JP2004147706A - Apparatus and method for determining non-invasive biomedical component - Google Patents

Apparatus and method for determining non-invasive biomedical component Download PDF

Info

Publication number
JP2004147706A
JP2004147706A JP2002313456A JP2002313456A JP2004147706A JP 2004147706 A JP2004147706 A JP 2004147706A JP 2002313456 A JP2002313456 A JP 2002313456A JP 2002313456 A JP2002313456 A JP 2002313456A JP 2004147706 A JP2004147706 A JP 2004147706A
Authority
JP
Japan
Prior art keywords
light
wavelength
biological component
subject
invasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002313456A
Other languages
Japanese (ja)
Inventor
Kaname Okuno
要 奥野
Jiyakusei Chin
若正 陳
Katsuhiko Maruo
勝彦 丸尾
Keimei Kitamura
啓明 北村
長生 ▲濱▼田
Osao Hamada
Makoto Nishimura
真 西村
Yuji Kida
勇次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002313456A priority Critical patent/JP2004147706A/en
Publication of JP2004147706A publication Critical patent/JP2004147706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for determining non-invasive biomedical components with a smaller size and the saving of power. <P>SOLUTION: An optical apparatus which determines the biomedical components in an invasive fashion comprises an irradiation means which irradiates a subject sequentially with lights with a plurality of different wavelengths in the near infrared wavelength range of 1,000 nm to 2,500 nm, a photodetecting means 12 for receiving the reflected light from the subject or the transmission light through the subject and an arithmetic means 14 for calculating the concentration of the biomedical components by the arithmetic processing from the absorbance per the wavelength obtained by the photodetecting means 12. The subject 8 is irradiated sequentially with the lights with varied wavelengths. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、近赤外領域における光の吸収を利用して生体組織中あるいは体液中の化学成分の体液成分濃度の分析を行う非侵襲型生体成分の定量装置及び定量方法に関するものであり、具体的には皮膚組織中のグルコース濃度の定量分析を行うことにより血糖値測定を行うための装置及び方法に関するものである。
【0002】
【従来の技術】
皮膚組織中のグルコース濃度は血液中のグルコース濃度(血糖値)と高い相関を有していることから血糖値定量のための代用値として用いられている。このグルコース濃度の定量を非侵襲で行うものとして、ハロゲンランプからなる光源の光(近赤外光)を集光レンズで集束して被検体8に照射し、被検体8内を透過あるいは拡散反射した光を回折格子などで分光した後、受光素子ユニットで受光し、受光素子ユニットで得られた生体信号をもとにグルコース濃度を演算するものがある。この場合、光源からの光をセラミック板などの標準板に照射して標準板で反射した光の受光も行ってリファレンス信号を得て、リファレンス信号と生体信号をもとにでグルコース濃度変化に由来するスペクトル中の吸光度の微量変化を解析し、グルコース濃度の演算を行っている。
【0003】
たとえば、特開2000−131322公報(特許文献1)に示されたグルコース濃度の定量方法及びその装置では、図27に示すように、ハロゲンランプからなる光源61と、光源61からの光を集束する集光レンズ62と、集光レンズ62を通過した光を被検体に照射するとともに被検体内を透過あるいは拡散反射した光を受光するための光ファイババンドルプローブ63と、受光後の光を分光する回折格子を収めた回折格子ユニット64、該回折格子ユニット64で分光された光を検出するためのInGaAsアレイ型受光素子ユニット65、アレイ型受光素子ユニット65で得られた信号をもとにグルコース濃度を演算する演算ユニット66とから構成されたものが示されている。
【0004】
このものでは、スペクトル測定に際して光源61からの光で前記光ファイババンドルプローブ63を介してセラミック板などの標準板を照射するとともに標準板で反射した光(リファレンス信号)を受光し、続いて接触位置を一定化するための位置決め治具を用いて光ファイババンドルプローブ63のセンシング部を皮膚表面に100〜500gf/cmの接触圧力で当接させ、皮膚組織内を透過あるいは拡散反射した光(生体信号)を受光し、得られたリファレンス信号と生体信号をもとに前記演算ユニット66によりグルコース濃度変化に由来するスペクトル中の吸光度の微量変化を解析して、グルコース濃度を演算する。このとき一般にはマルチチャンネル検出器で得られた解析波長範囲の全画素(例256画素)の信号が利用される。
【0005】
ところで、グルコース濃度は数十〜数百mg/dlと微量であるため、皮膚組織を透過あるいは拡散反射した光(生体信号)をもとにグルコース濃度の定量を行うには上記光をS/N良く捉えることが重要であり、このために吸光度ベースライン変動をできるだけ抑制してスペクトル測定の安定性を高くしておくと同時にグルコース濃度変化に応じたスペクトル変化を正しく捉えることができる分解能を持つものとしておかなくてはならない。このために上記の構成では、波長領域として1000nm〜2500nmのスペクトルを用い(実際は、受光素子アレイ数(例:256素子)に割り付けられる)、多変量解析によりグルコース濃度の定量演算をして推定している。
【0006】
【特許文献】
特開2000−131322号公報
【0007】
【発明が解決しようとする課題】
マルチチャンネル検出器で得られた解析波長範囲内の全ての信号を吸光度換算した後にグルコース濃度推定のための解析がなされる上記のものでは、どうしてもシステム構成がおおがかりなものとなる。また、連続的な近赤外光を発生させなくてはならない光源には、ハロゲンランプ等が必要となり、その熱対策も大変である。また連続光をスペクトルに分解するための回折格子などからなる分光部を必要とする。加えるに、受光素子であるマルチチャンネル検出器は、各画素特性が必ずしも一様でないために、生体成分濃度変化に応じたスペクトル変化が正しく反映されぬまま解析されてしまうことがあり、生体成分濃度推定における良好な解析精度を得られる要因となっている。
【0008】
本発明は以上のような点を考慮してなされたものであり、その目的とするところは、小型で省電力な非侵襲型生体成分の定量装置及び定量方法を提供することにある。
【0009】
【課題を解決するための手段】
しかして本発明は、生体成分を非侵襲で定量する光学的装置であって、近赤外波長域1000nm〜2500nmの中の異なる複数の波長の光を順次被検体に照射する照射手段と、被検体からの反射光もしくは被検体を透過した透過光を受光する受光手段と、受光手段で得られた前記波長毎の吸光度から演算処理して生体成分濃度を算出する演算手段とからなることに特徴を有している。波長の異なる光を順次被検体に照射するようにしたものである。
【0010】
上記照射手段としては、異なる波長の光を出力する複数の光源を備えたもの、波長可変レーザを光源として備えたもの、近赤外波長域1000nm〜2500nmをカバーする光源と、該光源からの複数の特定波長を取り出す波長選択手段とを備えたもの等を好適に用いることができる。
【0011】
そして上記波長選択手段には、波長可変フィルタや傾斜膜厚フィルタや光学デバイスを好適に用いることができる。
【0012】
また、照射手段には、異なる波長の光を出力するとともに順次発光する複数の光源と、これら光源からの光を被検体への照射用プローブに導く導光手段とからなるものを用いてもよい。この場合の導光手段は回折光学デバイスや光導波路を好適に用いることができる。
【0013】
更には、前記照射手段として、異なる波長の光を出力する光源と、これら光源からの光を被検体への照射用プローブに選択的に導く切換手段とからなるもの、近赤外波長域1000nm〜2500nmをカバーする光源と、該光源からの複数の特定の波長を取り出す波長選択手段と、波長選択手段を経た光を被検体への照射用プローブに選択的に導く切換手段とからなるものを用いてもよいものであり、これらの場合の切換手段には、光源側とプローブ側の少なくとも一方を移動させて光源側とプローブ側の対向位置を切り換えるものや、必要とする波長の光を透過し且つ他の波長の光は遮断するシャッター、必要とする波長の光を透過し且つ他の波長の光は遮断する光スイッチを好適に用いることができる。
【0014】
そして、各波長の光を被検体を経ることなく受光装置に導く参照光導光手段を備えて、演算手段は参照光と被検体を経た光とから算出した吸光度を基に生体成分濃度を算出するものであれば、より的確に生体成分の定量を行うことができる。
【0015】
また、定量を目的とする生体成分がグルコースである場合、照射手段は被検体表面に当接される測定用プローブを備えるとともに、該測定用プローブは被検体に投光する投光部と被検体からの反射光もしくは被検体を透過した透過光を受光する受光部とが中心間距離0.2mm〜2.0mmで配置されていることが好ましい。
【0016】
そして本発明に係る非侵襲型生体成分の定量方法は、近赤外波長域1000nm〜2500nmの中の異なる複数の波長の光を順次被検体に照射し、被検体からの反射光もしくは被検体を透過した透過光を受光手段に導くとともに、各波長の光を被検体を経ることなく受光手段に導いて、受光手段で得られた前記波長毎の吸光度から演算処理して生体成分濃度を算出することに特徴を有している。
【0017】
【発明の実施の形態】
以下本発明を実施の形態の一例に基づいて詳述すると、図1において、3は複数個のLED(図示例では4個)3a,3b,3c,3dからならる光源であり、ステッピングモータのような駆動部2で回転駆動される円板の同心円上に配設されている。図中1は電源である。
【0018】
上記の各LED3a,3b,3c,3dは、各々特定の波長帯域の光を出すもので、たとえばLED3a:1400nm、LED3b:1550nm、LED3c:1700nm、LED3d:1850nmで構成されている。なお、LEDの個数や波長帯域の割り付けは、上記の例に限定されるものではなく、要求精度に応じて設定されるものであるが、最大でも10個で納めることができる。
【0019】
一方、被検体8に光を照射するための複数本の投光用光ファイバー6(クラッド径200μm、コア径180μm)と、被検体8を透過あるいは拡散反射した光を受光するための受光用光ファイバー9(同じくクラッド径200μm、コア径180μm)とを束ねた光ファイバーバンドル11は、その被検体8表面に接触させることになるプローブ7の先端面の測定面に、図2(a)に示すように、投光用光ファイバー6の光の出射端16及び受光用光ファイバー9の光の入射端17とを配したもので、複数の出射端16は入射端17を中心とした円周上に複数個配しており、出射端16と入射端17とは0.2mm〜2.0mm(図示例では0.65mm)の間隔Lで配置してある。なお、図3に示すように、受光用光ファイバー9(17)と投光用光ファイバー6(16)との配置を入れ換えたものであってもよい。
【0020】
そして投光用光ファイバー6の光導入口4(図2(c)参照)は上記光源3に対向させ、受光用光ファイバー9の光出射口11(図2(b)参照)は単素子型の受光素子12に対向させている。
【0021】
受光素子12の出力はA/D変換装置13でデジタル変換されて演算手段14に送られる。図中15は生体成分濃度表示のための表示装置、5は計測初期に参照光を受光素子12に導くための反射鏡である。
【0022】
生体成分の定量のためのスペクトル測定に際しては、まず光源3の参照光を計測する。すなわち、プローブ7に反射鏡5を正対させ、約1秒間隔で駆動部2のステッピングモータを作動させて投光用光ファイバー6の光導入口5と対向するLEDを順次切り換える。この切換信号は前述のように演算手段14から出力される。また、この切換信号は、同時に単素子型受光素子12にも伝達され、単素子型受光素子12を波長ごとにリセットさせる。反射鏡5からの反射光は受光素子12で電気信号に変換され、A/D変換装置13でデジタル変換されて各波長ごとの参照光電気信号として演算手段14に記憶される。
【0023】
次に、プローブ7を生体の皮膚である被検体8に当接させる。この時、接触位置を一定化するための位置決め治具を用いてプローブ7と被検体8との接触圧力が100〜500gf/cmとなるようにすることが好ましい。
【0024】
そして、約1秒間隔で駆動部2を作動させて、4つの特定波長を有するLED3a⇒LED3b⇒LED3c⇒LED3dを順次切り換える。この時も切換信号は単素子型受光素子12にも送られて、単素子型受光素子12を波長ごとにリセットする。
【0025】
投光用光ファイバ6を通ってプローブ7の出射端16から出射した光は被検体8(皮膚組織)を伝搬した後、皮膚組織から散乱光として出射されるが、入射端17から入射した散乱光は受光用光ファイバー9によって単素子型受光素子12に送られて電気信号に変換され、A/D変換装置13でデジタル変換された各波長ごとの生体電気信号は演算手段14に記憶される。
【0026】
測定された参照光電気信号をRef、生体電気信号をSigとすると、吸光度Absは次式(1)のように表される。
【0027】
Abs=log10(Ref/Sig)・・・・ (1)
本例では、4つの特定波長光があることから、4つの吸光度Absを計測することができる。
【0028】
Abs1400nm=log10(Ref/Sig)・・・・ (2)
Abs1550nm=log10(Ref/Sig)・・・・ (3)
Abs1700nm=log10(Ref/Sig)・・・・ (4)
Abs1850nm=log10(Ref/Sig)・・・・ (5)
そして4個の吸光度Abs情報をもとに前記演算手段14はあらかじめ格納されている生体成分濃度算出式に基づいて生体成分濃度を演算し、その演算結果を表示装置15に表示する。図4〜図6に上記動作についてのフローチャートを示す。
【0029】
被検体8(生体)での反射・拡散光利用の事例で説明したが、図7に示すように、生体の透過光を利用するものであってもよい。図8はこの場合の出射端16と入射端17の配置の一例を示している。また、A/D変換装置13と演算手段14とを分けて説明したが、これは説明上であり、実際には演算手段14が A/D変換装置13も内蔵しているものが一般的である。さらに、光源3の各LED3a〜3dの順次切り換えを回転板の回転で行うものを示したが、直線的移動等で行ってもよく、また、図9に示すように光導入口4側を動かすことで、光導入口4が対向するLED3a〜3dを切り換えるようにしてもよいのはもちろんである。
【0030】
図10は参照光の受光素子12による受光を参照光用光ファイバー10で行うようにしたものを示している。このものでは、演算手段14から駆動部2及び受光素子12に対して送る切換信号により、光源3の波長とその導光経路(被検体8を介した経路か、直接受光素子12に至る経路か)を切り換えることになる。
【0031】
動作について説明すると、スペクトル測定にあたり、約1秒間隔の駆動部2の作動でLED3a⇒LED3a⇒LED3b⇒LED3b⇒LED3c⇒LED3c⇒LED3d ⇒LED3d⇒LED3a⇒LED3a⇒と循環するように順次切換られる。演算手段14から出力されるこの切換信号は、受光素子12にも送られて受光素子12の受光波長と受光経路の識別に利用される。
【0032】
図11〜13にこの場合の動作のフローチャートを示す。ここではある波長での生体成分光と参照光とを順次測定した後、次の波長の生体成分光と参照光とを測定するようにしているが、前述の例と同様に、各波長毎の参照光を受光した後、各波長毎の生体成分光を受光するようにしてもよい。この場合においても、図14に示すように被検体8を透過した透過光を利用してもよいのはもちろんである。
【0033】
図15は光源3として波長可変レーザーを用いたものを示している。光源3と光導入口4とは常時対向させた状態で固定しておくことができるために、位置ずれ等の問題を招くことがなくなる。
【0034】
図16に別の例を示す。ここでは光源3としてブロードな発光光源(単色光)を用いるとともに、光源3と波長選択手段22を光導入口4との間に介在させることで、異なる複数の波長の光を順次被検体8に照射することができるようにしている。この場合の光源3としては、半導体LED、白色レーザー、ハロゲンランプ等を用いることができ、波長選択手段22としては、図17に示す透過波長帯域が異なる複数のバンドパスフィルタ22a,22b,22c,22dの組み合わせ、図18に示す波長チューナブルフィルタ22e、光学的デバイスであるプリズム22f(図19参照)、傾斜膜厚フィルタ22g(図20参照)、回折格子(図示せず)等を用いることができる。また、図21(a)に示すように、透過型バンドパスフィルター22hを複数組み合わせて複数波長λ1,λ2,λ3,λ4に分波したり、図21(b)に示すように、選択波長透過光反射型積層フィルタ22iを用いて分波するようにしてもよい。なお、図20中の23は集光レンズであり、ここでは光源3と集光レンズ23と光導入口4とを傾斜膜厚フィルタ22gに沿って動かすことで光導入口4に入る光の波長を切り換えている。
【0035】
光源3として異なる波長の光を出力する複数の光源(たとえば前述のLED3a〜3d)を用いる場合、光導入口4にこれら光源の光を導入するにあたり、前述の光源あるいは光導入口4を移動させることに代えて、図22,23に示すような回折格子デバイス30や、光ファイバ31、光ファイバ31と光カプラ32との組み合わせ、光合成用光導波路33、光学レンズ34,35等の光導入手段を用いてもよい。また光源3として超小型のものを用いることができる場合は、図24に示すように光導入口4に各光源を直接対向させればよい。ただし、これらのデバイスを用いる場合は、光源3として、異なる波長の光を出力する複数の光源を順次発光させることで、必要とする波長の光のみが光導入口4に至るようにしておく。
【0036】
光源3として異なる波長の光を出力する複数の光源を用いるとともに、これら光源をその出力の安定のために連続点灯させておきたい場合(図21に示した分波を行う場合を含む)は、図25に示すように、必要とする波長の光を透過し且つ他の波長の光は遮断するシャッター35を用いたり、図26に示すように、微細な反射鏡の角度切り換えで動作する光スイッチ36を用いて必要とする波長の光のみが光導入口4に送られるようにすればよい。なお、光源3の発光をシャッター35や光スイッチ36の動作に合わせて順次切り換えるようにしてもよいのはもちろんである。
【0037】
ところで、受光素子12としては受光量の関係からInGaAs型の高価で冷却を要する素子を用いなくてはならないのが現状であるが、超高輝度の光源が開発されるならば、、汎用の赤外フォトダイオードや、赤外フォトトランジスタ等による安価で小型の電子回路化が可能となる。また、微細加工技術の向上により光導波路や光スイッチ等の活用により、より超小型化・省電力化が可能となる。
【0038】
【発明の効果】
以上のように本発明においては、近赤外光の全光を照射して受光した光を分光分析するのではなく、複数の異なる波長の光を順次照射して受光を行うために、光源の小型化及び低電力化を図ることができるとともに、受光側に分光デバイスを必要とせず、受光についても単素子型受光素子でも良いものであってマルチチャンネル型受光手段等を必要とせず、全体として超小型・軽量・低電力のものとすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例のブロック図である。
【図2】同上の光ファイババンドルの一例を示すもので、(a)はプローブ先端の端面図、(b)は光射出口の端面図、(c)は光導入口の端面図である。
【図3】同上の光ファイババンドルの他例におけるプローブ先端の端面図である。
【図4】同上の動作のフローチャートである。
【図5】同上の動作のフローチャートである。
【図6】同上の動作のフローチャートである。
【図7】他例のブロック図である。
【図8】(a)(b)は同上の光ファイバの端面図である。
【図9】更に他例のブロック図である。
【図10】別の例のブロック図である。
【図11】同上の動作のフローチャートである。
【図12】同上の動作のフローチャートである。
【図13】同上の動作のフローチャートである。
【図14】さらに別の例のブロック図である。
【図15】光源に波長可変レーザを用いた例のブロック図である。
【図16】光源と波長選択手段を用いた例のブロック図である。
【図17】波長選択手段の一例の正面図である。
【図18】波長選択手段の他例の斜視図である。
【図19】波長選択手段の別の例の斜視図である。
【図20】波長選択手段の更に別の例の斜視図である。
【図21】(a)(b)は夫々光源の別の例の断面図である。
【図22】(a)〜(c)は夫々光導入手段の例を示す断面図である。
【図23】(a)(b)は夫々光導入手段の例を示す断面図である。
【図24】(a)(b)は光源の別の例を示す側面図と正面図である。
【図25】シャッターを備えた一例の断面図である。
【図26】(a)(b)は夫々光スイッチを備えた一例の断面図である。
【図27】従来例のブロック図である。
【符号の説明】
3 光源
7 プローブ
8 被検体
12 受光素子
14 演算手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-invasive biological component quantification device and method for analyzing the concentration of a humor component of a chemical component in a biological tissue or a body fluid by utilizing light absorption in a near-infrared region. More specifically, the present invention relates to an apparatus and a method for performing a blood glucose level measurement by performing a quantitative analysis of a glucose concentration in skin tissue.
[0002]
[Prior art]
The glucose concentration in the skin tissue has a high correlation with the glucose concentration in the blood (blood sugar level), and is therefore used as a substitute value for quantifying the blood sugar level. Assuming that the glucose concentration is determined non-invasively, the light (near infrared light) of a light source composed of a halogen lamp is focused by a condenser lens and irradiated on the subject 8, and transmitted or diffusely reflected in the subject 8. There is a type in which the light obtained is split by a diffraction grating or the like, then received by a light receiving element unit, and a glucose concentration is calculated based on a biological signal obtained by the light receiving element unit. In this case, the light from the light source is applied to a standard plate such as a ceramic plate, and the light reflected by the standard plate is also received to obtain a reference signal, which is derived from the glucose concentration change based on the reference signal and the biological signal. It analyzes the minute change in absorbance in the spectrum to be calculated and calculates the glucose concentration.
[0003]
For example, in the glucose concentration quantification method and apparatus disclosed in JP-A-2000-131322 (Patent Document 1), as shown in FIG. 27, a light source 61 composed of a halogen lamp and light from the light source 61 are focused. A condenser lens 62, an optical fiber bundle probe 63 for irradiating the object with light passing through the condenser lens 62 and receiving light transmitted or diffusely reflected in the object, and disperses the received light. A diffraction grating unit 64 containing a diffraction grating, an InGaAs array type light receiving element unit 65 for detecting light dispersed by the diffraction grating unit 64, and a glucose concentration based on a signal obtained by the array type light receiving element unit 65. And an operation unit 66 for calculating the following equation.
[0004]
In this apparatus, at the time of spectrum measurement, a light from a light source 61 irradiates a standard plate such as a ceramic plate via the optical fiber bundle probe 63 and receives light (reference signal) reflected by the standard plate. The sensing part of the optical fiber bundle probe 63 is brought into contact with the skin surface at a contact pressure of 100 to 500 gf / cm 2 using a positioning jig for stabilizing the light, and the light transmitted or diffused and reflected in the skin tissue Signal), and based on the obtained reference signal and biological signal, the arithmetic unit 66 analyzes a minute change in absorbance in the spectrum derived from the change in glucose concentration to calculate the glucose concentration. At this time, generally, signals of all pixels (eg, 256 pixels) in the analysis wavelength range obtained by the multi-channel detector are used.
[0005]
By the way, since the glucose concentration is as small as several tens to several hundreds mg / dl, in order to quantify the glucose concentration based on the light (biological signal) transmitted or diffusely reflected through the skin tissue, the light is converted to S / N. It is important to capture well, so that the absorbance baseline fluctuation is suppressed as much as possible to increase the stability of the spectrum measurement, and at the same time it has a resolution that can correctly capture the spectrum change according to the glucose concentration change Must be kept. For this reason, in the above configuration, a spectrum of 1000 nm to 2500 nm is used as a wavelength region (actually, the spectrum is assigned to the number of light receiving element arrays (for example, 256 elements)), and a quantitative calculation of glucose concentration is performed by multivariate analysis and estimated. ing.
[0006]
[Patent Document]
JP 2000-131322 A
[Problems to be solved by the invention]
In the above-described method in which the analysis for estimating the glucose concentration is performed after converting all the signals within the analysis wavelength range obtained by the multi-channel detector into absorbances, the system configuration is inevitably large. Further, a light source that must generate continuous near-infrared light requires a halogen lamp or the like, and measures against heat are also difficult. In addition, a spectroscopic unit including a diffraction grating for decomposing continuous light into a spectrum is required. In addition, the multi-channel detector, which is a light receiving element, may be analyzed without correctly reflecting a change in the spectrum corresponding to a change in the concentration of the biological component because the characteristics of each pixel are not necessarily uniform. This is a factor for obtaining good analysis accuracy in estimation.
[0008]
The present invention has been made in view of the above points, and an object of the present invention is to provide a small-sized and power-saving non-invasive quantification apparatus and method for a biological component.
[0009]
[Means for Solving the Problems]
Thus, the present invention is an optical device for non-invasively quantifying a biological component, comprising: an irradiating means for sequentially irradiating a subject with light having a plurality of different wavelengths in a near-infrared wavelength range of 1000 nm to 2500 nm; Light receiving means for receiving reflected light from the specimen or transmitted light transmitted through the subject, and arithmetic means for calculating the biological component concentration by performing arithmetic processing from the absorbance for each wavelength obtained by the light receiving means. have. Light of different wavelengths is sequentially irradiated on the subject.
[0010]
The irradiating means may include a light source having a plurality of light sources that output light of different wavelengths, a light source having a wavelength tunable laser as a light source, a light source covering a near-infrared wavelength range of 1000 nm to 2500 nm, and a plurality of light sources from the light source. And a wavelength selecting means for extracting the specific wavelength.
[0011]
A variable wavelength filter, a gradient film thickness filter, or an optical device can be suitably used as the wavelength selecting means.
[0012]
The irradiating means may include a plurality of light sources that output light of different wavelengths and sequentially emit light, and a light guiding means that guides light from these light sources to a probe for irradiating the subject. . In this case, as the light guiding means, a diffractive optical device or an optical waveguide can be suitably used.
[0013]
Further, the irradiating means includes a light source that outputs light of different wavelengths, and a switching unit that selectively guides light from these light sources to a probe for irradiating the subject. A light source that covers 2500 nm, a wavelength selection unit that extracts a plurality of specific wavelengths from the light source, and a switching unit that selectively guides light passing through the wavelength selection unit to a probe for irradiating an object is used. The switching means in these cases may switch at least one of the light source side and the probe side to switch the opposing position between the light source side and the probe side, or may transmit light of a required wavelength. In addition, a shutter that blocks light of another wavelength and an optical switch that transmits light of a required wavelength and blocks light of another wavelength can be preferably used.
[0014]
And a reference light guiding means for guiding the light of each wavelength to the light receiving device without passing through the subject, and the calculating means calculates a biological component concentration based on the absorbance calculated from the reference light and the light passing through the subject. If it is, the quantification of the biological component can be performed more accurately.
[0015]
When the biological component for the purpose of quantification is glucose, the irradiating means includes a measuring probe that is in contact with the surface of the subject, and the measuring probe includes a light projecting unit that projects light to the subject and the subject. It is preferable that a light-receiving unit that receives reflected light from the object or transmitted light transmitted through the subject is disposed at a center-to-center distance of 0.2 mm to 2.0 mm.
[0016]
The method for quantifying a non-invasive biological component according to the present invention includes sequentially irradiating the subject with light having a plurality of different wavelengths in the near-infrared wavelength range of 1000 nm to 2500 nm, and reflecting light from the subject or the subject. The transmitted light is guided to the light receiving unit, and the light of each wavelength is guided to the light receiving unit without passing through the subject, and the biological component concentration is calculated by performing an arithmetic process from the absorbance for each wavelength obtained by the light receiving unit. It has special features.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an example of an embodiment. In FIG. 1, reference numeral 3 denotes a light source composed of a plurality of LEDs (four in the illustrated example) 3a, 3b, 3c, and 3d. It is arranged on a concentric circle of a disk rotated and driven by such a drive unit 2. In the figure, reference numeral 1 denotes a power supply.
[0018]
Each of the LEDs 3a, 3b, 3c, and 3d emits light in a specific wavelength band, and includes, for example, LED 3a: 1400 nm, LED 3b: 1550 nm, LED 3c: 1700 nm, and LED 3d: 1850 nm. Note that the number of LEDs and the allocation of wavelength bands are not limited to the above example, and are set according to required accuracy, but can be accommodated at a maximum of ten.
[0019]
On the other hand, a plurality of light projecting optical fibers 6 (cladding diameter 200 μm, core diameter 180 μm) for irradiating the subject 8 with light, and a light receiving optical fiber 9 for receiving light transmitted or diffusely reflected by the subject 8. The optical fiber bundle 11 (also having a clad diameter of 200 μm and a core diameter of 180 μm) has a measurement surface at the distal end surface of the probe 7 which is brought into contact with the surface of the subject 8 as shown in FIG. The light emitting end 16 of the light projecting optical fiber 6 and the light incident end 17 of the light receiving optical fiber 9 are arranged. A plurality of the light emitting ends 16 are arranged on a circle around the incident end 17. The exit end 16 and the entrance end 17 are arranged at an interval L of 0.2 mm to 2.0 mm (0.65 mm in the illustrated example). As shown in FIG. 3, the arrangement of the light receiving optical fiber 9 (17) and the light projecting optical fiber 6 (16) may be interchanged.
[0020]
The light inlet 4 (see FIG. 2 (c)) of the light projecting optical fiber 6 is opposed to the light source 3, and the light emitting port 11 (see FIG. 2 (b)) of the light receiving optical fiber 9 is a single element type light receiving device. It faces the element 12.
[0021]
The output of the light receiving element 12 is digitally converted by the A / D converter 13 and sent to the calculating means 14. In the figure, reference numeral 15 denotes a display device for displaying a biological component concentration, and reference numeral 5 denotes a reflecting mirror for guiding reference light to the light receiving element 12 at the beginning of measurement.
[0022]
In measuring a spectrum for quantifying a biological component, first, the reference light of the light source 3 is measured. That is, the reflecting mirror 5 is directly opposed to the probe 7, and the stepping motor of the driving unit 2 is operated at intervals of about one second to sequentially switch the LED facing the light inlet 5 of the light emitting optical fiber 6. This switching signal is output from the calculating means 14 as described above. The switching signal is also transmitted to the single-element light receiving element 12 at the same time, and resets the single-element light receiving element 12 for each wavelength. The light reflected from the reflecting mirror 5 is converted into an electric signal by the light receiving element 12, is converted into a digital signal by the A / D converter 13, and is stored in the arithmetic means 14 as a reference light electric signal for each wavelength.
[0023]
Next, the probe 7 is brought into contact with a subject 8 which is skin of a living body. At this time, it is preferable that the contact pressure between the probe 7 and the subject 8 be 100 to 500 gf / cm 2 by using a positioning jig for fixing the contact position.
[0024]
Then, the drive unit 2 is operated at intervals of about one second to sequentially switch the LEDs 3a, 3b, 3c, and 3d having four specific wavelengths. At this time, the switching signal is also sent to the single-element light-receiving element 12 to reset the single-element light-receiving element 12 for each wavelength.
[0025]
The light emitted from the emission end 16 of the probe 7 through the light projecting optical fiber 6 propagates through the subject 8 (skin tissue), and then is emitted as scattered light from the skin tissue. The light is sent to the single-element light-receiving element 12 by the light-receiving optical fiber 9 and is converted into an electric signal. The bioelectric signal for each wavelength digitally converted by the A / D converter 13 is stored in the arithmetic means 14.
[0026]
Assuming that the measured reference photoelectric signal is Ref and the bioelectric signal is Sig, the absorbance Abs is represented by the following equation (1).
[0027]
Abs = log 10 (Ref / Sig) (1)
In this example, since there are four specific wavelength lights, four absorbance Abs can be measured.
[0028]
Abs 1400 nm = log 10 (Ref / Sig) (2)
Abs 1550 nm = log 10 (Ref / Sig) (3)
Abs 1700 nm = log 10 (Ref / Sig) (4)
Abs 1850 nm = log 10 (Ref / Sig) (5)
Then, based on the four pieces of absorbance Abs information, the calculating means 14 calculates the biological component concentration based on the biological component concentration calculation formula stored in advance, and displays the calculation result on the display device 15. 4 to 6 show flowcharts of the above operation.
[0029]
Although the case of using reflected / diffused light in the subject 8 (living body) has been described, as shown in FIG. 7, light transmitted through a living body may be used. FIG. 8 shows an example of the arrangement of the exit end 16 and the entrance end 17 in this case. Further, the A / D converter 13 and the arithmetic unit 14 have been described separately, but this is for the purpose of explanation. Actually, the arithmetic unit 14 generally includes the A / D converter 13 as well. is there. Furthermore, although the case where the LEDs 3a to 3d of the light source 3 are sequentially switched by rotating the rotary plate has been described, it may be performed by linear movement or the like, or the light inlet 4 side is moved as shown in FIG. Thus, it goes without saying that the LEDs 3a to 3d to which the light inlet 4 faces may be switched.
[0030]
FIG. 10 shows a configuration in which the reference light is received by the light receiving element 12 by the reference light optical fiber 10. In this device, the wavelength of the light source 3 and its light guide path (the path through the subject 8 or the path directly to the light receiving element 12 are determined by a switching signal sent from the calculating means 14 to the driving unit 2 and the light receiving element 12. ).
[0031]
The operation will be described. In the spectrum measurement, the operation is sequentially switched such that LED3a → LED3a → LED3b → LED3b → LED3c → LED3c → LED3d → LED3d → LED3a → LED3a⇒ by operating the drive unit 2 at intervals of about one second. This switching signal output from the calculating means 14 is also sent to the light receiving element 12 and used for identifying the light receiving wavelength of the light receiving element 12 and the light receiving path.
[0032]
11 to 13 show flowcharts of the operation in this case. Here, after sequentially measuring the biological component light and the reference light at a certain wavelength, the biological component light and the reference light at the next wavelength are measured. After receiving the reference light, the biological component light for each wavelength may be received. Also in this case, it is needless to say that the transmitted light transmitted through the subject 8 may be used as shown in FIG.
[0033]
FIG. 15 shows a light source using a tunable laser as the light source 3. Since the light source 3 and the light introduction port 4 can be fixed in a state where they are always opposed to each other, problems such as misalignment do not occur.
[0034]
FIG. 16 shows another example. Here, a broad light emitting light source (monochromatic light) is used as the light source 3 and the light source 3 and the wavelength selecting means 22 are interposed between the light introduction port 4 so that light of a plurality of different wavelengths is sequentially applied to the subject 8. Irradiation is possible. As the light source 3 in this case, a semiconductor LED, a white laser, a halogen lamp, or the like can be used. As the wavelength selecting means 22, a plurality of band-pass filters 22a, 22b, 22c, and 22c having different transmission wavelength bands shown in FIG. 22d, a wavelength tunable filter 22e shown in FIG. 18, a prism 22f as an optical device (see FIG. 19), a gradient film thickness filter 22g (see FIG. 20), a diffraction grating (not shown), or the like. it can. Further, as shown in FIG. 21 (a), a plurality of transmission type band-pass filters 22h are combined to demultiplex into a plurality of wavelengths λ1, λ2, λ3, λ4, or as shown in FIG. The light may be split using the light reflection type multilayer filter 22i. In FIG. 20, reference numeral 23 denotes a condenser lens. Here, the wavelength of light entering the light entrance 4 by moving the light source 3, the condenser lens 23, and the light entrance 4 along the inclined film thickness filter 22g. Is switched.
[0035]
When a plurality of light sources (for example, the LEDs 3a to 3d described above) that output light of different wavelengths are used as the light source 3, the light source or the light introduction port 4 is moved to introduce the light of these light sources into the light introduction port 4. Instead, light introducing means such as a diffraction grating device 30 shown in FIGS. 22 and 23, an optical fiber 31, a combination of an optical fiber 31 and an optical coupler 32, an optical waveguide 33 for photosynthesis, and optical lenses 34 and 35 are provided. May be used. When an ultra-small light source 3 can be used, each light source may be directly opposed to the light inlet 4 as shown in FIG. However, when these devices are used, a plurality of light sources that output light of different wavelengths are sequentially emitted as the light source 3 so that only light of a required wavelength reaches the light inlet 4.
[0036]
When a plurality of light sources that output light of different wavelengths are used as the light source 3 and it is desired to continuously light these light sources to stabilize the output (including the case where the demultiplexing shown in FIG. 21 is performed), As shown in FIG. 25, a shutter 35 that transmits light of a required wavelength and blocks light of other wavelengths is used, or as shown in FIG. 26, an optical switch that operates by switching the angle of a fine reflecting mirror. It is sufficient that only light having a necessary wavelength is sent to the light inlet 4 using the light emitting device 36. Of course, the light emission of the light source 3 may be sequentially switched in accordance with the operation of the shutter 35 and the optical switch 36.
[0037]
By the way, at present, it is necessary to use an expensive InGaAs-type element requiring cooling as the light receiving element 12 in view of the amount of received light. However, if an ultra-high brightness light source is developed, a general-purpose red light source is required. An inexpensive and small-sized electronic circuit using an external photodiode or an infrared phototransistor can be realized. In addition, the use of an optical waveguide, an optical switch, and the like due to the improvement of the microfabrication technology enables further miniaturization and power saving.
[0038]
【The invention's effect】
As described above, in the present invention, instead of spectrally analyzing the light received by irradiating the whole light of the near-infrared light, instead of sequentially irradiating light of a plurality of different wavelengths and receiving light, the light source Along with miniaturization and low power consumption, there is no need for a spectroscopic device on the light-receiving side, and a single-element light-receiving element may be used for light reception, and no multi-channel light-receiving means is required. It can be ultra-compact, lightweight and low power.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an example of an embodiment of the present invention.
FIGS. 2A and 2B show an example of the above optical fiber bundle, wherein FIG. 2A is an end view of a probe tip, FIG. 2B is an end view of a light exit port, and FIG.
FIG. 3 is an end view of a probe tip in another example of the same optical fiber bundle.
FIG. 4 is a flowchart of the above operation.
FIG. 5 is a flowchart of the above operation.
FIG. 6 is a flowchart of the above operation.
FIG. 7 is a block diagram of another example.
FIGS. 8A and 8B are end views of the same optical fiber.
FIG. 9 is a block diagram of still another example.
FIG. 10 is a block diagram of another example.
FIG. 11 is a flowchart of the above operation.
FIG. 12 is a flowchart of the above operation.
FIG. 13 is a flowchart of the above operation.
FIG. 14 is a block diagram of still another example.
FIG. 15 is a block diagram of an example in which a wavelength variable laser is used as a light source.
FIG. 16 is a block diagram of an example using a light source and wavelength selection means.
FIG. 17 is a front view of an example of a wavelength selection unit.
FIG. 18 is a perspective view of another example of the wavelength selection means.
FIG. 19 is a perspective view of another example of the wavelength selection means.
FIG. 20 is a perspective view of still another example of the wavelength selection means.
FIGS. 21A and 21B are cross-sectional views of another example of a light source.
FIGS. 22A to 22C are cross-sectional views showing examples of light introducing means.
FIGS. 23A and 23B are cross-sectional views each showing an example of light introducing means.
24A and 24B are a side view and a front view showing another example of the light source.
FIG. 25 is a cross-sectional view of an example including a shutter.
FIGS. 26A and 26B are cross-sectional views of examples provided with optical switches, respectively.
FIG. 27 is a block diagram of a conventional example.
[Explanation of symbols]
3 light source 7 probe 8 subject 12 light receiving element 14 calculation means

Claims (18)

生体成分を非侵襲で定量する光学的装置であって、近赤外波長域1000nm〜2500nmの中の異なる複数の波長の光を順次被検体に照射する照射手段と、被検体からの反射光もしくは被検体を透過した透過光を受光する受光手段と、受光手段で得られた前記波長毎の吸光度から演算処理して生体成分濃度を算出する演算手段とからなることを特徴とする非侵襲型生体成分の定量装置。An optical device for non-invasively quantifying a biological component, comprising: an irradiation unit that sequentially irradiates a subject with light having a plurality of different wavelengths in a near-infrared wavelength range of 1000 nm to 2500 nm; A non-invasive living body, comprising: light receiving means for receiving transmitted light transmitted through a subject; and arithmetic means for calculating a biological component concentration by performing arithmetic processing on the absorbance for each wavelength obtained by the light receiving means. Component quantification device. 照射手段は異なる波長の光を出力する複数の光源を備えていることを特徴とする請求項1記載の非侵襲型生体成分の定量装置The non-invasive biological component quantification device according to claim 1, wherein the irradiation means includes a plurality of light sources that output light of different wavelengths. 照射手段は波長可変レーザを光源として備えていることを特徴とする請求項1記載の非侵襲型生体成分の定量装置2. A non-invasive biological component quantifying apparatus according to claim 1, wherein the irradiating means includes a variable wavelength laser as a light source. 照射手段は近赤外波長域1000nm〜2500nmをカバーする光源と、該光源からの複数の特定波長を取り出す波長選択手段とを備えていることを特徴とする請求項1記載の非侵襲型生体成分の定量装置。2. The non-invasive biological component according to claim 1, wherein the irradiating means includes a light source covering a near infrared wavelength range of 1,000 nm to 2500 nm, and a wavelength selecting means for extracting a plurality of specific wavelengths from the light source. Quantitative device. 波長選択手段が波長可変フィルタであることを特徴とする請求項4記載の非侵襲型生体成分の定量装置。5. The non-invasive biological component quantitative device according to claim 4, wherein the wavelength selecting means is a variable wavelength filter. 波長可変フィルタが傾斜膜厚フィルタであることを特徴とする請求項5記載の非侵襲型生体成分の定量装置。6. The non-invasive biological component quantification device according to claim 5, wherein the wavelength variable filter is a gradient film thickness filter. 波長選択手段が光学デバイスであることを特徴とする請求項4記載の非侵襲型生体成分の定量装置。5. The apparatus according to claim 4, wherein the wavelength selecting means is an optical device. 前記照射手段は異なる波長の光を出力するとともに順次発光する複数の光源と、これら光源からの光を被検体への照射用プローブに導く導光手段とからなることを特徴とする請求項1または2記載の非侵襲型生体成分の定量装置。2. The light emitting device according to claim 1, wherein the irradiating means includes a plurality of light sources that output light of different wavelengths and emit light sequentially, and a light guiding unit that guides light from these light sources to a probe for irradiating an object. 3. The non-invasive biological component quantification device according to 2. 導光手段は回折光学デバイスであることを特徴とする請求項8記載の非侵襲型生体成分の定量装置。9. The non-invasive apparatus for quantifying a biological component according to claim 8, wherein the light guiding means is a diffractive optical device. 導光手段は光導波路であることを特徴とする請求項8記載の非侵襲型生体成分の定量装置。9. The non-invasive apparatus for quantifying a biological component according to claim 8, wherein the light guiding means is an optical waveguide. 前記照射手段は異なる波長の光を出力する光源と、これら光源からの光を被検体への照射用プローブに選択的に導く切換手段とからなることを特徴とする請求項1または2記載の非侵襲型生体成分の定量装置。3. The non-illuminating device according to claim 1, wherein said irradiating means comprises a light source for outputting light of different wavelengths, and a switching means for selectively guiding light from these light sources to a probe for irradiating an object. Quantitative device for invasive biological components. 照射手段は近赤外波長域1000nm〜2500nmをカバーする光源と、該光源からの複数の特定の波長を取り出す波長選択手段と、波長選択手段を経た光を被検体への照射用プローブに選択的に導く切換手段とからなることを特徴とする請求項1または4記載の非侵襲型生体成分の定量装置。The irradiating means is a light source covering a near-infrared wavelength range of 1000 nm to 2500 nm, a wavelength selecting means for extracting a plurality of specific wavelengths from the light source, and a probe for irradiating the object with light passing through the wavelength selecting means. 5. The non-invasive biological component quantification device according to claim 1, further comprising switching means for guiding the flow. 切換手段は、光源側とプローブ側の少なくとも一方を移動させて光源側とプローブ側の対向位置を切り換えるものであることを特徴とする請求項11または12記載の非侵襲型生体成分の定量装置。13. The noninvasive biological component quantification device according to claim 11, wherein the switching means switches at least one of the light source side and the probe side to switch the opposing position between the light source side and the probe side. 切換手段は必要とする波長の光を透過し且つ他の波長の光は遮断するシャッターであることを特徴とする請求項11または12記載の非侵襲型生体成分の定量装置。13. The non-invasive apparatus for quantifying a biological component according to claim 11, wherein the switching means is a shutter that transmits light of a required wavelength and blocks light of another wavelength. 切換手段は必要とする波長の光を透過し且つ他の波長の光は遮断する光スイッチであることを特徴とする請求項11または12記載の非侵襲型生体成分の定量装置。13. The noninvasive biological component quantifying device according to claim 11, wherein the switching means is an optical switch that transmits light of a required wavelength and blocks light of another wavelength. 各波長の光を被検体を経ることなく受光装置に導く参照光導光手段を備えて、演算手段は参照光と被検体を経た光とから算出した吸光度を基に生体成分濃度を算出するものであることを特徴とする請求項1〜15のいずれかの項に記載の非侵襲型生体成分の定量装置。Reference light guiding means for guiding the light of each wavelength to the light receiving device without passing through the subject is provided, and the calculating means calculates a biological component concentration based on the absorbance calculated from the reference light and the light passing through the subject. The non-invasive biological component quantification device according to any one of claims 1 to 15, wherein: 定量を目的とする生体成分がグルコースであり、照射手段は被検体表面に当接される測定用プローブを備えるとともに、該測定用プローブは被検体に投光する投光部と被検体からの反射光もしくは被検体を透過した透過光を受光する受光部とが中心間距離0.2mm〜2.0mmで配置されていることを特徴とする請求項1〜16のいずれかの項に記載の非侵襲型生体成分の定量装置。The biological component for the purpose of quantification is glucose, and the irradiating means includes a measuring probe that is in contact with the surface of the subject, and the measuring probe is configured to emit light to the subject and reflect light from the subject. The non-light-receiving device according to any one of claims 1 to 16, wherein the light or a light-receiving portion that receives light transmitted through the subject is arranged at a center-to-center distance of 0.2 mm to 2.0 mm. Quantitative device for invasive biological components. 生体成分を非侵襲で定量する光学的非侵襲型生体成分の定量方法であって、近赤外波長域1000nm〜2500nmの中の異なる複数の波長の光を順次被検体に照射し、被検体からの反射光もしくは被検体を透過した透過光を受光手段に導くとともに、各波長の光を被検体を経ることなく受光手段に導いて、受光手段で得られた前記波長毎の吸光度から演算処理して生体成分濃度を算出することを特徴とする非侵襲型生体成分の定量方法。An optically non-invasive method for quantifying a biological component in a non-invasive manner, comprising sequentially irradiating a subject with light having a plurality of different wavelengths in a near-infrared wavelength range of 1,000 nm to 2500 nm. The reflected light or transmitted light transmitted through the subject is guided to the light receiving means, and light of each wavelength is guided to the light receiving means without passing through the subject, and arithmetic processing is performed from the absorbance for each wavelength obtained by the light receiving means. A method for quantifying a non-invasive biological component, comprising:
JP2002313456A 2002-10-28 2002-10-28 Apparatus and method for determining non-invasive biomedical component Pending JP2004147706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313456A JP2004147706A (en) 2002-10-28 2002-10-28 Apparatus and method for determining non-invasive biomedical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313456A JP2004147706A (en) 2002-10-28 2002-10-28 Apparatus and method for determining non-invasive biomedical component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009170282A Division JP2009233404A (en) 2009-07-21 2009-07-21 Non-invasive type quantifying instrument of biological component

Publications (1)

Publication Number Publication Date
JP2004147706A true JP2004147706A (en) 2004-05-27

Family

ID=32458082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313456A Pending JP2004147706A (en) 2002-10-28 2002-10-28 Apparatus and method for determining non-invasive biomedical component

Country Status (1)

Country Link
JP (1) JP2004147706A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000016A (en) * 2004-06-15 2006-01-05 Fujitsu Ltd Substance injection apparatus and substance injection method
JP2008261842A (en) * 2007-02-21 2008-10-30 F Hoffmann La Roche Ag Apparatus for emitting and detecting beam of light
JP2012105809A (en) * 2010-11-17 2012-06-07 Fujitsu Ltd Biological component measuring device and biological component measuring method
US9322772B2 (en) 2012-05-31 2016-04-26 Ge Healthcare Bio-Sciences Ab Methods and apparatus for measuring the light absorbance of a substance in a solution
JP2016198127A (en) * 2015-04-07 2016-12-01 富士電機株式会社 Light source device
KR20180001945A (en) * 2016-06-28 2018-01-05 한국과학기술연구원 Apparatus and method for measuring water pollution based on multi-wavelength light source
CN110857922A (en) * 2018-08-24 2020-03-03 塞米西斯科株式会社 Engineering system, switching module therefor, and method of controlling the engineering system
CN111670356A (en) * 2018-02-02 2020-09-15 三菱电机株式会社 Biological substance measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000016A (en) * 2004-06-15 2006-01-05 Fujitsu Ltd Substance injection apparatus and substance injection method
JP4504110B2 (en) * 2004-06-15 2010-07-14 富士通株式会社 Substance injection apparatus and substance injection method
JP2008261842A (en) * 2007-02-21 2008-10-30 F Hoffmann La Roche Ag Apparatus for emitting and detecting beam of light
JP2012105809A (en) * 2010-11-17 2012-06-07 Fujitsu Ltd Biological component measuring device and biological component measuring method
US9322772B2 (en) 2012-05-31 2016-04-26 Ge Healthcare Bio-Sciences Ab Methods and apparatus for measuring the light absorbance of a substance in a solution
JP2016198127A (en) * 2015-04-07 2016-12-01 富士電機株式会社 Light source device
KR20180001945A (en) * 2016-06-28 2018-01-05 한국과학기술연구원 Apparatus and method for measuring water pollution based on multi-wavelength light source
KR101866922B1 (en) * 2016-06-28 2018-06-15 한국과학기술연구원 Apparatus and method for measuring water pollution based on multi-wavelength light source
CN111670356A (en) * 2018-02-02 2020-09-15 三菱电机株式会社 Biological substance measuring device
CN110857922A (en) * 2018-08-24 2020-03-03 塞米西斯科株式会社 Engineering system, switching module therefor, and method of controlling the engineering system

Similar Documents

Publication Publication Date Title
JP5982364B2 (en) Apparatus and method for identifying and monitoring components or characteristics of a measurement medium, in particular physiological blood values
US7613487B2 (en) Instrument for noninvasively measuring blood sugar level
KR101243183B1 (en) Apparatus for measurement of autofluorescence of advanced glycation end products
JP5642223B2 (en) Reflected light detection type skin fluorescence measuring device
US20060167347A1 (en) Composite spectral measurement method and its spectral detection instrument
US8594758B2 (en) Transmission fluorometer
KR101410739B1 (en) Transmitted light detection type measurement apparatus for skin autofluorescence
JP5739927B2 (en) Transmitted light detection type skin fluorescence measurement device
US8597208B2 (en) Method and apparatus for measuring analytes
EP0290275A1 (en) Examination apparatus for measuring oxygenation
JP2004147706A (en) Apparatus and method for determining non-invasive biomedical component
JP2023550206A (en) Raman probes and apparatus and methods for non-invasive in vivo measurement of analyte presence or concentration
US20060211926A1 (en) Non-invasive Raman measurement apparatus with broadband spectral correction
JP2009233404A (en) Non-invasive type quantifying instrument of biological component
KR101444730B1 (en) Transmitted light detection type measurement apparatus for skin autofluorescence
JP4325179B2 (en) Non-invasive biological component quantification device
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
US9723990B2 (en) Transmitted light detection type measurement apparatus for skin autofluorescence
JP4483052B2 (en) Noninvasive blood glucose meter
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
JP2005192612A (en) Glucose concentration measuring apparatus
KR20100037543A (en) Optical measurement application early diagnosis system and method thereof
JP2005296488A (en) Photodetector and glucose concentration measuring device
JP2005192611A (en) Glucose concentration measuring apparatus
JP2005300451A (en) Light irradiation device and glucose concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006