPACM12)、ポリイソホロンアジパミド(ポリアミドIPD6)、ポリイソホロンテレフタラミド(ポリアミドIPDT)やこれらの原料モノマーを用いたポリアミド共重合体が挙げられる。これらは1種又は2種以上を用いることができる。このなかでも、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体(ポリアミド6とポリアミド66の共重合体、以下、共重合体は同様に記載)、ポリアミド6/69共重合体、ポリアミド6/610共重合体、ポリアミド6/611共重合体、ポリアミド6/612共重合体、ポリアミド6/12共重合体、ポリアミド6/66/12共重合体、ポリアミド6/IPD6共重合体、ポリアミドMXD6であることが好ましく、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド6/66共重合体、ポリアミド6/12共重合体、ポリアミド6/IPD6共重合体、ポリアミド6/66/12共重合体であることがより好ましく、ポリアミド6、ポリアミド66、ポリアミド6/66共重合体であることがさらに好ましく、成形加工性の観点から、ポリアミド6が特に好ましい。
[Polyamide resin (A)]
The polyamide resin (A) used in the present invention is obtained by polymerization or copolymerization by a known method such as melt polymerization, solution polymerization or solid phase polymerization. Specifically, polycaprolactam (polyamide 6), Polyundecan lactam (polyamide 11), polydodecan lactam (polyamide 12), polyethylene adipamide (polyamide 26), polytetramethylene adipamide (polyamide 46), polyhexamethylene adipamide (polyamide 66), polyhexamethylene Azeramide (polyamide 69), polyhexamethylene sebamide (polyamide 610), polyhexamethylene undecamide (polyamide 611), polyhexamethylene dodecamide (polyamide 612), polyhexamethylene terephthalamide (polyamide 6T), poly Hexamethylene Phthalamide (Polyamide 6I), Polyhexamethylene hexahydroterephthalamide (Polyamide 6T (H)), Polynonamethylene adipamide (Polyamide 96), Polynonamethylene azelamide (Polyamide 99), Polynonamethylene sebacamide ( Polyamide 910), polynonamethylene dodecamide (polyamide 912), polynonamethylene terephthalamide (polyamide 9T), polytrimethylhexamethylene terephthalamide (polyamide TMHT), polynonamethylene hexahydroterephthalamide (polyamide 9T (H )), Polynonamethylenenaphthalamide (polyamide 9N), polydecamethylene adipamide (polyamide 106), polydecamethylene azelamide (polyamide 109), polydecamethylene decamide (polyamide 1010), Ridecamemethylene dodecamide (polyamide 1012), polydecamethylene terephthalamide (polyamide 10T), polydecamethylene hexahydroterephthalamide (polyamide 10T (H)), polydecamethylene naphthalamide (polyamide 10N), polydodecamethylene Adipamide (polyamide 126), polydodecamethylene azeamide (polyamide 129), polydodecamethylene sebamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), polydodecamethylene terephthalamide (polyamide 12T), Polydodecamethylene hexahydroterephthalamide (Polyamide 12T (H)), Polydodecamethylene naphthalamide (Polyamide 12N), Polymetaxylylene adipamide (Polyamide MXD6), Polymetaxy Rilensberamide (Polyamide MXD8), Polymetaxylylene Azelamide (Polyamide MXD9), Polymetaxylylene Sebamide (Polyamide MXD10), Polymetaxylylene decanamide (Polyamide MXD12), Polymetaxylylene terephthalamide (Polyamide MXDT), Polymetax Silylene isophthalamide (polyamide MXDI), polymetaxylylene naphthalamide (polyamide MXDN), polybis (4-aminocyclohexyl) methane dodecamide (polyamide PACM12), polybis (4-aminocyclohexyl) methane terephthalamide (polyamide PACMT), Polybis (4-aminocyclohexyl) methane isophthalamide (polyamide PACMI), polybis (3-methyl-4-aminocyclohexyl) methand Examples include decamide (polyamide dimethyl PACM12), polyisophorone adipamide (polyamide IPD6), polyisophorone terephthalamide (polyamide IPDT), and polyamide copolymers using these raw material monomers. These can use 1 type (s) or 2 or more types. Among these, polyamide 6, polyamide 12, polyamide 66, polyamide 6/66 copolymer (copolymer of polyamide 6 and polyamide 66, hereinafter the copolymer is also described), polyamide 6/69 copolymer, Polyamide 6/610 copolymer, polyamide 6/611 copolymer, polyamide 6/612 copolymer, polyamide 6/12 copolymer, polyamide 6/66/12 copolymer, polyamide 6 / IPD6 copolymer, Polyamide MXD6 is preferable, polyamide 6, polyamide 12, polyamide 66, polyamide 6/66 copolymer, polyamide 6/12 copolymer, polyamide 6 / IPD6 copolymer, polyamide 6/66/12 copolymer More preferably, it is polyamide 6, polyamide 66, polyamide 6/66 copolymer. But more preferably, from the viewpoint of moldability, the polyamide 6 is particularly preferred.

本発明のポリアミド樹脂(A)の末端基の種類及びその濃度や分子量分布に特別の制約は無く、分子量調節や成形加工時の溶融安定化のため、分子量調節剤として、酢酸、ステアリン酸等のモノカルボン酸、メタキリレンジアミン、イソホロンジアミン等のジアミン、モノアミン、ジカルボン酸のうちの1種あるいは2種以上を適宜組合せて添加することができる。   There are no particular restrictions on the type and concentration or molecular weight distribution of the end group of the polyamide resin (A) of the present invention, and molecular weight regulators such as acetic acid and stearic acid are used for molecular weight adjustment and melt stabilization during molding processing. One or more of diamines such as monocarboxylic acid, metaxylylenediamine and isophoronediamine, monoamine and dicarboxylic acid can be added in appropriate combination.

また、ポリアミド樹脂(A)の製造は、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等のポリアミド製造装置で製造することができる。また、その重合方法としては、たとえば、溶融重合、溶液重合や固相重合等がある。これらの重合方法は、常圧、減圧、加圧操作を繰り返して重合することができ、単独で、あるいは適宜、組合せて用いることができる。   The polyamide resin (A) is produced by kneading reaction extrusion such as batch reaction kettle, one tank type or multi tank type continuous reaction apparatus, tubular continuous reaction apparatus, uniaxial kneading extruder, biaxial kneading extruder, etc. It can be manufactured by a polyamide manufacturing apparatus such as a machine. Examples of the polymerization method include melt polymerization, solution polymerization, and solid phase polymerization. In these polymerization methods, polymerization can be carried out by repeating normal pressure, reduced pressure, and pressure operation, and they can be used alone or in appropriate combination.

JIS K−6920に準じて、96質量%の硫酸中、ポリアミド濃度1質量%、温度25℃の条件下にて測定したポリアミド樹脂(A)の相対粘度は、1.5以上5.0以下であることが好ましく、1.7以上4.5以下であることがより好ましい。ポリアミド樹脂の相対粘度が前記の値未満であると、得られる成形品の機械的性質が低くなることがある。一方、前記の値を超えると、溶融時の粘度が高くなり、成形品の成形が困難となることがある。さらに、本発明のポリアミド樹脂組成物の生産性や成形品の成形性の観点から、1.7以上3.0以下であることがさらに好ましい。   According to JIS K-6920, the relative viscosity of the polyamide resin (A) measured under the conditions of 96% by mass sulfuric acid, 1% by mass polyamide concentration and 25 ° C. temperature is 1.5 to 5.0. It is preferable that it is 1.7 or more and 4.5 or less. If the relative viscosity of the polyamide resin is less than the above value, the mechanical properties of the obtained molded product may be lowered. On the other hand, when the above value is exceeded, the viscosity at the time of melting increases, and it may be difficult to mold the molded product. Furthermore, from the viewpoint of the productivity of the polyamide resin composition of the present invention and the moldability of the molded product, it is more preferably 1.7 or more and 3.0 or less.

また、JIS K−6920に規定する低分子量物の含有量の測定方法に準じて測定したポリアミド樹脂(A)の水抽出量は、特に制限はないが、成形加工時に発生するガス等の環境上の問題、製造設備への付着による生産性の低下や製品ペレットへの付着による外観不良等を引き起こす可能性があるため、5質量%以下であることが好ましい。   Further, the amount of water extracted from the polyamide resin (A) measured according to the method for measuring the content of low molecular weight substances specified in JIS K-6920 is not particularly limited. It is preferable that the amount be 5% by mass or less because there is a possibility that the productivity may be deteriorated due to adhesion to manufacturing equipment, or the appearance may be deteriorated due to adhesion to product pellets.

ポリアミド樹脂(A)の粒形は、金属酸化物粒子(B)や他の添加剤を均一に混合させる観点から、平均粒径1mm以下の粉末状が好ましい。尚、粉末状にする方法としては、特に制限はないが、粉末の生産性の観点から冷凍粉砕が好ましい。   The particle shape of the polyamide resin (A) is preferably a powder form having an average particle diameter of 1 mm or less from the viewpoint of uniformly mixing the metal oxide particles (B) and other additives. In addition, there is no restriction | limiting in particular as the method of making it into a powder form, However, Freezing grinding | pulverization is preferable from a viewpoint of the productivity of powder.

本発明のポリアミド樹脂(A)には、得られる成形品の特性を損なわない範囲内で、通常配合される各種の添加剤及び改質剤、例えば、熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、ブロッキング防止剤、フィラー、粘着性付与剤、シール性改良剤、防曇剤、結晶核剤、離型剤、可塑剤、架橋剤、発泡剤、着色剤(顔料、染料等)等を添加することができ、その添加方法に特に制限がなく、従来から知られている各種の方法を採用することができる。例えば、ドライブレンドする方法、必要に応じて配合される他の成分と共に、溶融混練する方法等により添加することができる。溶融混練は、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー等の混練機を使用して行うことができる。   In the polyamide resin (A) of the present invention, various additives and modifiers that are usually blended within a range that does not impair the properties of the resulting molded product, such as a heat stabilizer, an ultraviolet absorber, and a light stabilizer. , Antioxidants, antistatic agents, lubricants, antiblocking agents, fillers, tackifiers, sealability improvers, antifogging agents, crystal nucleating agents, mold release agents, plasticizers, crosslinking agents, foaming agents, colorants (Pigments, dyes, etc.) can be added, and the addition method is not particularly limited, and various conventionally known methods can be employed. For example, it can be added by a dry blending method, a melt kneading method or the like together with other components blended as necessary. The melt kneading can be performed using a kneader such as a single screw extruder, a twin screw extruder, a kneader, or a Banbury mixer.

ポリアミド樹脂(A)の配合量は、ポリアミド樹脂組成物に対して、15質量%以上30質量%以下であることが好ましい。15質量%未満の場合、樹脂成分の減少により脆くなることから、混練時のストランドのペレット化が困難になる。さらに、混練時の溶融成分(樹脂成分)が少なくなることにより、流動性が低下し、混練性も悪化する。また、30質量%超過の場合、金属酸化物粒子(B)の配合量が少なくなるため熱伝導性を十分に発揮できない。混練性と熱伝導性の観点からポリアミド樹脂(A)の配合量は、14.9質量%以上29.9質量%以下が好ましく、20質量%以上25質量%以下がより好ましい。   It is preferable that the compounding quantity of a polyamide resin (A) is 15 to 30 mass% with respect to a polyamide resin composition. When the amount is less than 15% by mass, the resin component becomes brittle due to a decrease in the resin component, and thus it becomes difficult to pelletize the strands during kneading. Furthermore, when the melting component (resin component) at the time of kneading decreases, the fluidity decreases and the kneading property also deteriorates. Moreover, when it exceeds 30 mass%, since the compounding quantity of a metal oxide particle (B) decreases, heat conductivity cannot fully be exhibited. From the viewpoint of kneadability and thermal conductivity, the blending amount of the polyamide resin (A) is preferably 14.9% by mass or more and 29.9% by mass or less, and more preferably 20% by mass or more and 25% by mass or less.

[金属酸化物粒子(B)]
本発明で使用する金属酸化物粒子(B)としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化チタン等の粒子が挙げられ、電気絶縁性と熱伝導性の観点から、酸化アルミニウム、及び/又は酸化マグネシウムが好ましく、酸化マグネシウムがより好ましい。
[Metal oxide particles (B)]
Examples of the metal oxide particles (B) used in the present invention include particles such as aluminum oxide, magnesium oxide, beryllium oxide, and titanium oxide. From the viewpoint of electrical insulation and thermal conductivity, aluminum oxide, and Magnesium oxide is preferable, and magnesium oxide is more preferable.

金属酸化物粒子(B)は、粉末状に加工したものを使用し、その平均粒子径は、特に制限はないが、平均粒子径が0.5μm未満の場合、表面積の増加により空気中の水分の吸湿量が大きくなる場合があり、平均粒子径が300μmを超えると、衝撃強度に代表される機械強度が低下する傾向があり、成形品表面に酸化マグネシウムが露出し表面性が悪化する場合があるため、平均粒子径は、0.5μm以上300μm以下が好ましく、12μm以上73μm以下がより好ましく、30μm以上60μm以下がさらに好ましい。   The metal oxide particles (B) used are those processed into a powder form, and the average particle diameter is not particularly limited. However, when the average particle diameter is less than 0.5 μm, the moisture in the air is increased by increasing the surface area. When the average particle diameter exceeds 300 μm, the mechanical strength typified by impact strength tends to decrease, and magnesium oxide is exposed on the surface of the molded product and surface properties may deteriorate. Therefore, the average particle size is preferably 0.5 μm or more and 300 μm or less, more preferably 12 μm or more and 73 μm or less, and further preferably 30 μm or more and 60 μm or less.

金属酸化物粒子(B)は、その全量に対し、粒子径が70μm以上であるものを10質量%以上50質量%以下含み、耐衝撃性など物性上の観点から、10質量%以上30質量%以下含むことが好ましく、粒子径が20μm以下であるものを1質量%以上50質量%以下含み、混練時の原料フィード等の原料移送の安定性の観点から、15質量%以上45質量%以下含むことがより好ましい。さらに、金属酸化物粒子は、耐衝撃性などの物性並びに混練性の観点から粒子径が20μm超過70μm未満である金属酸化物粒子を40質量%以上70質量%以下含むことが好ましく、40質量%以上52質量%以下含むことがより好ましい。   The metal oxide particles (B) contain 10% by mass or more and 50% by mass or less of particles having a particle diameter of 70 μm or more with respect to the total amount, and 10% by mass or more and 30% by mass from the viewpoint of physical properties such as impact resistance. It is preferably included below, and those having a particle size of 20 μm or less are contained in an amount of 1% by mass to 50% by mass, and from the viewpoint of stability of raw material transfer such as a raw material feed during kneading, 15% by mass to 45% by mass It is more preferable. Furthermore, the metal oxide particles preferably contain 40% by mass or more and 70% by mass or less of metal oxide particles having a particle diameter of more than 20 μm and less than 70 μm from the viewpoints of physical properties such as impact resistance and kneadability. More preferably, the content is 52% by mass or less.

また、金属酸化物粒子(B)の純度は、熱伝導性の観点から、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。   Moreover, the purity of the metal oxide particles (B) is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more from the viewpoint of thermal conductivity. preferable.

金属酸化物粒子(B)の配合量は、ポリアミド樹脂組成物に対して、70質量%以上85質量%以下であり、70質量%未満の場合、樹脂量の増加により、熱伝導性を十分に発揮できない。85質量%超過の場合、樹脂量の減少により、ストランドが脆くなることから、混練時のストランドのペレット化が困難になる。熱伝導性と混練性の観点から、70質量%以上85質量%以下が好ましく、75質量%以上85質量%以下がより好ましい。   The compounding amount of the metal oxide particles (B) is 70% by mass or more and 85% by mass or less with respect to the polyamide resin composition. When the amount is less than 70% by mass, the thermal conductivity is sufficiently increased by increasing the resin amount. I can't show it. When the amount exceeds 85% by mass, the strand becomes brittle due to a decrease in the amount of the resin, so that it becomes difficult to pelletize the strand during kneading. 70 mass% or more and 85 mass% or less are preferable from a viewpoint of heat conductivity and kneadability, and 75 mass% or more and 85 mass% or less are more preferable.

[多価アルコール(C)]
本発明に用いる多価アルコールは、特に制限はないが、融点が150℃以上280℃以下であるものが好ましい。尚、融点とは、樹脂の融点、凝固点の測定に使用される示差走査熱量分析(DSC)で測定した時の吸熱ピーク(融点)の温度を意味する。融点が150℃以上280℃以下である多価アルコール(C)としては、例えば、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールエタンなどが挙げられ、これらは混合して用いることもできる。混練性や成形性の観点から、ペンタエリスルトールおよび/またはジペンタエリスリトールが好ましい。
[Polyhydric alcohol (C)]
The polyhydric alcohol used in the present invention is not particularly limited, but those having a melting point of 150 ° C. or higher and 280 ° C. or lower are preferable. The melting point means the temperature of the endothermic peak (melting point) as measured by differential scanning calorimetry (DSC) used for measuring the melting point and freezing point of the resin. Examples of the polyhydric alcohol (C) having a melting point of 150 ° C. or higher and 280 ° C. or lower include pentaerythritol, dipentaerythritol, trimethylolethane, and the like, and these can be used in combination. From the viewpoints of kneadability and moldability, pentaerythritol and / or dipentaerythritol is preferable.

また、多価アルコールの配合量は、混練性や成形性の観点から、0.1質量%以上5質量%以下であることが好ましい。成形時の流動性確保と発生ガスの抑制の観点から0.5質量%以上3質量%以下であることがより好ましい。   Moreover, it is preferable that the compounding quantity of a polyhydric alcohol is 0.1 to 5 mass% from a viewpoint of kneadability or moldability. From the viewpoint of securing fluidity during molding and suppressing generated gas, it is more preferably 0.5% by mass or more and 3% by mass or less.

[ポリアミド樹脂組成物]
本発明のポリアミド樹脂組成物の製造方法は、溶融混練する方法であれば、特に制限がなく、従来から知られている各種の方法を採用することができる。例えば、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー等の混練機を使用して製造することができる。この中でも、本発明のポリアミド樹脂組成物は、単軸押出機や二軸押出機を使用して好適に製造することができる。
[Polyamide resin composition]
The method for producing the polyamide resin composition of the present invention is not particularly limited as long as it is a melt-kneading method, and various conventionally known methods can be employed. For example, it can be produced using a kneader such as a single screw extruder, a twin screw extruder, a kneader, or a Banbury mixer. Among these, the polyamide resin composition of the present invention can be suitably produced using a single screw extruder or a twin screw extruder.

また、本発明のポリアミド樹脂には、得られる成形品の特性を損なわない範囲内で、通常配合される各種の添加剤及び改質剤、例えば、熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、ブロッキング防止剤、フィラー、防曇剤、結晶核剤、離型剤、可塑剤、架橋剤、発泡剤、着色剤(顔料、染料等)等を添加することができ、その添加方法に特に制限がなく、上記の製造方法以外にも、従来から知られている各種の方法を採用することができる。例えば、ドライブレンドする方法が挙げられる。   In addition, the polyamide resin of the present invention includes various additives and modifiers that are usually blended within a range that does not impair the properties of the obtained molded product, such as a heat stabilizer, an ultraviolet absorber, a light stabilizer, Add antioxidants, antistatic agents, lubricants, antiblocking agents, fillers, antifogging agents, crystal nucleating agents, mold release agents, plasticizers, crosslinking agents, foaming agents, colorants (pigments, dyes, etc.), etc. The addition method is not particularly limited, and various conventionally known methods can be adopted in addition to the above production method. For example, the method of dry blending is mentioned.

得られたポリアミド樹脂組成物を成形品に成形する方法としては、射出、押出、プレス、などの成形加工法が可能である。これらの成形法によって成形品、シートなどに加工することができる。   As a method for molding the obtained polyamide resin composition into a molded product, molding methods such as injection, extrusion, pressing, and the like are possible. By these molding methods, it can be processed into a molded product, a sheet or the like.

本発明のポリアミド樹脂から得られる成形品の熱伝導率は、JIS R−2616に準拠して測定され、その最大値と最小値の差、即ち、成形品内での熱伝導率の差が0.5W/m・K以内であることが好ましい。   The thermal conductivity of the molded product obtained from the polyamide resin of the present invention is measured according to JIS R-2616, and the difference between the maximum value and the minimum value, that is, the difference in thermal conductivity within the molded product is 0. It is preferably within 5 W / m · K.

本発明のポリアミド系樹脂組成物を用いた成形物は、従来ポリアミド樹脂組成物の成形物が用いられてきた各種成形品、シート、フィルム等としての自動車部部品、コンピューター及びその関連機器、光学機器、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品など広範な用途に使用できる。とりわけ、自動車、電気・電子機器などの用途に有用である。   Molded articles using the polyamide-based resin composition of the present invention include various molded articles, sheets, films, etc., for which molded articles of polyamide resin compositions have been conventionally used, computers and related equipment, optical equipment. It can be used for a wide range of applications such as electrical / electronic equipment, information / communication equipment, precision equipment, civil engineering / building supplies, medical supplies, and household goods. In particular, it is useful for applications such as automobiles and electrical / electronic devices.

以下において例を掲げて本発明をさらに詳しく説明するが、本発明の要旨を越えない限り以下の例に限定されるものではない。使用した原材料と各種評価方法を次に示す。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples without departing from the gist of the present invention. The raw materials used and various evaluation methods are shown below.

(使用原料)
[ポリアミド樹脂(A)]
・ポリアミド樹脂(a−1):ポリアミド6(宇部興産株式会社製P1011F、12メッシュのスクリーンメッシュを通過する平均粒径1mm以下の粉末、相対粘度2.22、水抽出量0.3質量%、比重1.14)
(Raw materials used)
[Polyamide resin (A)]
Polyamide resin (a-1): Polyamide 6 (P1011F manufactured by Ube Industries, Ltd., a powder having an average particle diameter of 1 mm or less that passes through a 12 mesh screen mesh, a relative viscosity of 2.22, a water extraction amount of 0.3% by mass, Specific gravity 1.14)

[金属酸化物粒子(B)]
・酸化マグネシウム(b−1):酸化マグネシウム(宇部マテリアルズ株式会社製、RF−70C−SC、平均粒子径7μm、純度99%)
・酸化マグネシウム(b−2):酸化マグネシウム(宇部マテリアルズ株式会社製、RF−50−SC、平均粒子径53μm、純度98%)
・酸化マグネシウム(b−3):酸化マグネシウム(宇部マテリアルズ株式会社製、RF−10C−SC、平均粒子径72μm、純度99%)
[Metal oxide particles (B)]
Magnesium oxide (b-1): Magnesium oxide (Ube Materials Co., Ltd., RF-70C-SC, average particle diameter 7 μm, purity 99%)
Magnesium oxide (b-2): Magnesium oxide (Ube Materials Co., Ltd., RF-50-SC, average particle size 53 μm, purity 98%)
Magnesium oxide (b-3): Magnesium oxide (Ube Materials Co., Ltd., RF-10C-SC, average particle size 72 μm, purity 99%)

[多価アルコール(C)]
・ペンタエリスリトール(c−1)(日本合成化学工業株式会社製、融点:260℃、比重1.4)
[Polyhydric alcohol (C)]
Pentaerythritol (c-1) (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., melting point: 260 ° C., specific gravity 1.4)

(評価方法)
(1)混練性
混練性は、日本製鋼株式会社製の同方向二軸混練機である径44mmΦ、L/Dが35のTEX44を用いて、設定温度290℃、スクリュー回転数200rpm、吐出量20kg/hrの滞留時間約3分の混練条件でポリアミド樹脂組成物を製造する際の良否を以下の×と○で判定した。
×:混練機から吐出されたストランドがもろく、ストランド切れをおこし、1時間以上連続してペレット化ができないもの。又は、混練負荷が大きく、混練機の許容電流負荷の上限である150Aを超えるもの。
○:連続して1時間以上、ペレット化でき、かつ混練負荷が150Aを超えないもの。
(Evaluation methods)
(1) Kneadability Kneadability was determined by using a TEX44 having a diameter of 44 mmΦ and an L / D of 35, which is a same-direction biaxial kneader manufactured by Nippon Steel Co., Ltd. The following x and o were used to determine whether the polyamide resin composition was produced under a kneading condition of about 3 minutes / hr.
X: The strand discharged from the kneader is fragile, the strand breaks and cannot be pelletized continuously for 1 hour or more. Or, the kneading load is large and exceeds the upper limit of the allowable current load of the kneading machine of 150A.
○: Can be pelletized continuously for 1 hour or more and kneading load does not exceed 150A.

(2)熱伝導性
熱伝導性は、JIS R−2616に準拠して測定した。(非定常熱線プローブ法)
テストピースは150mm×150mm×3mmtを使用し、3箇所測定した。図1に示すゲート付近を測定部Aとし、中央部をB、末端部をCとした。
熱伝導率の差は、3箇所測定した熱伝導率の最大値と最小値の差とした。
(2) Thermal conductivity Thermal conductivity was measured according to JIS R-2616. (Unsteady hot wire probe method)
The test piece used was 150 mm × 150 mm × 3 mmt and measured at three locations. The vicinity of the gate shown in FIG.
The difference in thermal conductivity was defined as the difference between the maximum value and the minimum value of the thermal conductivity measured at three locations.

実施例1
ポリアミド樹脂(a−1)宇部興産株式会社製P1011Fを23.2質量%、酸化マグネシウム(b−1)宇部マテリアルズ株式会社製RF−70C−SCを7.6質量%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCを37.9質量%、酸化マグネシウム(b−3)宇部マテリアルズ株式会社製RF−10C−SCを30.3質量%、ペンタエリスリトール(c−1)を1.0質量%になるよう配合した。
酸化マグネシウムの粒子径はJIS R 1629に準じ、レーザー回折散乱法で酸化マグネシウム(b−1)、酸化マグネシウム(b−2)、酸化マグネシウム(b−2)の粒度分布を測定し、その粒度分布の結果とそれぞれの配合比より、酸化マグネシウム全量に対する粒子径20μm以下及び70μm以上の酸化マグネシウムの配合割合を算出した。
配合した酸化マグネシウムの平均粒子径は37μmであり、粒子径70μm以上の酸化マグネシウムの配合割合は、15質量%、20μm以下の酸化マグネシウムの配合割合は41質量%であった。
(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は11質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は41質量%であった。)
これらを円筒型混合機に投入、混合し、その混合物を日本製鋼株式会社製混練機であるTEX44に導入し、設定温度290℃、スクリュー回転数200rpm、吐出量20Kg/hrで溶融混練し、その溶融混練時に混練性について、評価した。また、得られたポリアミド樹脂組成物のペレットをシリンダー温度290℃、金型温度80℃、冷却時間20秒の条件で射出成形により、熱伝導率用に150mm×150mm×3mmの試験片を作成した。作成した試験片を用いて測定箇所A、B、Cの熱伝導性を評価した。この結果を表1に示す。
Example 1
Polyamide resin (a-1) 23.2% by mass of P1011F manufactured by Ube Industries, Ltd., magnesium oxide (b-1) 7.6% by mass of RF-70C-SC manufactured by Ube Materials Co., Ltd., magnesium oxide (b- 2) 37.9% by mass of RF-50-SC manufactured by Ube Materials Co., Ltd., magnesium oxide (b-3) 30.3% by mass of RF-10C-SC manufactured by Ube Materials Co., Ltd., pentaerythritol (c- 1) was blended to 1.0% by mass.
The particle size of magnesium oxide was measured according to JIS R 1629, and the particle size distribution of magnesium oxide (b-1), magnesium oxide (b-2), and magnesium oxide (b-2) was measured by a laser diffraction scattering method. From the results and the respective blending ratios, the blending ratio of magnesium oxide having a particle diameter of 20 μm or less and 70 μm or more with respect to the total amount of magnesium oxide was calculated.
The blended magnesium oxide had an average particle diameter of 37 μm, the blending ratio of magnesium oxide having a particle diameter of 70 μm or more was 15 mass%, and the blending ratio of magnesium oxide of 20 μm or less was 41 mass%.
(The blending ratio of magnesium oxide whose particle diameter is twice or more the average particle diameter was 11% by mass, and the blending ratio of magnesium oxide having a particle size of half or less of the average particle diameter was 41% by mass.)
These are put into a cylindrical mixer, mixed, the mixture is introduced into TEX44 which is a kneader manufactured by Nippon Steel Co., Ltd., melt-kneaded at a set temperature of 290 ° C., a screw speed of 200 rpm, and a discharge rate of 20 kg / hr, The kneadability was evaluated during melt kneading. In addition, a test piece of 150 mm × 150 mm × 3 mm was prepared for thermal conductivity by injection molding of the obtained polyamide resin composition pellets under conditions of a cylinder temperature of 290 ° C., a mold temperature of 80 ° C., and a cooling time of 20 seconds. . The thermal conductivity of the measurement locations A, B, and C was evaluated using the prepared test piece. The results are shown in Table 1.

実施例2
実施例1において、酸化マグネシウム(b−1)宇部マテリアルズ株式会社製RF−70C−SCを30.3質量%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCを37.9質量%、酸化マグネシウム(b−3)宇部マテリアルズ株式会社製RF−10C−SCを7.6質量%に変えた以外は実施例1と同様にしてポリアミド樹脂組成物のペレットを製造し、これらを評価した。結果を表1に示す。
なお配合した酸化マグネシウムの平均粒子径は52μmであり、配合した酸化マグネシウム全量に対し、粒子径70μm以上の酸化マグネシウムの配合割合が30質量%、20μm以下の酸化マグネシウムの配合割合が21質量%となる。
(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は15質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は24質量%である。)
Example 2
In Example 1, magnesium oxide (b-1) RF-70C-SC made by Ube Materials Co., Ltd. was 30.3% by mass, magnesium oxide (b-2) RF-50-SC made by Ube Materials Co., Ltd. was 37 .9% by mass, magnesium oxide (b-3) Polyamide resin composition pellets were produced in the same manner as in Example 1, except that RF-10C-SC manufactured by Ube Materials Co., Ltd. was changed to 7.6% by mass. These were evaluated. The results are shown in Table 1.
The blended magnesium oxide has an average particle diameter of 52 μm, and the blending ratio of magnesium oxide having a particle diameter of 70 μm or more is 30% by mass, and the blending ratio of magnesium oxide having a particle diameter of 20 μm or less is 21% by mass with respect to the total blended magnesium oxide. Become.
(The blending ratio of magnesium oxide whose particle diameter is twice or more the average particle diameter is 15% by mass, and the blending ratio of magnesium oxide whose particle diameter is half or less of the average particle diameter is 24% by mass.)

実施例3
実施例1において、酸化マグネシウム(b−1)宇部マテリアルズ株式会社製RF−70C−SCを15.2質量%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCを45.5質量%、酸化マグネシウム(b−3)宇部マテリアルズ株式会社製RF−10C−SCを15.2質量%に変えた以外は実施例1と同様にしてポリアミド樹脂組成物のペレットを製造し、これらを評価した。結果を表1に示す。
なお配合した酸化マグネシウムの平均粒子径は48μmであり、混合した酸化マグネシウム全量に対し、粒子径70μm以上の酸化マグネシウムが22質量%、粒子径20μm以下の酸化マグネシウムが25質量%となる。
(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は10質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は26質量%である。)
Example 3
In Example 1, 15.2% by mass of magnesium oxide (b-1) Ube Materials Co., Ltd. RF-70C-SC, 15.2% by mass, magnesium oxide (b-2) 45 of Ube Materials Co., Ltd. RF-50-SC .5% by mass, magnesium oxide (b-3) Polyamide resin composition pellets were produced in the same manner as in Example 1 except that RF-10C-SC manufactured by Ube Materials Co., Ltd. was changed to 15.2% by mass. These were evaluated. The results are shown in Table 1.
The average particle diameter of the blended magnesium oxide is 48 μm, and the magnesium oxide having a particle diameter of 70 μm or more is 22% by mass and the magnesium oxide having a particle diameter of 20 μm or less is 25% by mass with respect to the total amount of the mixed magnesium oxide.
(The blending ratio of magnesium oxide whose particle diameter is twice or more of the average particle diameter is 10% by mass, and the blending ratio of magnesium oxide whose particle diameter is half or less of the average particle diameter is 26% by mass.)

比較例1
ポリアミド樹脂(a−1)宇部興産株式会社製P1011Fを23.2%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCを75.9質量%、ペンタエリスリトール(c−1)を1.0質量%になるよう配合した以外は実施例1と同様にしてポリアミド樹脂組成物のペレットを製造し、これらを評価した。結果を表1に示す。
なお混合した酸化マグネシウムの平均粒子径は52μmであり、混合した酸化マグネシウム全量に対し、粒子径70μm以上の酸化マグネシウムの配合割合が20質量%、20μm以下の酸化マグネシウムの配合割合が0.0質量%となる。
(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は2質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は1質量%である。)
Comparative Example 1
Polyamide resin (a-1) 23.2% P1011F manufactured by Ube Industries, Ltd., magnesium oxide (b-2) 75.9% by mass of RF-50-SC manufactured by Ube Materials, Inc., pentaerythritol (c-1) ) Was prepared in the same manner as in Example 1 except that it was blended to 1.0% by mass, and these were evaluated. The results are shown in Table 1.
The average particle diameter of the mixed magnesium oxide is 52 μm, and the mixing ratio of magnesium oxide having a particle diameter of 70 μm or more is 20 mass% and the mixing ratio of magnesium oxide of 20 μm or less is 0.0 mass with respect to the total mixed magnesium oxide. %.
(The blending ratio of magnesium oxide whose particle diameter is twice or more of the average particle diameter is 2% by mass, and the blending ratio of magnesium oxide whose particle diameter is half or less of the average particle diameter is 1% by mass.)

比較例2
ポリアミド樹脂(a−1)宇部興産株式会社製P1011Fを23.2%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCを30.3質量%、酸化マグネシウム(b−3)宇部マテリアルズ株式会社製RF−10C−SCを45.5質量%、ペンタエリスリトール(c−1)を1.0質量%になるよう配合した以外は実施例1と同様にしてポリアミド樹脂組成物のペレットを製造し、これらを評価した。結果を表1に示す。
なお混合した酸化マグネシウムの平均粒子径は11μmであり、混合した酸化マグネシウム全量に対し、粒子径70μm以上の酸化マグネシウムの配合割合が8質量%、20μm以下の酸化マグネシウムの配合割合が56質量%となる。
(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は42質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は25質量%である。)
Comparative Example 2
Polyamide resin (a-1) 23.2% P1011F manufactured by Ube Industries, Ltd., magnesium oxide (b-2) 30.3% by mass of RF-50-SC manufactured by Ube Materials Co., Ltd., magnesium oxide (b-3) ) Polyamide resin composition as in Example 1 except that RF-10C-SC manufactured by Ube Materials Co., Ltd. was blended so as to be 45.5% by mass and pentaerythritol (c-1) was 1.0% by mass. Pellets were manufactured and evaluated. The results are shown in Table 1.
The average particle diameter of the mixed magnesium oxide is 11 μm, and the mixing ratio of magnesium oxide having a particle diameter of 70 μm or more is 8 mass% and the mixing ratio of magnesium oxide of 20 μm or less is 56 mass% with respect to the total mixed magnesium oxide. Become.
(The blending ratio of magnesium oxide having a particle size of twice or more the average particle diameter is 42% by mass, and the blending ratio of magnesium oxide having a particle size of half or less of the average particle size is 25% by mass.)

比較例3
ポリアミド樹脂(a−1)宇部興産株式会社製P1011Fを24.2%、酸化マグネシウム(b−1)宇部マテリアルズ株式会社製RF−70−SCを30.3質量%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCを37.9質量%、酸化マグネシウム(b−3)宇部マテリアルズ株式会社製RF−10C−SCを7.6質量%とした以外は実施例1と同様にしてポリアミド樹脂組成物のペレットを製造し、これらを評価した。結果を表1に示す。
なお混合した酸化マグネシウムの平均粒子径は52μmであり、混合された酸化マグネシウム全量に対し、粒子径が70μm以上の酸化マグネシウムの配合割合が30.0質量%、20μm以下の酸化マグネシウムの配合割合が21.0質量%となる。
(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は15質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は24質量%である。)
Comparative Example 3
Polyamide resin (a-1) 24.2% P1011F manufactured by Ube Industries, Ltd., magnesium oxide (b-1) 30.3% by mass of RF-70-SC manufactured by Ube Materials Co., Ltd., magnesium oxide (b-2) ) Example 1 except that Ube Materials Co., Ltd. RF-50-SC was 37.9% by mass and magnesium oxide (b-3) Ube Materials Co., Ltd. RF-10C-SC was 7.6% by mass. In the same manner, pellets of the polyamide resin composition were produced and evaluated. The results are shown in Table 1.
The average particle diameter of the mixed magnesium oxide is 52 μm, and the mixing ratio of the magnesium oxide having a particle diameter of 70 μm or more is 30.0% by mass and the mixing ratio of the magnesium oxide is 20 μm or less with respect to the total mixed magnesium oxide. 21.0% by mass.
(The blending ratio of magnesium oxide whose particle diameter is twice or more the average particle diameter is 15% by mass, and the blending ratio of magnesium oxide whose particle diameter is half or less of the average particle diameter is 24% by mass.)

比較例4
酸化マグネシウム(b−1)宇部マテリアルズ株式会社製RF−70−SCを75.9質量%、酸化マグネシウム(b−2)宇部マテリアルズ株式会社製RF−50−SCと酸化マグネシウム(b−3)宇部マテリアルズ株式会社製を0質量%とした以外は実施例と同様にして製造したが、混練状態が悪くポリアミド樹脂組成物のペレットを取得できなかった。
なお混合した酸化マグネシウムの平均粒子径は74μmであり、混合した酸化マグネシウム全量に対し、粒子径が70μm以上の酸化マグネシウムの配合割合は52.0質量%、20μm以下の酸化マグネシウムの配合割合は30.0質量%となる。(粒子径が平均粒子径の2倍以上の酸化マグネシウムの配合割合は16質量%であり、平均粒子径の半分以下の酸化マグネシウムの配合割合は37質量%である。)
Comparative Example 4
Magnesium oxide (b-1) 75.9% by mass of RF-70-SC manufactured by Ube Materials Co., Ltd., magnesium oxide (b-2) RF-50-SC manufactured by Ube Materials Co., Ltd. and magnesium oxide (b-3) ) Manufactured in the same manner as in Example except that Ube Materials Co., Ltd. was changed to 0% by mass, but the kneading state was poor and the pellet of polyamide resin composition could not be obtained.
The average particle diameter of the mixed magnesium oxide is 74 μm, and the mixing ratio of magnesium oxide having a particle diameter of 70 μm or more is 52.0 mass% and the mixing ratio of magnesium oxide of 20 μm or less is 30 with respect to the total amount of mixed magnesium oxide. 0.0% by mass. (The blending ratio of magnesium oxide whose particle diameter is twice or more of the average particle diameter is 16% by mass, and the blending ratio of magnesium oxide whose particle diameter is half or less of the average particle diameter is 37% by mass.)

表1

Figure 2012107135
Table 1
Figure 2012107135

Claims (4)

ポリアミド樹脂(A)と、金属酸化物粒子(B)を含むポリアミド樹脂組成物であって、
金属酸化物粒子(B)は、その全量に対し、粒子径が70μm以上であるものを10質量%以上50質量%以下含み、粒子径が20μm以下であるものを1質量%以上50質量%以下含み、
ポリアミド樹脂組成物に対し、金属酸化物粒子(B)を、70質量%以上85質量%以下含むポリアミド樹脂組成物。
A polyamide resin composition comprising a polyamide resin (A) and metal oxide particles (B),
The metal oxide particles (B) contain 10% by mass or more and 50% by mass or less of particles having a particle size of 70 μm or more and 1% by mass or more and 50% by mass or less of particles having a particle size of 20 μm or less with respect to the total amount. Including
The polyamide resin composition which contains 70 mass% or more and 85 mass% or less of metal oxide particles (B) with respect to a polyamide resin composition.
さらに、ポリアミド樹脂組成物に対し、多価アルコール(C)を0.1質量%以上5質量%以下含む請求項1記載のポリアミド樹脂組成物。 Furthermore, the polyamide resin composition of Claim 1 which contains a polyhydric alcohol (C) 0.1-5 mass% with respect to a polyamide resin composition. 金属酸化物粒子(B)が酸化マグネシウムである請求項1または請求項2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the metal oxide particles (B) are magnesium oxide. 請求項1〜3のいずれか1項に記載のポリアミド樹脂組成物からなる成形品。   The molded article which consists of a polyamide resin composition of any one of Claims 1-3.
JP2010257790A 2010-09-30 2010-11-18 Polyamide resin composition and molded article comprising the same Expired - Fee Related JP5736740B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010257790A JP5736740B2 (en) 2010-11-18 2010-11-18 Polyamide resin composition and molded article comprising the same
BR112013007553-8A BR112013007553B1 (en) 2010-09-30 2011-09-28 COMPOSITION OF POLYAMIDE RESIN AND MOLDED ARTICLE UNDERSTANDING THE SAME
EP11829193.9A EP2623562B1 (en) 2010-09-30 2011-09-28 Polyamide resin composition and molded article comprising same
ES11829193.9T ES2665528T3 (en) 2010-09-30 2011-09-28 Composition of polyamide resin and molded article comprising it
CN201180047213.4A CN103140552B (en) 2010-09-30 2011-09-28 Polyamide resin composition and molded article comprising the same
PCT/JP2011/072205 WO2012043640A1 (en) 2010-09-30 2011-09-28 Polyamide resin composition and molded article comprising same
US13/876,517 US9177692B2 (en) 2010-09-30 2011-09-28 Polyamide resin composition and molded article comprising the same
US14/875,852 US9624416B2 (en) 2010-09-30 2015-10-06 Polyamide resin composition and molded article comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257790A JP5736740B2 (en) 2010-11-18 2010-11-18 Polyamide resin composition and molded article comprising the same

Publications (2)

Publication Number Publication Date
JP2012107135A true JP2012107135A (en) 2012-06-07
JP5736740B2 JP5736740B2 (en) 2015-06-17

Family

ID=46493101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257790A Expired - Fee Related JP5736740B2 (en) 2010-09-30 2010-11-18 Polyamide resin composition and molded article comprising the same

Country Status (1)

Country Link
JP (1) JP5736740B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015775A1 (en) * 2006-07-31 2008-02-07 Techno Polymer Co., Ltd. Heat dissipating chassis and heat dissipating case
JP2012072340A (en) * 2010-09-30 2012-04-12 Ube Industries Ltd Polyamide resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015775A1 (en) * 2006-07-31 2008-02-07 Techno Polymer Co., Ltd. Heat dissipating chassis and heat dissipating case
JP2012072340A (en) * 2010-09-30 2012-04-12 Ube Industries Ltd Polyamide resin composition

Also Published As

Publication number Publication date
JP5736740B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
US9624416B2 (en) Polyamide resin composition and molded article comprising the same
TWI615418B (en) Flame retardant polyamide resin composition
JP5371683B2 (en) Manufacturing method of polyamide resin composition pellets
TW201741380A (en) Molded article and method for production thereof
US10059842B2 (en) Polyamide resin composition and molded article comprising same
US10072137B2 (en) Polyamide resin composition having high melt point and being excellent in anti-vibration property upon water absorption
WO2011009111A1 (en) Semi aromatic polyamide resin compositions, processes for their manfacture and articles thereof
JP5400456B2 (en) Polyamide resin composition and molded body comprising the same
JP5400457B2 (en) Polyamide resin composition and molded body
JP6523650B2 (en) Polyamide resin composition, molded product thereof, and method for producing polyamide resin composition
JP5736710B2 (en) Polyamide resin composition
JP2018070830A (en) Polyamide resin composition and molding
JP5516265B2 (en) Molding method of polyamide resin composition
JP5854564B2 (en) Polyamide resin composition and molded product
EP2985316A1 (en) Polyamide resin composition and molded article using same
JP2015030833A (en) Composition including polyamide resin, copper compound and potassium halide, and molding formed thereof
JP5736740B2 (en) Polyamide resin composition and molded article comprising the same
WO2015029780A1 (en) Polyamide resin composition with high melting point having excellent vibration properties upon absorption of water and appearance
JP6811557B2 (en) Polyamide resin composition and molded article
CN106554616A (en) Amilan polyamide resin composition and its molded body
JP5247611B2 (en) Method for producing polyamide resin
JP5636278B2 (en) Polyamide resin composition
JP4361753B2 (en) Method for producing flame retardant polyamide resin composition
JP2008179807A (en) Electroconductive polyamide resin composition
WO2023037937A1 (en) Polyamide resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees