JP2012105809A - Biological component measuring device and biological component measuring method - Google Patents

Biological component measuring device and biological component measuring method Download PDF

Info

Publication number
JP2012105809A
JP2012105809A JP2010256769A JP2010256769A JP2012105809A JP 2012105809 A JP2012105809 A JP 2012105809A JP 2010256769 A JP2010256769 A JP 2010256769A JP 2010256769 A JP2010256769 A JP 2010256769A JP 2012105809 A JP2012105809 A JP 2012105809A
Authority
JP
Japan
Prior art keywords
light
biological component
light receiving
unit
sandwiching portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010256769A
Other languages
Japanese (ja)
Other versions
JP5589789B2 (en
Inventor
Daisuke Uchida
大輔 内田
Akita Inomata
明大 猪又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010256769A priority Critical patent/JP5589789B2/en
Publication of JP2012105809A publication Critical patent/JP2012105809A/en
Application granted granted Critical
Publication of JP5589789B2 publication Critical patent/JP5589789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biological component measuring device which has a small size, and can easily perform high accuracy measuring with few possibility of giving pain to a patient, and to provide a biological component measuring method.SOLUTION: The biological component measuring device includes: an examination head 11 in contact with a living body surface; and a control part 21 which measures a biocomponent based on a signal outputted from the examination head 11. The examination head 11 includes: a first pinch section 13a and a second pinch section 13b, which pinch a living body surface to be upheaved; a distance adjustment section 14 which is controlled by the control part 21, and in which a distance between the first pinch section 13a and the second pinch section 13b is changed; optical projection sections 16a, 16b, and 17 which project light on the living body surface of a part which has been pinched between the first pinch section 13a and the second pinch section 13b, and upheaved; and light-receiving sections 18a, 18b, 19a, and 19b which output a signal according to a quantity of light having permeated the living body surface of a part which has been upheaved.

Description

本発明は、生体成分測定装置及び生体成分測定方法に関する。   The present invention relates to a biological component measuring apparatus and a biological component measuring method.

血圧、血中酸素飽和度及び血糖値などの情報は患者の状態を知る上で重要であり、投薬のタイミングを判断する材料にもなる。一般的に、血中酸素飽和度や血糖値などの生体情報は生体から採取した血液により取得しており、病院に入院している患者では血液採取用の針(採血針)が常時人体に挿入されて定期的に血液の採取が行われている。また、通院治療を行っている糖尿病患者の場合も、1日に3〜4回程度血液を採取して検査する必要がある。   Information such as blood pressure, blood oxygen saturation, and blood glucose level is important for knowing the patient's condition, and also serves as a material for determining the timing of medication. In general, biological information such as blood oxygen saturation and blood glucose level is obtained from blood collected from the living body, and blood collection needles (blood collection needles) are always inserted into the human body in patients admitted to the hospital. The blood is collected regularly. In addition, in the case of a diabetic patient undergoing outpatient treatment, blood must be collected and examined about 3 to 4 times a day.

しかし、針を使った血液採取には精神的及び肉体的な苦痛を伴う。このため、非侵襲で生体成分を測定する方法が提案されている。例えば、近赤外領域の波長の光を指等に照射し、透過光の強度から血糖値を測定する方法が知られている。   However, blood collection with a needle is accompanied by mental and physical pain. For this reason, a non-invasive method for measuring biological components has been proposed. For example, a method of measuring a blood glucose level from the intensity of transmitted light by irradiating a finger or the like with light having a wavelength in the near infrared region is known.

特開2004−147706号公報JP 2004-147706 A WO2006/040841号WO2006 / 040841 特開2004−290226号公報JP 2004-290226 A 特開平11−178799号公報JP-A-11-178799 特開平8−189891号公報JP-A-8-189891

小型で簡単に高精度の測定ができ、患者に苦痛を与えるおそれが少ない生体成分測定装置及び生体成分測定方法を提供することを目的とする。   It is an object of the present invention to provide a biological component measuring apparatus and a biological component measuring method that are small and can easily measure with high accuracy and are less likely to cause pain to the patient.

開示の技術の一観点によれば、生体表面に接触する検査ヘッドと、前記検査ヘッドから出力される信号に基づいて生体成分を測定する制御部とを具備し、前記検査ヘッドは、前記生体表面を挟んで隆起させる第1の挟み部及び第2の挟み部と、前記制御部により制御されて前記第1の挟み部及び前記第2の挟み部間の距離を変化させる距離調整部と、前記第1の挟み部及び前記第2の挟み部間に挟まれて隆起した部分の生体表面に光を投射する光投射部と、前記隆起した部分の生体表面を透過した光の光量に応じた信号を出力する受光部とを有する生体成分測定装置が提供される。   According to one aspect of the disclosed technique, the test head includes a test head that contacts the surface of the living body, and a control unit that measures a biological component based on a signal output from the test head, and the test head includes the biological surface. A first sandwiching portion and a second sandwiching portion that are raised by sandwiching the first sandwiching portion, a distance adjusting portion that is controlled by the control unit to change a distance between the first sandwiching portion and the second sandwiching portion, and A light projection unit for projecting light onto a living body surface of a raised portion sandwiched between the first sandwiching portion and the second sandwiching portion, and a signal corresponding to the amount of light transmitted through the living body surface of the raised portion A biological component measuring device having a light receiving unit that outputs a signal is provided.

上記一観点に係る生体成分測定装置は、動脈の脈動によるノイズ成分を低減でき、生体成分を精度よく測定することができる。また、装置の小型化が容易であり、通院患者が日常生活下で使用することが可能である。更に、採血針を人体に挿入する必要がなく、且つ血液の流れを止めることなく生体成分を測定することができるので、患者に苦痛を与えるおそれが少ない。   The biological component measuring apparatus according to the above aspect can reduce noise components due to arterial pulsation, and can accurately measure biological components. In addition, the device can be easily downsized and can be used by outpatients in daily life. Furthermore, since it is not necessary to insert a blood collection needle into the human body and the biological component can be measured without stopping the blood flow, there is little risk of pain to the patient.

図1は、第1の実施形態に係る生体成分測定装置の構成を例示した図である。FIG. 1 is a diagram illustrating the configuration of the biological component measurement apparatus according to the first embodiment. 図2は、第1の実施形態に係る生体成分測定装置を使用した生体成分測定を説明する説明図である。FIG. 2 is an explanatory diagram for explaining biological component measurement using the biological component measuring apparatus according to the first embodiment. 図3は、検査ヘッドの上に指を置いた状態を示す上面図である。FIG. 3 is a top view showing a state where a finger is placed on the inspection head. 図4は、皮膚の構造を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing the structure of the skin. 図5は、第1の実施形態に係る生体成分測定方法を説明するフローチャートである。FIG. 5 is a flowchart illustrating the biological component measurement method according to the first embodiment. 図6は、第2の実施形態に係る生体成分測定装置の検査ヘッドを説明する図である。FIG. 6 is a diagram for explaining the inspection head of the biological component measuring apparatus according to the second embodiment. 図7は、第2の実施形態に係る生体成分測定装置の検査ヘッドの端面により被検者の指が押圧されて皮膚が隆起した状態を表した図である。FIG. 7 is a diagram illustrating a state where the skin of the subject is raised by the finger of the subject being pressed by the end face of the inspection head of the biological component measurement apparatus according to the second embodiment. 図8は、第3の実施形態に係る生体成分測定装置の構成を例示した図である。FIG. 8 is a diagram illustrating the configuration of the biological component measurement apparatus according to the third embodiment. 図9は、第3の実施形態に係る生体成分測定装置の検査ヘッドにより被検者の指を挟んだ状態を表した図である。FIG. 9 is a diagram illustrating a state in which a subject's finger is sandwiched by the inspection head of the biological component measurement apparatus according to the third embodiment. 図10は、第3の実施形態に係る生体成分測定装置の動作を説明するフローチャートである。FIG. 10 is a flowchart for explaining the operation of the biological component measurement apparatus according to the third embodiment.

以下、実施形態について説明する前に、実施形態の理解を容易にするための予備的事項について説明する。   Hereinafter, before describing the embodiment, a preliminary matter for facilitating understanding of the embodiment will be described.

従来から、波長が異なる2以上の近赤外光を人体(例えば指)に照射し、人体を透過した光を2箇所で検出して透過光量の比から血液中のグリコース濃度を算出する方法が知られている。しかし、この方法では、皮膚表面のしみやメラミン若しくは皮下脂肪や骨による光の吸収や散乱、及び筋肉の動きや動脈の脈動等が外乱要因となり、SN(信号/ノイズ)比が低い。   Conventionally, there has been a method of irradiating a human body (for example, a finger) with two or more near-infrared lights having different wavelengths, detecting light transmitted through the human body at two locations, and calculating the concentration of glucose in the blood from the ratio of the amount of transmitted light. Are known. However, in this method, stains on the skin surface, absorption and scattering of light by melamine, subcutaneous fat and bone, muscle movement, arterial pulsation, and the like cause disturbances, and the SN (signal / noise) ratio is low.

そこで、生体表面をポンプで吸引して膨らんだ部分に近赤外光を透過させ、透過光量から生体成分(グリコース)を測定することが提案されている。近赤外光によるグリコースの検出感度は近赤外光が通過する部分の血液量に関係するが、この方法では吸引して膨らんだ部分に血液が溜まるため血液量が多くなり、ノイズ成分が相対的に減少する。   In view of this, it has been proposed to transmit near-infrared light to a portion that is swollen by sucking the surface of a living body with a pump, and to measure a biological component (glycose) from the amount of transmitted light. The sensitivity of the detection of glycose by near-infrared light is related to the blood volume of the part through which the near-infrared light passes, but this method increases the blood volume because the blood accumulates in the part that has been sucked and swollen, and the noise component is relative. Decrease.

しかし、上述した吸引ポンプを使用する方法では、ポンプの振動ノイズが加わるため、SN比の低減が十分ではない。また、吸引ポンプのために装置が大掛かりになり、病院内等での測定には使用可能であるものの、通院患者が日常生活下で使用することは難しい。   However, in the method using the above-described suction pump, since the vibration noise of the pump is added, the SN ratio is not sufficiently reduced. Moreover, although the apparatus becomes large due to the suction pump and can be used for measurement in a hospital or the like, it is difficult for the outpatient to use in daily life.

更に、上述した方法は、生体表面を吸引してうっ血状態としているため、血管に不安がある患者に使用することは好ましくない。例えば糖尿病患者は血管障害(血管がぼろぼろになる合併症、具体的には糖尿病性網膜症、糖尿病性腎症、糖尿病性壊疽等)を併発している可能性があり、血管に負荷をかけることはできるだけ避けなければならない。   Furthermore, since the above-described method sucks the living body surface to make it congested, it is not preferable to use it for a patient who is anxious about blood vessels. For example, a diabetic patient may have a vascular disorder (complications that cause blood vessels to fall apart, specifically diabetic retinopathy, diabetic nephropathy, diabetic gangrene, etc.) and stress the blood vessels. Should be avoided as much as possible.

そこで、小型で高精度の測定ができ、血管に与える負荷が少ない生体成分測定装置が望まれる。以下、実施形態について説明する。   Therefore, there is a demand for a biological component measuring apparatus that is small in size and can perform high-accuracy measurement and has a low load on blood vessels. Hereinafter, embodiments will be described.

(第1の実施形態)
図1は、第1の実施形態に係る生体成分測定装置の構成を例示した図である。
(First embodiment)
FIG. 1 is a diagram illustrating the configuration of the biological component measurement apparatus according to the first embodiment.

この図1のように、本実施形態に係る生体成分測定装置は、生体の一部(例えば指又は腕など)を接触させる検査ヘッド11と、検査ヘッド11と接続された制御部21とを有している。検査ヘッド11の中央部には略長方形の溝12が形成されており、この溝12を挟む位置に棒状の押圧部材13a,13bがその長手方向を検査ヘッド11の表面に平行にして配置されている。押圧部材13a,13bは、それらの長手方向の両端部に配置された圧電素子14により支持されている。なお、押圧部材13a,13bは第1の挟み部及び第2の挟み部の一例であり、圧電素子14は距離調整部の一例である。   As shown in FIG. 1, the biological component measurement apparatus according to the present embodiment includes an inspection head 11 that makes a part of a living body (for example, a finger or an arm) contact, and a control unit 21 that is connected to the inspection head 11. is doing. A substantially rectangular groove 12 is formed in the center of the inspection head 11, and rod-like pressing members 13 a and 13 b are arranged at positions sandwiching the groove 12 with the longitudinal direction thereof parallel to the surface of the inspection head 11. Yes. The pressing members 13a and 13b are supported by piezoelectric elements 14 arranged at both ends in the longitudinal direction. The pressing members 13a and 13b are examples of the first sandwiching portion and the second sandwiching portion, and the piezoelectric element 14 is an example of the distance adjusting portion.

これらの圧電素子14に制御部21から電圧を印加すると、圧電素子14が伸縮して押圧部材13a,13bが検査ヘッド11の表面に平行な方向に移動し、押圧部材13a,13b間の間隔が変化する。この押圧部材13a,13b間に、生体の一部を配置して血液中の生体成分を測定する。本実施形態では、押圧部材13a,13b間に指を配置するものとする。   When a voltage is applied to the piezoelectric elements 14 from the control unit 21, the piezoelectric elements 14 expand and contract, the pressing members 13a and 13b move in a direction parallel to the surface of the inspection head 11, and the distance between the pressing members 13a and 13b is increased. Change. A part of the living body is placed between the pressing members 13a and 13b, and the biological components in the blood are measured. In this embodiment, it is assumed that a finger is placed between the pressing members 13a and 13b.

押圧部材13aが配置された側には溝12に連絡する溝15aが形成されており、この溝15a内に光源16a,16b及び投射レンズ17が配置されている。また、押圧部材13bが配置された側にも溝12に連絡する溝15bが形成されており、この溝15b内には受光レンズ18a,18b及び受光素子19a,19bが配置されている。   A groove 15a communicating with the groove 12 is formed on the side where the pressing member 13a is disposed, and light sources 16a and 16b and a projection lens 17 are disposed in the groove 15a. A groove 15b communicating with the groove 12 is also formed on the side where the pressing member 13b is disposed, and light receiving lenses 18a and 18b and light receiving elements 19a and 19b are disposed in the groove 15b.

光源16a,16bは、制御部21から供給される電力により点灯して相互に異なる波長の光を発生する。光源16a,16bで発生した光は混合器により混合されて投射レンズ17に伝達され、投射レンズ17により溝12の反対側に配置された受光レンズ18a,18b向けて投射される。   The light sources 16a and 16b are turned on by the power supplied from the control unit 21 and generate light having different wavelengths. Light generated by the light sources 16a and 16b is mixed by the mixer, transmitted to the projection lens 17, and projected by the projection lens 17 toward the light receiving lenses 18a and 18b disposed on the opposite side of the groove 12.

なお、図1では光源の数を2個としているが、光源の数は3個又はそれ以上でもよい。また、相互に異なる2以上の波長の光を発生する光源の場合は、光源の数は1個でもよい。光源には、半導体レーザ又は発光ダイオード等を使用することができる。本実施形態では、光源16aは主に波長が940nmの光を発生し、光源16bは主に波長が1130nmの光を発生するものとする。   In FIG. 1, the number of light sources is two, but the number of light sources may be three or more. In the case of a light source that generates light having two or more different wavelengths, the number of light sources may be one. As the light source, a semiconductor laser, a light emitting diode, or the like can be used. In the present embodiment, it is assumed that the light source 16a mainly generates light having a wavelength of 940 nm, and the light source 16b mainly generates light having a wavelength of 1130 nm.

受光レンズ18a,18bは溝12の辺に沿って相互に離隔した位置に配置され、投射レンズ17により投射された光を受光する。受光レンズ18a,18bで受光した光は受光素子19a,19bに伝達され、受光素子19a,19bからは受光量に応じた電気信号が出力される。   The light receiving lenses 18 a and 18 b are arranged at positions separated from each other along the side of the groove 12 and receive light projected by the projection lens 17. Light received by the light receiving lenses 18a and 18b is transmitted to the light receiving elements 19a and 19b, and an electric signal corresponding to the amount of received light is output from the light receiving elements 19a and 19b.

制御部21は、受光素子19a,19bから出力される信号を処理して、生体の血液中に含まれる成分、例えばグリコース等を測定する。   The control unit 21 processes signals output from the light receiving elements 19a and 19b, and measures components contained in the blood of the living body, such as glycose.

図2は上述の生体成分測定装置を使用した生体成分測定を説明する説明図、図3は検査ヘッド11の上に指を置いた状態を示す上面図である。また、図4は皮膚の構造を示す模式断面図である。以下、これらの図を参照して、本実施形態に係る生体成分測定装置を使用した生体成分測定を説明する。   FIG. 2 is an explanatory view for explaining biological component measurement using the above-described biological component measuring apparatus, and FIG. 3 is a top view showing a state where a finger is placed on the inspection head 11. FIG. 4 is a schematic cross-sectional view showing the structure of the skin. Hereinafter, with reference to these drawings, biological component measurement using the biological component measuring apparatus according to the present embodiment will be described.

まず、図2(a),図3のように、検査ヘッド11の溝12の上に被検者の指を軽くおく。このとき、圧電素子14には電圧が印加されてなく、押圧部材13a,13bは十分に離れている。この状態では、投射レンズ17により投射された光は皮膚を透過することなく受光レンズ18a,18bに到達する。このときの光量(受光素子19a,19bの出力)は、初期光量として制御部21内に記憶される。なお、被検者が検査ヘッド11に指をおく前に初期光量を取得するようにしてもよい。   First, as shown in FIGS. 2A and 3, the subject's finger is lightly placed on the groove 12 of the inspection head 11. At this time, no voltage is applied to the piezoelectric element 14, and the pressing members 13a and 13b are sufficiently separated. In this state, the light projected by the projection lens 17 reaches the light receiving lenses 18a and 18b without passing through the skin. The light quantity at this time (outputs of the light receiving elements 19a and 19b) is stored in the control unit 21 as an initial light quantity. The initial light amount may be acquired before the subject places his finger on the inspection head 11.

次に、制御部21から圧電素子14に低電圧が印加されると、図2(b)のように、圧電素子14が伸長して押圧部材13a,13bが相互に近づく方向に移動する。これにより、押圧部材13a,13b間に指が挟まれて、皮膚が若干隆起する。この場合、投射レンズ17により投射された光は表皮を通過する。   Next, when a low voltage is applied from the control unit 21 to the piezoelectric element 14, the piezoelectric element 14 expands and the pressing members 13a and 13b move toward each other as shown in FIG. Thereby, a finger is pinched between the pressing members 13a and 13b, and the skin is slightly raised. In this case, the light projected by the projection lens 17 passes through the epidermis.

図4のように、表皮にはしみ(図4中に網掛けした部分)やメラミンが存在することがあり、投射レンズ17により投射された光はこれらのしみやメラミンにより吸収又は散乱される。また、表皮には血管がないため、表皮のみを透過した光からは血液中の生体成分(グリコース等)を検出することはできない。   As shown in FIG. 4, spots (shaded portions in FIG. 4) and melamine may exist in the epidermis, and light projected by the projection lens 17 is absorbed or scattered by these spots and melamine. In addition, since there are no blood vessels in the epidermis, it is impossible to detect biological components (such as glycolose) in the blood from light that has passed through only the epidermis.

次に、制御部21から圧電素子14に中電圧が印加されると、図2(c)のように、押圧部材13a,13b間の間隔が縮まって皮膚が更に隆起する。これにより、投射レンズ17により投射された光は真皮を通過するようになる。真皮には静脈があるため、静脈を流れる血液中の生体成分により光が吸収又は散乱される。従って、真皮を通過した光から血液中の生体成分を検出することが可能になる。   Next, when a medium voltage is applied from the control unit 21 to the piezoelectric element 14, the space between the pressing members 13a and 13b is reduced as shown in FIG. As a result, the light projected by the projection lens 17 passes through the dermis. Since the dermis has a vein, light is absorbed or scattered by biological components in the blood flowing through the vein. Therefore, it becomes possible to detect a biological component in blood from light that has passed through the dermis.

次いで、圧電素子14に高電圧が印加されると、図2(d)のように、押圧部材13a,13b間の間隔が狭くなって皮膚が更に隆起する。これにより、投射レンズ17により投射された光は表皮及び真皮だけでなく、皮下組織を通るようになる。この場合、皮下組織には動脈があるため、受光素子19a,19bの出力は動脈の脈動に応じて変化する。   Next, when a high voltage is applied to the piezoelectric element 14, as shown in FIG. 2D, the interval between the pressing members 13a and 13b is narrowed and the skin is further raised. As a result, the light projected by the projection lens 17 passes through the subcutaneous tissue as well as the epidermis and dermis. In this case, since there is an artery in the subcutaneous tissue, the outputs of the light receiving elements 19a and 19b change according to the pulsation of the artery.

血液中の生体成分を測定する際に、動脈の脈動はノイズ成分となる。動脈の脈動による受光量の変化(受光素子19a,19bの出力の脈動)が小さいときは測定精度への影響は少ないが、受光量の変化がある程度以上になると生体成分の測定精度が著しく低下する。このため、本実施形態では、動脈の脈動による受光量の変化を検出し、受光量の変化(脈動成分)がある程度以上大きい場合は圧電素子14に印加する電圧を減少して、光が皮下組織を通過しないようにする。   Arterial pulsation becomes a noise component when measuring biological components in blood. When the change in the amount of received light due to the pulsation of the artery (the pulsation of the outputs of the light receiving elements 19a and 19b) is small, the influence on the measurement accuracy is small, but when the change in the amount of received light exceeds a certain level, the measurement accuracy of the biological component is significantly reduced. . For this reason, in the present embodiment, a change in the amount of received light due to the pulsation of the artery is detected, and when the change in the amount of received light (pulsation component) is greater than a certain level, the voltage applied to the piezoelectric element 14 is reduced so Do not pass through.

図5は、本実施形態に係る生体成分測定方法を説明するフローチャートである。このフローチャートは、制御部21の動作を表している。なお、ここでは、圧電素子14に印加する電圧として最も低い電圧(第1の電圧)から最も高い電圧(第10の電圧)まで10段階の電圧が設定され、制御部21は圧電素子14にこれらの電圧を段階的に印加するものとする。   FIG. 5 is a flowchart illustrating the biological component measurement method according to this embodiment. This flowchart represents the operation of the control unit 21. Here, ten levels of voltage are set as the voltage applied to the piezoelectric element 14 from the lowest voltage (first voltage) to the highest voltage (tenth voltage), and the control unit 21 applies these voltages to the piezoelectric element 14. The voltage is applied stepwise.

まず、ステップS11において、制御部21は初期光量を取得する。すなわち、制御部21は、光源16a,16bに電力を供給して点灯させる。そして、制御部21は、このとき受光素子19a,19bから出力される信号を初期光量として記憶する。前述したように、初期光量の取得は、被検者が検査ヘッド11の上に指を軽くおいたとき、又は被検者が検査ヘッド11の上に指をおく前に行う。   First, in step S11, the control unit 21 acquires an initial light amount. That is, the control unit 21 supplies power to the light sources 16a and 16b to light them. And the control part 21 memorize | stores the signal output from the light receiving elements 19a and 19b at this time as an initial light quantity. As described above, the initial light amount is acquired when the subject places a finger lightly on the inspection head 11 or before the subject places the finger on the inspection head 11.

次に、ステップS12において、制御部21は圧電素子14に第1の電圧を印加して押圧部材13a,13b間の距離を1段階縮小する。これにより、被検者の指の表面が若干隆起する。   Next, in step S12, the control unit 21 applies a first voltage to the piezoelectric element 14 to reduce the distance between the pressing members 13a and 13b by one step. As a result, the surface of the subject's finger is slightly raised.

次に、ステップS13において、制御部21は圧電素子14に印加した電圧が上限値(第10の電圧)か否かを判定する。ここで、上限値であると判定した場合(YESの場合)はステップS17に移行し、上限値ではないと判定した場合(NOの場合)はステップS14に移行する。   Next, in step S13, the control unit 21 determines whether or not the voltage applied to the piezoelectric element 14 is an upper limit value (tenth voltage). Here, when it is determined that the upper limit value is reached (in the case of YES), the process proceeds to step S17, and when it is determined that it is not the upper limit value (in the case of NO), the process proceeds to step S14.

ステップS14において、制御部21は、受光素子19a,19bの出力(受光量)を取得する。この場合、制御部21は受光素子19a,19bの出力を一定時間監視する。そして、ステップS15において、制御部21は受光素子19a,19bの出力に大きな脈動があるか否かを判定する。受光素子19a,19bの出力に大きな脈動があると判定した場合(YESの場合)、すなわち光が皮下組織を通過していると考えられる場合は、ステップS15からステップS17に移行する。一方、脈動がない又は脈動が十分に小さいと判定した場合(NOの場合)、すなわち光が皮下組織を透過していないと考えられる場合は、ステップS15からステップS16に移行する。   In step S14, the control unit 21 acquires the outputs (light reception amounts) of the light receiving elements 19a and 19b. In this case, the control unit 21 monitors the outputs of the light receiving elements 19a and 19b for a predetermined time. In step S15, the control unit 21 determines whether there is a large pulsation in the outputs of the light receiving elements 19a and 19b. When it is determined that there is a large pulsation in the outputs of the light receiving elements 19a and 19b (in the case of YES), that is, when it is considered that light passes through the subcutaneous tissue, the process proceeds from step S15 to step S17. On the other hand, when it is determined that there is no pulsation or the pulsation is sufficiently small (in the case of NO), that is, when it is considered that light is not transmitted through the subcutaneous tissue, the process proceeds from step S15 to step S16.

ステップS16において、制御部21は受光素子19a,19bの出力(受光量)が十分か否かを判定する。十分であると判定した場合はステップS12に移行し圧電素子14に印加する電圧を1段階高くして押圧部材13a,13b間の距離を1段階縮小した後、上述の処理を繰り返す。一方、ステップS16において、光量が十分でないと判定した場合はステップS17に移行する。   In step S16, the control unit 21 determines whether or not the output (light reception amount) of the light receiving elements 19a and 19b is sufficient. If it is determined that it is sufficient, the process proceeds to step S12, the voltage applied to the piezoelectric element 14 is increased by one step, the distance between the pressing members 13a and 13b is reduced by one step, and then the above-described processing is repeated. On the other hand, if it is determined in step S16 that the amount of light is not sufficient, the process proceeds to step S17.

ステップS17において、制御部21は圧電素子14に印加する電圧を1段階低くして、押圧部材13a,13b間の距離を1段階広くする。そして、ステップS18において、受光素子19a,19bから受光量を取得し、ステップS19において生体成分を算出する。生体成分の算出にはステップS11で取得した初期光量とステップS18で取得した光量とを使用する。これらの光量から生体成分を算出する方法は公知(例えば特許文献2参照)であるので、ここではその説明を省略する。   In step S <b> 17, the control unit 21 decreases the voltage applied to the piezoelectric element 14 by one step and increases the distance between the pressing members 13 a and 13 b by one step. In step S18, the amount of received light is acquired from the light receiving elements 19a and 19b, and the biological component is calculated in step S19. For the calculation of the biological component, the initial light amount acquired in step S11 and the light amount acquired in step S18 are used. Since the method of calculating the biological component from these light quantities is known (see, for example, Patent Document 2), the description thereof is omitted here.

上述したように、本実施形態では、光が皮下組織を通過するまで押圧部材13a,13b間の距離を狭くする。そして、受光素子19a,19bの出力の脈動により光が皮下組織を通過したことを検出すると、押圧部材13a,13b間の間隔を若干広くして光が皮下組織を通過しないようにする。その後、受光素子19a,19bの受光量を取得し、このときの受光量と初期光量とから生体成分を算出する。これにより、動脈の脈動によるノイズ成分を減少でき、真皮内の静脈を流れる血液中の生体成分を精度よく測定することができる。   As described above, in the present embodiment, the distance between the pressing members 13a and 13b is reduced until light passes through the subcutaneous tissue. When it is detected that light has passed through the subcutaneous tissue due to the pulsation of the outputs of the light receiving elements 19a and 19b, the interval between the pressing members 13a and 13b is slightly widened so that the light does not pass through the subcutaneous tissue. Thereafter, the received light amounts of the light receiving elements 19a and 19b are acquired, and the biological component is calculated from the received light amount and the initial light amount at this time. Thereby, the noise component due to the pulsation of the artery can be reduced, and the biological component in the blood flowing through the vein in the dermis can be accurately measured.

また、本実施形態に係る生体成分測定装置は、ノイズの原因となる吸引ポンプが不要であるため、測定精度が高い。更に、吸引ポンプが不要であるため、装置の小型化が容易であり、通院患者が日常生活下で使用することが可能である。   Moreover, since the biological component measuring device according to the present embodiment does not require a suction pump that causes noise, the measurement accuracy is high. Furthermore, since a suction pump is not required, the apparatus can be easily downsized and can be used by outpatients in daily life.

更にまた、本実施形態では、生体表面を押圧部材13a,13bで挟んで隆起させているものの、血液の流れを止めてはいないので、血管障害を有する患者であっても安全に使用することができる。   Furthermore, in the present embodiment, although the surface of the living body is raised by being sandwiched between the pressing members 13a and 13b, the blood flow is not stopped, so that even a patient with a vascular disorder can use it safely. it can.

なお、上述の実施形態では、ステップS13でYESと判定した場合及びステップS16でNOと判定した場合も、ステップS17に移行して押圧部材13a,13b間の距離を1段階広くし、ステップS18,S19で生体成分を測定している。しかし、ステップS13でYESと判定した場合及びステップS16でNOと判定した場合は、測定精度が十分でない可能性があるので、エラーを表示するようにしてもよい。エラーが表示された場合は、測定部位を変更して再度測定を行えばよい。   In the above-described embodiment, even when YES is determined in step S13 and NO is determined in step S16, the process proceeds to step S17 and the distance between the pressing members 13a and 13b is increased by one step, and step S18, The biological component is measured in S19. However, if YES is determined in step S13 and NO is determined in step S16, an error may be displayed because the measurement accuracy may not be sufficient. If an error is displayed, the measurement site may be changed and measurement may be performed again.

また、上述の実施形態では押圧部材13a,13bを圧電素子14により駆動しているが、その他の方法で押圧部材13a,13bを駆動するようにしてもよい。例えば、モータとギアとを組み合わせて押圧部材13a,13bを駆動するようにしてもよい。   In the above-described embodiment, the pressing members 13a and 13b are driven by the piezoelectric element 14, but the pressing members 13a and 13b may be driven by other methods. For example, the pressing members 13a and 13b may be driven by combining a motor and a gear.

(第2の実施形態)
図6は第2の実施形態に係る生体成分測定装置の検査ヘッドを説明する図である。なお、本実施形態が第1の実施形態と異なる点は、検査ヘッドの形状が異なることにあり、その他の構成は基本的に第1の実施形態と同様であるので、本実施形態において第1の実施形態と重複する部分の説明は省略する。
(Second Embodiment)
FIG. 6 is a view for explaining an inspection head of the biological component measuring apparatus according to the second embodiment. Note that this embodiment is different from the first embodiment in that the shape of the inspection head is different, and other configurations are basically the same as those in the first embodiment. The description of the same parts as those of the embodiment is omitted.

本実施形態に係る生体成分測定装置では、検査ヘッド31が“C”字状の形状を有し、この検査ヘッド31を被検者の指にはめて使用する。検査ヘッド31の相互に対向する2つの端面31a,31bのうちの一方の面側には光源及び投射レンズを備えた光投射部33aが配置され、他方の面には受光レンズ及び受光素子を備えた受光部33bが配置されている。   In the biological component measuring apparatus according to the present embodiment, the inspection head 31 has a “C” shape, and the inspection head 31 is used by being put on the finger of the subject. A light projection unit 33a including a light source and a projection lens is disposed on one of the two end surfaces 31a and 31b facing each other of the inspection head 31, and a light receiving lens and a light receiving element are disposed on the other surface. A light receiving portion 33b is arranged.

検査ヘッド31の内周側には圧電素子32が配置されている。この圧電素子32に制御部(図1参照)から電圧を印加すると、検査ヘッド31の径が縮まって、図7のように検査ヘッド31の端面31a,31bにより被検者の指が押圧され、皮膚が隆起する。制御部は、この皮膚が隆起した部分に光投射部33aから出射された光を照射し、受光部33bの出力から生体成分を算出する。制御部の動作は基本的に第1の実施形態と同様(図5参照)であるので、ここでは説明を省略する。   A piezoelectric element 32 is disposed on the inner peripheral side of the inspection head 31. When a voltage is applied to the piezoelectric element 32 from the control unit (see FIG. 1), the diameter of the inspection head 31 is reduced, and the finger of the subject is pressed by the end surfaces 31a and 31b of the inspection head 31, as shown in FIG. The skin is raised. A control part irradiates the light emitted from the light projection part 33a to the part which this skin raised, and calculates a biological component from the output of the light-receiving part 33b. Since the operation of the control unit is basically the same as that of the first embodiment (see FIG. 5), description thereof is omitted here.

本実施形態においても、第1の実施形態と同様の効果を奏する。   In this embodiment, the same effect as that of the first embodiment is obtained.

(第3の実施形態)
図8は、第3の実施形態に係る生体成分測定装置の構成を例示した図である。
(Third embodiment)
FIG. 8 is a diagram illustrating the configuration of the biological component measurement apparatus according to the third embodiment.

この図8のように、本実施形態に係る生体成分測定装置は、検査ヘッド41と、検査ヘッド41に接続された制御部51とを有している。   As shown in FIG. 8, the biological component measurement apparatus according to the present embodiment includes a test head 41 and a control unit 51 connected to the test head 41.

検査ヘッド41は、第1のアーム42aと、第2のアーム42bと、角度調整部(接続部の一例)43とを有している。角度調整部43は、アーム42a,42bの端部に配置されてアーム42a,42bを回転可能に支持するとともに、制御部51からの信号によりアーム42a,42b間の角度を調整する。   The inspection head 41 includes a first arm 42 a, a second arm 42 b, and an angle adjustment unit (an example of a connection unit) 43. The angle adjusting unit 43 is disposed at the ends of the arms 42a and 42b and rotatably supports the arms 42a and 42b, and adjusts the angle between the arms 42a and 42b by a signal from the control unit 51.

この検査ヘッド41は、図9に例示するように、アーム42a,42bの先端(角度調整部43と反対側の端部)間に測定部位を挟んで使用する。図9では検査ヘッド41により被検者の指の皮膚を挟んでいるが、指以外の部分を測定部位としてもよい。   As illustrated in FIG. 9, the inspection head 41 is used with a measurement region sandwiched between the tips of the arms 42 a and 42 b (the end opposite to the angle adjusting unit 43). In FIG. 9, the skin of the subject's finger is sandwiched by the inspection head 41, but a portion other than the finger may be used as the measurement site.

第1のアーム42aの先端には光投射部44aとアクチュエータ45aとが配置されている。光投射部44aは、制御部51から供給される電力により相互に異なる波長の光を発生する複数の光源(図示せず)と、これらの光源から出射された光を投射する投射レンズ(図示せず)とを有する。   A light projection unit 44a and an actuator 45a are arranged at the tip of the first arm 42a. The light projection unit 44a includes a plurality of light sources (not shown) that generate light of different wavelengths by the power supplied from the control unit 51, and a projection lens (not shown) that projects the light emitted from these light sources. Z).

また、第2のアーム42bの先端には、受光部44bとアクチュエータ45bとが配置されている。受光部44bには、相互に離隔して配置された複数の受光レンズ(図示せず)と、それらの受光レンズで受光した光が個別に伝達される複数の受光素子(図示せず)とを有している。これらの受光素子の出力は制御部51に伝達される。   In addition, a light receiving portion 44b and an actuator 45b are disposed at the tip of the second arm 42b. The light receiving unit 44b includes a plurality of light receiving lenses (not shown) that are spaced apart from each other, and a plurality of light receiving elements (not shown) through which light received by these light receiving lenses is individually transmitted. Have. Outputs of these light receiving elements are transmitted to the control unit 51.

第1のアーム42aのアクチュエータ45a及び第2のアーム42bのアクチュエータ45bは、制御部51からの信号に応じて光投射部44aの光軸と受光部44bの光軸とが一致するように、それぞれ光投射部44a及び受光部44bの角度を変化させる。アクチュエータ45a,45bとして、例えば圧電素子を使用することができる。   The actuator 45a of the first arm 42a and the actuator 45b of the second arm 42b are respectively arranged so that the optical axis of the light projection unit 44a and the optical axis of the light receiving unit 44b coincide with each other in accordance with a signal from the control unit 51. The angles of the light projection unit 44a and the light receiving unit 44b are changed. As the actuators 45a and 45b, for example, piezoelectric elements can be used.

また、角度調整部43には、制御部51からの信号に応じて第1のアーム42aと第2のアーム42bとのなす角度を変化させるアクチュエータが配置されている。このアクチュエータとして、例えばギアードモータを使用することができる。   The angle adjustment unit 43 is provided with an actuator that changes the angle formed by the first arm 42a and the second arm 42b in accordance with a signal from the control unit 51. As this actuator, for example, a geared motor can be used.

図10は、本実施形態に係る生体成分測定装置の動作を説明するフローチャートである。   FIG. 10 is a flowchart for explaining the operation of the biological component measuring apparatus according to this embodiment.

まず、ステップS21において、制御部51は初期光量を取得する。すなわち、制御部51は、光投射部42aに電力を供給して光を発生させ、受光部42bから出力される信号を初期光量として記憶する。このとき、制御部51は角度調整部43を制御してアーム42a,42b間の角度を所定の角度にするとともに、アクチュエータ45a,45bを制御して光投射部44a及び受光部45bの光軸を一致させる。初期光量の取得は、検査ヘッド41を被検者の皮膚に軽く接触させたとき又は検査ヘッド41を被検者に接触させる前に行う。   First, in step S21, the control unit 51 acquires an initial light amount. That is, the control unit 51 supplies power to the light projection unit 42a to generate light, and stores a signal output from the light receiving unit 42b as an initial light amount. At this time, the control unit 51 controls the angle adjustment unit 43 to set the angle between the arms 42a and 42b to a predetermined angle, and controls the actuators 45a and 45b to change the optical axes of the light projection unit 44a and the light receiving unit 45b. Match. The initial light amount is acquired when the inspection head 41 is lightly brought into contact with the skin of the subject or before the inspection head 41 is brought into contact with the subject.

次に、ステップS22において、制御部41は角度調整部43を駆動してアーム42a,42b間の角度を所定量だけ小さくするとともに、アクチュエータ45a,45bを駆動して光投射部44a及び受光部44bの光軸を一致させる。アーム42a,42b間の角度を小さくすることにより、アーム42a,42bの先端部に挟まれた生体表面が隆起する。   Next, in step S22, the control unit 41 drives the angle adjustment unit 43 to reduce the angle between the arms 42a and 42b by a predetermined amount, and drives the actuators 45a and 45b to drive the light projection unit 44a and the light receiving unit 44b. The optical axes of are matched. By reducing the angle between the arms 42a and 42b, the living body surface sandwiched between the tips of the arms 42a and 42b is raised.

次に、ステップS23において、制御部41はアーム42a,42b間の角度が予め設定された最小値か否かを判定する。ここで、最小値であると判定した場合(YESの場合)はステップS27に移行し、最小値でないと判定した場合(NOの場合)はステップS24に移行する。   Next, in step S23, the control unit 41 determines whether or not the angle between the arms 42a and 42b is a preset minimum value. If it is determined that the value is the minimum value (in the case of YES), the process proceeds to step S27. If it is determined that the value is not the minimum value (in the case of NO), the process proceeds to step S24.

ステップS24において、制御部51は、受光部45bの出力(受光量)を取得する。この場合、制御部51は受光部45bの出力を一定時間監視する。そして、ステップS25において、制御部51は受光部45bの出力に大きな脈動があるか否かを判定する。受光部45bの出力に大きな脈動があると判定した場合(YESの場合)は、光が皮下組織を通過していると考えられる。この場合は、ステップS25からステップS27に移行する。一方、脈動がない又は脈動が十分に小さいと判定した場合(NOの場合)は、ステップS25からステップS26に移行する。   In step S24, the control unit 51 acquires the output (light reception amount) of the light receiving unit 45b. In this case, the control unit 51 monitors the output of the light receiving unit 45b for a predetermined time. In step S25, the control unit 51 determines whether there is a large pulsation in the output of the light receiving unit 45b. When it is determined that there is a large pulsation in the output of the light receiving unit 45b (in the case of YES), it is considered that light passes through the subcutaneous tissue. In this case, the process proceeds from step S25 to step S27. On the other hand, when it is determined that there is no pulsation or the pulsation is sufficiently small (in the case of NO), the process proceeds from step S25 to step S26.

ステップS26において、制御部51は受光部の出力(受光量)が十分か否かを判定する。十分であると判定した場合はステップS22に移行し、制御部51は角度調整部43を駆動してアーム42a,42b間の角度を更に所定量だけ縮小した後、上記の処理を繰り返す。一方、ステップS26において、光量が十分でないと判定した場合はステップS27に移行する。   In step S26, the control unit 51 determines whether or not the output (light reception amount) of the light receiving unit is sufficient. When it determines with it being sufficient, it transfers to step S22, and the control part 51 drives the angle adjustment part 43, further reduces the angle between arms 42a and 42b by predetermined amount, Then, it repeats said process. On the other hand, if it is determined in step S26 that the amount of light is not sufficient, the process proceeds to step S27.

ステップS27において、制御部51は角度調整部43を駆動してアーム42a,42b間の角度を所定量だけ広げるとともに、アクチュエータ46a,46bを駆動して光投射部44a及び受光部44bの光軸を一致させる。そして、ステップS28において、受光部44bから受光量を取得し、ステップS29において生体成分を算出する。   In step S27, the control unit 51 drives the angle adjustment unit 43 to widen the angle between the arms 42a and 42b by a predetermined amount, and drives the actuators 46a and 46b to change the optical axes of the light projection unit 44a and the light receiving unit 44b. Match. In step S28, the amount of received light is acquired from the light receiving unit 44b, and the biological component is calculated in step S29.

本実施形態においても、第1の実施形態と同様の効果を得ることができる。また、本実施形態では、アーム42a,42b間の角度を変更する度にアクチュエータ45a,45bを駆動して光投射部44a及び受光部44bの光軸を一致させている。これにより、測定部位に拘わらず血液中の生体成分を常に良好な精度で測定することができる。   Also in this embodiment, the same effect as that of the first embodiment can be obtained. In the present embodiment, the actuators 45a and 45b are driven each time the angle between the arms 42a and 42b is changed, so that the optical axes of the light projection unit 44a and the light receiving unit 44b are matched. Thereby, it is possible to always measure biological components in blood with good accuracy regardless of the measurement site.

なお、第1及び第2の実施形態に係る非侵襲生体成分測定装置においても、光投射部及び受光部の光軸を一致させるように光投射部及び受光部の少なくとも一方を移動させるアクチュエータを設けてもよい。   In the noninvasive living body component measuring apparatus according to the first and second embodiments, an actuator that moves at least one of the light projection unit and the light receiving unit is provided so that the optical axes of the light projection unit and the light receiving unit coincide with each other. May be.

以上の実施形態に関し、更に以下の付記を開示する。   Regarding the above embodiment, the following additional notes are disclosed.

(付記1)生体表面に接触する検査ヘッドと、
前記検査ヘッドから出力される信号に基づいて生体成分を測定する制御部とを具備し、
前記検査ヘッドは、
前記生体表面を挟んで隆起させる第1の挟み部及び第2の挟み部と、
前記制御部により制御されて前記第1の挟み部及び前記第2の挟み部間の距離を変化させる距離調整部と、
前記第1の挟み部及び前記第2の挟み部間に挟まれて隆起した部分の生体表面に光を投射する光投射部と、
前記隆起した部分の生体表面を透過した光の光量に応じた信号を出力する受光部とを有することを特徴とする生体成分測定装置。
(Appendix 1) an inspection head in contact with the surface of a living body;
A control unit for measuring a biological component based on a signal output from the inspection head,
The inspection head is
A first sandwiching portion and a second sandwiching portion that are raised across the living body surface;
A distance adjusting unit that is controlled by the control unit to change a distance between the first sandwiching unit and the second sandwiching unit;
A light projection unit for projecting light onto a living body surface of a raised portion sandwiched between the first sandwiching portion and the second sandwiching portion;
A biological component measuring apparatus comprising: a light receiving unit that outputs a signal corresponding to the amount of light transmitted through the living body surface of the raised portion.

(付記2)前記制御部は、前記距離調整部を制御して前記受光部から出力される信号に含まれる脈動成分の大きさが設定値に到達するまで前記第1の挟み部及び前記第2の挟み部間の距離を小さくし、前記脈動成分の大きさが前記設定値に到達すると所定量だけ前記第1の挟み部及び前記第2の挟み部間の距離を広げ前記受光部の出力を取得し、このときの受光部の出力を用いて生体成分を算出することを特徴とする付記1に記載の生体成分測定装置。   (Additional remark 2) The said control part controls the said 1st clamping part and the said 2nd until the magnitude | size of the pulsation component contained in the signal output from the said light-receiving part reaches the setting value by controlling the said distance adjustment part. When the magnitude of the pulsating component reaches the set value, the distance between the first sandwiching part and the second sandwiching part is increased by a predetermined amount, and the output of the light receiving part is increased. The biological component measuring apparatus according to appendix 1, wherein the biological component is obtained using the output of the light receiving unit at this time.

(付記3)前記制御部は、前記第1の挟み部及び前記第2の挟み部間に前記生体表面を挟む前の前記受光部の出力を記憶し、前記生体成分を算出する際にこの記憶した受光部の出力も用いることを特徴とする付記2に記載の生体成分測定装置。   (Additional remark 3) The said control part memorize | stores the output of the said light-receiving part before pinching | interposing the said biological body surface between the said 1st clamping part and the said 2nd clamping part, and this memory | storage is calculated when calculating the said biological component. The biological component measuring apparatus according to appendix 2, wherein the output of the received light receiving unit is also used.

(付記4)前記検査ヘッドには溝が設けられており、
前記第1の挟み部及び前記第2の挟み部は前記溝を挟んで配置されていることを特徴とする付記1乃至3のいずれか1項に記載の生体成分測定装置。
(Appendix 4) The inspection head is provided with a groove,
The biological component measuring apparatus according to any one of supplementary notes 1 to 3, wherein the first sandwiching portion and the second sandwiching portion are disposed with the groove interposed therebetween.

(付記5)前記検査ヘッドは“C”字状に形成されており、前記距離調整部は前記検査ヘッドの周面に配置された圧電素子であることを特徴とする付記1乃至3のいずれか1項に記載の生体成分測定装置。   (Supplementary Note 5) Any one of Supplementary Notes 1 to 3, wherein the inspection head is formed in a “C” shape, and the distance adjusting unit is a piezoelectric element disposed on a peripheral surface of the inspection head. The biological component measuring apparatus according to item 1.

(付記6)前記検査ヘッドは、第1のアーム及び第2のアームと、前記第1のアーム及び第2のアームの端部に配置されて前記第1のアーム及び第2のアームを回転可能に接続する接続部とを有し、
前記光投射部は前記第1のアームの前記接続部と反対側の端部に配置され、前記受光部は前記第2のアームの前記接続部と反対側の端部に配置されていることを特徴とする付記1乃至3のいずれか1項に記載の生体成分測定装置。
(Appendix 6) The inspection head is arranged at the first arm and the second arm, and at the end of the first arm and the second arm, and is capable of rotating the first arm and the second arm. And a connection part to be connected to
The light projection unit is disposed at the end of the first arm opposite to the connection unit, and the light receiving unit is disposed at the end of the second arm opposite to the connection unit. 4. The biological component measuring apparatus according to any one of appendices 1 to 3, which is characterized by the following.

(付記7)前記検査ヘッドには更に、前記光投射部の光軸と前記受光部の光軸とが一致するように前記光投射部及び前記受光部の少なくとも一方を移動させるアクチュエータを有することを特徴とする付記1乃至3のいずれか1項に記載の生体成分測定装置。   (Supplementary Note 7) The inspection head further includes an actuator that moves at least one of the light projection unit and the light receiving unit so that the optical axis of the light projection unit and the optical axis of the light receiving unit coincide with each other. 4. The biological component measuring apparatus according to any one of appendices 1 to 3, which is characterized by the following.

(付記8)生体表面の一部を第1の挟み部及び第2の挟み部間に挟んで隆起させ、
前記生体表面の隆起した部分に光を投射しつつ、前記生体表面の隆起した部分を透過した光を受光部で受光し、
前記受光部の出力に含まれる脈動成分が設定値に到達するまで前記第1の挟み部及び前記第2の挟み部間の距離を小さくし、
前記脈動成分が前記設定値に到達すると前記第1の挟み部及び前記第2の挟み部間の距離を所定量だけ広くして前記受光部の出力を取得し、
前記受光部の出力から生体成分を算出することを特徴とする生体成分測定方法。
(Appendix 8) A part of the surface of the living body is raised between the first sandwiching portion and the second sandwiching portion,
While projecting light on the raised part of the living body surface, the light receiving part receives light transmitted through the raised part of the living body surface,
Reducing the distance between the first sandwiching portion and the second sandwiching portion until the pulsation component included in the output of the light receiving portion reaches a set value;
When the pulsating component reaches the set value, the distance between the first sandwiching portion and the second sandwiching portion is widened by a predetermined amount to obtain the output of the light receiving unit,
A biological component measurement method comprising calculating a biological component from an output of the light receiving unit.

(付記9)前記第1の挟み部及び前記第2の挟み部間に前記生体表面を挟む前の前記受光部の出力を記憶し、この記憶した受光部の出力と前記隆起した生体表面を透過した光を受光したときの前記受光部の出力とを用いて前記生体成分の算出を行うことを特徴とする付記8に記載の生体成分測定装置。   (Additional remark 9) The output of the said light-receiving part before pinching | interposing the said biological body surface between the said 1st clamping part and the said 2nd clamping part is memorize | stored, and permeate | transmits the output of this memorize | stored light-receiving part and the said protruding biological body surface The biological component measuring apparatus according to appendix 8, wherein the biological component is calculated using an output of the light receiving unit when the received light is received.

11,31,41…検査ヘッド、12…溝、13a,13b…押圧部材、14,32…圧電素子、15a,15b…溝、16a,16b…光源、17…投射レンズ、18a,18b…受光レンズ、19a,19b…受光素子、21,51…制御部、31a,31b…端面、33a,44a…光投射部、33b,44b…受光部、42a,42b…アーム、43…角度調整部、45a,45b…アクチュエータ。   DESCRIPTION OF SYMBOLS 11, 31, 41 ... Inspection head, 12 ... Groove, 13a, 13b ... Press member, 14, 32 ... Piezoelectric element, 15a, 15b ... Groove, 16a, 16b ... Light source, 17 ... Projection lens, 18a, 18b ... Light receiving lens , 19a, 19b ... light receiving element, 21, 51 ... control unit, 31a, 31b ... end face, 33a, 44a ... light projection unit, 33b, 44b ... light receiving unit, 42a, 42b ... arm, 43 ... angle adjustment unit, 45a, 45b ... Actuator.

Claims (5)

生体表面に接触する検査ヘッドと、
前記検査ヘッドから出力される信号に基づいて生体成分を測定する制御部とを具備し、
前記検査ヘッドは、
前記生体表面を挟んで隆起させる第1の挟み部及び第2の挟み部と、
前記制御部により制御されて前記第1の挟み部及び前記第2の挟み部間の距離を変化させる距離調整部と、
前記第1の挟み部及び前記第2の挟み部間に挟まれて隆起した部分の生体表面に光を投射する光投射部と、
前記隆起した部分の生体表面を透過した光の光量に応じた信号を出力する受光部とを有することを特徴とする生体成分測定装置。
An inspection head that contacts the surface of the living body;
A control unit for measuring a biological component based on a signal output from the inspection head,
The inspection head is
A first sandwiching portion and a second sandwiching portion that are raised across the living body surface;
A distance adjusting unit that is controlled by the control unit to change a distance between the first sandwiching unit and the second sandwiching unit;
A light projection unit for projecting light onto a living body surface of a raised portion sandwiched between the first sandwiching portion and the second sandwiching portion;
A biological component measuring apparatus comprising: a light receiving unit that outputs a signal corresponding to the amount of light transmitted through the living body surface of the raised portion.
前記制御部は、前記距離調整部を制御して前記受光部から出力される信号に含まれる脈動成分の大きさが設定値に到達するまで前記第1の挟み部及び前記第2の挟み部間の距離を小さくし、前記脈動成分の大きさが前記設定値に到達すると所定量だけ前記第1の挟み部及び前記第2の挟み部間の距離を広げ前記受光部の出力を取得し、このときの受光部の出力を用いて生体成分を算出することを特徴とする請求項1に記載の生体成分測定装置。   The control unit controls the distance adjusting unit and the magnitude of the pulsation component included in the signal output from the light receiving unit reaches a set value, between the first and second clamping units. When the magnitude of the pulsating component reaches the set value, the distance between the first sandwiching portion and the second sandwiching portion is increased by a predetermined amount, and the output of the light receiving unit is acquired. The biological component measuring apparatus according to claim 1, wherein the biological component is calculated using the output of the light receiving unit. 前記制御部は、前記第1の挟み部及び前記第2の挟み部間に前記生体表面を挟む前の前記受光部の出力を記憶し、前記生体成分を算出する際にこの記憶した受光部の出力も用いることを特徴とする請求項2に記載の生体成分測定装置。   The control unit stores the output of the light receiving unit before the biological surface is sandwiched between the first sandwiching unit and the second sandwiching unit, and calculates the biological component of the stored light receiving unit. The biological component measuring apparatus according to claim 2, wherein an output is also used. 前記検査ヘッドには溝が設けられており、
前記第1の挟み部及び前記第2の挟み部は前記溝を挟んで配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の生体成分測定装置。
The inspection head is provided with a groove,
4. The biological component measuring apparatus according to claim 1, wherein the first sandwiching portion and the second sandwiching portion are disposed with the groove interposed therebetween. 5.
生体表面の一部を第1の挟み部及び第2の挟み部間に挟んで隆起させ、
前記生体表面の隆起した部分に光を投射しつつ、前記生体表面の隆起した部分を透過した光を受光部で受光し、
前記受光部の出力に含まれる脈動成分が設定値に到達するまで前記第1の挟み部及び前記第2の挟み部間の距離を小さくし、
前記脈動成分が前記設定値に到達すると前記第1の挟み部及び前記第2の挟み部間の距離を所定量だけ広くして前記受光部の出力を取得し、
前記受光部の出力から生体成分を算出することを特徴とする生体成分測定方法。
A part of the surface of the living body is raised between the first sandwiching portion and the second sandwiching portion;
While projecting light on the raised part of the living body surface, the light receiving part receives light transmitted through the raised part of the living body surface,
Reducing the distance between the first sandwiching portion and the second sandwiching portion until the pulsation component included in the output of the light receiving portion reaches a set value;
When the pulsating component reaches the set value, the distance between the first sandwiching portion and the second sandwiching portion is widened by a predetermined amount to obtain the output of the light receiving unit,
A biological component measurement method comprising calculating a biological component from an output of the light receiving unit.
JP2010256769A 2010-11-17 2010-11-17 Biological component measuring apparatus and biological component measuring method Expired - Fee Related JP5589789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256769A JP5589789B2 (en) 2010-11-17 2010-11-17 Biological component measuring apparatus and biological component measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256769A JP5589789B2 (en) 2010-11-17 2010-11-17 Biological component measuring apparatus and biological component measuring method

Publications (2)

Publication Number Publication Date
JP2012105809A true JP2012105809A (en) 2012-06-07
JP5589789B2 JP5589789B2 (en) 2014-09-17

Family

ID=46492130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256769A Expired - Fee Related JP5589789B2 (en) 2010-11-17 2010-11-17 Biological component measuring apparatus and biological component measuring method

Country Status (1)

Country Link
JP (1) JP5589789B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160026497A (en) * 2014-09-01 2016-03-09 삼성전자주식회사 Method and apparatus for measuring biological signal
CN111184520A (en) * 2018-11-15 2020-05-22 珠海柯诺医疗科技有限公司 Finger electric clamping method based on blood sampling equipment
WO2022009577A1 (en) * 2020-07-06 2022-01-13 Look Tec株式会社 Blood measurement device
JP7442092B2 (en) 2020-07-06 2024-03-04 Look Tec株式会社 blood measuring device
JP7464930B2 (en) 2020-07-06 2024-04-10 Look Tec株式会社 Blood Measuring Device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189891A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Non-invasive biochemical measuring device
JPH11178799A (en) * 1997-12-22 1999-07-06 Matsushita Electric Works Ltd Vital method and device for analyzing superficial tissue of organism
JP2004147706A (en) * 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Apparatus and method for determining non-invasive biomedical component
WO2006082859A1 (en) * 2005-02-02 2006-08-10 Matsushita Electric Industrial Co., Ltd. Optical element and optical measurement device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189891A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Non-invasive biochemical measuring device
JPH11178799A (en) * 1997-12-22 1999-07-06 Matsushita Electric Works Ltd Vital method and device for analyzing superficial tissue of organism
JP2004147706A (en) * 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Apparatus and method for determining non-invasive biomedical component
WO2006082859A1 (en) * 2005-02-02 2006-08-10 Matsushita Electric Industrial Co., Ltd. Optical element and optical measurement device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160026497A (en) * 2014-09-01 2016-03-09 삼성전자주식회사 Method and apparatus for measuring biological signal
KR102339922B1 (en) 2014-09-01 2021-12-16 삼성전자주식회사 Method and apparatus for measuring biological signal
CN111184520A (en) * 2018-11-15 2020-05-22 珠海柯诺医疗科技有限公司 Finger electric clamping method based on blood sampling equipment
WO2022009577A1 (en) * 2020-07-06 2022-01-13 Look Tec株式会社 Blood measurement device
JP7442092B2 (en) 2020-07-06 2024-03-04 Look Tec株式会社 blood measuring device
JP7464930B2 (en) 2020-07-06 2024-04-10 Look Tec株式会社 Blood Measuring Device

Also Published As

Publication number Publication date
JP5589789B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
KR100493157B1 (en) Probe using in measuring organism signal and system for measuring organism signal comprising the same
US8818476B2 (en) Reflectance and/or transmissive pulse oximeter
EP1942790B1 (en) Method and device for non-invasive measurements in a subject
JP5589789B2 (en) Biological component measuring apparatus and biological component measuring method
US20030212316A1 (en) Method and apparatus for determining blood parameters and vital signs of a patient
EP1618839A1 (en) Method for non-invasive measurements of blood related parameters
KR20010072618A (en) Non-invasive optical measurement of a blood constituent
JP2011062335A (en) Blood sugar level monitoring apparatus
JP5716589B2 (en) Biological component measuring apparatus and biological component measuring method
JP2004113434A (en) Blood sugar measuring instrument
US10085693B2 (en) Measuring device
JP4553954B2 (en) Blood component concentration measuring apparatus and blood component concentration measuring method
US20150223736A1 (en) System &amp; method for determining blood component concentration
WO2006097933A2 (en) Method for monitoring changes in blood glucose level
KR20150050523A (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
US20140018648A1 (en) Blood parameter measuring device and method for measuring blood parameter
US20140228654A1 (en) Diagnostic measurement device
KR101661287B1 (en) Method For Non-Invasive Glucose Measurement And Non-Invasive Glucose Measuring Apparatus using the same Method
JP2003111750A (en) Non-invasion organism measuring instrument and saccharimeter using the same
US20140275870A1 (en) Continuous noninvasive measurement of analyte concentration using an optical bridge
JP2004361289A (en) Glucose concentration measuring apparatus
JP2004290226A (en) Glucose concentration measuring apparatus
JP2011110083A (en) Skin tissue measuring probe
Panula et al. Continuous Blood Pressure Monitoring using Non-Pulsatile Photoplethysmographic Components for Low-Frequency Vascular Unloading
Sagynbay Pulse oximeter controlled by microprocessor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5589789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees