JP6023159B2 - Water purifier - Google Patents

Water purifier Download PDF

Info

Publication number
JP6023159B2
JP6023159B2 JP2014251521A JP2014251521A JP6023159B2 JP 6023159 B2 JP6023159 B2 JP 6023159B2 JP 2014251521 A JP2014251521 A JP 2014251521A JP 2014251521 A JP2014251521 A JP 2014251521A JP 6023159 B2 JP6023159 B2 JP 6023159B2
Authority
JP
Japan
Prior art keywords
water
inner cylinder
cylinder part
separating material
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014251521A
Other languages
Japanese (ja)
Other versions
JP2015131294A (en
Inventor
徹男 木本
徹男 木本
粹 中村
粹 中村
鉄也 川原
鉄也 川原
幸信 立野
幸信 立野
橘 武史
武史 橘
尚孝 阪本
尚孝 阪本
Original Assignee
株式会社テッツコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テッツコーポレーション filed Critical 株式会社テッツコーポレーション
Priority to JP2014251521A priority Critical patent/JP6023159B2/en
Publication of JP2015131294A publication Critical patent/JP2015131294A/en
Application granted granted Critical
Publication of JP6023159B2 publication Critical patent/JP6023159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Description

本発明は、マグネシウムやマグネシウム合金や鉄等の金属を主とする分離材を使用する浄水装置に関する。   The present invention relates to a water purifier using a separating material mainly composed of metals such as magnesium, magnesium alloys and iron.

めっき工場や金属の精錬工場、ゴミ焼却場等の排水(以下、特に区別しない限り廃水、地下水、溶出液等の金属イオンを含む排水を意味する)には、人体に有毒な、例えば、水銀、鉛、カドミウム、砒素、クロム、銅、ニッケル等の重金属が含まれている。また、生物にとって有毒な元素である砒素は、通常、熱水・熱気鉱床の旧鉱山廃水、温泉水や地熱発電所等の排温水等の地下水や、産業廃棄物、都市ゴミ焼却灰・飛灰、電気炉製鋼ダスト等にも含有されている。また、井戸水や土木,建築,水道工事等の工場湧水には鉄分が多く含まれることがある。さらに、廃坑周辺の河川等は流出する鉄分により発生する赤水への対策が必要であった。
従来、このような水の処理には、中和剤や沈殿剤を添加することによって化合物を生成させ沈殿凝集させる方法、無機イオン交換体または有機イオン交換体を用いる方法、吸着剤を用いる方法がある。沈殿凝集法は、水酸化物、硫化物、炭酸塩といった難溶性の化合物を析出させ、固液分離することで排水中に溶解している物質を分離(除去)するものである。無機イオンまたは有機イオン交換体を用いる方法は、排水中に含まれるイオン成分が無機イオンまたは有機イオン交換体が持つイオンとの置換反応によって分離するものである。吸着剤を用いる方法は、活性炭に代表される多孔性吸着剤表面に排水中に溶解している物質を取り去る吸着現象によって分離するものである。分離された金属の内、例えば、産業的に有用・有価な、亜鉛、銀、金、ニッケル、クロム等は、再利用のために回収されている。
また、近年、パソコン等の筐体にマグネシウム合金が使用されるようになったが、マグネシウム合金のリサイクルが課題となっている。
これら課題に対し、マグネシウムが水溶液中で水と反応することで生成する水酸化マグネシウムが種々の元素を吸着する能力を利用した排水の処理方法として、(特許文献1)には、「純マグネシウム、マグネシウム合金を粉砕したり、リボン状、焼結させてフィルター状に加工して、砒素含有水に接触させるとpH7超のアルカリ水でも効率良く除去する方法」が開示されており、(特許文献2)には、「金属イオンを含む排水中に、マグネシウム又はマグネシウム合金を主成分とする吸着材を添加し、水とマグネシウムの反応によりマグネシウム表面に生成する水酸化マグネシウムの層に、金属イオンを吸着させ、金属イオンを排水から分離することを特徴とする金属イオンの分離方法。」が開示されている。また、廃棄物の処理方法として(特許文献3)には、「廃棄物に、マグネシウム又はマグネシウム合金を主成分とする吸着材を添加混合する方法、あるいは、得られた混合物に水と水硬性の固化材を添加し混練する方法、更には、得られた混合物に水とセメントを添加し、混練して後固化する方法によって、有害な金属等を含有するスラッジやダクト等の廃棄物を処理するに際し、有害な金属等が溶出し二次公害を起こす恐れがない様な処理方法」が開示されている。
更に、これらの実用化を図った排水の処理装置として、(特許文献4)には、「マグネシウム又はマグネシウム合金を主成分とする分離材を用いて低濃度排水処理を行う際に、分離材表面に発生する水素ガスや金属水酸化物といった反応阻害物質を連続的に剥離し、安定して、確実に分離材であるマグネシウム表面に対象となる排水が接触でき、排水中の金属イオンを長時間連続して分離できる金属イオン含有排水処理装置」が開示されている。
Wastewater from plating plants, metal smelters, waste incinerators, etc. (hereinafter, wastewater, groundwater, wastewater containing metal ions such as eluate, unless otherwise specified) is toxic to humans, such as mercury, Heavy metals such as lead, cadmium, arsenic, chromium, copper and nickel are included. In addition, arsenic, an element that is toxic to living organisms, is usually used for wastewater from old mines in hot water and hot air deposits, groundwater such as hot water from hot spring water and geothermal power plants, industrial waste, incineration ash from urban waste, and fly ash. It is also contained in electric furnace steelmaking dust and the like. Also, factory springs such as well water, civil engineering, architecture, and waterworks may contain a lot of iron. In addition, rivers around the abandoned mine needed countermeasures against red water generated by the outflowing iron.
Conventionally, such a water treatment includes a method of forming a compound by adding a neutralizing agent or a precipitating agent to precipitate and agglomerate, a method using an inorganic ion exchanger or an organic ion exchanger, and a method using an adsorbent. is there. The precipitation agglomeration method separates (removes) substances dissolved in waste water by depositing a hardly soluble compound such as a hydroxide, sulfide, or carbonate, and solid-liquid separation. In the method using an inorganic ion or organic ion exchanger, an ionic component contained in waste water is separated by a substitution reaction with an ion of the inorganic ion or organic ion exchanger. In the method using an adsorbent, separation is performed by an adsorption phenomenon in which a substance dissolved in waste water is removed from the surface of a porous adsorbent represented by activated carbon. Among the separated metals, for example, industrially useful and valuable zinc, silver, gold, nickel, chromium and the like are recovered for reuse.
In recent years, magnesium alloys have been used for housings such as personal computers, but recycling of magnesium alloys has become an issue.
In response to these problems, as a wastewater treatment method utilizing the ability of magnesium hydroxide produced by the reaction of magnesium with water in an aqueous solution to adsorb various elements, (Patent Document 1) includes "pure magnesium, A method is disclosed in which a magnesium alloy is pulverized, ribbon-shaped, sintered, processed into a filter shape, and contacted with arsenic-containing water, and even alkaline water having a pH of more than 7 is removed efficiently (Patent Document 2). ) "Adds an adsorbent composed mainly of magnesium or magnesium alloy into the wastewater containing metal ions, and adsorbs metal ions to the magnesium hydroxide layer formed on the magnesium surface by the reaction of water and magnesium. And a method for separating metal ions, wherein the metal ions are separated from the waste water. In addition, as a waste treatment method (Patent Document 3), “a method of adding and mixing an adsorbent containing magnesium or a magnesium alloy as a main component to waste, or water and hydraulic properties in the obtained mixture” Wastes such as sludge and ducts containing harmful metals are treated by adding a solidifying material and kneading, and by adding water and cement to the resulting mixture, kneading and then solidifying. In this case, a treatment method is disclosed in which harmful metals and the like are eluted and there is no risk of causing secondary pollution.
Furthermore, as a wastewater treatment apparatus that has been put to practical use, (Patent Document 4) states that “when a low-concentration wastewater treatment is performed using a separation material mainly composed of magnesium or a magnesium alloy, the surface of the separation material The reaction-inhibiting substances such as hydrogen gas and metal hydroxide generated in the reactor are continuously peeled off, allowing the target wastewater to contact the magnesium surface, which is the separator, stably, and the metal ions in the wastewater can be removed for a long time. A metal ion-containing wastewater treatment apparatus that can be continuously separated is disclosed.

特開2005−13976号公報JP 2005-13976 A 特開2006−167564号公報JP 2006-167564 A 特開2006−181432号公報JP 2006-181432 A 特開2012−106221号公報JP 2012-106221 A

しかしながら上記従来の技術は、以下のような課題を有していた。
(1)(特許文献4)に開示の技術は、(特許文献1)乃至(特許文献3)の実用化を図ったものであるが、傾けたドラムを回転させ、汚水の処理を行いながら連続的に液中で分離材を共擦りすることで分離材の表面に新生面を形成しており、汚水の浄化が期待できるが、分離材の表面に水が付着したまま共擦りされるので、水が潤滑剤となって分離材が共擦りされ難く、再生に時間がかかり、処理効率を向上させ難いという課題を有していた。
(2)また、砒素を多く含む排水の効率的な処理が望まれていた。
However, the above conventional technique has the following problems.
(1) The technology disclosed in (Patent Document 4) is a practical application of (Patent Document 1) to (Patent Document 3), but it is continuously performed while rotating a tilted drum and treating sewage. As a result, a new surface is formed on the surface of the separating material by co-rubbing the separating material in the liquid, and purification of sewage can be expected. However, since water is adhered to the surface of the separating material, As a lubricant, it is difficult for the separating material to be rubbed together, it takes time to regenerate, and it is difficult to improve the processing efficiency.
(2) In addition, efficient treatment of wastewater containing a large amount of arsenic has been desired.

本発明は上記従来の課題を解決するもので、分離材を循環して使用するので省資源性に優れ、マグネシウムや鉄等の金属系の分離材を用いる場合、水を切った状態で効率良く共擦りさせることができ、また、原水の水質に合せて分離材の再生率を調節することができ、浄水の効率性、メンテナンス性、浄化安定性、浄水能力に優れる浄水装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and is excellent in resource saving because the separator is circulated and used. When a metal separator such as magnesium or iron is used, the water is efficiently removed. Providing a water purifier that can be rubbed together and that can adjust the regeneration rate of the separation material according to the quality of the raw water, and that excels in water purification efficiency, maintainability, purification stability, and water purification capacity. Objective.

課題を解決するための手段及びそれによって得られる作用、効果Means for solving the problems, and actions and effects obtained thereby

上記従来の課題を解決するために、本発明の浄水装置は、以下の構成を有している。
本発明の請求項1に記載の浄水装置は、水処理タンクと、前記水処理タンクの内部に形設された内筒部と、前記水処理タンクの外筒部と前記内筒部との間に形設された浄水部と、前記浄水部の上方に配設された分離材供給部と、前記浄水部の上方に配設された上部原水給水部及び/又は前記外筒部の下部側に配設された下部原水給水部と、前記内筒部の底部側に前記浄水部と連通して形成された分離材及び原水の導入口と、前記内筒部の前記原水の液面の高さよりも高い位置に設けられ上部側から前記浄水部に前記原水に含まれる金属イオンを吸着することができる金属や合金からなる分離材を吐出する分離材吐出部と、前記内筒部の中心軸上に回転自在に配設されたスクリューと、前記スクリューを回転させる駆動部と、前記外筒部に配設された浄水排出部と、を備える構成を有している。
この構成により、以下のような作用、効果が得られる。
(1)原水と分離材が、浄水部で接触するので、分離材に、原水中の鉄やマンガン,亜鉛,ホウ素,6価クロム,砒素,ニッケル等の金属イオンが吸着され、原水中から該金属イオンを分離(除去)することができる。
(2)スクリューが配設された内筒部を有し、内筒部と浄水部が導入口を介して連通しているため、内筒部の底部側に形成された導入口から内筒部内にスクリューの揚力等で分離材や水が導入され、スクリューの回転で分離材が流動し、互いに衝突・接触し、分離材は金属イオンの吸着や共擦りを繰り返しながら分離材吐出部まで汲み上げられ、浄水部に吐出されるので、原水と分離材の接触効率が良い。また、分離材表面の金属水酸化物の被膜により金属イオンを吸着する場合、該被膜は共擦りで剥離され、分離材は、表面に新生面を形成された状態で分離材吐出部から浄水部に落下し、原水とともに導入口から内筒部に供給されるため、浄水装置を長期間使用しても分離材による原水中の金属イオンの吸着分離性能が低下し難く、分離材を循環して使用できるので省資源性に優れ、また、短時間で多くの原水を処理することができる。
(3)内筒部の内部にスクリューを備えているので、スクリューと内筒部の隙間から水が落ち、分離材のみを分離材吐出部まで汲み上げることができる。そのため、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、水切り状態で分離材を共擦りさせることができるため、水中よりも分離材の共擦効果が得られ易く、分離材の表面に安定して新生面を形成することができる。
(4)スクリューの回転によって分離材や原水が撹拌されるので、分離材と原水が接触し易く、原水中の金属イオンと分離材の接触効率が高いため、分離材を原水と接触させるだけで原水中の金属イオンを吸着分離することができ、薬品を使用しなくても良いので、処理後の水の安全性に優れる。
(5)共擦りによって分離材の表面から剥離する剥離物の発生量が少なく、沈殿物(スラッジ)の処理に伴うメンテナンスが殆ど必要なく、メンテナンス性に優れる。
(6)分離材吐出部が内筒部の原水の液面の高さよりも高い位置に設けられることにより、水分を切った状態で効率よく共擦りすることができるので、分離材表面の再生効率に優れる。
In order to solve the above conventional problems, the water purifier of the present invention has the following configuration.
The water purifier according to claim 1 of the present invention includes a water treatment tank, an inner cylinder portion formed inside the water treatment tank, and an outer cylinder portion and the inner cylinder portion of the water treatment tank. A water purification unit formed in the upper part, a separation material supply unit disposed above the water purification unit, an upper raw water supply unit disposed above the water purification unit and / or a lower side of the outer cylinder unit and the lower raw water supply which is arranged, and the inner cylindrical portion bottom to the water purification unit and communicating separation material formed and raw water inlet, than the height of the raw water of the liquid surface of the inner cylindrical portion A separation material discharge part for discharging a separation material made of metal or alloy capable of adsorbing metal ions contained in the raw water from the upper side to the water purification part, and a central axis of the inner cylinder part A screw rotatably disposed in the motor, a drive unit that rotates the screw, and a cylinder disposed in the outer cylinder It has a water purifier discharge portion that, the arrangement comprising a.
With this configuration, the following operations and effects can be obtained.
(1) Since the raw water and the separating material come into contact with each other in the water purification section, metal ions such as iron, manganese, zinc, boron, hexavalent chromium, arsenic and nickel in the raw water are adsorbed on the separating material, Metal ions can be separated (removed).
(2) Since it has an inner cylinder part in which a screw is arranged, and the inner cylinder part and the water purification part communicate with each other via the introduction port, the inside of the inner cylinder part from the introduction port formed on the bottom side of the inner cylinder part Separation material and water are introduced by the lifting force of the screw, etc., the separation material flows by the rotation of the screw, collides and contacts each other, and the separation material is pumped up to the separation material discharge part while repeatedly adsorbing and rubbing metal ions. Since it is discharged to the water purification unit, the contact efficiency between the raw water and the separating material is good. Also, when metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the coating is peeled off by rubbing, and the separating material is transferred from the separating material discharge section to the water purification section with a new surface formed on the surface. Since it falls and is supplied to the inner cylinder from the inlet with the raw water, even if the water purification device is used for a long time, the separation and separation performance of metal ions in the raw water by the separating material is unlikely to deteriorate, and the separating material is circulated for use. Therefore, it is excellent in resource saving and can process a large amount of raw water in a short time.
(3) Since the screw is provided inside the inner cylinder part, water falls from the gap between the screw and the inner cylinder part, and only the separation material can be pumped up to the separation material discharge part. Therefore, when metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the separating material can be rubbed together in a drained state, so that the co-rubbing effect of the separating material can be obtained more easily than in water. A new surface can be stably formed on the surface of the substrate.
(4) Since the separation material and the raw water are agitated by the rotation of the screw, the separation material and the raw water are easily in contact with each other, and the contact efficiency between the metal ions in the raw water and the separation material is high. Since metal ions in raw water can be adsorbed and separated, and chemicals do not need to be used, the safety of the water after treatment is excellent.
(5) The generation amount of the peeled material that peels off from the surface of the separating material by co-rubbing is small, and there is almost no maintenance associated with the treatment of the precipitate (sludge), and the maintenance property is excellent.
(6) Since the separating material discharge part is provided at a position higher than the level of the raw water in the inner cylinder part, it can be efficiently rubbed together with moisture removed, so the regeneration efficiency of the separating material surface is improved. Excellent.

ここで、浄水装置に導入される原水には、めっき工場や金属の精錬工場、ゴミ焼却場等の排水、熱水・熱気鉱床の旧鉱山廃水、温泉水や地熱発電所等の排温水等の地下水、産業廃棄物、都市ゴミ焼却灰・飛灰,電気炉製鋼ダスト等からの浸出水、井戸水、土木,建築,水道工事等の工場湧水等があるが、金属イオンを含む水であれば特に限定されない。
また、原水に含まれる金属イオンには鉄、マンガン、亜鉛、ホウ素、クロム、砒素、ニッケル、カドミウム、水銀、鉛、アルミニウム、スズ、アンチモン、コバルト等の金属イオンの他、人体に有害な金属イオン等がある。また、有機排水にも有効に適用できる。
Here, the raw water introduced into the water purification equipment includes wastewater from plating plants, metal smelting plants, waste incinerators, old mine wastewater from hot water and hot air deposits, hot water from hot springs and geothermal power plants, etc. There are groundwater, industrial waste, municipal waste incineration ash / fly ash, leachable water from electric furnace steelmaking dust, etc., well water, civil engineering, construction, waterworks factory springs, etc., but water containing metal ions There is no particular limitation.
Metal ions contained in raw water include metal ions such as iron, manganese, zinc, boron, chromium, arsenic, nickel, cadmium, mercury, lead, aluminum, tin, antimony, and cobalt, as well as metal ions that are harmful to the human body. Etc. It can also be effectively applied to organic wastewater.

分離材としては、マグネシウムやマグネシウム合金等を主とするものが用いられるが、原水に含まれる金属イオンを吸着することができればマグネシウム以外の鉄等の金属(イオン化傾向の高いもの)や合金を用いても良い。中でもマグネシウムを含む分離材は、水と接触することで生じる水酸化物の被膜に金属イオンを吸着するため、共擦りにより被膜を除去して新生面を形成するだけで、循環利用することができ好適である。また、原水中に砒素を多く含む場合には鉄を含む分離材を用いてもよい。
マグネシウムを含む分離材は、マグネシウムが50wt%以上含まれるものであれば特に限定されず、純マグネシウムやマグネシウム合金(ASTM記号を基準とすれば、AZ31C、AZ61A、AZ80A、AZ91D、AM50A、AM60B、AM100A、EZ33、ZE41、QE22A、WE54A、WE43、ZK51A、ZK60A、ZK61A等)、パソコンや携帯電話等のハウジングとして用いられているマグネシウム合金の廃材等を用いることができる。特にマグネシウム合金廃材は、今後多量の発生が予想されており、経済的,環境負荷的意義の面から考えると好適である。
また、分離材の形状は特に限定されず、粒状、繊維状、チップ状、薄片状等の形状が選択される。分離材の大きさは、内筒部の大きさにもよるが、原水との接触効率を良くするために、体積が小さく、表面積が大きいものが好ましい。例えば、厚さ0.5×幅3×長さ10mmのチップ状の純マグネシウム等が用いられる。
鉄を含む分離材としては、鋳鉄等の鉄の粒状物が用いられる。
As the separating material, materials mainly made of magnesium or magnesium alloy are used. However, if metal ions contained in raw water can be adsorbed, metals other than magnesium (highly ionized) or alloys are used. May be. Among them, the separation material containing magnesium adsorbs metal ions to the hydroxide film produced by contact with water, and therefore can be reused simply by removing the film by co-rubbing to form a new surface. It is. Further, when the raw water contains a large amount of arsenic, a separating material containing iron may be used.
The separator containing magnesium is not particularly limited as long as it contains 50 wt% or more of magnesium. Pure magnesium or a magnesium alloy (AZ31C, AZ61A, AZ80A, AZ91D, AM50A, AM60B, AM100A based on the ASTM symbol) , EZ33, ZE41, QE22A, WE54A, WE43, ZK51A, ZK60A, ZK61A, etc.), magnesium alloy waste materials used as housings for personal computers and mobile phones, and the like can be used. In particular, magnesium alloy waste is expected to be produced in large quantities in the future, and is suitable from the viewpoint of economic and environmental impact.
In addition, the shape of the separating material is not particularly limited, and a shape such as granular, fibrous, chip-like, and flake-like shape is selected. Although the size of the separating material depends on the size of the inner cylinder part, in order to improve the contact efficiency with the raw water, a material having a small volume and a large surface area is preferable. For example, chip-like pure magnesium having a thickness of 0.5 × width 3 × length 10 mm is used.
As the separating material containing iron, iron particles such as cast iron are used.

内筒部の形状は、略円筒形であることが望ましいが、多角筒状等でも良い。内筒部は、外筒部の内部に一箇所設けても良いし複数設けることもできる。また、内筒部の位置は外筒部の内部で適宜変更することもできる。例えば、等間隔に並べて設置しても良いし、偏らせて設置しても良い。外筒部の内部に複数の内筒部を備えることで、循環する分離材との接触量を増やし、一つの浄水装置での処理効率に優れ、処理量が増加でき浄化能力に優れる。また、外筒部の内部の容量や、目的の処理量に合わせて、内筒部を適宜配設することができると共に、対流が少ない部分や、液のチャネリングが発生する部分を減らせるので浄水性能に優れる。内筒部の下部には導入口が適宜設けられているが、導入口以外の部分に分離材が堆積する場合があるので、内筒部を複数備えた場合、隣接する内筒部の導入口の位置をずらすことで、堆積する分離材が無く、処理効率に優れると共に、使用されずに堆積する分離材が無いので省資源性に優れる。
また、外筒部の内部に内筒部を複数設けて外筒部の内部を内筒部ごとに隔壁で区切る場合、その一つに原水供給部を設け、それぞれの隔壁で区切られた区間を順番に流れるよう処理させることもできる。この場合、原水をそれぞれの内筒部の周りの浄水部で内筒部の数に応じて繰り返し分離材と接触させることができるので浄水の高品質性に優れる。
The shape of the inner cylinder portion is preferably a substantially cylindrical shape, but may be a polygonal cylinder shape or the like. The inner cylinder part may be provided at one place inside the outer cylinder part, or a plurality of inner cylinder parts may be provided. Further, the position of the inner cylinder part can be appropriately changed inside the outer cylinder part. For example, they may be installed side by side at equal intervals, or may be installed in a biased manner. By providing a plurality of inner cylinder parts inside the outer cylinder part, the contact amount with the circulating separation material is increased, the treatment efficiency in one water purifier is excellent, the treatment amount can be increased, and the purification ability is excellent. In addition, the inner cylinder part can be appropriately arranged in accordance with the internal volume of the outer cylinder part and the target processing amount, and the portion with little convection and the part where liquid channeling occurs can be reduced, so Excellent performance. An introduction port is appropriately provided at the lower part of the inner cylinder part. However, since a separating material may be deposited on a portion other than the introduction port, when there are a plurality of inner cylinder parts, the introduction port of the adjacent inner cylinder part is provided. By shifting the position, there is no separating material to be deposited, the processing efficiency is excellent, and there is no separating material to be deposited without being used, so that resource saving is excellent.
In addition, when a plurality of inner cylinder parts are provided inside the outer cylinder part and the inside of the outer cylinder part is partitioned by a partition for each inner cylinder part, a raw water supply part is provided in one of the sections separated by the respective partition walls. It can also be processed to flow in order. In this case, since raw water can be repeatedly contacted with a separating material according to the number of inner cylinder parts in the water purification part around each inner cylinder part, it is excellent in the quality of purified water.

内筒部に形成される導入口の位置は、分離材の循環を考えると、スクリューの下端の羽根の位置と同じ又は上で内筒部の底部側に形成されることが好ましい。また、導入口は分離材が導入できれば大きさや形状は特に限定されない。   The position of the inlet formed in the inner cylinder part is preferably formed on the bottom side of the inner cylinder part at the same or above the position of the blades at the lower end of the screw, considering the circulation of the separating material. Further, the size and shape of the inlet are not particularly limited as long as the separating material can be introduced.

内筒部には水切り部を形成しても良い。水切り部の位置は、導入口の上部側であれば特に限定されない。また、水切り部の形状や大きさについても、特に限定されないが、分離材が水切り部から浄水部に吐出されるのを防ぐため、分離材が通過し難い大きさの目開きを有するエキスパンドメタルやパンチングメタル,金網やフィルター等の網体(網筒)を備えることが好ましい。網体(網筒)の素材は、金属イオンの溶出が少ない素材であれば特に限定されず、金属又は合金,合成樹脂等を選択することができる。また、網体(網筒)の製造方法も特には限定されない。水切り部を形成することで、導入口から、内筒部の内部に水を導入し、水切り部から水を吐出する水の循環を促すことができ、内筒部内でスクリューによって撹拌しながら水と分離材の接触性に優れる。   You may form a draining part in an inner cylinder part. The position of the draining part is not particularly limited as long as it is on the upper side of the introduction port. Also, the shape and size of the draining part is not particularly limited, but in order to prevent the separating material from being discharged from the draining part to the water purification part, an expanded metal having an opening with a size that makes it difficult for the separating material to pass through, It is preferable to provide a net body (net tube) such as a punching metal, a metal net, or a filter. The material of the net (net tube) is not particularly limited as long as it is a material with little metal ion elution, and a metal, an alloy, a synthetic resin, or the like can be selected. Moreover, the manufacturing method of a net (net cylinder) is not particularly limited. By forming the draining portion, water can be introduced from the inlet to the inside of the inner cylindrical portion, and water circulation can be promoted to discharge water from the draining portion. Excellent contact of separating material.

内筒部に形成される分離材吐出部の位置は、内筒部の上部側であれば特に限定されず、大きさや形状も特に限定されない。但し、分離材としてマグネシウムを含んだ金属系の分離材を用いる場合、分離材吐出部は内筒部の液面の高さよりも高い位置に設けられる。これにより、水分を切った状態で効率よく共擦りすることができるので、分離材表面の再生効率に優れる。
分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、回転軸の回転数等の条件にもよるが、分離材吐出部が形成される内筒部内周面に、邪魔板等の吐出調整板を設けることで分離材の共擦効果を高めることができる。
The position of the separating material discharge part formed in the inner cylinder part is not particularly limited as long as it is on the upper side of the inner cylinder part, and the size and shape are not particularly limited. However, when a metal-based separation material containing magnesium is used as the separation material, the separation material discharge portion is provided at a position higher than the height of the liquid surface of the inner cylinder portion. Thereby, since it can rub efficiently together in the state which cut | disconnected the water | moisture content, it is excellent in the reproduction | regeneration efficiency of the separating material surface.
When metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, depending on conditions such as the number of rotations of the rotating shaft, the inner peripheral surface of the inner cylinder portion on which the separating material discharge part is formed, such as a baffle plate By providing the discharge adjusting plate, the co-rubbing effect of the separating material can be enhanced.

スクリューは、回転軸にプロペラ状や螺旋状等の羽根が形成されたものであれば特に限定されない。
また、スクリューの回転軸は、内筒部の中心軸に対して水平方向に若干偏芯させて回転させても良い。回転軸を偏芯させることで生じる揺動により、スクリューの羽根上の分離材の動きが複雑化し、分離材同士の衝突も活発になり、原水と分離材の接触効率や共擦効果を高めることができる。また、スクリューの羽根と内筒部間に分離材が詰まるのを防止でき、運転の長期安定化が図れるとともに、分離材の粉化を防止できる。
The screw is not particularly limited as long as it has a propeller-like or spiral blade formed on the rotating shaft.
Further, the rotational axis of the screw may be rotated slightly eccentric in the horizontal direction with respect to the central axis of the inner cylinder portion. Oscillation caused by eccentricity of the rotating shaft complicates the movement of the separating material on the blades of the screw, and the collision between the separating materials becomes active, improving the contact efficiency and co-friction effect between the raw water and the separating material. Can do. Further, the separation material can be prevented from being clogged between the blades of the screw and the inner cylinder portion, the operation can be stabilized for a long time, and the separation material can be prevented from being pulverized.

スクリューが螺旋羽根を備える場合、螺旋羽根は導入口の下部から少なくとも分離材吐出部まで連続して形成されることが好ましい。これは、水中では水が潤滑剤のように作用するため、分離材同士の接触による共擦効果は高くないが、分離材吐出部まで形成することによって、螺旋羽根上の分離材が分離材吐出部まで運ばれる間に水が螺旋羽根の端部と内筒部の内周面との隙間から落下するので、分離材を水切り状態で共擦りさせることができ、共擦効果を高めることができるからである。
また、スクリューの羽根の表面には、切り欠きを形成したり、異物を固着させる等して凹凸を形成したりしても良い。凹凸を形成することで、スクリューの羽根上を動く分離材の動きが複雑化し、分離材と水の接触効率が高くなるとともに、分離材同士が接触し易くなり、共擦効果を高めることができる。
When the screw includes a spiral blade, it is preferable that the spiral blade is continuously formed from the lower part of the introduction port to at least the separating material discharge portion. This is because water acts like a lubricant in water, so the co-friction effect due to the contact between the separating materials is not high, but by forming up to the separating material discharge part, the separating material on the spiral blades can discharge the separating material. Since water falls from the gap between the end of the spiral blade and the inner peripheral surface of the inner cylinder part while being carried to the part, the separating material can be rubbed together in a drained state, and the co-rubbing effect can be enhanced. Because.
Further, a notch may be formed on the surface of the blade of the screw, or irregularities may be formed by fixing a foreign matter. By forming the irregularities, the movement of the separating material moving on the blades of the screw is complicated, the contact efficiency between the separating material and water is increased, the separating materials are easily contacted, and the co-rubbing effect can be enhanced. .

駆動部は、スクリューを回転させることができれば特に限定されず、モータやエンジン等を用いることができる。
駆動部によるスクリューの回転数は、スクリューの羽根の傾斜角度(羽根が螺旋状の場合は羽根のピッチも含む)や分離材の量等により適当な回転数を自由に選択することができる。
A drive part will not be specifically limited if a screw can be rotated, A motor, an engine, etc. can be used.
The number of rotations of the screw by the drive unit can be freely selected according to the inclination angle of the blades of the screw (including the pitch of the blades when the blades are spiral), the amount of separating material, and the like.

原水から金属イオンが除去された浄水(処理水)には、分離材や共擦り後の分離材表面からの剥離物等のスラッジが混入する場合がある。そのため、浄水排出部にスラッジを除去するフィルターを設けるか、浄水装置の下流にスラッジを沈殿分離させるための沈殿槽を連設しても良い。また、浄水排出部に逆止弁や、調整弁(ダンパー)を設けるとフィルターの洗浄や排水量を調整することができる。
また、浄水装置の水処理タンクの底部に給排水管を備えても良い。これにより、浄水装置を長期間使用した際に、浄水部等に沈積する剥離物等のスラッジを容易に排出できるとともに、水処理タンク内の洗浄も容易となる。
In the purified water (treated water) from which the metal ions have been removed from the raw water, there may be a case where sludge such as a separation material or a separated material from the surface of the separation material after co-rubbing is mixed. Therefore, you may provide the filter which removes sludge in a purified water discharge part, or may provide the sedimentation tank for carrying out precipitation separation of sludge downstream of a water purifier. Moreover, if a check valve or a regulating valve (damper) is provided in the purified water discharge part, the cleaning of the filter and the amount of drainage can be adjusted.
Moreover, you may equip the bottom part of the water treatment tank of a water purifier with a water supply / drain pipe. Thereby, when the water purifier is used for a long period of time, sludge such as exfoliated material deposited in the water purifier can be easily discharged, and the water treatment tank can be easily cleaned.

浄水装置を構成する内筒部やスクリュー等に用いられる素材は、分離材によって吸着分離する金属イオンの溶出が少ない素材であれば特に限定されず、チタンやアルミニウムを主成分とする金属類や合成樹脂,ステンレス鋼等を選択することができる。   The material used for the inner cylinder part and screw constituting the water purifier is not particularly limited as long as it is a material with little elution of metal ions adsorbed and separated by the separating material. Resin, stainless steel, etc. can be selected.

分離材供給部からの分離材の供給方法は、特に限定されず、ホッパー等を用いることができる。
上部原水給水部及び下部原水給水部は少なくともいずれか一方を備えていればよく、適宜、選択していずれか一方又は両方から原水の給水を行うことができる。
また、分離材供給部及び上部原水給水部としては、水面より上部で分離材及び原水を供給するようにしてもよいし、パイプ等により適宜浄水部の水面より下に供給できるように配設することもできる。
下部原水給水部は外筒部と内筒部の間に原水を給水するものでもよいし、内筒部に連通させて直接、内筒部の内部に原水を給水するものでもよい。
尚、上部原水給水部及び下部原水給水部を形成する素材としては、内筒部等と同様に、合成樹脂やステンレス鋼等を選択することができる。
The method for supplying the separation material from the separation material supply unit is not particularly limited, and a hopper or the like can be used.
The upper raw water supply unit and the lower raw water supply unit need only have at least one of them, and can be appropriately selected to supply raw water from either one or both.
Further, the separation material supply unit and the upper raw water supply unit may be arranged so that the separation material and the raw water are supplied above the water surface, or may be appropriately supplied below the water surface of the water purification unit by a pipe or the like. You can also
The lower raw water supply part may supply raw water between the outer cylinder part and the inner cylinder part, or may supply raw water directly to the inside of the inner cylinder part by communicating with the inner cylinder part.
In addition, as a raw material which forms an upper raw | natural water supply part and a lower raw | natural water supply part, a synthetic resin, stainless steel, etc. can be selected similarly to an inner cylinder part.

請求項2に記載の発明は、請求項1に記載の浄水装置であって、前記下部原水給水部が、前記外筒部を貫通し前記内筒部と連通する構成を有している。
この構成により、請求項1の作用、効果に加え、以下のような作用、効果が得られる。
(1)下部原水給水部が、外筒部を貫通し内筒部と連通することにより、原水が直接、内筒部の内部に供給されるので、原水が処理後の浄水に混入することがなく、未処理のまま浄水排出部から排出されることを防ぐことができ、高い除去率で金属イオンが除去された浄水を安定して得ることができる。
Invention of Claim 2 is a water purifier of Claim 1, Comprising: The said lower raw | natural water supply part has the structure which penetrates the said outer cylinder part and connects with the said inner cylinder part.
With this configuration, the following operations and effects can be obtained in addition to the operations and effects of the first aspect.
(1) Since the lower raw water supply part passes through the outer cylinder part and communicates with the inner cylinder part, the raw water is directly supplied to the inside of the inner cylinder part, so that the raw water may be mixed into the treated purified water. Without being treated, it can be prevented from being discharged from the purified water discharge section, and the purified water from which metal ions have been removed can be stably obtained with a high removal rate.

ここで、下部原水給水部を内筒部と連通させる場合、下部原水給水部の先端部(出口)を内筒部に連結して内筒部の内周面で開口するようにしてもよいし、下部原水給水部の先端部(出口)を内筒部の内周面から内側に突出させてもよい。   Here, when the lower raw water supply section is communicated with the inner cylinder section, the tip (exit) of the lower raw water supply section may be connected to the inner cylinder section and opened at the inner peripheral surface of the inner cylinder section. Moreover, you may make the front-end | tip part (exit) of a lower raw | natural water water supply part protrude inside from the internal peripheral surface of an inner cylinder part.

請求項3に記載の発明は、請求項1又は2に記載の浄水装置であって、前記水処理タンクの底部に前記導入口に向かって下る勾配部を備える構成を有している。
この構成により、請求項1又は2の作用、効果に加え、以下のような作用、効果が得られる。
(1)水処理タンクが、外筒部の内周面側から内筒部の底部側の導入口に向かって下る勾配部を備えることで、浄水部に供給された分離材が流動して内筒部の導入口に導入され易く、浄水部内に堆積することが避けられる。また、浄水部内に分離材が堆積せずに内筒部へ流動することにより内筒部内で効率的に分離材を共擦りさせることができるので、分離材の吸着分離能力の低下を防ぐことができる。
Invention of Claim 3 is a water purifier of Claim 1 or 2, Comprising: It has the structure provided with the gradient part which goes down to the said inlet in the bottom part of the said water treatment tank.
With this configuration, the following actions and effects can be obtained in addition to the actions and effects of the first or second aspect.
(1) Since the water treatment tank includes a gradient portion that descends from the inner peripheral surface side of the outer cylinder portion toward the inlet on the bottom portion side of the inner cylinder portion, the separation material supplied to the water purification section flows and flows It is easy to be introduced into the introduction port of the cylinder part, and accumulation in the water purification part is avoided. Moreover, since the separating material can be efficiently rubbed in the inner cylinder part by flowing to the inner cylinder part without depositing the separating material in the water purification unit, it is possible to prevent the adsorption / separation ability of the separating material from being lowered. it can.

ここで、勾配部は、導入口に分離材が流れ込む程度の勾配があれば良い。
また、勾配部の形成方法は特に限定されず、例えば、水処理タンクの底面を逆円錐状に形成しても良いし、水処理タンクの底部に分離材が通過し難い大きさの目開きを有するフィルターやエキスパンドメタル,パンチングメタル,金網等をテーパ状に配置して形成しても良い。
勾配部の傾斜角度が水平面に対して5度以上である場合、分離材が勾配部上に堆積したまま残ることがなく、分離材を導入口から内筒部に安定して導入することができる。そのため、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、新生面が形成されていない分離材が浄水部の底部に溜まることが無く、浄水装置の処理能力が低下することを防ぐことができる。
勾配部の傾斜角度が5度より小さくなると、スクリューの回転数や原水の処理量等にもよるが、供給される分離材が導入口に向かって流れ難くなり、内筒部に分離材が供給され難くなるため、分離材が共擦りされ難くなり、原水からの金属イオンの吸着分離効率が低下し易くなるので好ましくない。75度より大きくなると、分離材が一度に導入口に向かって移動し、導入口の詰まりが発生して分離材の流動性が阻害され易くなるため、分離材が共擦りされ難く、原水からの金属イオンの吸着分離効率が低下し易くなるので好ましくない。
Here, the gradient portion only needs to have a gradient that allows the separating material to flow into the inlet.
In addition, the method of forming the gradient portion is not particularly limited. For example, the bottom surface of the water treatment tank may be formed in an inverted conical shape, or an opening having a size that makes it difficult for the separating material to pass through the bottom portion of the water treatment tank. A filter, an expanded metal, a punching metal, a wire mesh, or the like having a taper shape may be formed.
When the inclination angle of the gradient portion is 5 degrees or more with respect to the horizontal plane, the separation material does not remain deposited on the gradient portion, and the separation material can be stably introduced from the inlet to the inner cylinder portion. . Therefore, when metal ions are adsorbed by the metal hydroxide coating on the surface of the separation material, the separation material on which the new surface is not formed does not collect at the bottom of the water purification unit, thereby preventing the treatment capacity of the water purification device from being reduced. be able to.
When the inclination angle of the gradient portion is smaller than 5 degrees, the supplied separation material is difficult to flow toward the inlet, depending on the number of rotations of the screw and the amount of raw water, and the separation material is supplied to the inner cylinder portion. Therefore, the separation material is not easily rubbed, and the adsorption and separation efficiency of metal ions from the raw water is likely to decrease, which is not preferable. When it exceeds 75 degrees, the separating material moves toward the inlet at once, and the inlet is clogged and the fluidity of the separating material is likely to be hindered. It is not preferable because the adsorption and separation efficiency of metal ions tends to decrease.

請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の浄水装置であって、前記内筒部の前記導入口と前記分離材吐出部の間に形設された水切り部を備える構成を有している。
この構成により、請求項1乃至3の内いずれか1の作用、効果に加え、以下のような作用、効果が得られる。
(1)内筒部の導入口と分離材吐出部の間に形設された水切り部を有することにより、分離材は、スクリューによって水切り部より更に上部に汲み上げられる。そのため、分離材は、表面の水がある程度除去され水切り状態で共擦りされるので、水中よりも分離材同士の衝突等による共擦効果が得られ易い。
Invention of Claim 4 is the water purifier of any one of Claim 1 thru | or 3 , Comprising: The drainer formed between the said inlet of the said inner cylinder part, and the said separation material discharge part It has the structure provided with a part .
With this configuration, in addition to the operation and effect of any one of claims 1 to 3 , the following operation and effect can be obtained.
(1) By having a draining part formed between the inlet of the inner cylinder part and the separating material discharge part, the separating material is pumped up further from the draining part by a screw. For this reason, since the separating material is partially rubbed after removing water on the surface to some extent, a co-rubbing effect due to collision between the separating materials is more easily obtained than in water.

請求項5に記載の発明は、請求項1乃至4の内いずれか1の浄水装置であって、前記分離材吐出部が、前記内筒部の上端側に配設され中央部に吐出口が形成された吐出調整板を備える構成を有している。
この構成により、請求項1乃至4の作用、効果に加え、以下のような作用、効果が得られる。
(1)吐出調整板を備えるので、分離材吐出部から吐出する分離材の吐出量を吐出口の大きさ等によって調整することができるとともに、分離材を吐出調整板とスクリューの羽根の間で押さえつけることができるので、吐出調整板の大きさや形状によって共擦り効果を高め分離材の再生率を調整することもできる。
Invention of Claim 5 is the water purifier of any one of Claim 1 thru | or 4, Comprising: The said separation material discharge part is arrange | positioned at the upper end side of the said inner cylinder part, and a discharge outlet is in the center part. It has the structure provided with the formed discharge adjustment board.
With this configuration, in addition to the operations and effects of claims 1 to 4, the following operations and effects can be obtained.
(1) Since the discharge adjustment plate is provided, the discharge amount of the separation material discharged from the separation material discharge portion can be adjusted according to the size of the discharge port and the separation material is disposed between the discharge adjustment plate and the blade of the screw. Since it can be pressed down, the co-rubbing effect can be enhanced and the regeneration rate of the separating material can be adjusted by the size and shape of the discharge adjusting plate.

ここで、吐出調整板は、吐出口からの分離材の吐出量を調整することができればよく、構成は特に限定されない。
吐出調整板の素材は、金属イオンの溶出が少なければ特に限定されず、内筒部等と同様の素材を用いることができる。
また、吐出口の形状は、特に限定されず、円状や楕円状、多角形状等のどのような形でも良い。
Here, the discharge adjusting plate is not particularly limited as long as it can adjust the discharge amount of the separation material from the discharge port.
The material of the discharge adjustment plate is not particularly limited as long as metal ions are not eluted, and the same material as that of the inner cylinder portion or the like can be used.
The shape of the discharge port is not particularly limited, and may be any shape such as a circle, an ellipse, or a polygon.

請求項6に記載の発明は、請求項1乃至5の内いずれか1に記載の浄水装置であって、前記スクリューの羽根の外径Dと前記スクリューの回転軸の直径dの比D/d=2〜10であり、前記回転軸に垂直な平面に対し前記羽根の傾斜角度が5〜60度である構成を有している。
この構成により、請求項1乃至5の作用、効果に加え、以下のような作用、効果が得られる。
(1)スクリューの羽根の外径Dと回転軸の直径dの比D/d=2〜10であるため、回転軸に対して羽根の大きさのバランスが良く、スクリューの羽根で汲み上げることができる分離材の量が少なくなり過ぎず、効率良く分離材を接触・衝突させることができるとともに、回転軸が十分な構造強度を備えるので、浄水装置を安定して使用することができる。
(2)回転軸に垂直な平面に対しスクリューの羽根の傾斜角度が5〜60度に形成されているため、分離材吐出部まで分離材を汲み上げることができると共に分離材の細粒化が少ない。そのため、スクリューの回転数を調整することで、原水の水質等に合わせて分離材の循環量等を容易に調整することができるので、省資源性に優れる。
Invention of Claim 6 is a water purifier of any one of Claim 1 thru | or 5, Comprising: Ratio D / d of the outer diameter D of the blade | wing of the said screw, and the diameter d of the rotating shaft of the said screw = 2 to 10 and the blade has an inclination angle of 5 to 60 degrees with respect to a plane perpendicular to the rotation axis.
With this configuration, in addition to the functions and effects of claims 1 to 5, the following functions and effects can be obtained.
(1) Since the ratio D / d = 2-10 of the outer diameter D of the screw blade and the diameter d of the rotating shaft is 2 to 10, the size of the blade is well balanced with respect to the rotating shaft, and the screw blade can pump up. The amount of the separating material that can be produced is not reduced too much, and the separating material can be contacted and collided efficiently, and the rotating shaft has sufficient structural strength, so that the water purifier can be used stably.
(2) Since the inclination angle of the blades of the screw is 5-60 degrees with respect to the plane perpendicular to the rotation axis, the separation material can be pumped up to the separation material discharge part and the separation material is less refined . Therefore, by adjusting the number of rotations of the screw, it is possible to easily adjust the circulation amount of the separation material in accordance with the quality of raw water and the like, so that resource saving is excellent.

ここで、スクリューの羽根の外径Dと回転軸の直径dの比D/dが2より小さくなると、スクリューの羽根の幅が狭くなり、回転軸の回転数によっては汲み上げることができる分離材の量が減少し、浄水部に供給される分離材の量が少なくなって、原水の処理効率が低下するので好ましくない。また、D/dが10より大きくなると、スクリューの羽根の幅が広くなり、汲み上げることができる分離材の量は増えるが、回転軸が細くなり、回転軸の構造強度が得られ難くなるので好ましくない。   Here, when the ratio D / d between the outer diameter D of the screw blade and the diameter d of the rotary shaft is smaller than 2, the width of the screw blade becomes narrow, and the separation material that can be pumped up depending on the rotational speed of the rotary shaft. This is not preferable because the amount is reduced, the amount of the separation material supplied to the water purification unit is reduced, and the treatment efficiency of the raw water is lowered. Further, if D / d is larger than 10, the width of the blade of the screw becomes wide, and the amount of separating material that can be pumped increases, but the rotating shaft becomes thin and the structural strength of the rotating shaft becomes difficult to obtain. Absent.

スクリューの羽根の傾斜角度が、回転軸に垂直な平面に対し5度より小さくなると、水処理タンクの底部から分離材をすくい易く、スクリューの回転速度によっては分離材を内筒部の上部まで汲み上げるための時間が増し、分離材が衝突し共擦りする時間が長くなるので、分離材の共擦効果は高まり、浄水効果も高まるが、分離材が細粒化し易くなるので好ましくない。また、60度より大きくなると、スクリューの回転数によっては分離材を汲み上げることができず、分離材を内筒部と浄水部の間を循環させることができなくなり、また、分離材を汲み上げるためにスクリューの回転数が上げた場合、分離材が必要以上に共擦りされ、分離材が細粒化し易くなるので好ましくない。
また、スクリューの羽根が螺旋羽根の場合、羽根のピッチは、螺旋羽根の傾斜角度や浄水装置の大きさ等に合せて、適宜選定される。
When the inclination angle of the blade of the screw is smaller than 5 degrees with respect to the plane perpendicular to the rotation axis, it is easy to scoop the separating material from the bottom of the water treatment tank, and depending on the rotational speed of the screw, the separating material is pumped up to the upper part of the inner cylinder. For this reason, the time for the separation material to collide and the time for co-rubbing to the separation material is increased, so that the co-rubbing effect of the separation material is enhanced and the water purification effect is enhanced. If the angle exceeds 60 degrees, the separating material cannot be pumped up depending on the number of rotations of the screw, and the separating material cannot be circulated between the inner cylinder portion and the water purification unit. When the number of rotations of the screw is increased, the separating material is rubbed more than necessary, and the separating material is likely to be finely divided.
Moreover, when the blade | wing of a screw is a spiral blade, the pitch of a blade | wing is suitably selected according to the inclination angle of a spiral blade, the magnitude | size of a water purifier, etc.

請求項7に記載の発明は、請求項1乃至6の内いずれか1に記載の浄水装置であって、前記内筒部の中心軸に対して前記スクリューの前記回転軸が0.1〜3mm偏芯するように配設されている構成を有している。
この構成により、請求項1乃至6の作用、効果に加え、以下のような作用、効果が得られる。
(1)内筒部の中心軸に対してスクリューの回転軸が0.1〜3mm偏芯するように配設されているので、分離材や原水が撹拌され易く、分離材同士が衝突し共擦りし易くすることができるとともに、スクリューと内筒部の内周面の間に分離材が詰まることを防止し、連続運転を実現できる。
(2)回転軸が偏芯して回転するので、分離材がスクリューの羽根と内筒部の内周壁との隙間に詰まるのを防止でき、運転の長期安定化が図れるとともに、分離材の粉化を防止できる。
Invention of Claim 7 is a water purifier of any one of Claim 1 thru | or 6, Comprising: The said rotating shaft of the said screw is 0.1-3 mm with respect to the central axis of the said inner cylinder part. It has the structure arrange | positioned so that it may decenter.
With this configuration, in addition to the operations and effects of claims 1 to 6, the following operations and effects can be obtained.
(1) Since the rotational axis of the screw is arranged to be eccentric by 0.1 to 3 mm with respect to the central axis of the inner cylinder portion, the separating material and raw water are easily stirred, and the separating materials collide with each other. While being able to make it easy to rub, it can prevent that a separating material is clogged between an inner peripheral surface of a screw and an inner cylinder part, and can realize a continuous operation.
(2) Since the rotating shaft rotates eccentrically, the separation material can be prevented from clogging in the gap between the screw blades and the inner peripheral wall of the inner cylinder, and the operation can be stabilized for a long period of time. Can be prevented.

ここで、回転軸の偏芯量が0.1mmより小さくなると、偏芯による分離材や原水の撹拌が起こり難くなるので好ましくない。また、3mmより大きくなると、内筒部の内周面とスクリューの羽根の端部との隙間が大きくなり、分離材が隙間から落下し易くなるので、分離材が内筒部と浄水部の間を循環し難く、汲み上げる分離材の量が減り、処理効率が低下し易くなるので好ましくない。
回転軸の下端部を自由端に形成しても良い。これにより、回転軸の回転が偏芯し易くなる。偏芯による回転軸の振れが大きくなり過ぎる場合には、軸受等を用いて回転軸の振れを抑えても良い。
Here, if the amount of eccentricity of the rotating shaft is smaller than 0.1 mm, it is not preferable because stirring of the separating material and raw water due to the eccentricity is difficult to occur. Also, if it becomes larger than 3 mm, the gap between the inner peripheral surface of the inner cylinder part and the end of the blade of the screw becomes large, and the separation material is easily dropped from the gap, so that the separation material is between the inner cylinder part and the water purification part. Is not preferable because the amount of the separating material to be pumped is reduced and the processing efficiency is likely to be lowered.
You may form the lower end part of a rotating shaft in a free end. Thereby, rotation of a rotating shaft becomes easy to decenter. When the runout of the rotary shaft due to eccentricity becomes too large, the runout of the rotary shaft may be suppressed using a bearing or the like.

請求項8に記載の発明は、請求項1乃至7の内いずれか1に記載の浄水装置であって、前記内筒部の内周面と、前記羽根の端部との隙間が0〜10mmである構成を有している。
この構成により、請求項1乃至7の作用、効果に加え、以下のような作用、効果が得られる。
(1)内筒部の内周面とスクリューの羽根の端部との隙間が0.1〜10mmであるため、分離材がスクリューの羽根の端部と内筒部の内周面との隙間から内筒部底部に落下し難く、分離材吐出部まで分離材を効率よく汲み上げることができる。また、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、スクリューの羽根の端部と内筒部との隙間でも分離材の表面が擦られるので、共擦効果が得られ難い水中においても分離材表面に新生面を形成し易く、装置の安定性や原水の処理効率に優れる。
Invention of Claim 8 is the water purifier of any one of Claims 1 thru | or 7, Comprising: The clearance gap between the internal peripheral surface of the said inner cylinder part and the edge part of the said blade | wing is 0-10 mm. It has the composition which is.
With this configuration, in addition to the operations and effects of claims 1 to 7, the following operations and effects can be obtained.
(1) Since the gap between the inner peripheral surface of the inner cylinder portion and the end portion of the screw blade is 0.1 to 10 mm, the separation material is the gap between the end portion of the screw blade and the inner peripheral surface of the inner tube portion. Therefore, it is difficult to fall to the bottom of the inner cylinder portion, and the separating material can be efficiently pumped up to the separating material discharge portion. In addition, when metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the surface of the separating material is rubbed even in the gap between the end of the screw blade and the inner cylindrical portion, so it is difficult to obtain a co-rubbing effect. It is easy to form a new surface on the surface of the separating material even in water, and the stability of the apparatus and the treatment efficiency of raw water are excellent.

ここで、内筒部の内周面とスクリューの羽根の端部との隙間は0.1〜10mmが選択される。隙間が0.1mmより小さくなると、回転軸の振れにより、スクリューの羽根と内筒部の内壁が接触し易く、スクリューの羽根の破損等が起こり易くなるので好ましくない。また、10mmより大きくなると、分離材がスクリューと内筒部の間から落下し易く、内筒部と外筒部の間に形設される浄水部に分離材が吐出され難くなり、原水の処理効率が低下し易くなるとともに、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、スクリューの羽根上で分離材同士が衝突・接触し難く、分離材の共擦効果が得られ難くなるので好ましくない。
しかし、該隙間が略0mmに近付くと、内筒部に供給される原水を汲み上げやすくなり、分離材と原水の反応時間(接触時間)を長くすることができるので、原水中の金属イオン濃度が高い場合や有害な金属イオン等を含む場合に、該金属イオンを十分に除去することができ、浄水の安全性を高めることができる。
このとき、内筒部の内周面とスクリューの羽根の端部との隙間を略0mmに近付ける方法としては、スクリューの羽根の平面部の縁側(端部側)に、ゴムや合成樹脂等のカバーリングをする方法や、該羽根の平面部の縁側(端部側)にゴム等の弾性体を接着する方法(ライニング)等を用いることができる。
また、内筒部の内周面とスクリューの羽根の端部との隙間から分離材が落下するのを防ぐ方法としては、スクリューの羽根の平面部の縁側(端部側)に、凸部を設ける方法等を用いることができる。
Here, the clearance between the inner peripheral surface of the inner cylinder portion and the end portion of the blade of the screw is selected to be 0.1 to 10 mm. If the gap is smaller than 0.1 mm, the screw blades and the inner wall of the inner cylinder part are likely to come into contact with each other due to the swing of the rotating shaft, and the screw blades are likely to be damaged. Further, when the thickness is larger than 10 mm, the separation material easily falls from between the screw and the inner cylinder portion, and the separation material is difficult to be discharged into the water purification unit formed between the inner cylinder portion and the outer cylinder portion. When the metal hydroxide is adsorbed by the metal hydroxide coating on the surface of the separating material, the efficiency is easily lowered, and the separating material is unlikely to collide with or come into contact with each other on the blade of the screw. Since it becomes difficult, it is not preferable.
However, when the gap approaches approximately 0 mm, the raw water supplied to the inner cylinder portion can be easily pumped, and the reaction time (contact time) of the separating material and the raw water can be lengthened. When it is high or contains harmful metal ions, the metal ions can be sufficiently removed, and the safety of purified water can be improved.
At this time, as a method of bringing the gap between the inner peripheral surface of the inner cylinder portion and the end portion of the screw blade close to approximately 0 mm, rubber, synthetic resin, or the like is placed on the edge side (end portion side) of the flat portion of the screw blade. A method of covering, a method of bonding an elastic body such as rubber to the edge side (end side) of the flat portion of the blade (lining), or the like can be used.
Moreover, as a method of preventing the separating material from falling from the gap between the inner peripheral surface of the inner cylinder portion and the end portion of the screw blade, a convex portion is provided on the edge side (end portion side) of the flat portion of the screw blade. A providing method or the like can be used.

スクリューの羽根に螺旋羽根を用いた場合、螺旋羽根のピッチが上部側と下部側で異なる構成にすることもできる。この構成により、螺旋羽根の上部側と下部側でピッチが異なるので、分離材がスクリューの上部に汲み上げられるに従って、螺旋羽根上の分離材の堆積率を変化させることができる。そのため、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、堆積率の変化によって共擦効果を高めることができ、分離材表面に新生面が露出され易くなり、分離材による原水中の金属イオンの吸着分離効率が低下し難く、メンテナンス性や安定性に優れる。   When the spiral blade is used as the blade of the screw, the pitch of the spiral blade may be different between the upper side and the lower side. With this configuration, since the pitch is different between the upper side and the lower side of the spiral blade, the deposition rate of the separation material on the spiral blade can be changed as the separation material is pumped up to the upper portion of the screw. Therefore, when metal ions are adsorbed by the metal hydroxide film on the surface of the separating material, the co-friction effect can be enhanced by changing the deposition rate, and the new surface is easily exposed on the surface of the separating material, and the raw water by the separating material is exposed. The adsorption and separation efficiency of metal ions is difficult to decrease, and it is excellent in maintenance and stability.

請求項9に記載の発明は、請求項1乃至8の内いずれか1に記載の浄水装置であって、前記浄水部が、前記浄水部が、前記外筒部と前記内筒部との間に配設された中間筒部と、前記内筒部と前記中間筒部との間に形設された金属イオン吸着部と、前記中間筒部と前記外筒部との間に形設された溢水部と、を有し、前記分離材供給部の出口が、前記金属イオン吸着部の上方に開口している構成を有している。
この構成により、請求項1乃至8の作用、効果に加え、以下のような作用、効果を有している。
(1)内筒部と中間筒部との間に形設された金属イオン吸着部の上方に分離材供給部の出口が開口しているので、供給された分離材が導入口に近い位置に沈殿し易く、分離材を導入口から内筒部に導入し易くすることができる。
(2)金属イオン吸着部の外周側に溢水部が形成されているので、浄水(処理水)中に分離材からの剥離物(スラッジ)等が含まれる場合、溢水部の底部に沈殿し易くなり、浄水排出部から排出され難くなる。そのため、浄水装置の下流に、該剥離物を除去する浄水槽等を連設しなくとも、スラッジの含まれない浄水(処理水)を得ることができ、利便性に優れる。
Invention of Claim 9 is a water purifier of any one of Claims 1 thru | or 8, Comprising: The said water purifier is the said water purifier, Between the said outer cylinder part and the said inner cylinder part Formed between the intermediate tube portion, the inner tube portion and the intermediate tube portion, the metal ion adsorbing portion formed between the inner tube portion and the intermediate tube portion, and the intermediate tube portion and the outer tube portion. An overflow portion, and an outlet of the separation material supply portion is opened above the metal ion adsorption portion.
With this configuration, in addition to the operations and effects of claims 1 to 8, the following operations and effects are provided.
(1) Since the outlet of the separation material supply part is opened above the metal ion adsorption part formed between the inner cylinder part and the intermediate cylinder part, the supplied separation material is at a position close to the introduction port. It is easy to precipitate and the separation material can be easily introduced from the introduction port into the inner cylinder portion.
(2) Since the overflow part is formed on the outer peripheral side of the metal ion adsorbing part, when the purified water (treated water) contains a separation material (sludge) from the separating material, it easily settles at the bottom of the overflow part. It becomes difficult to be discharged from the purified water discharge section. Therefore, it is possible to obtain purified water (treated water) that does not contain sludge without providing a water purification tank or the like for removing the peeled material downstream of the water purification apparatus, which is excellent in convenience.

ここで、外筒部と内筒部との間に配設される中間筒部は、内筒部を囲うように形成することで、浄水部を金属イオン吸着部と溢水部に区分けするが、形状は筒状に限定されない。断面が円弧状の中間筒部を、少なくとも内筒部の導入口の周囲を囲うように形成し、浄水部を金属イオン吸着部と溢水部に区分けしても良い。
中間筒部の素材は、内筒部等と同様の素材を用いることができるので、説明は省略する。
Here, the intermediate cylinder part disposed between the outer cylinder part and the inner cylinder part is formed so as to surround the inner cylinder part, so that the water purification part is divided into a metal ion adsorption part and an overflow part, The shape is not limited to a cylindrical shape. An intermediate cylinder part having an arc-shaped cross section may be formed so as to surround at least the periphery of the inlet of the inner cylinder part, and the water purification part may be divided into a metal ion adsorption part and an overflow part.
Since the same material as that of the inner tube portion or the like can be used as the material of the intermediate tube portion, description thereof is omitted.

請求項10に記載の発明は、請求項9に記載の浄水装置であって、前記溢水部が、前記水切り部と前記中間筒部に連通した連通管と、前記中間筒部と前記外筒部との間に配設された堰部と、前記堰部と前記中間筒部との間に形設された沈降分離部と、前記堰部に形設されたもぐり堰と、を備える構成を有している。
この構成により、請求項9の作用、効果に加え、以下のような作用、効果が得られる。
(1)溢水部が、連通管によって内筒部の内部と連通され、堰部と中間筒部との間に形設された沈降分離部を備えるので、浄水(処理水)中に分離材からの剥離物(スラッジ)等が含まれる場合、該スラッジが堰部で遮られ、沈降分離部の底部に堆積することで分離(除去)される。そのため、別途、フィルターを備えなくとも浄水装置の維持管理が容易になり、省資源性、メンテナンス性に優れる。
(2)沈降分離部の底部側に給排水弁を設けることで、沈降分離部に沈殿した分離材からの剥離物等のスラッジを該給排水弁から容易に取り出すことができ、メンテナンス性に優れる。
Invention of Claim 10 is a water purifier of Claim 9, Comprising : The said overflow part is a communicating pipe which connected the said draining part and the said intermediate cylinder part, The said intermediate cylinder part, and the said outer cylinder part And a weir part formed between the weir part and the intermediate cylinder part, and a borer weir formed on the weir part. doing.
With this configuration, in addition to the operation and effect of Claim 9, the following operation and effect can be obtained.
(1) Since the overflow part is communicated with the inside of the inner cylinder part by the communication pipe and includes a sedimentation separation part formed between the weir part and the intermediate cylinder part, it is separated from the separation material in the purified water (treated water). When the exfoliated material (sludge) or the like is included, the sludge is blocked by the weir part and separated (removed) by depositing on the bottom of the sedimentation separation part. Therefore, it becomes easy to maintain and manage the water purification apparatus without a separate filter, and is excellent in resource saving and maintenance.
(2) By providing the water supply / drainage valve on the bottom side of the sedimentation / separation part, sludge such as exfoliated material from the separating material settled on the sedimentation / separation part can be easily taken out from the water supply / drainage valve, and the maintainability is excellent.

ここで、連通管によって水切り部と連設された溢水部には、内筒部で金属イオンが分離(除去)された浄水(処理水)が流入するが、該浄水(処理水)には分離材や分離材表面からの剥離物等のスラッジが混入することがあるため、水処理タンクの底部にスラッジを沈殿させるための沈殿部を形設することが好ましい。沈殿部の形成方法は、浄水(処理水)中のスラッジを沈殿させることができれば特に限定されないが、浄水部の底部側に分離材が通過し難い大きさの目開きを有するエキスパンドメタルやパンチングメタル,金網や沈殿分離用フィルター(網体)等を設ける方法等が好適に用いられる。更に、スラッジの沈殿場所に排水弁等を設けることで、容易にスラッジを除去することができ、メンテナンス性を高めることができる。
また、溢水部は、上端部に上蓋等の屋根部を設けることが好ましい。これにより、浄水装置から浄水を排水する際に、溢水部の上端部から分離材等が混入し難くなるからである。
Here, purified water (treated water) from which metal ions are separated (removed) in the inner cylinder portion flows into the overflow portion connected to the draining portion by the communication pipe, but is separated into the purified water (treated water). Since sludge such as exfoliated material from the surface of the material or separation material may be mixed, it is preferable to form a sedimentation part for sedimenting sludge at the bottom of the water treatment tank. The method for forming the precipitation part is not particularly limited as long as sludge in the purified water (treated water) can be precipitated, but an expanded metal or a punching metal having an opening of a size that makes it difficult for the separating material to pass through on the bottom side of the purified water part. A method of providing a wire mesh, a precipitation separation filter (mesh), or the like is preferably used. Furthermore, by providing a drainage valve or the like at the sludge sedimentation place, the sludge can be easily removed and the maintainability can be improved.
Moreover, it is preferable that a flooding part provides a roof part, such as an upper cover, in an upper end part. Thereby, when draining purified water from a water purifier, it becomes difficult to mix a separating material or the like from the upper end of the overflow portion.

浄水部には、中間筒部の底部側に通水部を設け、水切り部から排出された浄水が浄水部に流入するようにしても良い。   The water purification unit may be provided with a water passing part on the bottom side of the intermediate cylinder part so that the purified water discharged from the draining part flows into the water purification part.

中間筒部と外筒部の間に配設される堰部の素材は、内筒部等と同様の素材を用いることができるので、説明は省略する。
尚、もぐり堰とは、堰部下部に形成された開口部であり、溢水部に流入した分離材やその剥離物等のスラッジをトラップし、浄水と分離するためのものである。これにより、浄水(処理水)中のスラッジが除去され易く、浄水排出部にフィルター等を備えなくとも不純物の少ない浄水(処理水)が得られ易くなる。
また、堰部は複数設けても良い。堰部を複数形成することで、浄水(処理水)中のスラッジが、溢水部内に沈殿し易くなり、スラッジを除去し易くなる。この時、堰部の少なくとも1つが、堰部上部にもぐり堰を備えることが好ましい。
Since the material of the dam part disposed between the intermediate cylinder part and the outer cylinder part can be the same material as that of the inner cylinder part or the like, description thereof will be omitted.
The borer weir is an opening formed in the lower part of the weir part, and traps sludge such as a separating material and its exfoliated material flowing into the overflow part and separates it from purified water. Thereby, sludge in the purified water (treated water) is easily removed, and purified water (treated water) with less impurities can be easily obtained without providing a filter or the like in the purified water discharge part.
A plurality of weir portions may be provided. By forming a plurality of weir portions, sludge in the purified water (treated water) is likely to settle in the overflow portion, and it is easy to remove the sludge. At this time, it is preferable that at least one of the dam portions includes a counterbore also in the upper portion of the dam portion.

実施の形態1の浄水装置の要部正面断面図Main part front sectional drawing of the water purifier of Embodiment 1 (a)実施の形態1の浄水装置の平面図(b)図1のA−A線矢視断面図(A) Plan view of the water purifier of Embodiment 1 (b) AA sectional view taken along the line AA in FIG. 実施の形態1の浄水装置の導入口の拡大断面図The expanded sectional view of the inlet of the water purifier of Embodiment 1 実施の形態2の浄水装置の要部正面断面図Main part front sectional drawing of the water purifier of Embodiment 2. 実施の形態2の浄水装置の使用状態を示す概要図Schematic which shows the use condition of the water purifier of Embodiment 2. 実施の形態3の浄水装置の要部正面断面図Front sectional view of main parts of the water purifier according to Embodiment 3. 実施の形態3の浄水装置の使用状態を示す概要図Schematic figure which shows the use condition of the water purifier of Embodiment 3. 実施の形態4の浄水装置の模式平面断面図Schematic plane sectional view of the water purifier of Embodiment 4 実施の形態4の浄水装置の要部正面断面図Main part front sectional drawing of the water purifier of Embodiment 4. 実施の形態4の浄水装置の使用状態を示す概要図Schematic which shows the use condition of the water purifier of Embodiment 4.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。尚、本発明はこれらの実施の形態に限定されるものではない。
(実施の形態1)
図1は実施の形態1の浄水装置の要部正面断面図であり、図2(a)は実施の形態1の浄水装置の平面図であり、図2(b)は図1のA−A線矢視断面図であり、図3は実施の形態1の浄水装置の導入口の要部拡大断面図ある。
図1,2において、Xは実施の形態1の浄水装置、1は浄水装置Xの水処理タンク、1aは水処理タンク1の外筒部、1bは水処理タンク1の蓋部、1cは水処理タンク1の底板部、2は水処理タンク1の内部に形設された内筒部、2aは内筒部2の内周面に形設され後述するスクリュー8によって水切りされた分離材が共擦りされる共擦部、2bは内筒部2を外筒部1aに固定する支持部、3は内筒部2と水処理タンク1の外筒部1aとの間に形設され,原水と分離材が接触し金属イオンが吸着・分離される浄水部、4は浄水部3の上部の蓋部1bに形設された分離材供給部、4aは浄水部3の上部の蓋部1bに形設された上部原水給水部である。上部原水給水部4aは外筒部1aの上部に形成されてもよい。5は内筒部2の底部側に形設され原水及び分離材を内筒部2内へ導入するための導入口、7は内筒部2の上部側に形設された分離材吐出部、8は内筒部2の略中心軸上に回転自在に挿設されたスクリュー、8aはスクリュー8の回転軸、8bは回転軸8aの外周に螺旋状に形成された螺旋羽根、9は内筒部2の底板部1cに形設された給排水管、9aは給排水管9に連設された給排水弁、10は蓋部1b上に配設されスクリュー8を回転させる駆動部、11は外筒部1aにおいて浄水部3側に配設された筒状の浄水排出部、11aは浄水排出部11の内筒部2側と対向する面に配設されたフィルター、12は内筒部2を支持する底板部1cに形成された嵌合溝部、13は外筒部1aにおいて浄水部3の上側に配設されオーバーフローフィルター13aが配設された筒状のオーバーフロー管(排水管)である。
図3においてθ1は回転軸8aに垂直な平面に対する螺旋羽根8bの傾斜角度、Cは内筒部2の内周面と螺旋羽根8bの端部との隙間、Dは螺旋羽根8bの外径、dは回転軸8aの直径である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to these embodiments.
(Embodiment 1)
1 is a front cross-sectional view of a main part of the water purifier of the first embodiment, FIG. 2 (a) is a plan view of the water purifier of the first embodiment, and FIG. 2 (b) is an AA of FIG. FIG. 3 is a cross-sectional view taken along line arrow, and FIG. 3 is an enlarged cross-sectional view of a main part of the inlet of the water purifier according to Embodiment 1.
1 and 2, X is the water purifier of the first embodiment, 1 is the water treatment tank of the water purifier X, 1a is the outer cylinder of the water treatment tank 1, 1b is the lid of the water treatment tank 1, and 1c is water. The bottom plate portion of the treatment tank 1, 2 is an inner cylindrical portion formed inside the water treatment tank 1, 2 a is formed on the inner peripheral surface of the inner cylindrical portion 2, and a separating material drained by a screw 8 described later is shared. The rubbing co-rubbed part, 2b is a support part for fixing the inner cylinder part 2 to the outer cylinder part 1a, 3 is formed between the inner cylinder part 2 and the outer cylinder part 1a of the water treatment tank 1, A water purification unit 4 in which the separation material comes into contact and metal ions are adsorbed / separated, 4 is a separation material supply unit formed on the lid 1b at the top of the water purification unit 3, and 4a is formed in the lid 1b at the top of the water purification unit 3. This is the upper raw water supply section. Upper raw water supply part 4a may be formed in the upper part of outer cylinder part 1a. 5 is an inlet for introducing raw water and separation material into the inner cylinder part 2 formed on the bottom side of the inner cylinder part 2, and 7 is a separation material discharge part formed on the upper side of the inner cylinder part 2. 8 is a screw rotatably inserted on a substantially central axis of the inner cylinder portion 2, 8a is a rotation shaft of the screw 8, 8b is a spiral blade formed spirally on the outer periphery of the rotation shaft 8a, and 9 is an inner cylinder. A water supply / drainage pipe formed on the bottom plate part 1c of the part 2, 9a is a water supply / drainage valve connected to the water supply / drainage pipe 9, 10 is a drive part arranged on the lid part 1b and rotates the screw 8, and 11 is an outer cylinder part. In FIG. 1a, a cylindrical purified water discharge unit 11a disposed on the water purification unit 3 side, 11a a filter disposed on the surface of the purified water discharge unit 11 facing the inner cylinder unit 2 side, and 12 supports the inner cylinder unit 2. The fitting groove part 13 formed in the bottom plate part 1c is disposed on the upper side of the water purification part 3 in the outer cylinder part 1a and is an overflow filter. 13a is disposed a tubular overflow pipe (drainage pipe).
In FIG. 3, θ 1 is the angle of inclination of the spiral blade 8b with respect to the plane perpendicular to the rotation axis 8a, C is the gap between the inner peripheral surface of the inner cylinder 2 and the end of the spiral blade 8b, and D is the outer diameter of the spiral blade 8b. , D is the diameter of the rotating shaft 8a.

原水や金属イオンが分離(除去)された浄水と接する外筒部1aや内筒部2、スクリュー8等の素材は、吸着分離される金属イオンの溶出が少ない素材であれば特に限定されず、チタンやアルミニウムを主成分とする金属類や合成樹脂、ステンレス鋼等の素材が好適に用いられる。   Materials such as the outer cylinder part 1a, the inner cylinder part 2, and the screw 8 that are in contact with the purified water from which raw water or metal ions have been separated (removed) are not particularly limited as long as they are materials with little elution of metal ions that are adsorbed and separated, Materials such as metals, synthetic resins, and stainless steels mainly composed of titanium and aluminum are preferably used.

スクリュー8の螺旋羽根8bの端部と内筒部2の内周面との間に隙間を形成しない場合、スクリュー8の回転により汲み上げられる水を切るために、内筒部2に水切り部を形成しても良い。水切り部は、内筒部2内の水を排出することができればスリットや孔等、どのような構成でも良い。   When a gap is not formed between the end of the spiral blade 8b of the screw 8 and the inner peripheral surface of the inner cylinder part 2, a draining part is formed in the inner cylinder part 2 to cut off the water pumped up by the rotation of the screw 8. You may do it. The draining portion may have any configuration such as a slit or a hole as long as the water in the inner cylinder portion 2 can be discharged.

スクリュー8は、分離材や原水の接触効率を高める為に回転軸8aを内筒部2の中心軸に対して0.1〜3mm偏芯させても良い。これにより、内筒部2内で揚水される原水の量を減少させ、内筒部2の上側で水切りを効率的に行うことができる。偏芯量が0.1mmより小さくなると、偏芯による分離材や原水の撹拌が起こり難くなるので好ましくない。また、偏芯量が3mmより大きくなると、内筒部2の内周面と螺旋羽根8bの端部との隙間が大きくなり、分離材が隙間から落下し易くなって、分離材が内筒部2と浄水部3の間を循環し難く、汲み上げることができる分離材の量が減り、処理効率が低下し易くなるので好ましくない。
また、スクリュー8の駆動部10による回転の回転数は、スクリュー8の螺旋羽根8bの傾斜角度や螺旋羽根8bのピッチ、分離材の量等により適当な回転数を自由に選択することができる。
The screw 8 may be eccentric by 0.1 to 3 mm with respect to the central axis of the inner cylinder portion 2 in order to increase the contact efficiency of the separating material and raw water. Thereby, the quantity of the raw | natural water pumped up in the inner cylinder part 2 can be decreased, and draining can be performed efficiently on the upper side of the inner cylinder part 2. FIG. When the amount of eccentricity is smaller than 0.1 mm, it is not preferable because the separation material or raw water is not easily stirred by the eccentricity. Moreover, when the amount of eccentricity is larger than 3 mm, the gap between the inner peripheral surface of the inner cylinder portion 2 and the end of the spiral blade 8b is increased, and the separation material is easily dropped from the gap, so that the separation material is the inner cylinder portion. This is not preferable because it is difficult to circulate between the water purification unit 2 and the water purification unit 3, and the amount of the separating material that can be pumped is reduced, and the processing efficiency is easily lowered.
Further, the rotation speed of the screw 8 driven by the drive unit 10 can be freely selected according to the inclination angle of the spiral blade 8b of the screw 8, the pitch of the spiral blade 8b, the amount of the separating material, and the like.

螺旋羽根8bには、分離材の共擦効果を高めるために、表面に切り欠きを形成したり、異物を固着させる等して凹凸を形成したりしても良い。
図3に示すように、螺旋羽根8bの傾斜角度θ1(回転軸8aに垂直な平面に対する角度)は、5〜60度に形成される。θ1が、回転軸8aに垂直な平面に対し5度より小さくなると、水処理タンク1の底部から分離材をすくい易いが、共擦部2aの上部まで分離材を汲み上げるための時間が増し、分離材が衝突・接触する時間が長くなるので、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合は、分離材の共擦効果は高まるが、分離材が細粒化し易くなるので好ましくない。また、60度より大きくなると、スクリュー8の回転数によっては分離材を汲み上げることができず、分離材を内筒部2と浄水部3の間で循環させることができなくなり、また、分離材を汲み上げるためにスクリュー8の回転数を上げた場合、分離材が必要以上に共擦りされ、分離材が細粒化し易くなるので好ましくない。
また、螺旋羽根8bのピッチは、螺旋羽根8bの傾斜角度θ1や装置の大きさ等に合せて、適宜設定される。
螺旋羽根8bの下端部は、水処理タンク1の底板部1cと接触しない程度の間隙を有している。
In order to enhance the co-rubbing effect of the separating material, the spiral blade 8b may be formed with notches on the surface, or irregularities may be formed by fixing foreign matters.
As shown in FIG. 3, the inclination angle θ 1 of the spiral blade 8b (an angle with respect to a plane perpendicular to the rotation axis 8a) is 5 to 60 degrees. If θ 1 is smaller than 5 degrees with respect to a plane perpendicular to the rotation axis 8a, it is easy to scoop the separating material from the bottom of the water treatment tank 1, but the time for pumping the separating material up to the upper part of the co-rubbed portion 2a increases. Since the time for which the separating material collides / contacts becomes longer, when the metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the co-friction effect of the separating material is enhanced, but the separating material is easily made finer. Therefore, it is not preferable. On the other hand, if the angle exceeds 60 degrees, the separating material cannot be pumped up depending on the number of rotations of the screw 8, and the separating material cannot be circulated between the inner tube portion 2 and the water purification unit 3. When the number of rotations of the screw 8 is increased in order to pump up, the separating material is rubbed more than necessary, and the separating material is likely to be finely divided, which is not preferable.
The pitch of the spiral blade 8b is in accordance with the size of the inclination angle theta 1 and apparatus of the helical blade 8b, are set appropriately.
The lower end portion of the spiral blade 8 b has a gap that does not contact the bottom plate portion 1 c of the water treatment tank 1.

内筒部2の内周面と螺旋羽根8bの端部との隙間Cは、0.1〜10mmが好ましい。隙間Cが0.1mmより小さいと、回転軸8aの振れにより、螺旋羽根8bと内筒部2の内周面が接触し易く、螺旋羽根8bの破損等が起こり易くなるので好ましくない。また、10mmより大きいと、螺旋羽根8bと内筒部2の内周面の間の隙間Cが大きくなり、分離材が該隙間から落下し易く、内筒部2に導入された分離材が浄水部3に吐出され難くなり、原水の処理効率が低下し易くなるとともに、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、螺旋羽根8b上で分離材同士が衝突・接触し難く、分離材の共擦効果が得られ難くなるので好ましくない。
しかし、隙間Cが略0mmに近付くと、内筒部2に供給される原水を汲み上げやすくなり、分離材と原水の反応時間を長くすることができるので、原水が有害な金属イオン等を含む場合に、浄水性を高めることができる。
尚、隙間Cを0mmにするには、スクリュー8の螺旋羽根8bの平面部の縁側(端部側)にゴムや合成樹脂製等のカバーリング(ライニング)を接着する方法等が用いられる。
The clearance C between the inner peripheral surface of the inner cylinder 2 and the end of the spiral blade 8b is preferably 0.1 to 10 mm. If the gap C is smaller than 0.1 mm, the spiral blade 8b and the inner peripheral surface of the inner cylinder portion 2 are likely to come into contact with each other due to the swing of the rotary shaft 8a, and the spiral blade 8b is likely to be damaged. On the other hand, if it is larger than 10 mm, the gap C between the spiral blade 8b and the inner peripheral surface of the inner cylinder portion 2 becomes larger, and the separation material is likely to fall from the gap, and the separation material introduced into the inner cylinder portion 2 is purified water. When the metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the separating material collides and contacts on the spiral blade 8b. It is difficult to obtain the co-rubbing effect of the separating material, which is not preferable.
However, when the gap C approaches approximately 0 mm, the raw water supplied to the inner cylinder part 2 can be easily pumped up, and the reaction time of the separating material and the raw water can be lengthened, so that the raw water contains harmful metal ions, etc. In addition, water purification can be increased.
In order to set the gap C to 0 mm, a method of bonding a cover ring (lining) made of rubber or synthetic resin to the edge side (end side) of the flat portion of the spiral blade 8b of the screw 8 is used.

螺旋羽根8bの外径Dと回転軸8aの直径dの比は、D/d=2〜10であることが好ましい。D/dが2より小さいと、スクリュー8の螺旋羽根8bの幅が狭くなり、スクリュー8の回転数によっては汲み上げることができる分離材の量が減少し、浄水部3に供給される分離材の量が少なくなるので、原水の処理効率が低下し好ましくない。また、D/dが10より大きいと、スクリュー8の螺旋羽根8bの幅が広くなるので、汲み上げることができる分離材の量は増えるが、回転軸8aが細くなり、回転軸8aの構造強度が得られ難くなるので好ましくない。   The ratio of the outer diameter D of the spiral blade 8b and the diameter d of the rotating shaft 8a is preferably D / d = 2-10. When D / d is smaller than 2, the width of the spiral blade 8b of the screw 8 is narrowed, and the amount of the separating material that can be pumped down depending on the number of rotations of the screw 8 is reduced. Since the amount decreases, the treatment efficiency of the raw water decreases, which is not preferable. If D / d is larger than 10, the width of the spiral blade 8b of the screw 8 is widened, so that the amount of separating material that can be pumped is increased, but the rotating shaft 8a is thinned, and the structural strength of the rotating shaft 8a is increased. Since it becomes difficult to obtain, it is not preferable.

浄水排出部11に配設されるフィルター11aの形状は特に限定されず、素材は金属イオンの溶出が少ないものであれば特に限定されない。
また、フィルター11aは、本実施の形態のように外筒部1aの内周壁側に配設しても良いが、浄水排出部11を外筒部1aの外周面に管体を固設するように形成し、フィルター11aを外筒部1aの外周面側に配設しても良い。フィルター11aの固定方法については特に限定されない。
また、浄水排出部11を外筒部1aの上部側に設けた場合、フィルター11aは備えなくとも良い。また、浄水中のスラッジを除去するため、浄水装置Xの下流にスラッジを沈殿分離させるための沈殿槽を連設しても良い。
The shape of the filter 11a disposed in the purified water discharge unit 11 is not particularly limited, and the material is not particularly limited as long as the metal ions are less eluted.
Further, the filter 11a may be disposed on the inner peripheral wall side of the outer cylindrical portion 1a as in the present embodiment, but the purified water discharge portion 11 is fixed to the outer peripheral surface of the outer cylindrical portion 1a. The filter 11a may be disposed on the outer peripheral surface side of the outer cylinder portion 1a. The method for fixing the filter 11a is not particularly limited.
Moreover, when the purified water discharge part 11 is provided in the upper part side of the outer cylinder part 1a, the filter 11a does not need to be provided. Moreover, in order to remove the sludge in the purified water, a sedimentation tank for causing the sludge to settle and separate may be provided downstream of the water purification apparatus X.

浄水排出部11には、逆洗装置(図示せず)を配設しても良い。これにより、フィルター11aの目詰まり等を容易に除去でき、メンテナンス性を高めることができる。   The purified water discharge unit 11 may be provided with a backwash device (not shown). Thereby, clogging etc. of the filter 11a can be easily removed, and maintainability can be improved.

以上のように構成された本実施の形態1の浄水装置Xについて、マグネシウムやマグネシウム合金を主とする分離材を用いた場合の浄水過程について図1を用いて説明する。
まず、水処理タンク1の蓋部1bに形設された分離材供給部4から外形が数mmのマグネシウム又はマグネシウム合金を主とする分離材を導入し、浄水部3底部に分離材を堆積させた後、上部原水給水部4aから原水を導入することで、分離材の表面に金属水酸化物が生成され、該金属水酸化物に原水中の金属イオンが吸着される。
次に、金属イオンが除去された原水は、浄水として浄水排出部11から排出され、また、表面に金属イオンを吸着した分離材は導入口5から内筒部2に導入される。
次いで、内筒部2に導入された分離材は、スクリュー8が回転することによって共擦部2aの上部に押し上げられ、スクリュー8と内筒部2の内周面との隙間から共擦部2aの下部に落ちるので、水が切られた状態で分離材同士が共擦りされる。共擦りされ表面に再生面が露出された分離材は、分離材吐出部7から浄水部3に再び供給され、注入される原水と接触する。分離材のマグネシウム露出面の金属イオンの吸着は極めて早く、分離材の再生面と接触した原水中の金属イオンは急速に吸着される。よって、浄水排出部11からは金属イオンが除去された浄水のみを排出することができるので連続運転が可能である。尚、分離材の種類と原水中の金属イオンとの組合せや原水の濃度によっては反応が遅く、金属イオンが直ちに吸着されないことがあるが、その場合はバッチ処理することにより、浄水のみを排出することができる。分離材は浄水部3底部の分離材が沈積した沈殿域まで分散しながら降下し、原水中の微量の未吸着金属イオンと反応しながら再び原水とともに導入口5に導入される。
ここで、浄水部3に供給される分離材は、スクリュー8の回転数や原水の水質等の条件に合わせ、浄水部3の底部に一定量が沈積する程度の量を供給することが好ましい。
About the water purifier X of this Embodiment 1 comprised as mentioned above, the water purification process at the time of using the separating material which mainly consists of magnesium or a magnesium alloy is demonstrated using FIG.
First, a separation material mainly composed of magnesium or a magnesium alloy having an outer shape of several mm is introduced from the separation material supply unit 4 formed in the lid 1b of the water treatment tank 1, and the separation material is deposited on the bottom of the water purification unit 3. Then, by introducing the raw water from the upper raw water supply unit 4a, a metal hydroxide is generated on the surface of the separating material, and metal ions in the raw water are adsorbed on the metal hydroxide.
Next, the raw water from which the metal ions have been removed is discharged from the purified water discharge unit 11 as purified water, and the separation material that has adsorbed the metal ions on the surface is introduced from the introduction port 5 into the inner cylinder part 2.
Next, the separating material introduced into the inner cylinder part 2 is pushed up to the upper part of the co-rubbing part 2 a by the rotation of the screw 8, and the co-rubbing part 2 a from the gap between the screw 8 and the inner peripheral surface of the inner cylinder part 2. The separators are rubbed together while the water is cut. The separating material having the reclaimed surface exposed on the surface is again supplied from the separating material discharge section 7 to the water purification section 3 and comes into contact with the injected raw water. The adsorption of metal ions on the magnesium exposed surface of the separation material is extremely fast, and the metal ions in the raw water in contact with the regeneration surface of the separation material are adsorbed rapidly. Therefore, since only the purified water from which the metal ions have been removed can be discharged from the purified water discharge unit 11, continuous operation is possible. Depending on the combination of the type of separation material and the metal ions in the raw water and the concentration of the raw water, the reaction may be slow and metal ions may not be immediately adsorbed. In that case, only purified water is discharged by batch treatment. be able to. The separating material descends while being dispersed to the sedimentation zone where the separating material at the bottom of the water purification unit 3 is deposited, and is again introduced into the inlet 5 together with the raw water while reacting with a small amount of unadsorbed metal ions in the raw water.
Here, it is preferable that the separation material supplied to the water purification unit 3 is supplied in an amount such that a certain amount is deposited on the bottom of the water purification unit 3 in accordance with conditions such as the rotational speed of the screw 8 and the quality of the raw water.

以上のように、本実施の形態1の浄水装置Xは構成されているので、以下のような作用が得られる。
(1)原水とマグネシウムやマグネシウム合金等からなる分離材を接触させ、内筒部2で撹拌するので、分離材の新生面に、原水中の鉄やマンガン,亜鉛,ホウ素,6価クロム,砒素,ニッケル等の金属イオンが吸着され、原水中から該金属イオンを分離(除去)することができる。
(2)スクリュー8が配設された内筒部2を有し、内筒部2と浄水部3が導入口5を介して連通しているため、内筒部2の底部側に形成された導入口5から共擦部2aに、分離材や水が導入され、螺旋羽根8bが回ることで分離材が流動し、互いに衝突・接触し、分離材は金属イオンの吸着や共擦りを繰り返しながら分離材吐出部7まで汲み上げられ浄水部3に吐出されるので、原水と分離材の接触効率が良い。また、分離材表面の金属水酸化物の被膜により金属イオンを吸着する場合、該被膜は共擦りで剥離され、分離材は、表面に再生面を形成された状態で分離材吐出部7から浄水部3に落下し、原水とともに導入口5から内筒部2に供給されるため、浄水装置を長期間使用しても分離材による原水中の金属イオンの吸着分離性能が低下し難く、分離材を循環して使用できるので省資源性に優れ、また、短時間で多くの原水を処理することができる。
(3)内筒部2の内部にスクリュー8を備えているので、スクリュー8と内筒部2の隙間Cから水が落ち、分離材だけを分離材吐出部7まで汲み上げることができる。その結果、分離材を水切り状態で共擦りさせることができるので、水中よりも分離材の共擦効果が得られ易く、分離材の表面に安定して再生面を形成することができる。
(4)スクリュー8の回転によって分離材や原水が撹拌されるので、分離材と原水が接触し易く、原水中の金属イオンと分離材の接触効率が高いため、分離材を原水と接触させるだけで原水中の金属イオンを吸着分離することができ、工業薬品等を使用しなくても良いので、処理後の水の安全性に優れる。
(5)共擦りによって分離材の表面から剥離する剥離物の発生量が少なく、沈殿物(スラッジ)の処理に伴うメンテナンスが容易で、メンテナンス性に優れる。
(6)螺旋羽根8bの外径Dと回転軸8aの直径dの比D/d=2〜10であるため、回転軸8aと螺旋羽根8bの大きさのバランスが良く、螺旋羽根8bで汲み上げることができる分離材の量が少なくなり過ぎず、効率良く分離材と原水を接触させるとともに、回転軸8aが十分な構造強度を備えるので、浄水装置Xを安定して使用することができる。
(7)回転軸8aに垂直な平面に対し螺旋羽根8bの傾斜角度θ1が5〜60度に形成されているため、スクリュー8の回転数が比較的低くとも、分離材吐出部7まで分離材を汲み上げることができ、回転軸8aの回転数を調整することで、分離材の循環量を容易に調整することができる。そのため、原水の水質に合わせて分離材を効率的に使用することができ、省資源性に優れる。
(8)スクリュー8が、内筒部2の中心軸に対して0.1〜3mm偏芯して回転する場合、スクリュー8の揺動運動も加わるので、分離材や原水が撹拌され易く、分離材同士が衝突し共擦りし易くすることができるとともに、螺旋羽根8bと内筒部2の内周面の間に分離材が詰まることを防止し、連続運転を実現できる。
(9)内筒部2の内周面と螺旋羽根8bの端部との隙間Cが0.1〜10mmであるため、分離材が螺旋羽根8bの端部と内筒部2の内周面との隙間から共擦部2aの底部に落下し難く、分離材吐出部7まで分離材を効率よく汲み上げることができる。また、分離材表面の金属水酸化物の被膜によって金属イオンを吸着する場合、螺旋羽根8bの端部と内筒部2の内周面との隙間でも分離材の表面が擦られるので、共擦効果が得られ難い水中においても分離材表面に新生面を形成し易く、装置の安定性や原水の処理効率に優れる。
As mentioned above, since the water purifier X of this Embodiment 1 is comprised, the following effects are obtained.
(1) Since the raw water is brought into contact with a separating material made of magnesium or magnesium alloy and stirred in the inner cylinder portion 2, iron, manganese, zinc, boron, hexavalent chromium, arsenic, Metal ions such as nickel are adsorbed, and the metal ions can be separated (removed) from the raw water.
(2) Since it has the inner cylinder part 2 in which the screw 8 is disposed and the inner cylinder part 2 and the water purification part 3 communicate with each other through the introduction port 5, the inner cylinder part 2 is formed on the bottom side of the inner cylinder part 2. Separation material and water are introduced from the inlet 5 into the co-rubbing portion 2a, and the separation material flows as the spiral blade 8b rotates, colliding and contacting each other, and the separation material repeats adsorption and co-rubbing of metal ions. Since it is pumped up to the separating material discharge part 7 and discharged to the water purification part 3, the contact efficiency of raw | natural water and a separating material is good. Further, when metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the coating is peeled off by co-rubbing, and the separating material is purified from the separating material discharge section 7 with a regenerated surface formed on the surface. Since it falls to the part 3 and is supplied from the introduction port 5 together with the raw water to the inner cylinder part 2, even if the water purification device is used for a long period of time, the separation and separation performance of the metal ions in the raw water by the separating material is unlikely to deteriorate. Since it can be used in a circulating manner, it is excellent in resource saving and can process a large amount of raw water in a short time.
(3) Since the screw 8 is provided inside the inner cylinder part 2, water falls from the gap C between the screw 8 and the inner cylinder part 2, and only the separation material can be pumped up to the separation material discharge part 7. As a result, since the separating material can be rubbed together in the drained state, the co-rubbing effect of the separating material can be obtained more easily than in water, and a regenerated surface can be stably formed on the surface of the separating material.
(4) Since the separation material and raw water are agitated by the rotation of the screw 8, the separation material and the raw water are easily brought into contact with each other, and the contact efficiency between the metal ions in the raw water and the separation material is high. The metal ions in the raw water can be adsorbed and separated, and it is not necessary to use industrial chemicals.
(5) The generation amount of the peeled material that peels from the surface of the separating material by co-rubbing is small, the maintenance associated with the treatment of the precipitate (sludge) is easy, and the maintainability is excellent.
(6) Since the ratio D / d = 2-10 of the outer diameter D of the spiral blade 8b and the diameter d of the rotary shaft 8a is 2 to 10, the sizes of the rotary shaft 8a and the spiral blade 8b are well balanced, and the spiral blade 8b pumps up. The amount of the separating material that can be used is not excessively reduced, the separating material and the raw water are efficiently contacted, and the rotating shaft 8a has sufficient structural strength, so that the water purifier X can be used stably.
(7) Since the inclination angle θ 1 of the spiral blade 8b is 5 to 60 degrees with respect to the plane perpendicular to the rotation shaft 8a, the separation material discharge unit 7 is separated even if the rotational speed of the screw 8 is relatively low. The material can be pumped up, and the circulation amount of the separation material can be easily adjusted by adjusting the rotational speed of the rotating shaft 8a. Therefore, a separating material can be used efficiently according to the quality of raw water, and resource saving is excellent.
(8) When the screw 8 rotates with an eccentricity of 0.1 to 3 mm with respect to the central axis of the inner cylinder portion 2, the swinging motion of the screw 8 is also added, so that the separating material and raw water are easily stirred and separated. The materials can easily collide with each other and can be easily rubbed together, and the separation material can be prevented from clogging between the spiral blade 8b and the inner peripheral surface of the inner cylinder portion 2, thereby realizing continuous operation.
(9) Since the gap C between the inner peripheral surface of the inner cylindrical portion 2 and the end portion of the spiral blade 8b is 0.1 to 10 mm, the separating material is the end portion of the spiral blade 8b and the inner peripheral surface of the inner cylindrical portion 2. Therefore, it is difficult to drop from the gap to the bottom of the co-rubbed portion 2a, and the separating material can be efficiently pumped up to the separating material discharge portion 7. Further, when metal ions are adsorbed by the metal hydroxide coating on the surface of the separating material, the surface of the separating material is rubbed even in the gap between the end of the spiral blade 8b and the inner peripheral surface of the inner cylinder portion 2, so Even in water where it is difficult to obtain an effect, a new surface is easily formed on the surface of the separation material, and the stability of the apparatus and the treatment efficiency of raw water are excellent.

(実施の形態2)
実施の形態2の浄水装置について、以下、図面を用いて説明する。尚、実施の形態1と同様のものには同一の符号を付して説明を省略する。
図4は実施の形態2の浄水装置の要部正面断面図、図5は実施の形態2の浄水装置の使用状態を示す概要図である。
図4において、Yは実施の形態2の浄水装置、20は浄水装置Yの水処理タンク、20aは水処理タンク20の外筒部、20bは水処理タンク20の蓋部、20cは略逆円錐状に形成された水処理タンク20の底板部、21は外筒部20aを貫通し内筒部2の導入口5の上方の異なる位置に開口した管状の下部原水給水部、22は水処理タンク20の底板部20cが導入口5に向かって下るように水平面に対して5〜75度(θ2)に傾斜して形設された勾配部、22aは底板部1cに形設された軸受板、23aは外筒部20aと内筒部2との間で浄水部3の底板部20cから上方に立設された中間筒部、23bは中間筒部23aの内周面と内筒部2の外周面によって浄水部3内に形設された金属イオン吸着部、23cは中間筒部23aの外周面と水処理タンク20の外筒部20aの内周面によって浄水部3内に形設された溢水部、23dは中間筒部23aの下端部に形設された通水部、23eは溢水部23c内で浄水排出部11より下部側に配設された溢水部用フィルター、23fは浄水部3の上端部に配設された溢水部23cの屋根部、24は内筒部2の導入口5と分離材吐出部7の間に形設された分離材の水切り部、25は分離材が通過し難い大きさの目開きを有し水切り部24を覆うように配設されたエキスパンドメタルやパンチングメタル、金網等からなる網筒、26はスクリュー8の螺旋羽根8bの平面部の縁側(端部側)に接着されたゴム製のライニング、θ2は水平面に対する勾配部22の傾斜角度、Bはスクリュー8の断面の左右を分ける破断線である。
図5において、27は水処理タンク20の浄水部3の金属イオン吸着部23bの上部に配設された分離材供給部4から供給されるマグネシウムやマグネシウム合金等の分離材である。尚、金属イオン吸着部23bに上部原水給水部4aから給水される。28は下部原水給水部21から内筒部2に供給される原水、29は原水28から金属イオンが除去され浄水排出部11から排出される浄水(処理水)である。尚、原水は上部原水給水部4a,下部原水給水部21のいずれか1箇所から給水してもよい。
また、図5中、スクリュー8の回転軸8aの中心軸上に示した仮想分離線Fから左側は、原水28及び浄水(処理水)29の流れを示すため、分離材27を図示していない。尚、白抜きの矢印は分離材27の流れを示し、灰色の矢印は原水28及び浄水(処理水)29の流れを示したものである。
(Embodiment 2)
Hereinafter, the water purifier of Embodiment 2 will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
FIG. 4 is a front sectional view of a principal part of the water purifier of the second embodiment, and FIG. 5 is a schematic diagram showing a use state of the water purifier of the second embodiment.
In FIG. 4, Y is the water purifier of the second embodiment, 20 is the water treatment tank of the water purifier Y, 20a is the outer cylinder of the water treatment tank 20, 20b is the lid of the water treatment tank 20, and 20c is a substantially inverted cone. The bottom plate portion of the water treatment tank 20 formed in a shape, 21 is a tubular lower raw water supply portion that penetrates the outer cylinder portion 20a and opens at different positions above the inlet 5 of the inner cylinder portion 2, and 22 is a water treatment tank 20 is a slope portion formed so as to be inclined at 5 to 75 degrees (θ 2 ) with respect to the horizontal plane so that the bottom plate portion 20c is lowered toward the introduction port 5, and 22a is a bearing plate formed on the bottom plate portion 1c. , 23a is an intermediate cylinder part erected upward from the bottom plate part 20c of the water purification part 3 between the outer cylinder part 20a and the inner cylinder part 2, and 23b is an inner peripheral surface of the intermediate cylinder part 23a and the inner cylinder part 2 A metal ion adsorbing part 23c formed in the water purification part 3 by the outer peripheral surface, 23c is outside the intermediate cylinder part 23a. The overflow part formed in the water purification part 3 by the surface and the inner peripheral surface of the outer cylinder part 20a of the water treatment tank 20, 23d is a water flow part formed in the lower end part of the intermediate cylinder part 23a, and 23e is an overflow part. 23c is an overflow filter disposed on the lower side of the purified water discharge portion 11 in 23c, 23f is a roof portion of the overflow portion 23c disposed on the upper end of the purified water portion 3, and 24 is an inlet 5 of the inner cylinder portion 2. And a separator draining part 25 formed between the separator discharging part 7 and an expanded metal or punching having an opening of a size that makes it difficult for the separator to pass through and covering the draining part 24 A net cylinder made of metal, metal mesh, etc., 26 is a rubber lining bonded to the edge side (end side) of the flat portion of the spiral blade 8b of the screw 8, θ 2 is an inclination angle of the gradient portion 22 with respect to the horizontal plane, and B is It is a break line which divides the right and left of the cross section of the screw 8.
In FIG. 5, reference numeral 27 denotes a separating material such as magnesium or magnesium alloy supplied from the separating material supply unit 4 disposed on the upper part of the metal ion adsorption unit 23 b of the water purification unit 3 of the water treatment tank 20. The metal ion adsorption unit 23b is supplied with water from the upper raw water supply unit 4a. Reference numeral 28 denotes raw water supplied from the lower raw water supply section 21 to the inner cylinder section 2, and 29 denotes purified water (treated water) discharged from the purified water discharge section 11 by removing metal ions from the raw water 28. The raw water may be supplied from any one of the upper raw water supply unit 4a and the lower raw water supply unit 21.
Further, in FIG. 5, the left side from the virtual separation line F shown on the central axis of the rotation shaft 8 a of the screw 8 indicates the flow of the raw water 28 and the purified water (treated water) 29, and thus the separation material 27 is not illustrated. . The white arrows indicate the flow of the separating material 27, and the gray arrows indicate the flow of the raw water 28 and the purified water (treated water) 29.

ここで、勾配部22は、傾斜角度θ2(図4参照)が5度より小さくなると、供給される分離材27が導入口5に流れ難くなり、内筒部2に分離材27が供給され難くなって、原水28における金属イオンの吸着分離効率が低下するので好ましくない。75度より大きくなると、分離材27が一度に導入口5に向かって移動し、分離材27の流動性が阻害され易くなり、内筒部2に分離材27が供給され難くなって、原水28における金属イオンの吸着分離効率が低下するので好ましくない。 Here, when the inclination angle θ 2 (see FIG. 4) becomes smaller than 5 degrees, the gradient portion 22 is difficult to flow the supplied separation material 27 to the introduction port 5, and the separation material 27 is supplied to the inner cylinder portion 2. It becomes difficult and the adsorption separation efficiency of metal ions in the raw water 28 is lowered, which is not preferable. If the angle exceeds 75 degrees, the separating material 27 moves toward the inlet 5 at a time, the fluidity of the separating material 27 is likely to be hindered, and it becomes difficult to supply the separating material 27 to the inner cylinder portion 2, and the raw water 28 This is not preferable because the adsorption / separation efficiency of metal ions is reduced.

原水28に有害な金属イオンが含まれている時に、原水が拡散しないように、スクリュー8の螺旋羽根8bの縁側(端部側)には、内筒部2の内周面と接するようにライニング26が配設されており、スクリュー8の螺旋羽根8bの端部と内筒部2の内周面との隙間を埋めることで、内筒部2の水密性が保たれている。   A lining is provided on the edge side (end side) of the spiral blade 8b of the screw 8 so as to be in contact with the inner peripheral surface of the inner cylinder portion 2 so that the raw water does not diffuse when the raw water 28 contains harmful metal ions. 26 is disposed, and the watertightness of the inner cylinder part 2 is maintained by filling the gap between the end of the spiral blade 8 b of the screw 8 and the inner peripheral surface of the inner cylinder part 2.

溢水部用フィルター23eは備えなくとも良く、代わりに浄水装置Yの下流に沈殿槽を連設しても良い。   The overflow portion filter 23e may not be provided, and a sedimentation tank may be provided downstream of the water purifier Y instead.

以上のように構成された本実施の形態2の浄水装置Yについて、マグネシウムやマグネシウム合金を分離材として用いた場合の浄水過程を図5を用いて説明する。
まず、原水28は、内筒部2の底部側に配設された下部原水給水部21及び/又は上部原水給水部4aから給水される。また、分離材27は、分離材供給部4から供給され、金属イオン吸着部23bに導入されて、金属イオンを吸着しながら底板部20cによって形成された勾配部22の傾斜に沿って移動し、導入口5から内筒部2に供給される。
次に、スクリュー8が駆動部10によって回転することによって、共擦部2aに供給された分離材27は、原水28とともに螺旋羽根8bによって混合撹拌されつつ、共擦部2aの上部に向かって汲み上げられる。このとき、分離材27表面の水酸化マグネシウムは原水28中の金属イオンを吸着するとともに、分離材27は互いに衝突し合ったり、螺旋羽根8bや内筒部2の内周面と擦れ合ったりするので、分離材27表面の水酸化マグネシウムが、吸着した金属イオンとともに剥離され、分離材27の表面に再生面が露出する。
次いで、原水28から金属イオンが吸着分離された浄水は、水切り部24から金属イオン吸着部23bに供給される。供給された浄水は通水部23dを通って溢水部23cへ移動し、溢水部用フィルター23eで分離材27からの剥離物等が除去され浄水排出部11から水処理タンク20の外部に排出される。
また、分離材27は、螺旋羽根8bによって水切り部24より更に上部に汲み上げられる。そのため、分離材27は、表面の水がある程度除去され水切り状態で共擦りされるので、水中よりも分離材27同士の衝突等による共擦効果が得られ易い。汲み上げられた分離材27は、分離材吐出部7から吐出され、浄水部3の金属イオン吸着部23bに沈積し、再び導入口5から共擦部2aに供給される。
尚、原水28に有害な金属イオンが含まれている場合、原水28は下部原水供給部21のみから供給され、共擦部2aで原水28と分離材27が接触し金属イオンが除去される。この時、共擦部2aで原水28中の金属イオンが十分に除去できなくとも、金属イオン吸着部23bに供給された時点で、再び分離材27と接触することができ、浄水23に残留した金属イオンを金属イオン吸着部23bで分離・除去することができる。
About the water purifier Y of this Embodiment 2 comprised as mentioned above, the water purification process at the time of using magnesium or a magnesium alloy as a separating material is demonstrated using FIG.
First, the raw water 28 is supplied from the lower raw water supply part 21 and / or the upper raw water supply part 4a disposed on the bottom side of the inner cylinder part 2. The separation material 27 is supplied from the separation material supply unit 4 and introduced into the metal ion adsorption unit 23b, and moves along the inclination of the gradient unit 22 formed by the bottom plate 20c while adsorbing metal ions. It is supplied to the inner cylinder part 2 from the introduction port 5.
Next, when the screw 8 is rotated by the drive unit 10, the separation material 27 supplied to the co-rubbing unit 2a is pumped toward the upper part of the co-rubbing unit 2a while being mixed and stirred together with the raw water 28 by the spiral blade 8b. It is done. At this time, magnesium hydroxide on the surface of the separating material 27 adsorbs metal ions in the raw water 28, and the separating material 27 collides with each other or rubs against the inner peripheral surface of the spiral blade 8 b or the inner cylinder portion 2. Therefore, the magnesium hydroxide on the surface of the separating material 27 is peeled off together with the adsorbed metal ions, and the reproduction surface is exposed on the surface of the separating material 27.
Next, the purified water from which the metal ions have been adsorbed and separated from the raw water 28 is supplied from the drainer 24 to the metal ion adsorber 23b. The supplied purified water moves to the overflow section 23c through the water passage section 23d, and the exfoliation from the separation material 27 is removed by the overflow section filter 23e, and is discharged from the purified water discharge section 11 to the outside of the water treatment tank 20. The
Further, the separating material 27 is pumped further upward than the draining portion 24 by the spiral blade 8b. For this reason, the separating material 27 removes some of the surface water and is rubbed together in a drained state, so that it is easier to obtain a co-rubbing effect due to a collision between the separating materials 27 than in water. The pumped-up separation material 27 is discharged from the separation material discharge section 7, is deposited on the metal ion adsorption section 23b of the water purification section 3, and is supplied again from the introduction port 5 to the co-rubbing section 2a.
If the raw water 28 contains harmful metal ions, the raw water 28 is supplied only from the lower raw water supply unit 21, and the raw water 28 and the separating material 27 come into contact with each other at the co-rubbing portion 2 a to remove the metal ions. At this time, even when the metal ions in the raw water 28 cannot be sufficiently removed by the co-rubbing portion 2 a, the metal ions can be brought into contact with the separation material 27 again when the metal ions are supplied to the metal ion adsorption portion 23 b and remain in the purified water 23. Metal ions can be separated and removed by the metal ion adsorption portion 23b.

以上のように、本実施の形態2の浄水装置Yは構成されているので、実施の形態1で得られる作用に加え、以下の作用が得られる。
(1)下部原水給水部21が、外筒部20aを貫通し内筒部2と連通することにより、原水28が直接、内筒部2の内部に供給されるので、原水28が処理後の浄水29に混入することがなく、未処理のまま浄水排出部11から排出されることを防ぐことができ、高い除去率で金属イオンが除去された浄水29を安定して得ることができる。
(2)内筒部2と中間筒部23aとの間に形設された金属イオン吸着部23bの上方に分離材供給部4の出口が開口しているので、供給された分離材27が導入口5に近い位置に沈殿し易く、また、水処理タンク20の底板部20cによって導入口5に向かって下る勾配部22が形成されることにより、分離材27を内筒部2の導入口5に安定して導入し易くすることができる。そのため、分離材27表面の金属水酸化物の被膜によって金属イオンを吸着する場合、分離材27を内筒部2で共擦りさせ易くなるので、分離材27の表面に効率的に新生面を形成することができ、分離材27の吸着分離能力の低下を防ぐことができる。
(3)勾配部22の傾斜角度θ2が水平面に対して5〜75度であるので、分離材27が勾配部22上に沈積したまま残ったり、分離材27が一度に導入口5に流れ込んでブリッジを起こしたりし難く、導入口5から共擦部2aに安定して分離材27を導入することができる。そのため、分離材27表面の金属水酸化物の被膜によって金属イオンを吸着する場合、新生面が形成されていない分離材27が金属イオン吸着部23bの底部に溜まることが無く、浄水装置の処理能力が低下することを防ぐことができる。
(4)ライニング26により、スクリュー8と内筒部2の内周面との隙間Cをなくしているので、隙間Cから原水28が落ち難く、また、下部原水供給部21を備えるので、原水28中の金属イオン濃度が高い場合や原水28中に有害な金属イオンが含まれている場合等は、下部原水供給部21のみから原水28を供給することにより、原水28と分離材27の接触時間を長くすることができ、金属イオンを原水28から十分に除去することができるので、浄水(処理水)29の安全性を高めることができる。
(5)金属イオン吸着部23bの外周側に溢水部23cが形成されているので、浄水(処理水)29中に分離材からの剥離物(スラッジ)等が含まれる場合、溢水部23cの底部に沈殿し易くなり、浄水排出部11から排出され難くなる。そのため、浄水装置の下流に、該剥離物を除去する浄水槽等を連設しなくとも、スラッジの含まれない浄水(処理水)29を得ることができ、利便性に優れる。
As mentioned above, since the water purifier Y of this Embodiment 2 is comprised, in addition to the effect | action obtained in Embodiment 1, the following effect | actions are obtained.
(1) Since the lower raw water supply part 21 penetrates the outer cylinder part 20a and communicates with the inner cylinder part 2, the raw water 28 is directly supplied into the inner cylinder part 2, so that the raw water 28 is treated. It does not mix in the purified water 29, can be prevented from being discharged from the purified water discharge section 11 without being treated, and the purified water 29 from which metal ions have been removed at a high removal rate can be stably obtained.
(2) Since the outlet of the separating material supply section 4 is opened above the metal ion adsorption section 23b formed between the inner cylinder section 2 and the intermediate cylinder section 23a, the supplied separating material 27 is introduced. It is easy to settle at a position close to the port 5, and the bottom plate portion 20 c of the water treatment tank 20 forms a gradient portion 22 that goes down toward the introduction port 5, so that the separating material 27 is introduced into the introduction port 5 of the inner cylinder portion 2. Can be stably introduced. Therefore, when metal ions are adsorbed by the metal hydroxide film on the surface of the separating material 27, the separating material 27 can be easily rubbed with the inner cylindrical portion 2, so that a new surface is efficiently formed on the surface of the separating material 27. Therefore, it is possible to prevent the adsorption / separation ability of the separating material 27 from being lowered.
(3) Since the inclination angle θ 2 of the gradient portion 22 is 5 to 75 degrees with respect to the horizontal plane, the separation material 27 remains deposited on the gradient portion 22 or the separation material 27 flows into the introduction port 5 at a time. The separation material 27 can be stably introduced from the introduction port 5 to the co-rubbed portion 2a. Therefore, when metal ions are adsorbed by the metal hydroxide film on the surface of the separating material 27, the separating material 27 on which no new surface is formed does not collect at the bottom of the metal ion adsorbing portion 23b, and the processing capacity of the water purifier is improved. It can be prevented from lowering.
(4) Since the gap C between the screw 8 and the inner peripheral surface of the inner cylinder portion 2 is eliminated by the lining 26, the raw water 28 is unlikely to fall from the gap C, and the lower raw water supply unit 21 is provided. When the concentration of metal ions in the water is high or when harmful metal ions are contained in the raw water 28, the contact time between the raw water 28 and the separating material 27 is obtained by supplying the raw water 28 only from the lower raw water supply unit 21. Since the metal ions can be sufficiently removed from the raw water 28, the safety of the purified water (treated water) 29 can be improved.
(5) Since the overflow portion 23c is formed on the outer peripheral side of the metal ion adsorbing portion 23b, when the purified water (treated water) 29 contains a separated material (sludge) from the separating material, the bottom portion of the overflow portion 23c It becomes difficult to be discharged from the purified water discharge part 11. Therefore, it is possible to obtain purified water (treated water) 29 that does not contain sludge without providing a water purification tank or the like for removing the exfoliated material downstream of the water purification apparatus, which is excellent in convenience.

(実施の形態3)
実施の形態3の浄水装置について、以下、図面を用いて説明する。尚、実施の形態1又は実施の形態2と同様のものには同一の符号を付して説明を省略する。
図6は実施の形態3の浄水装置の要部正面断面図、図7は実施の形態3の浄水装置の使用状態を示す概要図である。
図6及び図7において、Zは実施の形態3の浄水装置、30は浄水装置Zの水処理タンク、30aは水処理タンク30の外筒部、30bは水処理タンク30の蓋部、30cは水処理タンク30の底板部、31は溢水部23cの上端側の屋根部23fから溢水部23c内に垂設されることで中間筒部23aと外筒部30aとの間に形成された堰部、31aは堰部31の下端側に形設されたもぐり堰、32は中間筒部23aの外周面と堰部31の内周面によって溢水部23cに形設された沈降分離部、33は内筒部2と浄水部3の沈降分離部32とを連通させた連通管、34は水処理タンク30の底部の沈殿部、34aは沈殿部34の上方に導入口5に向がって下るような傾斜角度θ3の傾斜を有する勾配部22を形成し分離材27が通過できない大きさの目開きを有する沈殿分離用フィルター、35は内筒部2の上端側に配設され分離材吐出部7から吐出する分離材の吐出量を調整する吐出調整板、35aは吐出調整板35の中央部に形成された分離材の吐出口、36はスクリュー8の螺旋羽根8bの端部に配設されたゴム又は合成樹脂製のカバーリングである。
(Embodiment 3)
The water purifier according to Embodiment 3 will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1 or Embodiment 2, and description is abbreviate | omitted.
FIG. 6 is a front cross-sectional view of a main part of the water purifier according to the third embodiment, and FIG. 7 is a schematic diagram showing a use state of the water purifier according to the third embodiment.
6 and 7, Z is the water purifier of the third embodiment, 30 is the water treatment tank of the water purifier Z, 30a is the outer cylinder of the water treatment tank 30, 30b is the lid of the water treatment tank 30, and 30c is The bottom plate part 31 of the water treatment tank 30 is a weir part formed between the intermediate cylinder part 23a and the outer cylinder part 30a by being suspended in the overflow part 23c from the roof part 23f on the upper end side of the overflow part 23c. 31a is a bored weir formed on the lower end side of the dam portion 31, 32 is a sedimentation separation portion formed on the overflow portion 23c by the outer peripheral surface of the intermediate cylinder portion 23a and the inner peripheral surface of the dam portion 31, and 33 is an inner A communication pipe in which the cylindrical part 2 and the sedimentation separation part 32 of the water purification part 3 are communicated, 34 is a sedimentation part at the bottom of the water treatment tank 30, and 34 a is downward from the sedimentation part 34 toward the inlet 5. The slope portion 22 having a slope of a particular slope angle θ 3 is formed and the separating material 27 cannot pass through A filter for precipitation separation having a size opening, 35 is a discharge adjustment plate arranged on the upper end side of the inner cylinder portion 2 to adjust the discharge amount of the separation material discharged from the separation material discharge portion 7, and 35a is a discharge adjustment plate A discharge port 36 for the separating material formed at the central portion 35 is a rubber or synthetic resin cover ring disposed at the end of the spiral blade 8 b of the screw 8.

ここで、沈殿部34は、浄水部3の底部だけではなく、水処理タンク30の底部全体に設けることが好ましい。
これにより、水処理タンク30底部の沈殿部34において、内筒部2や浄水部3の水中に混入した分離材27からの剥離物(スラッジ)等を分離することができる。
沈殿部34に沈殿し分離された分離材27表面からの剥離物や分離材27の粉化物,懸濁物質等のスラッジは、給排水弁9aを開くことで、給排水管9から容易に排出することができる。
Here, the precipitation unit 34 is preferably provided not only on the bottom of the water purification unit 3 but on the entire bottom of the water treatment tank 30.
Thereby, in the sedimentation part 34 of the bottom part of the water treatment tank 30, the exfoliation (sludge) etc. from the separation material 27 mixed in the water of the inner cylinder part 2 or the water purification part 3 can be isolate | separated.
Sludge such as exfoliated material from the surface of the separation material 27 and separated from the separation material 27 and separated from the separation material 27, suspended matter, etc., can be easily discharged from the water supply / drainage pipe 9 by opening the water supply / drainage valve 9a. Can do.

吐出調整板35の素材は、金属イオンの溶出が少なければ特に限定されず、内筒部2等と同様の素材を用いることができる。
また、吐出調整板35によって形成された吐出口35aの形状は特に限定されず、円形状や楕円形状、多角形状等のどのような形でも良い。
尚、カバーリング36の作用は、実施の形態2のライニング26と同様であるため説明は省略する。
The material of the discharge adjustment plate 35 is not particularly limited as long as metal ions are not eluted, and the same material as that of the inner cylinder portion 2 can be used.
The shape of the discharge port 35a formed by the discharge adjustment plate 35 is not particularly limited, and may be any shape such as a circular shape, an elliptical shape, or a polygonal shape.
Since the operation of the cover ring 36 is the same as that of the lining 26 of the second embodiment, the description thereof is omitted.

本実施の形態では、勾配部22は沈殿分離用フィルター34aによって形設されている。
また、勾配部22は、実施の形態2と同様に、導入口5に向かって下るように水平面に対して5〜75度(θ3)で傾斜している。
In the present embodiment, the gradient portion 22 is formed by a precipitate separation filter 34a.
Similarly to the second embodiment, the gradient portion 22 is inclined at 5 to 75 degrees (θ 3 ) with respect to the horizontal plane so as to descend toward the introduction port 5.

本実施の形態では、堰部31は、中間筒部23aと外筒部30aの間に1つのみ形成されているが、複数形成しても良い。堰部31を複数形成することで、浄水(処理水)29中のスラッジが沈降し易くなり、容易に分離回収することができる。   In the present embodiment, only one dam portion 31 is formed between the intermediate cylinder portion 23a and the outer cylinder portion 30a, but a plurality of dam portions 31 may be formed. By forming a plurality of weir portions 31, sludge in the purified water (treated water) 29 can easily settle and can be easily separated and recovered.

以上のように構成された本実施の形態3の浄水装置Zについて、マグネシウムやマグネシウム合金を分離材として用いた場合の浄水過程を図7を用いて説明する。
まず、分離材供給部4から供給された分離材27は、金属イオン吸着部23bを通り、沈殿分離用フィルター34aで形成された勾配部22によって、導入口5から共擦部2a(内筒部2の内部)に導入され、原水28は下部原水給水部21及び/又は上部原水給水部4aから供給され共擦部2aに導入される。
次に、内筒部2に供給された分離材27は、原水28とともに内筒部2の底部から上部に向かって汲み上げられ、原水28から金属イオンが吸着分離された浄水29は、連通管33を通り、浄水部3の沈降分離部32に流入する。また、分離材27は、分離材吐出部7まで汲み上げられ、吐出調整板35で吐出量が調整されつつ吐出口35aから浄水部3の金属イオン吸着部23bに吐出される。金属イオン吸着部23bに吐出された分離材27は、導入口5から原水28とともに共擦部2aに再度供給される。
次いで、溢水部23cの沈降分離部32に流入した浄水29は、堰部31下部のもぐり堰31aを通り、浄水排出部11から水処理タンク30の外部に排出される。尚、浄水排出部11には必要に応じてフィルターを備えてもよい。また、共擦りされることによって発生する分離材27からの剥離物等は、堰部31によってトラップされ、沈殿分離用フィルター34aを抜けて沈殿部34に沈殿し、堆積する。
About the water purifier Z of this Embodiment 3 comprised as mentioned above, the water purification process at the time of using magnesium or a magnesium alloy as a separating material is demonstrated using FIG.
First, the separation material 27 supplied from the separation material supply section 4 passes through the metal ion adsorption section 23b, and from the inlet 5 to the co-rubbed section 2a (inner cylinder section) by the gradient section 22 formed by the precipitation separation filter 34a. 2), the raw water 28 is supplied from the lower raw water supply unit 21 and / or the upper raw water supply unit 4a and introduced into the co-rubbing unit 2a.
Next, the separation material 27 supplied to the inner cylinder part 2 is pumped together with the raw water 28 from the bottom to the upper part of the inner cylinder part 2, and the purified water 29 from which the metal ions are adsorbed and separated from the raw water 28 is connected to the communication pipe 33. And flows into the sedimentation separation unit 32 of the water purification unit 3. Further, the separation material 27 is pumped up to the separation material discharge unit 7 and is discharged from the discharge port 35 a to the metal ion adsorption unit 23 b of the water purification unit 3 while the discharge amount is adjusted by the discharge adjustment plate 35. The separating material 27 discharged to the metal ion adsorbing portion 23b is supplied again to the co-rubbed portion 2a together with the raw water 28 from the introduction port 5.
Next, the purified water 29 that has flowed into the settling / separating section 32 of the overflow section 23 c passes through the borer weir 31 a below the weir section 31 and is discharged from the purified water discharge section 11 to the outside of the water treatment tank 30. In addition, you may provide a filter in the purified water discharge part 11 as needed. Further, the exfoliated material and the like from the separating material 27 generated by co-rubbing is trapped by the weir part 31, passes through the precipitation separation filter 34 a, precipitates in the precipitation part 34, and accumulates.

以上のように、本実施の形態3の浄水装置Zは構成されているので、実施の形態1及び実施の形態2の(1),(3),(5)と同様の作用に加え、以下のような作用が得られる。
(1)溢水部23cが、連通管33によって共擦部2aと連通され、堰部31と中間筒部23aとの間に形設された沈降分離部32を備えるので、溢水部23cに流入する浄水(処理水)29中の剥離物等のスラッジは、堰部31に遮られ、沈殿分離用フィルター34aを抜けて沈殿部34に沈殿し、分離(除去)される。これにより、スラッジが除去された浄水(処理水)29を得ることができ、浄水装置Zの維持管理が容易になり、省資源性、メンテナンス性に優れる。
(2)沈殿部34の底部側に分離材27からの剥離物等の沈殿物を排出するための給排水管9があるので、沈殿部34に沈殿した沈殿物を容易に取り出すことができ、メンテナンス性に優れる。
(3)吐出調整板35を備えるので、分離材吐出部7から吐出する分離材27の吐出量を吐出口35aの大きさ等によって調整することができるとともに、吐出調整板35によって螺旋羽根8b上の分離材27の一部を押さえつけることができるので、吐出調整板35の大きさや形状により分離材27の共擦効果を調整することもできる。
As mentioned above, since the water purifier Z of this Embodiment 3 is comprised, in addition to the effect | action similar to (1), (3), (5) of Embodiment 1 and Embodiment 2, it is the following. The following effects are obtained.
(1) Since the overflow portion 23c is communicated with the co-rubbed portion 2a by the communication pipe 33 and includes the sedimentation separation portion 32 formed between the dam portion 31 and the intermediate cylinder portion 23a, the overflow portion 23c flows into the overflow portion 23c. Sludge such as exfoliated material in the purified water (treated water) 29 is blocked by the dam portion 31, passes through the precipitation separation filter 34 a, precipitates in the precipitation portion 34, and is separated (removed). Thereby, the purified water (treated water) 29 from which the sludge has been removed can be obtained, the maintenance and management of the water purification apparatus Z is facilitated, and the resource saving and maintenance are excellent.
(2) Since there is the water supply / drainage pipe 9 for discharging the precipitate such as the peeled material from the separating material 27 on the bottom side of the sedimentation section 34, the sediment deposited on the sedimentation section 34 can be easily taken out and maintained. Excellent in properties.
(3) Since the discharge adjustment plate 35 is provided, the discharge amount of the separation material 27 discharged from the separation material discharge portion 7 can be adjusted according to the size of the discharge port 35a, etc. Since a part of the separating material 27 can be pressed, the co-friction effect of the separating material 27 can be adjusted by the size and shape of the discharge adjusting plate 35.

(実施の形態4)
実施の形態4の浄水装置について、以下、図面を用いて説明する。尚、実施の形態1乃至実施の形態3と同様のものには同一の符号を付して説明を省略する。
図8は実施の形態4の浄水装置の平面断面模式図である。
図8において、実施の形態4の浄水装置X1が実施の形態1と異なるのは、外筒部1aの内部(浄水部3)が隔壁37で3箇所に分割され、各々に内筒部2が配設されている点である。
本実施の形態では、外筒部1aの内部に3つの内筒部2を備えているが、外筒部1aは処理量によって適宜大きさを変更することができ、その処理能力に応じて内筒部2の数を適宜、選択することができる。尚、内筒部2の配置方法としては、図8のように均等に配置することもできるし、偏らせて配置することもできる。このとき外筒部1aの底部はそれぞれの内筒部2にむかって傾斜するように複数のすり鉢を組み合わせた形状に形成することが好ましい。また、浄水排出部11はそれぞれの浄水部3に1乃至複数設けることができる。
また、中間筒部23aを設ける場合は、各々の内筒部2の周りにそれぞれ設けることもできるし、外筒部1aの内部に一つの中間筒部を設けその中に複数の内筒部2を配置することもできる。
また、図8のように隔壁37を設ける場合、その一つに原水供給部を設け、原水が隔壁37で区切られた区間(浄水部3)を順番に流れるようにすることもできる。その場合は、各浄水排出部11から揚水機によって次の隔壁37で区切られた区間に原水を送るようにしてもよい。そうすることで、原水をそれぞれの内筒部2の周りの浄水部3で繰り返し分離材27と接触させることができるので浄水の高品質性に優れる。
(Embodiment 4)
Hereinafter, the water purifier of Embodiment 4 will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1 thru | or Embodiment 3, and description is abbreviate | omitted.
FIG. 8 is a schematic plan sectional view of the water purifier according to the fourth embodiment.
In FIG. 8, the water purifier X1 of the fourth embodiment is different from that of the first embodiment in that the inside of the outer cylinder portion 1a (the water purification portion 3) is divided into three locations by a partition wall 37, and the inner cylinder portion 2 is provided for each. It is the point where it is arranged.
In the present embodiment, the three inner cylinder portions 2 are provided inside the outer cylinder portion 1a. However, the size of the outer cylinder portion 1a can be appropriately changed depending on the processing amount, and the inner cylinder portion 1a can be changed depending on the processing capacity. The number of the cylinder parts 2 can be selected suitably. In addition, as an arrangement | positioning method of the inner cylinder part 2, it can also arrange | position equally like FIG. 8, and can also arrange | position biased. At this time, it is preferable to form the bottom part of the outer cylinder part 1a in the shape which combined several mortars so that it may incline toward each inner cylinder part 2. FIG. Further, one or a plurality of water purification discharge sections 11 can be provided in each water purification section 3.
Moreover, when providing the intermediate | middle cylinder part 23a, it can also each provide around each inner cylinder part 2, and the one inner cylinder part is provided in the inside of the outer cylinder part 1a, and several inner cylinder parts 2 are in it. Can also be arranged.
Moreover, when providing the partition 37 like FIG. 8, the raw | natural water supply part can be provided in one of them, and raw | natural water can also be made to flow through the area (water purification part 3) divided | segmented by the partition 37 in order. In that case, you may make it send raw | natural water from each purified water discharge part 11 to the area divided by the next partition 37 with the pump. By doing so, since raw water can be repeatedly contacted with the separating material 27 in the purified water part 3 around each inner cylinder part 2, it is excellent in the quality of purified water.

以上のように、本実施の形態4の浄水装置は構成されているので、実施の形態1と同様の作用に加え、以下のような作用が得られる。
(1)外筒部1aの内部に複数の内筒部2を備えているので、循環する分離材27との接触量を増やし、一つの浄水装置での処理効率性に優れると共に、処理量が増加できるので浄化能力に優れる。
(2)外筒部1aの内部の容量や、目的の処理量に合わせて、内筒部2を適宜配設することができると共に、対流が少ない部分や、液のチャネリングが発生する部分を少なくできるので浄水性能に優れる。
(3)内筒部2の下部には導入口5を適宜設けることができ、複数の隣接する内筒部2の導入口5の位置をずらすことで、導入口5以外の部分に分離材27が堆積することを防ぐことができ、処理効率に優れると共に、使用されずに堆積する分離材27が無いので省資源性に優れる。
(4)原水が隔壁37で区切られた区間を順番に流れるようにした場合、原水をそれぞれの内筒部2の周りの浄水部3で繰り返し分離材27と接触させることができるので浄水の高品質性に優れる。
As mentioned above, since the water purifier of this Embodiment 4 is comprised, in addition to the effect | action similar to Embodiment 1, the following effects are obtained.
(1) Since a plurality of inner cylinder parts 2 are provided inside the outer cylinder part 1a, the amount of contact with the circulating separation material 27 is increased, the treatment efficiency in one water purifier is excellent, and the treatment amount is Since it can be increased, it has excellent purification ability.
(2) The inner cylinder portion 2 can be appropriately disposed in accordance with the internal capacity of the outer cylinder portion 1a and the target processing amount, and there are few portions where convection is less or liquid channeling occurs. Excellent water purification performance because it can.
(3) The introduction port 5 can be appropriately provided in the lower portion of the inner cylinder part 2, and the separating material 27 is provided in a part other than the introduction port 5 by shifting the positions of the introduction ports 5 of the plurality of adjacent inner cylinder parts 2. Can be prevented, and the processing efficiency is excellent, and since there is no separating material 27 to be deposited without being used, the resource saving property is excellent.
(4) When the raw water is made to flow through the sections separated by the partition walls 37 in order, the raw water can be repeatedly brought into contact with the separating material 27 in the water purification units 3 around the respective inner cylindrical portions 2, so that Excellent quality.

(実施の形態5)
実施の形態5の浄水装置について、以下、図面を用いて説明する。尚、実施の形態1乃至実施の形態4と同様のものには同一の符号を付して説明を省略する。
図9は実施の形態4の浄水装置の要部正面断面図、図10は実施の形態4の浄水装置の使用状態を示す概要図である。
図9及び図10において、実施の形態5の浄水装置Z1が実施の形態4と異なる点は、下部原水供給部21aが外筒部30aの下端側の内周面で開口している点と、中間筒部23aの下端部に実施の形態2と同様の通水部23dが形設されている点と、水切り部24,堰部31,連通管33を備えていない点と、沈殿分離用フィルター34bが下部原水供給部21aの上方から導入口5(内筒部2)の下端部にかけて傾斜状に配設されている点と、水処理タンク40の底板部40cが平坦状に形成されている点である。
尚、図9及び図10では給排水管9及び給排水弁9aを省略したが、底板部40cにこれらを備えてもよい。
(Embodiment 5)
Hereinafter, the water purifier of Embodiment 5 will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1 thru | or Embodiment 4, and description is abbreviate | omitted.
FIG. 9 is a front cross-sectional view of a main part of the water purifier according to the fourth embodiment, and FIG. 10 is a schematic diagram showing a use state of the water purifier according to the fourth embodiment.
In FIG.9 and FIG.10, the point from which the water purifier Z1 of Embodiment 5 differs from Embodiment 4 is that the lower raw water supply part 21a is opened in the inner peripheral surface of the lower end side of the outer cylinder part 30a, A point where a water flow part 23d similar to that of the second embodiment is formed at the lower end of the intermediate cylinder part 23a, a point that the draining part 24, the weir part 31 and the communication pipe 33 are not provided, and a filter for precipitation separation 34b is inclined from the upper part of the lower raw water supply part 21a to the lower end part of the inlet 5 (inner cylinder part 2), and the bottom plate part 40c of the water treatment tank 40 is formed flat. Is a point.
9 and 10, the water supply / drainage pipe 9 and the water supply / drainage valve 9a are omitted, but these may be provided in the bottom plate portion 40c.

以上のように構成された本実施の形態4の浄水装置Z1について、マグネシウムやマグネシウム合金を分離材として用いた場合の浄水過程を図を用いて説明する。
まず、分離材供給部4から供給された分離材27は、金属イオン吸着部23bを通り、沈殿分離用フィルター34bで形成された勾配部22によって、導入口5から共擦部2a(内筒部2の内部)に導入される。また、原水28は下部原水給水部21aから供給され沈殿分離用フィルター34bを通って導入口5から共擦部2aに導入される。
次に、内筒部2に供給された分離材27は、原水28とともに内筒部2の底部から上部に向かって汲み上げられ、原水28から金属イオンが吸着分離される。また、分離材27は、分離材吐出部7まで汲み上げられ、吐出調整板35で吐出量が調整されつつ吐出口35aから浄水部3の金属イオン吸着部23bに吐出される。金属イオン吸着部23bに吐出された分離材27は、導入口5から原水28とともに共擦部2aに再度供給される。
分離材27が繰返し循環しながら原水28から金属イオンを吸着分離し、金属イオンが除去された原水28は、浄水29として浄水排出部11から水処理タンク40の外に排出される。尚、浄水排出部11には必要に応じてフィルターを備えてもよい。
尚、共擦りされることによって発生する分離材27からの剥離物等は、沈殿分離用フィルター34bを抜けて沈殿部34に沈殿し、堆積する。剥離物等のスラッジの一部は浄水排出部11から排出されるが、下流側の沈殿槽によって沈殿分離される。
About the water purifier Z1 of this Embodiment 4 comprised as mentioned above, the water purifying process at the time of using magnesium or a magnesium alloy as a separating material is demonstrated using figures.
First, the separation material 27 supplied from the separation material supply section 4 passes through the metal ion adsorption section 23b, and from the inlet 5 to the co-rubbing section 2a (inner cylinder section) by the gradient section 22 formed by the precipitation separation filter 34b. 2). The raw water 28 is supplied from the lower raw water supply section 21a and is introduced from the introduction port 5 into the co-rubbed section 2a through the precipitation separation filter 34b.
Next, the separation material 27 supplied to the inner cylinder portion 2 is pumped together with the raw water 28 from the bottom to the upper portion of the inner cylinder portion 2, and metal ions are adsorbed and separated from the raw water 28. Further, the separation material 27 is pumped up to the separation material discharge unit 7 and is discharged from the discharge port 35 a to the metal ion adsorption unit 23 b of the water purification unit 3 while the discharge amount is adjusted by the discharge adjustment plate 35. The separating material 27 discharged to the metal ion adsorbing portion 23b is supplied again to the co-rubbed portion 2a together with the raw water 28 from the introduction port 5.
The separation material 27 is repeatedly circulated to adsorb and separate metal ions from the raw water 28, and the raw water 28 from which the metal ions have been removed is discharged from the purified water discharge unit 11 to the outside of the water treatment tank 40 as purified water 29. In addition, you may provide a filter in the purified water discharge part 11 as needed.
It should be noted that exfoliated material or the like from the separation material 27 generated by co-rubbing passes through the precipitation separation filter 34b, and is deposited and accumulated in the precipitation portion 34. A part of sludge such as exfoliated material is discharged from the purified water discharge unit 11, but is separated by precipitation in a downstream settling tank.

以上のように、本実施の形態5の浄水装置は構成されているので、実施の形態1、実施の形態2の(3),(5)及び実施の形態3の(3)と同様の作用に加え、以下のような作用が得られる。
(1)内筒部2と中間筒部23aとの間に形設された金属イオン吸着部23bの上方に分離材供給部4の出口が開口しているので、供給された分離材27が導入口5に近い位置に沈殿し易く、また、水処理タンク40の底部に沈殿分離用フィルター34bによって導入口5に向かって下る勾配部22が形成されることにより、分離材27を内筒部2の導入口5に安定して導入し易くすることができる。そのため、分離材27表面の金属水酸化物の被膜によって金属イオンを吸着する場合、分離材27を内筒部2で共擦りさせ易くなるので、分離材27の表面に効率的に新生面を形成することができ、分離材27の吸着分離能力の低下を防ぐことができる。
As mentioned above, since the water purifier of this Embodiment 5 is comprised, the effect | action similar to (3), (5) of Embodiment 1, Embodiment 2, and (3) of Embodiment 3 In addition, the following effects can be obtained.
(1) Since the outlet of the separation material supply part 4 is opened above the metal ion adsorption part 23b formed between the inner cylinder part 2 and the intermediate cylinder part 23a, the supplied separation material 27 is introduced. It is easy to settle at a position close to the mouth 5, and the slope portion 22 that goes down toward the inlet 5 is formed at the bottom of the water treatment tank 40 by the precipitation separation filter 34 b, thereby separating the separating material 27 from the inner cylinder portion 2. It is possible to facilitate the stable introduction into the inlet 5. Therefore, when metal ions are adsorbed by the metal hydroxide film on the surface of the separating material 27, the separating material 27 can be easily rubbed with the inner cylindrical portion 2, so that a new surface is efficiently formed on the surface of the separating material 27. Therefore, it is possible to prevent the adsorption / separation ability of the separating material 27 from being lowered.

実施の形態1乃至5では、マグネシウムやマグネシウム合金を分離材として用いた場合について説明したが、原水に含まれる金属イオンを吸着することができればマグネシウムやマグネシウム合金以外の鉄等の金属(イオン化傾向の高いもの)や合金を分離材として用いることができる。特に、原水中に砒素を多く含む場合には鋳鉄等の鉄の粒状物が好適に用いられる。   In Embodiments 1 to 5, the case where magnesium or a magnesium alloy is used as a separation material has been described. However, if metal ions contained in raw water can be adsorbed, a metal such as iron other than magnesium or a magnesium alloy (of ionization tendency) Expensive) and alloys can be used as the separating material. In particular, when the raw water contains a large amount of arsenic, iron particles such as cast iron are preferably used.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
実施の形態1に準ずる形状の、外筒部の外径が100mm(板厚2mm)で高さ120mm、内筒部の内径が48mm(板厚2mm)で、分離材吐出部高さが50mm、スクリューの外径40mm(軸径15mm)で40mmピッチ(角度45°)の3段の螺旋状のスクリューを備えた実施例1の浄水装置を作製した。性能試験は、スクリューの回転速度200回転/分で、液処理量は、20L/分の速度で流し続けた。また、その時の液面高さは浄水装置の下側から40mmの所であった。分離材には、長さ10mm×幅2mm×厚さ1mmのマグネシウムのチップを200g用いた。その時の、投入した原水と、原水を20L/hで流し続け、それぞれ30分後、40分後、50分後、60分後に採取した実施例1の浄水装置で処理した浄水の鉄とマンガンの含有量を測定した結果を(表1)に示した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
The outer cylinder has an outer diameter of 100 mm (plate thickness of 2 mm) and a height of 120 mm, the inner cylinder has an inner diameter of 48 mm (plate thickness of 2 mm), and the separating material discharge section has a height of 50 mm. The water purifier of Example 1 provided with the three-stage spiral screw of the outer diameter of a screw 40mm (shaft diameter 15mm) and a 40mm pitch (angle 45 degrees) was produced. In the performance test, the rotation speed of the screw was 200 rotations / minute, and the liquid throughput was kept flowing at a speed of 20 L / minute. Moreover, the liquid level height at that time was a place of 40 mm from the lower side of the water purifier. As the separating material, 200 g of a magnesium chip having a length of 10 mm, a width of 2 mm, and a thickness of 1 mm was used. At that time, the input raw water and the raw water continued to flow at 20 L / h, and the iron and manganese of the purified water treated with the water purification apparatus of Example 1 collected after 30 minutes, 40 minutes, 50 minutes, and 60 minutes, respectively. The results of measuring the content are shown in (Table 1).

(表1)より、原水と浄水の鉄の含有量は、原水は15.18ppmに対して、実施例1の浄水装置で処理した浄水は、いずれも0.002ppm以下に鉄分を除去することができていることがわかる。また、マンガンの含有量も原水2.03ppmに対して、実施例1の浄水装置で処理した浄水は、いずれも0.017ppmで、原水の100分の1以下までマンガンを除去できていることがわかる。このように本実施例によれば、分離材を循環して使用することで、浄水部や、内筒部の共擦部で効率よく分離材と原水を接触させることができる金属イオン除去性能に優れた浄水装置を提供することができることが明らかになった。 From (Table 1), the content of iron in raw water and purified water is that the raw water is 15.18 ppm, and the purified water treated with the water purification device of Example 1 can remove iron to 0.002 ppm or less. You can see that it is made. In addition, with respect to the manganese content of 2.03 ppm of raw water, the purified water treated with the water purification apparatus of Example 1 is 0.017 ppm, and manganese can be removed to 1/100 or less of the raw water. Recognize. As described above, according to the present embodiment, by separating and using the separation material, the separation material and the raw water can be efficiently brought into contact with each other in the water purification portion and the inner rubbing portion of the inner cylinder portion. It became clear that an excellent water purification device could be provided.

本発明は、分離材を循環して使用するので省資源性に優れ、マグネシウムや鉄等の金属を主とする分離材を用いる場合、効率良く共擦りさせることができ、また、原水の水質に合せて分離材の再生率を調節することができ、メンテナンス性・安定性に優れる浄水装置を提供することができる。   Since the separation material is used by circulating the separation material, it is excellent in resource saving, and when using a separation material mainly composed of metals such as magnesium and iron, it can be efficiently rubbed, and the quality of the raw water can be improved. In addition, it is possible to provide a water purifier that can adjust the regeneration rate of the separating material and is excellent in maintainability and stability.

X,Y,Z,X1,Z1 浄水装置
1,20,30,40 水処理タンク
1a,20a,30a 外筒部
1b,20b,30b 蓋部
1c,20c,30c,40c 底板部
2 内筒部
2a 共擦部
2b 支持部
3 浄水部
4 分離材供給部
4a 上部原水給水部
5 導入口
7 分離材吐出部
8 スクリュー
8a 回転軸
8b 螺旋羽根
9 給排水管
9a 給排水弁
10 駆動部
11 浄水排出部
11a フィルター
12 シール材
13 オーバーフロー管(排水管)
13a オーバーフローフィルター
21,21a 下部原水給水部
22 勾配部
23a 中間筒部
23b 金属イオン吸着部
23c 溢水部
23d 通水部
23e 溢水部用フィルター
23f 屋根部
24 水切り部
25 網筒
26 ライニング
27 分離材
28 原水
29 浄水(処理水)
31 堰部
31a もぐり堰
32 沈降分離部
33 連通管
34 沈殿部
34a,34b 沈殿分離用フィルター
35 吐出調整板
35a 吐出口
36 カバーリング
37 隔壁
B 破断線
C 内筒部の内周面と螺旋羽根の隙間
D 螺旋羽根の外径
d 回転軸の直径
F 仮想分離線
θ1 螺旋羽根の傾斜角度
θ2,θ3 勾配部の傾斜角度
X, Y, Z, X1, Z1 Water purification devices 1, 20, 30, 40 Water treatment tanks 1a, 20a, 30a Outer cylinder parts 1b, 20b, 30b Lid parts 1c, 20c, 30c, 40c Bottom plate part 2 Inner cylinder part 2a Co-rubbing part 2b Support part 3 Water purification part 4 Separation material supply part 4a Upper raw water water supply part 5 Inlet 7 Separation material discharge part 8 Screw 8a Rotating shaft 8b Spiral blade 9 Water supply / drainage pipe 9a Water supply / drainage valve 10 Drive part 11 Clean water discharge part 11a Filter 12 Sealing material 13 Overflow pipe (drainage pipe)
13a Overflow filters 21, 21a Lower raw water water supply part 22 Gradient part 23a Intermediate cylinder part 23b Metal ion adsorption part 23c Overflow part 23d Water flow part 23e Overflow part filter 23f Roof part 24 Drain part 25 Net cylinder 26 Lining 27 Separation material 28 Raw water 29 Clean water (treated water)
31 Weir part 31a Drilling weir 32 Sedimentation separation part 33 Communication pipe 34 Sedimentation part 34a, 34b Filter 35 for sedimentation separation Discharge adjustment plate 35a Discharge port 36 Cover ring 37 Partition B Break line C Inner circumferential surface of inner cylinder part and spiral blade Gap D Spiral blade outer diameter d Rotating shaft diameter F Virtual separation line θ 1 Spiral blade tilt angle θ 2, θ 3 Gradient angle

Claims (10)

水処理タンクと、前記水処理タンクの内部に形設された内筒部と、前記水処理タンクの外筒部と前記内筒部との間に形設された浄水部と、前記浄水部の上方に配設された分離材供給部と、前記浄水部の上方に配設された上部原水給水部及び/又は前記外筒部の下部側に配設された下部原水給水部と、前記内筒部の底部側に前記浄水部と連通して形成された分離材及び原水の導入口と、前記内筒部の前記原水の液面の高さよりも高い位置に設けられ上部側から前記浄水部に前記原水に含まれる金属イオンを吸着することができる金属や合金からなる分離材を吐出する分離材吐出部と、前記内筒部の中心軸上に回転自在に配設されたスクリューと、前記スクリューを回転させる駆動部と、前記外筒部に配設された浄水排出部と、を備えていることを特徴とする浄水装置。 A water treatment tank, an inner cylinder part formed inside the water treatment tank, a water purification part formed between the outer cylinder part and the inner cylinder part of the water treatment tank, and the water purification part A separating material supply unit disposed above, an upper raw water supply unit disposed above the water purification unit and / or a lower raw water supply unit disposed on the lower side of the outer tube unit, and the inner cylinder The separation material and raw water introduction port formed in communication with the water purification unit on the bottom side of the unit, and the upper cylinder side to the water purification unit provided at a position higher than the level of the liquid level of the raw water A separation material discharge portion for discharging a separation material made of a metal or an alloy capable of adsorbing metal ions contained in the raw water, a screw rotatably disposed on a central axis of the inner cylinder portion, and the screw A drive unit for rotating the water and a purified water discharge unit disposed in the outer cylinder unit Water purification device according to claim. 前記下部原水給水部が、前記外筒部を貫通し前記内筒部と連通することを特徴とする請求項1に記載の浄水装置。   The water purifier according to claim 1, wherein the lower raw water supply section penetrates the outer cylinder section and communicates with the inner cylinder section. 前記水処理タンクの底部に前記導入口に向かって下る勾配部を備えていることを特徴とする請求項1又は2に記載の浄水装置。   The water purifier according to claim 1, further comprising a slope portion that descends toward the introduction port at a bottom portion of the water treatment tank. 前記内筒部の前記導入口と前記分離材吐出部の間に形設された水切り部を備えていることを特徴とする請求項1乃至3の内いずれか1に記載の浄水装置。   The water purifier according to any one of claims 1 to 3, further comprising a draining part formed between the inlet of the inner cylinder part and the separating material discharge part. 前記分離材吐出部が、前記内筒部の上端側に配設され中央部に吐出口が形成された吐出調整板を備えていることを特徴とする請求項1乃至4の内いずれか1に記載の浄水装置。   5. The apparatus according to claim 1, wherein the separation material discharge portion includes a discharge adjustment plate disposed on an upper end side of the inner cylinder portion and having a discharge port formed in a central portion thereof. The water purifier of description. 前記スクリューの羽根の外径Dと前記スクリューの回転軸の直径dの比D/d=2〜10であり、前記回転軸に垂直な平面に対し前記羽根の傾斜角度が5〜60度であることを特徴とする請求項1乃至5の内いずれか1に記載の浄水装置。   The ratio D / d = 2-10 of the outer diameter D of the blade of the screw and the diameter d of the rotating shaft of the screw, and the inclination angle of the blade is 5-60 degrees with respect to a plane perpendicular to the rotating shaft. The water purifier according to any one of claims 1 to 5, wherein: 前記内筒部の中心軸に対して前記スクリューの前記回転軸が0.1〜3mm偏芯するように配設されていることを特徴とする請求項1乃至6の内いずれか1に記載の浄水装置。   The rotation axis of the screw is arranged so as to be decentered by 0.1 to 3 mm with respect to the central axis of the inner cylinder portion. Water purification device. 前記内筒部の内周面と、前記羽根の端部との隙間が0〜10mmであることを特徴とする請求項1乃至7の内いずれか1に記載の浄水装置。   The water purifier according to any one of claims 1 to 7, wherein a gap between an inner peripheral surface of the inner cylinder portion and an end portion of the blade is 0 to 10 mm. 前記浄水部が、前記外筒部と前記内筒部との間に配設された中間筒部と、前記内筒部と前記中間筒部との間に形設された金属イオン吸着部と、前記中間筒部と前記外筒部との間に形設された溢水部と、を有し、前記分離材供給部の出口が、前記金属イオン吸着部の上方に開口していることを特徴とする請求項1乃至8の内いずれか1に記載の浄水装置。   The water purification part is an intermediate cylinder part disposed between the outer cylinder part and the inner cylinder part, a metal ion adsorption part formed between the inner cylinder part and the intermediate cylinder part, An overflow portion formed between the intermediate tube portion and the outer tube portion, and an outlet of the separation material supply portion is opened above the metal ion adsorption portion. The water purifier according to any one of claims 1 to 8. 前記溢水部が、前記水切り部と前記中間筒部に連通した連通管と、前記中間筒部と前記外筒部との間に配設された堰部と、前記堰部と前記中間筒部との間に形設された沈降分離部と、前記堰部に形設されたもぐり堰と、を備えていることを特徴とする請求項9に記載の浄水装置。   The overflow part is a communication pipe communicating with the draining part and the intermediate cylinder part, a dam part disposed between the intermediate cylinder part and the outer cylinder part, the dam part and the intermediate cylinder part, The water purifier according to claim 9, further comprising: a settling / separating portion formed between the two and a boring weir formed in the dam portion.
JP2014251521A 2013-12-12 2014-12-12 Water purifier Active JP6023159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251521A JP6023159B2 (en) 2013-12-12 2014-12-12 Water purifier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013257432 2013-12-12
JP2013257432 2013-12-12
JP2014251521A JP6023159B2 (en) 2013-12-12 2014-12-12 Water purifier

Publications (2)

Publication Number Publication Date
JP2015131294A JP2015131294A (en) 2015-07-23
JP6023159B2 true JP6023159B2 (en) 2016-11-09

Family

ID=53898994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251521A Active JP6023159B2 (en) 2013-12-12 2014-12-12 Water purifier

Country Status (1)

Country Link
JP (1) JP6023159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611594B2 (en) 2010-12-22 2020-04-07 The Procter & Gamble Company Foil stamping apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843626B2 (en) * 2017-01-16 2021-03-17 前澤工業株式会社 Ion exchange resin contact tank
CN114984663B (en) * 2022-08-02 2022-10-25 广州蒙太奇电器有限公司 A mud-water separation equipment for waste water treatment
CN116177706B (en) * 2023-04-23 2023-06-27 诸城市天工造纸机械有限公司 Waste liquid treatment equipment for papermaking production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359252A (en) * 1976-11-08 1978-05-27 Hitachi Chem Co Ltd Apparatus for treating waste liquid
JP5737671B2 (en) * 2010-11-16 2015-06-17 国立大学法人九州工業大学 Waste water treatment equipment containing metal ions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611594B2 (en) 2010-12-22 2020-04-07 The Procter & Gamble Company Foil stamping apparatus
US10611595B2 (en) 2010-12-22 2020-04-07 The Procter & Gamble Company Foil stamping apparatus

Also Published As

Publication number Publication date
JP2015131294A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6023159B2 (en) Water purifier
CN103193339B (en) Polymetallic-ore-dressing wastewater coagulating sedimentation device and method
US8157988B2 (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
CN102010022B (en) Valuable resource recovery system and operation method thereof
EP2539287B1 (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
CN106746148A (en) A kind of magnetic loading precipitation filtration, purification system
US20100108603A1 (en) Method and apparatus for the purification of water contaminated with sulfate ions and with heavy metal ions
US12077457B2 (en) Remediation method and system for deep-sea mine tailings
CN102276112A (en) Method for treating flotation wastewater of non-ferrous metal ores
CN100447094C (en) Multistage gradient adsorption channel adsorption technology
Jordanov et al. Waste waters from copper ores mining/flotation in ‘Bučbim’mine: characterization and remediation
CN113336361A (en) Sewage purification treatment device and method
CN210905866U (en) Stirring clarification tank in high-concentration salt-containing wastewater treatment process
CN116161834A (en) Heavy metal wastewater treatment method based on zero-valent iron packed bed system
CN206553347U (en) A kind of magnetic loading precipitation filtration, purification system
JP5737671B2 (en) Waste water treatment equipment containing metal ions
CN108046465B (en) Desulfurization industrial wastewater treatment method
CN209522624U (en) ECSF type integration electric flocculation high suspended matter wastewater treatment equipment
CN203154955U (en) Multi-functional efficient water purifier
JP4396981B2 (en) Sewage treatment equipment
CN113683202B (en) Sulphur iron coupling effluent treatment plant
KR100499060B1 (en) Neutralization apparatus treating acid wastewater in sludge-separation type
CN104355462A (en) Dynamic continuous mercury-containing wastewater treatment method based on mercury removal adsorbing material
CN207483505U (en) A kind of wastewater treatment equipment of Rare Earth Production
CN204447708U (en) A kind of fume treatment auxiliary

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6023159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250