JP2012106221A - Device for treating waste water containing metal ion - Google Patents

Device for treating waste water containing metal ion Download PDF

Info

Publication number
JP2012106221A
JP2012106221A JP2010271977A JP2010271977A JP2012106221A JP 2012106221 A JP2012106221 A JP 2012106221A JP 2010271977 A JP2010271977 A JP 2010271977A JP 2010271977 A JP2010271977 A JP 2010271977A JP 2012106221 A JP2012106221 A JP 2012106221A
Authority
JP
Japan
Prior art keywords
magnesium
drum
waste water
wastewater
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010271977A
Other languages
Japanese (ja)
Other versions
JP5737671B2 (en
Inventor
Tomio Takasu
登実男 高須
Akira Iwamoto
朗 岩本
Naotaka Sakamoto
尚孝 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2010271977A priority Critical patent/JP5737671B2/en
Publication of JP2012106221A publication Critical patent/JP2012106221A/en
Application granted granted Critical
Publication of JP5737671B2 publication Critical patent/JP5737671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for treating waste water containing metal ions, capable of continuously peeling reaction inhibitors such as hydrogen gas and magnesium hydroxide generated on a surface of a separating material mainly composed of magnesium or magnesium alloy, stably and securely bringing target waste water into contact with the magnesium surface as the separating material and separating the metal ions in the waste water continuously for a long time, when performing low-concentration waste water treatment by using the separating material.SOLUTION: In the device for continuously treating waste water containing metal ions, the separating material mainly composed of magnesium or magnesium alloy and filled within a rotating drum having a rotating shaft arranged to be inclined to the horizontal face is rolled by rotation of the drum. The separating material is regenerated by continuously peeling reactants formed on the surface of the separating material by reaction with treated waste water, and solid-liquid separation of the peeled reactants is performed.

Description

本発明は、有害な金属イオンあるいは有用な金属イオンを含む排水から、これらの金属イオンを効率的かつ連続的に分離除去あるいは分離回収する転動式回転ドラム型処理装置に関する。  The present invention relates to a rolling rotary drum type processing apparatus that efficiently and continuously separates and removes or separates and recovers these metal ions from wastewater containing harmful metal ions or useful metal ions.

めっき工場、製錬工場、ゴミ焼却場等の排水(以下、特に区別しない限り廃水、地下水、溶出液等金属イオンを含む水性液を意味する)には、人体に有毒な、例えば、水銀、鉛、カドミニウム、砒素、クロム、銅、ニッケル等の重金属が含まれている。また、生物にとって有毒の元素である砒素は、通常、熱水・熱気鉱床の旧鉱山廃水、温泉水や地熱発電所等の排温水等の地下水や、産業廃棄物、都市ゴミ焼却灰・飛灰、電気炉製鋼ダスト等にも含有されている。これら金属の除去のためには、通常、金属イオンを含む排水あるいは金属イオンを溶出した排水から、金属を分離除去する方法がとられている。また、例えば、産業的に有用・有価な、亜鉛、銀、金、ニッケル、クロムの回収にも、通常、これらの金属イオンを溶出した排水から、金属を分離回収する方法が採用されている。  Wastewater from plating plants, smelters, garbage incinerators, etc. (hereinafter, unless otherwise specified, means wastewater, groundwater, aqueous solutions containing metal ions such as eluate), toxic to humans, eg mercury, lead Heavy metals such as cadmium, arsenic, chromium, copper and nickel are included. In addition, arsenic, an element that is toxic to living organisms, is usually found in groundwater such as old mine wastewater from hot water and hot air deposits, hot water from hot spring water and geothermal power plants, industrial waste, incineration ash from urban waste, and fly ash. It is also contained in electric furnace steelmaking dust and the like. In order to remove these metals, usually, a method of separating and removing metals from waste water containing metal ions or waste water from which metal ions are eluted is employed. For example, for recovering zinc, silver, gold, nickel, and chromium, which are useful and valuable industrially, usually, a method of separating and recovering metal from waste water from which these metal ions are eluted is employed.

従来、このような排水の処理には、中和剤や沈殿剤を添加することによって化合物を生成させ沈殿凝集させる方法、無機イオン交換体または有機イオン交換体を用いる方法、吸着剤を用いる方法がある。沈殿凝集法は、水酸化物、硫化物、炭酸塩といった難溶性の化合物を析出させ、固液分離することで排水中に溶解している物質を分離除去するものである。無機イオンまたは有機イオン交換体を用いる方法を用いる方法は、排水中に含まれるイオン成分が無機イオンまたは有機イオン交換体が持つイオンとの置換反応によって分離するものである。吸着剤を用いる方法は、活性炭に代表される多孔性吸着剤表面に排水中に溶解している物質を取り去る吸着現象によって分離するものである。  Conventionally, for the treatment of such waste water, there are a method in which a compound is produced by adding a neutralizing agent or a precipitating agent to precipitate and agglomerate, a method using an inorganic ion exchanger or an organic ion exchanger, and a method using an adsorbent. is there. The precipitation aggregation method separates and removes substances dissolved in waste water by depositing a hardly soluble compound such as hydroxide, sulfide or carbonate and performing solid-liquid separation. In the method using an inorganic ion or organic ion exchanger, an ionic component contained in waste water is separated by a substitution reaction with an ion of the inorganic ion or organic ion exchanger. In the method using an adsorbent, separation is performed by an adsorption phenomenon in which a substance dissolved in waste water is removed from the surface of a porous adsorbent represented by activated carbon.

多量に発生する低濃度排水の処理を行う場合、コストや固液分離後に発生する固体分(スラッジ)処理の観点から、沈殿凝集法は排水処理分野でもっとも広く利用されており、無機系沈殿凝集剤としてはカルシウム系、アルミニウム系、鉄系、マグネシウム系が知られている。なかでも、マグネシウム系の沈殿凝集剤を用いると、析出する粒子が微細なため、固液分離後に発生するスラッジを減容化することができる(非特許文献1)。  When processing a large amount of low-concentration wastewater, the precipitation aggregation method is the most widely used in the wastewater treatment field from the viewpoint of cost and the treatment of solids (sludge) generated after solid-liquid separation. Calcium-based, aluminum-based, iron-based, and magnesium-based agents are known. Among these, when a magnesium-based precipitation coagulant is used, the precipitated particles are fine, so that sludge generated after solid-liquid separation can be reduced (Non-patent Document 1).

近年、パソコン等の筐体にマグネシウム合金が使用されるようになったが、マグネシウム合金のリサイクルが課題となっている。この課題に対して、本発明者らが知見した、マグネシウムが水溶液中で変化生成するMg(OH)により、種々の金属イオンを分離できるという事実を組み合わせて、本発明者らは、金属イオンを含む排水中に、マグネシウム又はマグネシウム合金を主成分とする分離材を添加し、水とマグネシウムの反応により排水のpH中和を進めるとともに、マグネシウム表面に生成する水酸化マグネシウム層に、金属イオンを吸着させ、金属イオンを排水から分離することを特徴とする金属イオンの分離方法を発明した(特許文献1)。In recent years, magnesium alloys have been used for housings such as personal computers, but recycling of magnesium alloys has become an issue. Combining the fact that the present inventors have found that various metal ions can be separated by Mg (OH) 2 , which magnesium has changed and produced in an aqueous solution, In the waste water containing magnesium, a separation material mainly composed of magnesium or a magnesium alloy is added, pH of the waste water is neutralized by the reaction of water and magnesium, and metal ions are added to the magnesium hydroxide layer generated on the magnesium surface. We have invented a method for separating metal ions characterized by adsorbing and separating metal ions from waste water (Patent Document 1).

Schiller,J.E. & Khalafalla,S.E.:MAGNESIUM−OXIDE FOR IMPROVED HEAVY−METALS REMOVAL, Min.Eng.,Vol.36,p.171−173,(1984)Schiller, J. et al. E. & Khalafalla, S .; E. : MAGNESIUM-OXIDE FOR IMPROVED HEAVY-METALS REMOVAL, Min. Eng. , Vol. 36, p. 171-173, (1984)

特開2006−167564号公報JP 2006-167564 A

しかしながら、マグネシウム又はマグネシウム合金を主成分とする分離材を添加するだけの方法では、マグネシウム表面に水とマグネシウムの反応により発生する水素ガスの付着および水酸化マグネシウムの堆積により排水処理の効率が次第に低下する。また、バッチ式の反応槽方式では、槽内底部に分離材が沈降するため、排水との接触効率が低く、排水処理能力に限界があり作業能率も低いという課題を有している。  However, with the method of simply adding a separation material mainly composed of magnesium or a magnesium alloy, the efficiency of wastewater treatment gradually decreases due to the adhesion of hydrogen gas generated by the reaction of water and magnesium and the deposition of magnesium hydroxide on the magnesium surface. To do. Moreover, in the batch type reaction tank system, since the separating material settles at the bottom of the tank, there is a problem that the contact efficiency with the waste water is low, the waste water treatment capacity is limited, and the work efficiency is low.

本発明は、かかる事情に鑑みてなされたもので、マグネシウム又はマグネシウム合金を主成分とする分離材を用いて低濃度排水処理を行う際に、分離材表面に発生する水素ガスや水酸化マグネシウムといった反応阻害物質を連続的に剥離し、安定して、確実に分離材であるマグネシウム表面に対象となる排水が接触でき、排水中の金属イオンを長時間連続して分離できる金属イオン含有排水処理装置を提供することを目的としている。  The present invention has been made in view of such circumstances, such as hydrogen gas and magnesium hydroxide generated on the surface of the separation material when performing low-concentration wastewater treatment using the separation material mainly composed of magnesium or a magnesium alloy. Metal ion-containing wastewater treatment equipment that continuously peels reaction-inhibiting substances, can stably and reliably contact the target wastewater with the magnesium surface, and can separate the metal ions in the wastewater continuously for a long time. The purpose is to provide.

前記目的に沿う本発明の構成は、装置に充填したマグネシウム又はマグネシウム合金を主成分とする分離材が、回転ドラム内で回転に伴い転動し、相互にまたは回転ドラム壁と衝突することで、表面に生成したガスおよび分離対象の金属イオンを含む水酸化マグネシウムなどの不溶性化合物を剥離し、反応性の高い金属性表面を新生し続け、連続的に金属イオンを分離処理することを特徴とする。  The configuration of the present invention that meets the above-mentioned object is that the separation material mainly composed of magnesium or magnesium alloy filled in the apparatus rolls with rotation in the rotating drum, and collides with each other or the rotating drum wall. It is characterized by exfoliating insoluble compounds such as magnesium hydroxide containing gas generated on the surface and metal ions to be separated, continuously renewing highly reactive metallic surfaces, and continuously separating metal ions .

また本発明の構成は、分離材充填部が通水孔をもつ隔壁で区分けされた2つ以上の区画が連続する形態であり、当該処理装置を通る排水の流路を長くすることで排水が分離材と接触する確率を向上させるとともに、多段の反応槽とすることで金属イオン濃度の高い上流側の排水と金属イオン濃度の低い下流側の処理排水の混合を避け、効率的に金属イオンの分離処理することを特徴とする。  Further, the configuration of the present invention is a form in which two or more sections separated by a partition wall having a water passage hole in the separation material filling portion are continuous, and drainage is performed by lengthening the flow path of drainage passing through the treatment apparatus. In addition to improving the probability of contact with the separating material, the multi-stage reaction tank avoids mixing of the waste water on the upstream side with a high concentration of metal ions and the treatment waste water on the downstream side with a low concentration of metal ions. It is characterized by separation processing.

また本発明の構成は、回転ドラム内壁に突起や凹凸を設け、装置に充填したマグネシウム又はマグネシウム合金を主成分とする分離材を効率よく転動させることにより、表面に生成したガスおよび分離対象の金属イオンを含む水酸化マグネシウムなどの不溶性化合物を効率的に剥離し、反応性の高い金属性表面を確実に新生し続け、連続的に金属イオンの分離処理することを特徴とする。  Further, the structure of the present invention is provided with protrusions and irregularities on the inner wall of the rotating drum, and efficiently rolling a separation material mainly composed of magnesium or a magnesium alloy filled in the apparatus, so that the gas generated on the surface and the object to be separated are separated. It is characterized in that an insoluble compound such as magnesium hydroxide containing metal ions is efficiently peeled off, and a highly reactive metallic surface is reliably continually regenerated, and metal ions are continuously separated.

また本発明の構成は、装置に充填したマグネシウム又はマグネシウム合金を主成分とする分離材とともに金属製あるいはセラミックス製の硬質体を入れ、回転ドラム内で回転に伴い分離材と硬質体が共に転動し相互の衝突により、表面に生成したガスおよび分離対象の金属イオンを含む水酸化マグネシウムなどの不溶性化合物を効率的に剥離し、確実に反応性の高い金属性表面を新生し続け、連続的に金属イオンの分離処理することを特徴とする。  In addition, the structure of the present invention includes a metal or ceramic hard body together with a separation material mainly composed of magnesium or a magnesium alloy filled in the apparatus, and the separation material and the hard body roll together with rotation in the rotating drum. By mutual collision, the gas generated on the surface and the insoluble compounds such as magnesium hydroxide containing the metal ions to be separated are efficiently peeled off to ensure that a highly reactive metallic surface is continuously born and continuously It is characterized in that metal ions are separated.

本発明は、上記した構成を採用することにより、マグネシウム又はマグネシウム合金を分離材として用いて低濃度排水処理を行う際に、分離材表面に発生する水素ガスや水酸化マグネシウムといった反応阻害物質を連続的に剥離し、安定して、確実に分離材であるマグネシウム表面に対象となる排水が接触でき、排水中の金属イオンを長時間連続して分離できる。  In the present invention, by adopting the above-described configuration, when performing low-concentration wastewater treatment using magnesium or a magnesium alloy as a separation material, reaction inhibitors such as hydrogen gas and magnesium hydroxide generated on the surface of the separation material are continuously added. Therefore, the target drainage can be brought into contact with the magnesium surface, which is a separating material, stably and reliably, and the metal ions in the drainage can be separated continuously for a long time.

本発明に用いるマグネシウム又はマグネシウム合金分離材としては、今後多量の発生が予想されるマグネシウムスクラップの利用も可能であり、経済的、環境負荷的にも意義深い。マグネシウム合金としては、マグネシウムを質量%で50%以上含有するものであれば良く、ASTM記号を基準とすればAZ31C、AZ61A、AZ80A、AZ91D、AM50A、AM60B、AM100A、EZ33、ZE41、QE22A、WE54A、WE43、ZK51A、ZK60A、ZK61A等の合金があげられる。  As the magnesium or magnesium alloy separating material used in the present invention, it is possible to use magnesium scrap which is expected to generate a large amount in the future, which is significant in terms of economy and environmental load. As the magnesium alloy, any magnesium alloy may be used as long as it contains 50% or more by mass%. Based on the ASTM symbol, AZ31C, AZ61A, AZ80A, AZ91D, AM50A, AM60B, AM100A, EZ33, ZE41, QE22A, WE54A, Alloys such as WE43, ZK51A, ZK60A, and ZK61A are listed.

以下に本発明を具体化した実施の形態にかかる転動式回転ドラム型排水処理装置を図面に基づき説明し、本発明の理解に供する。  DESCRIPTION OF THE PREFERRED EMBODIMENTS A rolling rotary drum type waste water treatment apparatus according to an embodiment embodying the present invention will be described below with reference to the drawings to provide an understanding of the present invention.

本発明における排水処理装置は、回転するドラム内に、金属イオンを含む廃水、地下水、溶出液等の排水を通水することで、金属イオンを効率的かつ連続的に分離除去あるいは分離回収できる排水処理装置である。  The waste water treatment apparatus in the present invention is a waste water that can efficiently and continuously separate or remove metal ions by passing waste water such as waste water containing metal ions, ground water, and eluate through a rotating drum. It is a processing device.

本発明における排水処理装置は、図1に示すように、回転軸が水平面に対して傾斜する状態で配置された回転ドラム10を有する回転ドラム装置であり、回転ドラム10の両端面のうち傾斜して上側となった端面に、被処理排水を上方から回転ドラム10内に注入する被処理排水注入孔11と、回転ドラム10の両端面のうち傾斜して下側となった端面に、被処理排水を下方から回転ドラム10外に排出する被処理排水排出孔12を有し、回転ドラム10を経由して排出される被処理排水を固液分離する固液分離装置13を有する。  As shown in FIG. 1, the waste water treatment apparatus according to the present invention is a rotary drum apparatus having a rotary drum 10 that is disposed in a state where the rotation axis is inclined with respect to a horizontal plane. The treated wastewater injection hole 11 for injecting the treated wastewater into the rotating drum 10 from above and the end surface inclined to the lower side of both end faces of the rotating drum 10 on the end surface which is the upper side A treated wastewater discharge hole 12 for discharging wastewater from below to the rotating drum 10 is provided, and a solid-liquid separation device 13 for separating the treated wastewater discharged via the rotating drum 10 into solid and liquid.

回転ドラム10は、隔壁14によって複数に区切られた反応槽で構成されており、その少なくとも1つの区画にマグネシウム又はマグネシウム合金を主成分とする分離材15を装填する。隔壁14は、図2に示すように、浄化材が通過できない大きさの開口径をもつメッシュ部材を配した通水孔16を1つ以上有する。分離材15が回転ドラム10の回転によって転動し、被処理排水との反応により分離材15の表面に形成する反応物の連続剥離により分離材15を再生する。  The rotating drum 10 is constituted by a reaction tank divided into a plurality of partitions by a partition wall 14, and a separating material 15 mainly composed of magnesium or a magnesium alloy is loaded into at least one section thereof. As shown in FIG. 2, the partition wall 14 has at least one water passage hole 16 provided with a mesh member having an opening diameter large enough to prevent the purification material from passing therethrough. The separating material 15 rolls by the rotation of the rotating drum 10, and the separating material 15 is regenerated by continuous peeling of reactants formed on the surface of the separating material 15 by reaction with the wastewater to be treated.

本発明の回転機構としては、回転ドラムを制御しつつ回転できるものであれば、特に限定されるものではないが、例えば回転ドラムの下部に接して回転するローラーが好適である。回転ドラム10をローラー17などの外部駆動力により回転させ、注入孔11より排水を注ぎ入れると、回転ドラム10の傾斜に従い排水は回転ドラム10内の分離材15に接触しながら進み、排出孔12より回転ドラム10外に出る。このとき、槽内での分離反応に伴い発生した水酸化マグネシウムなどの不溶性化合物も混在して排出されるため、固液分離装置13にて被処理排水を固液分離する。  The rotating mechanism of the present invention is not particularly limited as long as it can rotate while controlling the rotating drum. For example, a roller rotating in contact with the lower portion of the rotating drum is suitable. When the rotating drum 10 is rotated by an external driving force such as a roller 17 and drainage is poured from the injection hole 11, the drainage proceeds while contacting the separating material 15 in the rotating drum 10 according to the inclination of the rotating drum 10, and the discharge hole 12 It goes out of the rotating drum 10 more. At this time, since insoluble compounds such as magnesium hydroxide generated with the separation reaction in the tank are also discharged together, the wastewater to be treated is solid-liquid separated by the solid-liquid separation device 13.

固液分離装置は、回転ドラム装置の排出孔の下流に設けるもので、回転ドラム装置との一体型、あるいは個別型として設けることができる。固液分離方法としては、沈殿分離、浮上分離、遠心分離、膜分離など既知の固液分離方法を使用することができる。  The solid-liquid separation device is provided downstream of the discharge hole of the rotary drum device, and can be provided as an integral type with the rotary drum device or as an individual type. As the solid-liquid separation method, known solid-liquid separation methods such as precipitation separation, flotation separation, centrifugation, membrane separation and the like can be used.

本発明で用いる分離材の形状は特に制限されるものではなく、例えば、マグネシウム又はマグネシウム合金の粉末、薄片、粒体状が含まれる。マグネシウムの表面は著しく活性が大きいことから、分離材のサイズが細かいほど分離特性は高いが短時間で反応性を失う傾向があるため、反応を長時間持続するために数ミリメートル以上のサイズの分離材であることが好ましい。また、分離材同士が相互あるいは回転ドラム壁に衝突することで金属性表面が新生されるため、反応槽内で分離材同士が付着してだま(塊)が形成されにくい大きさの分離材であることが好ましい。  The shape of the separating material used in the present invention is not particularly limited, and includes, for example, magnesium or magnesium alloy powder, flakes, and granules. Since the surface of magnesium is remarkably high in activity, the smaller the size of the separation material, the higher the separation characteristics, but there is a tendency to lose reactivity in a short period of time. A material is preferred. In addition, since the metallic surface is renewed when the separating materials collide with each other or the rotating drum wall, the separating materials adhere to each other in the reaction tank and are not easily formed with a lump (lumb). Preferably there is.

本発明においては、金属イオンの種類および濃度と金属イオンを含む排水のpHによって金属イオンの分離の状況が変化する。分離材の主成分であるマグネシウム又はマグネシウム合金が水と反応し、マグネシウムイオンが発生することで分離反応が進行するため、pHは酸性領域であることが好ましいが、中性領域、アルカリ性領域においても分離材と水との反応が進行することで分離可能である。  In the present invention, the state of separation of metal ions varies depending on the type and concentration of metal ions and the pH of the waste water containing the metal ions. The magnesium or magnesium alloy, which is the main component of the separation material, reacts with water, and the magnesium ion is generated, so that the separation reaction proceeds. Therefore, the pH is preferably in the acidic region, but also in the neutral region and the alkaline region. Separation is possible by the reaction between the separating material and water.

また、金属イオンを含む排水処理を行う際の回転ドラム径、回転速度、回転ドラム傾斜角度、分離材充填量は、特に限定されるものではないが、充填した分離材が回転によって十分に転動する条件に設定することが望ましい。  In addition, the diameter of the rotating drum, the rotating speed, the tilt angle of the rotating drum, and the filling amount of the separating material when performing the waste water treatment including metal ions are not particularly limited, but the filled separating material is sufficiently rolled by rotation. It is desirable to set the conditions to

また、金属イオンを含む排水処理を行う際の通水速度は、被処理排水中の金属イオン濃度、回転ドラム径、回転ドラム傾斜角度、分離材充填量に応じて任意に設定することができる。  Moreover, the water flow rate at the time of performing the waste water treatment containing metal ions can be arbitrarily set according to the metal ion concentration in the waste water to be treated, the rotating drum diameter, the rotating drum inclination angle, and the separation material filling amount.

次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:ニッケルの分離回収
稼働中のニッケルめっきラインの洗浄工程より排水を採取し、本発明の排水処理装置にて金属イオン分離を試みた。本実施例の排水処理装置は、直径354mm、長さ310mmの回転ドラム内部を6区画に区切り、これを水平面に対して15度傾斜させ、23rpmの速度で回転させた。
Next, examples carried out for confirming the effects of the present invention will be described.
Example 1: Drainage was collected from a washing process of a nickel plating line during nickel separation and recovery operation, and metal ion separation was attempted using the wastewater treatment apparatus of the present invention. In the wastewater treatment apparatus of this example, the inside of the rotating drum having a diameter of 354 mm and a length of 310 mm was divided into six sections, which was inclined by 15 degrees with respect to the horizontal plane and rotated at a speed of 23 rpm.

最も高い位置にある区画は排水注入孔とバッファ槽の役割を持ち、被処理排水はその下に続く4区画の反応槽を通過後、最も低い位置にある区画に設置された排出口を経て槽外へと出る。4区画のうち1区画にマグネシウム合金を800g入れて排水処理を行った。ここで用いたマグネシウム合金は比較的形状の整ったチップ状(約1×1×4mm)のAZ91Dである。被処理排水は酸性(pH=2.5)でありpH調整することなく直接150ml/minの流量で回転する反応槽に連続注入するとともに、回転ドラム内の反応層を経由して回転ドラム外に注ぎ出る被処理排水を濾紙(5A)にて固液分離した。  The highest compartment has the role of drainage injection hole and buffer tank, and the treated wastewater passes through the four reaction tanks below it and passes through the discharge port installed in the lowest compartment. Go out. Of the four compartments, 800 g of magnesium alloy was put into one compartment for wastewater treatment. The magnesium alloy used here is AZ91D having a relatively well-shaped chip shape (about 1 × 1 × 4 mm). The wastewater to be treated is acidic (pH = 2.5) and is continuously injected directly into the rotating reaction tank at a flow rate of 150 ml / min without adjusting the pH, and outside the rotating drum via the reaction layer in the rotating drum. The treated waste water to be poured was subjected to solid-liquid separation with a filter paper (5A).

本実施例の排水処理装置を経て採取された処理水のイオン濃度およびpHの経時変化を図3に示した。注入前の被処理排水はpH=2.5、Ni濃度=105ppm、Mg濃度=3.5ppmであったが、反応槽内でMg合金と反応後は採取開始時当初からNiはICP(Inductively Coupled Plasma、誘導結合プラズマ)発光分光分析で検知限界以下であり、すべてのNiイオンが被処理排水中より除去されていることが明らかとなった。また、約60Lの洗浄排水を連続して反応槽に注入したが、すべての処理水が検知限界以下のNi濃度となり、安定して除去反応が起こっていることが確認できた。このことから、転動式では、Mg合金の水和反応に伴い表面に生成したガスおよび分離対象の金属イオンを含む水酸化マグネシウムなどの不溶性化合物を剥離し、反応性の高い金属性表面を新生し続け、連続的に金属イオンを分離処理できていることが示された。  FIG. 3 shows changes over time in the ion concentration and pH of the treated water collected through the wastewater treatment apparatus of this example. The wastewater to be treated before injection was pH = 2.5, Ni concentration = 105 ppm, Mg concentration = 3.5 ppm, but after reaction with Mg alloy in the reaction tank, Ni was ICP (Inductively Coupled) from the beginning of sampling. (Plasma, inductively coupled plasma) emission spectroscopic analysis was below the detection limit, and it was revealed that all Ni ions were removed from the wastewater to be treated. Moreover, although about 60 L of washing waste water was continuously injected into the reaction tank, all the treated water had a Ni concentration below the detection limit, and it was confirmed that the removal reaction was stably occurring. Therefore, in the rolling type, insoluble compounds such as magnesium hydroxide containing the gas generated on the surface of the Mg alloy hydration reaction and the metal ions to be separated are peeled off to create a highly reactive metallic surface. It was shown that metal ions could be continuously separated.

反応当初より処理水のpHは9.25と高くなり、その後は若干pH値が下がりながらも約8.9で安定する傾向があった。また、処理水中のMg濃度は120.4ppmまで著しく増大し、その後すぐに約100ppmで安定する。これは、被処理排水注入直後のMg合金表面はほぼ100%金属性の状態であるので、活性が強く、水和反応に伴うMgの溶解、水素ガスの発生、OHイオン濃度の増加が速いためである。その後、Mg合金表面にMg(OH)2を主成分とする反応層が形成されるので活性自体は弱くなるものの、転動によるMg合金チップ同士の衝突によって反応層が剥離されるため、金属性の表面が現れ安定的に反応が継続するものと考えられる。  The pH of the treated water was as high as 9.25 from the beginning of the reaction, and after that, there was a tendency to stabilize at about 8.9, although the pH value slightly decreased. In addition, the Mg concentration in the treated water increases significantly to 120.4 ppm, and soon stabilizes at about 100 ppm. This is because the Mg alloy surface immediately after injection of the wastewater to be treated is almost 100% metallic, so the activity is strong and the dissolution of Mg, the generation of hydrogen gas, and the increase in OH ion concentration accompanying the hydration reaction are fast. It is. After that, a reaction layer mainly composed of Mg (OH) 2 is formed on the Mg alloy surface, so that the activity itself becomes weak, but the reaction layer is peeled off due to collision between Mg alloy chips due to rolling, so that the metallic property It is thought that the surface of this appears and the reaction continues stably.

比較例1(実施例1の比較例)
この比較例は実施例1の比較例である。実施例1と同様に、稼働中のニッケルめっきラインの洗浄工程より採取した排水を被処理排水とした。
Comparative Example 1 (Comparative Example of Example 1)
This comparative example is a comparative example of Example 1. As in Example 1, wastewater collected from the cleaning process of the nickel plating line in operation was used as wastewater to be treated.

排水処理装置は実施例1と同様のものを用いた。ただし、回転ドラムを回転させず被処理排水を通水させた。排水処理装置を経て採取された処理水のNiイオン濃度は、初期採取ではICPで検出限界以下であったが、500ml処理後には数ppmのNiイオンが検出され、1000ml処理後では10ppm以上のNiイオン濃度となり、処理量の増加に伴い次第に処理されずに処理水に残留するNiイオン濃度が増える傾向が示された。この場合、分離材の表面反応により初期に注入された被処理排水中のNiイオンは分離除去されるものの、分離材が転動しないため、反応の進行に伴い分離材表面に堆積する反応生成物は剥離することなく安定に存在することによって分離性能が徐々に低下していくものと考えられる。  The same waste water treatment apparatus as that in Example 1 was used. However, the wastewater to be treated was passed through without rotating the rotating drum. The Ni ion concentration of the treated water collected through the wastewater treatment apparatus was below the detection limit by ICP in the initial collection, but several ppm of Ni ions were detected after 500 ml treatment, and 10 ppm or more Ni after 1000 ml treatment. It became an ion concentration, and the tendency which the Ni ion density | concentration which remains in a treated water without increasing gradually with the increase in a processing amount increased was shown. In this case, Ni ions in the wastewater to be treated that are initially injected by the surface reaction of the separation material are separated and removed, but the separation material does not roll, so that the reaction product that accumulates on the surface of the separation material as the reaction proceeds It is considered that the separation performance gradually decreases due to the stable presence of the film without peeling.

本発明の構成にかかる転動式回転ドラム型処理装置を示す正面断面図である。It is front sectional drawing which shows the rolling type rotary drum type processing apparatus concerning the structure of this invention. 図1のII−II断面を示す断面図である。It is sectional drawing which shows the II-II cross section of FIG. ニッケル分離除去の例で、マグネシウム合金を主成分とする分離材を用いて本発明の転動式回転ドラム型処理装置でニッケルめっき排水を連続処理した場合の、処理水濃度の時間変化を示す図である。The figure which shows the time change of the treated water density | concentration at the time of continuously treating nickel plating waste_water | drain with the rolling type rotary drum type processing apparatus of this invention using the separation material which has a magnesium alloy as a main component in the example of nickel separation removal. It is.

10:回転ドラム
11:被処理排水注入孔
12:被処理排水排出孔
13:固液分離装置
14:隔壁
15:マグネシウム又はマグネシウム合金を主成分とする分離材
16:隔壁上の通水孔
17:駆動用ローラー
10: Rotating drum 11: treated wastewater injection hole 12: treated wastewater discharge hole 13: solid-liquid separator 14: partition 15: separation material mainly composed of magnesium or magnesium alloy 16: water passage hole 17 on the partition: Driving roller

Claims (4)

回転軸を水平面に対して傾斜して配置した回転ドラムと、該ドラムの両端面のうち傾斜して上側となった端面に設けられた被処理排水注入孔と、該ドラムの両端面のうち傾斜して下側となった端面に設けられた被処理排水排出孔と、該ドラムの軸線方向に設けられた回転軸と、前記回転ドラムを回転させる駆動機構と、前記被処理排水排出孔の下流に設けられた固液分離装置とを備え、
前記回転ドラム内に分離材として装填したマグネシウム又はマグネシウム合金を、ドラムの回転によって転動させ、
被処理排水との反応により前記分離材の表面に形成する反応生成物の剥離により前記分離材表面を再生し、
前記回転ドラムから排出する被処理排水を固液分離することで、前記剥離した分離材表面の固体反応生成物に吸着されている金属イオンを分離除去あるいは分離回収することを特徴とする金属イオン含有排水の連続処理装置。
A rotating drum in which a rotation axis is inclined with respect to a horizontal plane, a wastewater injection hole to be treated provided on an end surface which is inclined to the upper side of both end surfaces of the drum, and an inclined surface in both end surfaces of the drum The treated wastewater discharge hole provided in the lower end surface, the rotating shaft provided in the axial direction of the drum, the drive mechanism for rotating the rotary drum, and the downstream of the treated wastewater discharge hole And a solid-liquid separation device provided in
Magnesium or magnesium alloy loaded as a separating material in the rotating drum is rolled by rotating the drum,
Regenerating the surface of the separation material by peeling the reaction product formed on the surface of the separation material by reaction with the wastewater to be treated,
Metal ion content characterized in that metal ions adsorbed to the solid reaction product on the surface of the separated separation material are separated or removed by solid-liquid separation of the wastewater to be treated discharged from the rotating drum Wastewater continuous treatment equipment.
前記回転ドラム内を複数の区画に分けるための通水孔を有する隔壁を設けていることを特徴とする請求項1記載の金属イオン含有排水の連続処理装置。  2. The continuous treatment apparatus for metal ion-containing wastewater according to claim 1, further comprising a partition wall having water passage holes for dividing the inside of the rotary drum into a plurality of sections. 前記回転ドラム内壁に突起及び/又は凹凸を設けていることを特徴とする請求項1又は請求項2記載の金属イオン含有排水の連続処理装置。  The continuous treatment apparatus for metal ion-containing wastewater according to claim 1 or 2, wherein protrusions and / or irregularities are provided on the inner wall of the rotating drum. 請求項1において、前記回転ドラム内に装填される分離材とともに硬質体が混在していることを特徴とする請求項1乃至3記載の金属イオン含有排水の連続処理装置。  The continuous treatment apparatus for metal ion-containing wastewater according to claim 1, wherein a hard body is mixed together with a separating material loaded in the rotary drum.
JP2010271977A 2010-11-16 2010-11-16 Waste water treatment equipment containing metal ions Active JP5737671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271977A JP5737671B2 (en) 2010-11-16 2010-11-16 Waste water treatment equipment containing metal ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271977A JP5737671B2 (en) 2010-11-16 2010-11-16 Waste water treatment equipment containing metal ions

Publications (2)

Publication Number Publication Date
JP2012106221A true JP2012106221A (en) 2012-06-07
JP5737671B2 JP5737671B2 (en) 2015-06-17

Family

ID=46492451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271977A Active JP5737671B2 (en) 2010-11-16 2010-11-16 Waste water treatment equipment containing metal ions

Country Status (1)

Country Link
JP (1) JP5737671B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020156A (en) * 2013-07-23 2015-02-02 株式会社東芝 Water treatment apparatus
JP2015131294A (en) * 2013-12-12 2015-07-23 株式会社テッツコーポレーション Water purification equipment
JP2017154138A (en) * 2017-05-15 2017-09-07 株式会社東芝 Water treatment equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406793A (en) * 1980-08-14 1983-09-27 Jan Kruyer Use of free bodies to increase size of dispersed phase particles
JPS61245885A (en) * 1985-04-25 1986-11-01 Matsushita Electric Ind Co Ltd Apparatus for removing heavy metal ion
JPS6391560A (en) * 1986-10-03 1988-04-22 ヨーイチロウ イトウ Transverse axis type synchronous system conduction coil-planet centrifugal separator requiring no rotary seal and counterflow chromatographic separation method
US5087369A (en) * 1988-07-27 1992-02-11 Snow Brand Milk Products Co., Ltd. Fluidized bed separation and recovery of proteins from fluids in a rotary column
JPH07127972A (en) * 1993-11-01 1995-05-19 Hirose Datsusuiki Seisakusho:Kk Lateral turning centrifugal cleaning/drying apparatus
JPH0824506A (en) * 1994-07-21 1996-01-30 Mitsubishi Heavy Ind Ltd Moving bed type active carbon adsorption device
WO2001025396A1 (en) * 1998-07-02 2001-04-12 Charles Daniel Anderson Culture vessel for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
WO2002005923A1 (en) * 2000-07-13 2002-01-24 Amersham Biosciences Ab Reaction vessel and method for distributing fluid in such a vessel
JP2002528256A (en) * 1998-10-31 2002-09-03 アメルシャム・バイオサイエンシーズ・アクチボラグ New system and its units
JP2004089747A (en) * 2002-07-10 2004-03-25 Taisei Kogyo Kk Water treatment method and water treatment apparatus
JP2011025213A (en) * 2009-07-27 2011-02-10 Minoru Sakamoto Purification method for purifying polluted water in river, lake and water purification plant for tap water by loading rotary purifier with charcoal, and rotary purifier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406793A (en) * 1980-08-14 1983-09-27 Jan Kruyer Use of free bodies to increase size of dispersed phase particles
JPS61245885A (en) * 1985-04-25 1986-11-01 Matsushita Electric Ind Co Ltd Apparatus for removing heavy metal ion
JPS6391560A (en) * 1986-10-03 1988-04-22 ヨーイチロウ イトウ Transverse axis type synchronous system conduction coil-planet centrifugal separator requiring no rotary seal and counterflow chromatographic separation method
US5087369A (en) * 1988-07-27 1992-02-11 Snow Brand Milk Products Co., Ltd. Fluidized bed separation and recovery of proteins from fluids in a rotary column
JPH07127972A (en) * 1993-11-01 1995-05-19 Hirose Datsusuiki Seisakusho:Kk Lateral turning centrifugal cleaning/drying apparatus
JPH0824506A (en) * 1994-07-21 1996-01-30 Mitsubishi Heavy Ind Ltd Moving bed type active carbon adsorption device
WO2001025396A1 (en) * 1998-07-02 2001-04-12 Charles Daniel Anderson Culture vessel for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
JP2002528256A (en) * 1998-10-31 2002-09-03 アメルシャム・バイオサイエンシーズ・アクチボラグ New system and its units
WO2002005923A1 (en) * 2000-07-13 2002-01-24 Amersham Biosciences Ab Reaction vessel and method for distributing fluid in such a vessel
JP2004089747A (en) * 2002-07-10 2004-03-25 Taisei Kogyo Kk Water treatment method and water treatment apparatus
JP2011025213A (en) * 2009-07-27 2011-02-10 Minoru Sakamoto Purification method for purifying polluted water in river, lake and water purification plant for tap water by loading rotary purifier with charcoal, and rotary purifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020156A (en) * 2013-07-23 2015-02-02 株式会社東芝 Water treatment apparatus
JP2015131294A (en) * 2013-12-12 2015-07-23 株式会社テッツコーポレーション Water purification equipment
JP2017154138A (en) * 2017-05-15 2017-09-07 株式会社東芝 Water treatment equipment

Also Published As

Publication number Publication date
JP5737671B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
AU648059B2 (en) Waste water treatment process using improved recycle of high density sludge
CN101817575B (en) Electric flocculation method and device for recovering and processing desulfurized wastewater
JP6070898B2 (en) Method and facility for recovering valuable components from waste dry batteries
CN109516629B (en) Electroplating wastewater zero-discharge treatment process
US9656887B2 (en) Removal of ions from aqueous fluid
CN106698582A (en) Method for treating industrial wastewater containing heavy metal contaminants by utilizing industrial fly ash and nano iron
JP5737671B2 (en) Waste water treatment equipment containing metal ions
US6551378B2 (en) Recovery of precious metals from low concentration sources
JP5550459B2 (en) Recovery phosphorus and recovery method
Jafari et al. Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments
JP6023159B2 (en) Water purifier
Ntwampe et al. Removal of heavy metals using bentonite clay and inorganic coagulants
RU2486262C2 (en) Method of recycling spent chemical cells
Zhu et al. A green process for simultaneously efficient base metals removal and precious metals enrichment from copper anode slime
Hajar Biosorption of cadmium from aqueous solution using dead biomass of brown alga Sargassum sp
CN115927852A (en) Method for recovering gold, silver and copper from sulfur concentrate calcine washing waste liquid
CN101613150A (en) A kind of method for the treatment of high-arsenious solution with low cost
JP7221768B2 (en) Activated carbon pretreatment method and metal recovery method
CN111186886B (en) Method for removing and recovering thallium from industrial wastewater
CN113245354A (en) Waste incineration fly ash treatment system and method
KR20220146487A (en) Hydrometallurgical method for simultaneous extraction of metal and gypsum from dust in an electric arc furnace in a steelworks
Bożęcka et al. Sorption of Pb2+ ions from aqueous solutions on organic wastes (Part I)
Levlin Recovery of phosphate from sewage sludge and separation of metals by ion exchange
JP4862191B2 (en) Method for treating selenium-containing water
CN104355462A (en) Dynamic continuous mercury-containing wastewater treatment method based on mercury removal adsorbing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5737671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250