JP2012105456A - Non-contact power supply system - Google Patents

Non-contact power supply system Download PDF

Info

Publication number
JP2012105456A
JP2012105456A JP2010251918A JP2010251918A JP2012105456A JP 2012105456 A JP2012105456 A JP 2012105456A JP 2010251918 A JP2010251918 A JP 2010251918A JP 2010251918 A JP2010251918 A JP 2010251918A JP 2012105456 A JP2012105456 A JP 2012105456A
Authority
JP
Japan
Prior art keywords
power
primary coil
transmission device
power transmission
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010251918A
Other languages
Japanese (ja)
Inventor
Yasunori Nakabo
保則 中坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010251918A priority Critical patent/JP2012105456A/en
Publication of JP2012105456A publication Critical patent/JP2012105456A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply system capable of preventing, in a simple configuration, electric power beyond a power capacity of a power receiver from being supplied from a power transmitter to the power receiver, for a plurality of types of power receivers having different power capacities.SOLUTION: The non-contact power supply system comprises: a power transmitter, having a primary coil, to receive electric power from the outside and to provide the primary coil with AC power; and a power receiver detachably connected to the power transmitter. The power receiver comprises; a secondary coil to supply a load with electric power induced through electromagnetic coupling with the primary coil when connected with the power transmitter; and a protrusion, having an insertion length corresponding to an amount of a power capacity of the power receiver, inserted into the power transmitter when the power transmitter and the power receiver are connected. The power transmitter comprises: an elastic member compressed by the protrusion when connected with the power receiver; a pressure detector to detect pressure of the elastic member; a current detector to detect an input current from the outside to the power transmitter; and a control unit to stop power supply to the primary coil when an input current exceeds a current threshold corresponding to a detected pressure.

Description

この発明は非接触給電システムに関する。   The present invention relates to a non-contact power feeding system.

この発明の背景技術としては、給電ヘッドから受電ヘッドへ非接触で給電する装置において、結合トランスの1次コアと2次コアを個々に分離可能となし、給電ヘッドと受電ヘッドに1次コアと2次コアをそれぞれ設け、1次コアと2次コアはそれぞれに巻回される1次巻線と2次巻線を有し、1次巻線に流れる電流の検出手段と、1次巻線に流れる電流が過電流となったときに1次巻線へ供給する電流を停止する過電流保護回路とを給電ヘッド側に備えた非接触給電装置が知られている(例えば、特許文献1参照)。   As a background art of the present invention, in a device that feeds power from a power feeding head to a power receiving head in a non-contact manner, the primary core and secondary core of the coupling transformer can be individually separated, and the power feeding head and the power receiving head have a primary core. A secondary core is provided, and the primary core and the secondary core each have a primary winding and a secondary winding wound around the primary core and the secondary core, and means for detecting current flowing in the primary winding and the primary winding There is known a non-contact power feeding device that includes an overcurrent protection circuit on the power feeding head side that stops a current supplied to the primary winding when the current flowing through the coil becomes an overcurrent (see, for example, Patent Document 1). ).

また、結合トランスの1次側と2次側を個別に収容して、相互に分離可能に構成してなる1次側ユニットと2次側ユニットを具備し、前記1次側ユニットから2次側ユニットへ電磁誘導作用を利用して非接触で電力を供給する電源装置において、前記2次側ユニットが、前記結合トランスの2次側における電圧および電流に関する信号を外部へ無線送信する送信手段を備え、前記1次側ユニットが、無線送信された前記信号を受信して、この信号を基に1次側ユニットの駆動を制御する受信手段を具備した非接触給電装置も知られている(例えば、特許文献2参照)。   In addition, the primary side and the secondary side of the coupling transformer are individually accommodated and configured to be separable from each other, and the primary side unit and the secondary side unit are provided. In the power supply apparatus for supplying electric power to the unit in a non-contact manner using electromagnetic induction, the secondary unit includes transmission means for wirelessly transmitting signals relating to the voltage and current on the secondary side of the coupling transformer to the outside. There is also known a non-contact power feeding device including a receiving unit that receives the signal transmitted wirelessly by the primary unit and controls driving of the primary unit based on the signal (for example, Patent Document 2).

特開2001−268823号公報JP 2001-268823 A 特開2004−153879公報JP 2004-153879 A

しかしながら、1次巻線の電流を検出することによって過電流を保護する回路を給電ヘッド側に備えた前記のような装置では、電力容量の異なる複数種類の受電ヘッドを選択的に接続する場合、過電流保護回路が作動する電流の値を受電ヘッド側の電力容量に対応して設定できないという問題がある。   However, in the above-described device provided with a circuit for protecting the overcurrent by detecting the current of the primary winding on the power feeding head side, when a plurality of types of power receiving heads having different power capacities are selectively connected, There is a problem that the value of the current at which the overcurrent protection circuit is activated cannot be set corresponding to the power capacity on the power receiving head side.

また、2次側ユニット側の電流や電圧を1次側ユニットへ無線送信する前記のような装置では、2次側ユニットに通信手段及び電圧・電流検出手段を設ける必要があり、回路が複雑になる上、2次側ユニットのサイズが大きくなるという問題がある。   In addition, in the above-described device that wirelessly transmits the current and voltage on the secondary unit side to the primary unit, it is necessary to provide communication means and voltage / current detection means on the secondary unit, which complicates the circuit. Moreover, there is a problem that the size of the secondary unit becomes large.

この発明は、このような事情を考慮してなされたもので、回路構成が簡単で、2次側ユニット(受電装置)の電力容量に対応して1次側ユニット(送電装置)への最大1次入力電流が自動的に設定され、その設定値を1次入力電流が超えると2次側ユニットへの給電が停止される非接触給電システムを提供するものである。   The present invention has been made in consideration of such circumstances, has a simple circuit configuration, and corresponds to the power capacity of the secondary side unit (power receiving device) up to 1 to the primary side unit (power transmission device). A non-contact power supply system is provided in which the secondary input current is automatically set and power supply to the secondary unit is stopped when the primary input current exceeds the set value.

この発明は、1次コイルを有し外部から電力を受電して1次コイルに交流電力を供給する送電装置と、送電装置に離脱可能に結合される受電装置とを備え、受電装置は、送電装置との結合時に1次コイルと電磁結合して誘起された電力を負荷に供給する2次コイルと、送電装置と受電装置との結合時に送電装置に挿入され受電装置の電力容量の大きさに対応する挿入長さを有する突出部とを備え、送電装置は、受電装置との結合時に突出部により圧縮される弾性部材と、弾性部材の圧力を検出する圧力検出器と、外部から送電装置への入力電流を検出する電流検出器と、入力電流が検出圧力に対応する電流しきい値を超えるとき1次コイルへの給電を停止する制御部とを備える非接触給電システムを提供するものである。   The present invention includes a power transmission device that has a primary coil, receives power from the outside, and supplies AC power to the primary coil; and a power reception device that is detachably coupled to the power transmission device. A secondary coil that supplies an electric power induced by electromagnetic coupling with the primary coil when coupled to the device to the load, and a power capacity of the power receiving device that is inserted into the power transmitting device when coupled with the power transmitting device and the power receiving device. A power transmission device including an elastic member that is compressed by the protrusion when coupled to the power receiving device, a pressure detector that detects a pressure of the elastic member, and an external device to the power transmission device. A non-contact power feeding system is provided that includes a current detector that detects the input current and a control unit that stops power feeding to the primary coil when the input current exceeds a current threshold corresponding to the detected pressure. .

この発明によれば、受電装置の電力容量が、突出部の長さに対応する弾性部材の圧縮圧力として圧力検出器により検出され、送電装置への入力電流が受電装置の電力容量に対応する電流しきい値を超えるとき、1次コイルへの給電が停止されるので、簡単な構成で、受電装置はその電力容量に応じた電力を安全に受電することができる。   According to the present invention, the power capacity of the power receiving device is detected by the pressure detector as the compression pressure of the elastic member corresponding to the length of the protruding portion, and the input current to the power transmitting device corresponds to the current corresponding to the power capacity of the power receiving device. Since power supply to the primary coil is stopped when the threshold value is exceeded, the power receiving device can safely receive power corresponding to the power capacity with a simple configuration.

この発明の非接触給電システムの電気回路図である。It is an electric circuit diagram of the non-contact electric power feeding system of this invention. 送電装置の送電側コアを示す斜視図である。It is a perspective view which shows the power transmission side core of a power transmission apparatus. 1次コイルを巻回した1次側ボビンを図2に示す送電側コアに装着した状態を示す斜視図である。It is a perspective view which shows the state with which the primary side bobbin which wound the primary coil was mounted | worn with the power transmission side core shown in FIG. 2次コイルを巻回した2次側ボビンを受電装置の受電側コアに固定した状態を示す斜視図である。It is a perspective view which shows the state which fixed the secondary side bobbin which wound the secondary coil to the power receiving side core of a power receiving apparatus. 1次コイルと2次コイルの結合関係を示す上面図である。It is a top view which shows the coupling relationship of a primary coil and a secondary coil. 図5のA−A矢視断面図である。It is AA arrow sectional drawing of FIG. 図5のB−B矢視断面図である。It is BB arrow sectional drawing of FIG. 送電装置と受電装置の結合部材の構成を示す説明図である。It is explanatory drawing which shows the structure of the coupling member of a power transmission apparatus and a power receiving apparatus. 送電装置と受電装置の結合部材の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the coupling member of a power transmission apparatus and a power receiving apparatus.

この発明の非接触給電システムは、1次コイルを有し外部から電力を受電して1次コイルに交流電力を供給する送電装置と、送電装置に離脱可能に結合される受電装置とを備え、受電装置は送電装置との結合時に1次コイルと電磁結合して誘起された電力を負荷に供給する2次コイルと、送電装置と受電装置との結合時に送電装置に挿入され受電装置の電力容量の大きさに対応する挿入長さを有する突出部を備え、送電装置は、受電装置との結合時に突出部により圧縮される弾性部材と、弾性部材の圧縮圧力を検出する圧力検出器と、外部から送電装置への入力電流を検出する電流検出器と、入力電流が検出圧力に対応する電流しきい値を超えるとき1次コイルへの給電を停止する制御部とからなることを特徴とする。   A non-contact power feeding system of the present invention includes a power transmission device that has a primary coil, receives power from the outside, and supplies AC power to the primary coil, and a power reception device that is detachably coupled to the power transmission device, The power reception device is inserted into the power transmission device when the power transmission device and the power reception device are coupled, and the secondary coil that supplies the load with the secondary coil that is electromagnetically coupled with the primary coil when the power reception device is coupled. The power transmission device includes an elastic member that is compressed by the protrusion when coupled to the power receiving device, a pressure detector that detects the compression pressure of the elastic member, and an external device. A current detector that detects an input current to the power transmission device, and a control unit that stops power supply to the primary coil when the input current exceeds a current threshold value corresponding to the detected pressure.

送電装置は外部から受電した電力を交流電力に変換して1次コイルに供給する発振回路を備え、制御部は、前記電流しきい値を記憶する記憶部と、記憶部から電流しきい値を読み出して電流検出器の検出電流が電流しきい値を超えた時に発振回路の出力を停止させる制御回路とを備えてもよい。   The power transmission device includes an oscillation circuit that converts electric power received from the outside into AC power and supplies it to the primary coil, and the control unit stores the current threshold value, and stores the current threshold value from the storage unit. And a control circuit that stops the output of the oscillation circuit when the current detected by the current detector exceeds the current threshold value.

前記記憶部は異なる検出圧力に対する電流しきい値を表すテーブルを備え、前記制御回路は圧力検出器の検出圧力に基づいてそのテーブルから電流しきい値を読み出すようにしてもよい。   The storage unit may include a table representing current threshold values for different detected pressures, and the control circuit may read the current threshold values from the table based on the detected pressure of the pressure detector.

受電装置は2次コイルを巻回するボビンを備え、そのボビンが前記突出部を形成することが好ましいが、他の部材で前記突出部を構成してもよい。   The power receiving device includes a bobbin that winds the secondary coil, and the bobbin preferably forms the protruding portion. However, the protruding portion may be configured by another member.

制御回路は、圧力検出器が何らかの圧力を検出したときに発振回路を出力させる機能を備えてもよい。   The control circuit may have a function of outputting an oscillation circuit when the pressure detector detects some pressure.

送電装置が第1コアを有し、受電装置が第2コアを有し、送電装置と受電装置との結合時に、第1コアと第2コアによって変圧器用コアが形成され、かつ、変圧器用コアに1次および2次コイルが巻回された変圧器が構成されてもよい。
送電装置は受電装置との対向面にロック部材係止孔を備え、受電装置はそれぞれ対応する位置にロック部材を備えてもよい。更に、受電装置が送電装置に完全に結合(ロック)された状態以外では弾性部材の反発力により受電装置を送電装置から排出するように弾性部材を備えてもよい。この場合、受電装置と送電装置の結合が不十分な状態での給電を防止することができる。
The power transmission device has a first core, the power reception device has a second core, and when the power transmission device and the power reception device are coupled, a transformer core is formed by the first core and the second core, and the transformer core A transformer in which a primary coil and a secondary coil are wound around each other may be configured.
The power transmission device may include a lock member locking hole on a surface facing the power reception device, and the power reception device may include a lock member at a corresponding position. Further, an elastic member may be provided so that the power receiving device is discharged from the power transmitting device by the repulsive force of the elastic member except when the power receiving device is completely coupled (locked) to the power transmitting device. In this case, power feeding in a state where the power receiving device and the power transmitting device are not sufficiently coupled can be prevented.

以下、図面に示す実施形態を用いて、この発明を詳述する。
図1はこの発明の非接触給電システムの電気回路図である。
図1に示すように、この発明の非接触給電システムは、送電装置1と受電装置2とを備える。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIG. 1 is an electric circuit diagram of the contactless power feeding system of the present invention.
As shown in FIG. 1, the non-contact power feeding system of the present invention includes a power transmitting device 1 and a power receiving device 2.

送電装置1は、直流電源16からの直流電圧を交流電圧に変換する発振回路(DC/ACコンバータ)11と、変換された交流電圧が印加される1次コイル10と、1次コイル10が巻回される送電側コア(鉄心)18と、発振回路11を制御する制御回路12と、送電装置1に受電装置2が挿入(結合)された際に押圧される弾性部材(後述)の圧力を検出するための圧力検出器14と、送電装置1への入力電流を検出するための電流検出器15と、給電を停止する電流しきい値を記憶する記憶部13とを備える。
直流電源16は太陽光発電装置、風力発電装置または燃料電池のような発電型直流電源、またはそれらの交流電源の電圧を直流電力変換機により所定の電圧に安定化された安定化型直流電源、または商用系統より取得した交流電源を整流し、直流に変換された交流電源変換型直流電源である。
The power transmission device 1 includes an oscillation circuit (DC / AC converter) 11 that converts a DC voltage from a DC power supply 16 into an AC voltage, a primary coil 10 to which the converted AC voltage is applied, and a primary coil 10 wound. The pressure of a rotating power transmission side core (iron core) 18, a control circuit 12 that controls the oscillation circuit 11, and an elastic member (described later) that is pressed when the power reception device 2 is inserted (coupled) into the power transmission device 1. A pressure detector 14 for detecting, a current detector 15 for detecting an input current to the power transmission device 1, and a storage unit 13 for storing a current threshold value for stopping power feeding are provided.
The DC power source 16 is a power generation type DC power source such as a solar power generation device, a wind power generation device or a fuel cell, or a stabilized DC power source in which the voltage of the AC power source is stabilized to a predetermined voltage by a DC power converter, Alternatively, it is an AC power source conversion type DC power source obtained by rectifying an AC power source acquired from a commercial system and converting it to DC.

受電装置2は、1次コイル10と電磁的に結合して電力を受電するための2次コイル20と、電磁誘導により2次コイル20に誘起された交流電圧を直流電圧に変換する整流回路21と、変換された直流電圧を平滑して負荷(電気機器)3に印加するコンデンサ22と、送電装置1に受電装置2が結合した時に1次コイル10と2次コイル20を電磁結合させるための磁路を形成する受電側コア23とを備える。
負荷3にはパソコン、携帯電話、またはPDAなど直流機器を用いるが、DC/AC変換器により交流に変換することにより、冷蔵庫、洗濯機、テレビ、エアコン、複写機、またはファクシミリのような交流機器を用いることが可能である。勿論、冷蔵庫、洗濯機、テレビ、エアコン、複写機、またはファクシミリが直流電源により動作する場合は、電圧変換して負荷としてもよい。
The power receiving device 2 includes a secondary coil 20 that electromagnetically couples with the primary coil 10 to receive power, and a rectifier circuit 21 that converts an AC voltage induced in the secondary coil 20 by electromagnetic induction into a DC voltage. And a capacitor 22 for smoothing the converted DC voltage and applying it to the load (electrical device) 3, and for electromagnetically coupling the primary coil 10 and the secondary coil 20 when the power receiving device 2 is coupled to the power transmitting device 1. And a power receiving side core 23 that forms a magnetic path.
The load 3 uses a DC device such as a personal computer, a mobile phone, or a PDA, but it is converted into AC by a DC / AC converter, so that an AC device such as a refrigerator, a washing machine, a TV, an air conditioner, a copier, or a facsimile machine is used. Can be used. Of course, when a refrigerator, a washing machine, a television, an air conditioner, a copier, or a facsimile machine is operated by a DC power source, the voltage may be converted into a load.

発振回路11は、トランジスタQA,QBと、ダイオードDA,DBと、コンデンサCA,CBとからなるハーフブリッジ式のコンバータ11aと、パルス信号を発生してトランジスタQA,QBをON/OFFさせるパルス発生器11bを備える。   The oscillation circuit 11 includes a half-bridge converter 11a including transistors QA and QB, diodes DA and DB, and capacitors CA and CB, and a pulse generator that generates a pulse signal to turn the transistors QA and QB on / off. 11b.

パルス発生器11bは数十kHzの高周波パルスを発生し、制御回路12から信号を受けるとパルス周期に対するON期間の比、つまりデューティ比を変化させ、コンバータ11aの出力する交流電圧を制御するようになっている。   The pulse generator 11b generates a high frequency pulse of several tens of kHz, and upon receiving a signal from the control circuit 12, changes the ratio of the ON period to the pulse period, that is, the duty ratio, and controls the AC voltage output from the converter 11a. It has become.

図2は、送電側コア18を示す斜視図、図3は送電側コア18に装着された1次コイル10を示す斜視図である。図2に示すように送電側コア18は円柱状の中央コア18a及び外周コア18bを備え、図3に示すように1次コイル10を巻回した1次コイルボビン19が中央コア18aに同芯に装着されている。
一方、受電側コア23には、図4,図6に示すように、2次コイルボビン25に巻回された2次コイル20が、2次コイルカバー24に覆われて固定されている。
FIG. 2 is a perspective view showing the power transmission side core 18, and FIG. 3 is a perspective view showing the primary coil 10 attached to the power transmission side core 18. As shown in FIG. 2, the power transmission side core 18 includes a cylindrical central core 18a and an outer peripheral core 18b, and the primary coil bobbin 19 around which the primary coil 10 is wound is concentric with the central core 18a as shown in FIG. It is installed.
On the other hand, as shown in FIGS. 4 and 6, the secondary coil 20 wound around the secondary coil bobbin 25 is covered and fixed to the power receiving side core 23 by the secondary coil cover 24.

図5は送電装置1に受電装置2が挿入(結合)された場合の1次コイル10と2次コイル20との結合関係を示す上面図、図6は図5のA−A矢視断面図、図7は図5のB−B矢視断面図である。   FIG. 5 is a top view showing a coupling relationship between the primary coil 10 and the secondary coil 20 when the power receiving device 2 is inserted (coupled) into the power transmitting device 1, and FIG. 6 is a cross-sectional view taken along the line AA in FIG. 7 is a cross-sectional view taken along the line BB in FIG.

送電装置1に受電装置2が結合された時には、図6に示すように、送電側コア18と受電側コア23とによって閉磁路が形成され、中央コア18aに1次コイル10と2次コイル20とが巻回された変圧器が構成される。
本実施形態においては、送電側コア18と受電側コア23の形状を所謂PQI形状としているが、本発明におけるコアの形状はこれに限るものではなく、EIR形状、EI形状でもよい。
When the power receiving device 2 is coupled to the power transmitting device 1, as shown in FIG. 6, a closed magnetic circuit is formed by the power transmitting side core 18 and the power receiving side core 23, and the primary coil 10 and the secondary coil 20 are formed in the central core 18a. A transformer is constructed in which and are wound.
In the present embodiment, the shape of the power transmission side core 18 and the power reception side core 23 is a so-called PQI shape, but the shape of the core in the present invention is not limited to this, and may be an EIR shape or an EI shape.

図5,図6に示すように、送電装置1は、圧力検出器14と、2次コイルボビン25の先端に当接してボビン25の長手方向(矢印X1,X2方向)に移動可能に支持されたπ字形の移動部材31と、圧力検出器14と移動部材31との間に保持され、移動部材31を矢印X1方向に付勢するコイルスプリング32とを備える。   As shown in FIGS. 5 and 6, the power transmission device 1 is supported so as to be able to move in the longitudinal direction of the bobbin 25 (arrows X <b> 1 and X <b> 2) while contacting the pressure detector 14 and the tip of the secondary coil bobbin 25. A π-shaped moving member 31 and a coil spring 32 that is held between the pressure detector 14 and the moving member 31 and biases the moving member 31 in the arrow X1 direction.

送電装置1には、電力容量(受電能力)の異なる複数種類の受電装置2が選択的に結合可能であり、受電装置2はその受電能力に応じてサイズが定められるため受電能力が小さい場合にはその軽量化が可能となる。また、受電装置2は2次コイル20の巻数を変更することにより、出力電圧を調整して機器側に最適な電圧を供給できる。ここで、受電装置2のサイズは、受電装置2に設けられた突出部の受電装置2の電力容量に対応する突出長さで表すようにしている。   A plurality of types of power receiving devices 2 having different power capacities (power receiving capabilities) can be selectively coupled to the power transmitting device 1, and the size of the power receiving device 2 is determined according to the power receiving capability, so that the power receiving capability is small. Can be reduced in weight. Moreover, the power receiving apparatus 2 can adjust the output voltage by changing the number of turns of the secondary coil 20, and can supply the optimal voltage to the apparatus side. Here, the size of the power receiving device 2 is represented by a protruding length corresponding to the power capacity of the power receiving device 2 of the protruding portion provided in the power receiving device 2.

この実施形態では、2次コイル20を巻回した2次コイルボビン25がその突出部を形成し、受電装置2のサイズとは2次コイルボビン25の突出長さ、つまり、送電装置1への挿入長さL(図6)を意味する。従って、電力容量(受電能力)が高い受電装置2の2次コイルボビン25は挿入長さLが長く、電力容量が低い受電装置2の2次コイルボビン25は挿入長さLが短くなる。   In this embodiment, the secondary coil bobbin 25 around which the secondary coil 20 is wound forms the protruding portion, and the size of the power receiving device 2 is the protruding length of the secondary coil bobbin 25, that is, the insertion length into the power transmission device 1. Means L (FIG. 6). Therefore, the insertion length L of the secondary coil bobbin 25 of the power reception device 2 having a high power capacity (power reception capability) is long, and the insertion length L of the secondary coil bobbin 25 of the power reception device 2 having a low power capacity is short.

送電装置1に受電装置2が挿入(結合)された場合、コイルスプリング32は移動部材31によって矢印X2方向に圧縮され圧力検出器14に押圧力を与える。従って、受電装置2のサイズ、つまり2次コイルボビン25の挿入長さLが長いと、コイルスプリング32の押圧力が増えるため、結果として圧力検出器14で検出される圧力が高くなる。   When the power receiving device 2 is inserted (coupled) into the power transmitting device 1, the coil spring 32 is compressed in the direction of the arrow X <b> 2 by the moving member 31 and applies a pressing force to the pressure detector 14. Therefore, if the size of the power receiving device 2, that is, the insertion length L of the secondary coil bobbin 25 is long, the pressing force of the coil spring 32 increases, and as a result, the pressure detected by the pressure detector 14 increases.

記憶部13(図1)は、ROMとRAMを備え、そのROMには表1に示すように検出圧力と2次コイルボビン25の挿入長さLと電流閾値との関係を表すデーブルが予め格納されている。

Figure 2012105456
The storage unit 13 (FIG. 1) includes a ROM and a RAM. As shown in Table 1, a table representing a relationship between the detected pressure, the insertion length L of the secondary coil bobbin 25, and the current threshold is stored in advance in the ROM. ing.
Figure 2012105456

このような構成において、送電装置1と受電装置2が結合されると、圧力検出器14はコイルスプリング32の圧力を検出する。制御回路12は、表1の変換テーブルから、検出圧力に対応する電流閾値を読み出し、記憶部13のRAMに保持させる。   In such a configuration, when the power transmitting device 1 and the power receiving device 2 are coupled, the pressure detector 14 detects the pressure of the coil spring 32. The control circuit 12 reads the current threshold value corresponding to the detected pressure from the conversion table of Table 1, and stores it in the RAM of the storage unit 13.

制御回路12は、正常時は発振回路11を所定のデューディ比のパルスによって連続発振させる。それによって、1次コイル10に交流電圧が印加され、2次コイルに交流電圧が誘起され、誘起された交流電圧は整流回路21により整流され、平滑コンデンサ22で平滑されて負荷3に印加される。   The control circuit 12 causes the oscillation circuit 11 to continuously oscillate with a pulse having a predetermined duty ratio when normal. As a result, an AC voltage is applied to the primary coil 10, an AC voltage is induced in the secondary coil, the induced AC voltage is rectified by the rectifier circuit 21, smoothed by the smoothing capacitor 22, and applied to the load 3. .

電流検出器15により現在の入力電流値が検出され、制御回路12は入力電流値と記憶部13のRAMに保持された電流閾値との比較を行う。受電装置2及び接続された負荷3が正常に動作している場合は、入力電流値は変換テーブルに定められた電流閾値を超えることはなく、給電は継続される。   The current input current value is detected by the current detector 15, and the control circuit 12 compares the input current value with the current threshold value stored in the RAM of the storage unit 13. When the power receiving device 2 and the connected load 3 are operating normally, the input current value does not exceed the current threshold value defined in the conversion table, and power feeding is continued.

何らかの理由により、受電装置2もしくは接続された負荷3に異常が発生し(例えば短絡)、受電装置2に受電能力以上の電流が流れた場合、制御回路12は入力電流が記憶部13のRAMに保持された電流閾値を超えたことを検知し、パルス発生器11bの出力を停止させる。そして、発振回路11が出力を停止して受電装置2への給電が停止されることにより、受電装置2および負荷3の過電流保護が実現される。   If for some reason an abnormality occurs in the power receiving device 2 or the connected load 3 (for example, a short circuit) and a current exceeding the power receiving capacity flows through the power receiving device 2, the control circuit 12 receives the input current in the RAM of the storage unit 13. It is detected that the held current threshold is exceeded, and the output of the pulse generator 11b is stopped. Then, the oscillation circuit 11 stops the output and power supply to the power receiving device 2 is stopped, so that overcurrent protection of the power receiving device 2 and the load 3 is realized.

ここで、受電装置2の受電能力つまり電力容量(W)と2次コイルボビン25の挿入長さLとの関係について説明する。
例えば、送電装置1の1次コイル10に印加される交流電圧が100Vであり、1次コイル10の巻数が100ターンとする。また、受電能力(電力容量)の異なる2つの受電装置2の電力容量が、
(a)40W(20V×2A)
(b)5W(5V×1A)
である場合、コイルの巻数比は電圧比に等しいため、巻線数としてはそれぞれ
(a)100V:20V=100ターン(1次コイル巻線数):20ターン(2次コイル巻線数)
(b)100V:5V=100ターン(1次コイル巻線数):5ターン(2次コイル巻線数)
となる。
Here, the relationship between the power receiving capability of the power receiving device 2, that is, the power capacity (W), and the insertion length L of the secondary coil bobbin 25 will be described.
For example, the AC voltage applied to the primary coil 10 of the power transmission device 1 is 100 V, and the number of turns of the primary coil 10 is 100 turns. In addition, the power capacities of the two power receiving apparatuses 2 having different power receiving capabilities (power capacities) are
(A) 40W (20V x 2A)
(B) 5W (5V x 1A)
Since the coil turns ratio is equal to the voltage ratio, the number of turns is (a) 100V: 20V = 100 turns (primary coil turns): 20 turns (secondary coil turns).
(B) 100V: 5V = 100 turns (number of primary coil windings): 5 turns (number of secondary coil windings)
It becomes.

また、2次コイルの巻線の線径は許容電流容量によって決まるため、少ない電流容量であればコイルの線径を小さくできる。結果として、電力容量(受電能力)の大きさに応じて、2次コイルボビン25のサイズ、すなわち挿入長さLが決定されることになる。   Further, since the wire diameter of the secondary coil winding is determined by the allowable current capacity, the coil diameter can be reduced with a small current capacity. As a result, the size of the secondary coil bobbin 25, that is, the insertion length L is determined in accordance with the size of the power capacity (power reception capability).

また、制御回路12は、送電装置1に受電装置2が結合されているか否かを、圧力検出器14を用いて検出する。つまり、圧力検出器14が何らかの圧力(表1において0kg/cm2より大きい圧力)を検出したとき、制御回路12は送電装置1に受電装置2が結合されたものと判定する。
そして、制御回路12はパルス発生器11bを駆動し、1次コイル10に交流電圧を印加する。
Further, the control circuit 12 detects whether or not the power receiving device 2 is coupled to the power transmitting device 1 using the pressure detector 14. That is, when the pressure detector 14 detects any pressure (pressure greater than 0 kg / cm 2 in Table 1), the control circuit 12 determines that the power receiving device 2 is coupled to the power transmitting device 1.
Then, the control circuit 12 drives the pulse generator 11 b and applies an AC voltage to the primary coil 10.

一方、圧力検出器14が圧力を全く検出しない場合には、制御回路12は送電装置12に受電装置2が結合されていないものと判断し、パルス発生器11bを駆動しない。
従って、この場合、1次コイル10には交流電圧が印加されず、回路での電力消費を低減することができる。
On the other hand, when the pressure detector 14 does not detect any pressure, the control circuit 12 determines that the power receiving device 2 is not coupled to the power transmitting device 12 and does not drive the pulse generator 11b.
Therefore, in this case, no AC voltage is applied to the primary coil 10, and power consumption in the circuit can be reduced.

図8,図9は送電装置1と受電装置2の結合部材の構成と作用を示す説明図である。これらの図に示すように、送電装置1は、受電装置2との対向面にロック部材係止孔33a,33bを備える。   8 and 9 are explanatory views showing the configuration and operation of the coupling member of the power transmission device 1 and the power reception device 2. As shown in these drawings, the power transmission device 1 includes lock member engagement holes 33 a and 33 b on the surface facing the power reception device 2.

一方、受電装置2は、ロック部材係止孔33a,33bにそれぞれ対応する位置にロック部材34a,34bを備える。ロック部材34a,34bは、それぞれロック爪35a,35bと、ロック爪35a,35bをそれぞれ弾性的に支持する板バネ36a,36bと、板バネ36a,36bにそれぞれ設けられた押しボタン37a,37bを備える。   On the other hand, the power receiving device 2 includes lock members 34a and 34b at positions corresponding to the lock member locking holes 33a and 33b, respectively. The lock members 34a and 34b include lock claws 35a and 35b, plate springs 36a and 36b that elastically support the lock claws 35a and 35b, and push buttons 37a and 37b respectively provided on the plate springs 36a and 36b. Prepare.

このような構成において、図8に示すように、送電装置1に受電装置2が矢印C方向に装着されると、移動部材31が2次コイルボビン25によって矢印C方向へ押圧されて移動する。そして、受電装置2のロック部材34a,34bが送電装置1のロック部材係止孔33a,33bに挿入される。それらが完全に挿入されたとき、図9に示すようにロック部材係止孔33a,33bにそれぞれロック爪35a,35bが係止され、受電装置2が送電装置1に完全に結合(ロック)される。   In such a configuration, as shown in FIG. 8, when the power receiving device 2 is attached to the power transmitting device 1 in the direction of arrow C, the moving member 31 is pressed and moved in the direction of arrow C by the secondary coil bobbin 25. Then, the lock members 34 a and 34 b of the power receiving device 2 are inserted into the lock member locking holes 33 a and 33 b of the power transmission device 1. When they are completely inserted, as shown in FIG. 9, the lock claws 35 a and 35 b are respectively locked in the lock member locking holes 33 a and 33 b, and the power receiving device 2 is completely coupled (locked) to the power transmitting device 1. The

また、送電装置1から受電装置2を離脱する場合には、押しボタン37a,37bを押してロック爪35a,35bの係止状態を解除し、ロック部材係止孔33a,33bからロック部材34a,34bを矢印Cと逆方向に引き抜く。   When the power receiving device 2 is detached from the power transmitting device 1, the push buttons 37a and 37b are pushed to release the lock claws 35a and 35b, and the lock members 34a and 34b are released from the lock member lock holes 33a and 33b. Is pulled out in the direction opposite to arrow C.

また、送電装置1に受電装置2が完全にロックされない場合には1次コイル10と2次コイル20との結合が不十分となり、多くの損失が生じ発熱などの危険を生じる。しかし、その場合にはコイルスプリング32(図5)の反発力が移動部材31を介して受電装置2に与えられ、受電装置2が送電装置1から排出されるので、安全性が確保される。   Further, when the power receiving device 2 is not completely locked to the power transmitting device 1, the coupling between the primary coil 10 and the secondary coil 20 becomes insufficient, resulting in a lot of loss and a risk of heat generation. However, in that case, the repulsive force of the coil spring 32 (FIG. 5) is applied to the power receiving device 2 via the moving member 31, and the power receiving device 2 is discharged from the power transmitting device 1, so that safety is ensured.

1 送電装置
2 受電装置
3 負荷
10 1次コイル
11 発振回路
12 制御回路
13 記憶部
14 圧力検出器
15 電流検出器
16 直流電源
18 送電側コア
18a 中央コア
18b 外周コア
19 1次コイルボビン
20 2次コイル
21 整流回路
22 平滑コンデンサ
23 受電側コア
24 2次コイルカバー
25 2次コイルボビン
31 移動部材
32 コイルスプリング
33a ロック部材係止孔
33b ロック部材係止孔
34a ロック部材
34b ロック部材
35a ロック爪
35b ロック爪
36a 板バネ
36b 板バネ
37a 押しボタン
37b 押しボタン
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Power receiving apparatus 3 Load 10 Primary coil 11 Oscillation circuit 12 Control circuit 13 Memory | storage part 14 Pressure detector 15 Current detector 16 DC power supply 18 Power transmission side core 18a Central core 18b Outer core 19 Primary coil bobbin 20 Secondary coil 21 Rectifier 22 Smoothing Capacitor 23 Power Receiving Core 24 Secondary Coil Cover 25 Secondary Coil Bobbin 31 Moving Member 32 Coil Spring 33a Lock Member Lock Hole 33b Lock Member Lock Hole 34a Lock Member 34b Lock Member 35a Lock Claw 35b Lock Claw 36a Leaf spring 36b Leaf spring 37a Push button 37b Push button

Claims (7)

1次コイルを有し外部から電力を受電して1次コイルに交流電力を供給する送電装置と、送電装置に離脱可能に結合される受電装置とを備え、受電装置は、送電装置との結合時に1次コイルと電磁結合して誘起された電力を負荷に供給する2次コイルと、送電装置と受電装置との結合時に送電装置に挿入され受電装置の電力容量の大きさに対応する挿入長さを有する突出部とを備え、送電装置は、受電装置との結合時に突出部により圧縮される弾性部材と、弾性部材の圧力を検出する圧力検出器と、外部から送電装置への入力電流を検出する電流検出器と、入力電流が検出圧力に対応する電流しきい値を超えるとき1次コイルへの給電を停止する制御部とを備える非接触給電システム。   A power transmission device that includes a primary coil and receives power from the outside and supplies AC power to the primary coil; and a power reception device that is detachably coupled to the power transmission device. The power reception device is coupled to the power transmission device. Insertion length corresponding to the magnitude of the power capacity of the power receiving device inserted into the power transmitting device when the power transmitting device and the power receiving device are combined with the secondary coil that sometimes supplies the load with the power induced by electromagnetic coupling with the primary coil. The power transmission device includes an elastic member that is compressed by the protrusion when coupled to the power receiving device, a pressure detector that detects the pressure of the elastic member, and an input current from the outside to the power transmission device. A non-contact power feeding system comprising: a current detector to detect; and a control unit that stops power feeding to the primary coil when the input current exceeds a current threshold value corresponding to the detected pressure. 送電装置は外部から受電した電力を交流電力に変換して1次コイルに供給する発振回路を備え、制御部は、前記電流しきい値を記憶する記憶部と、記憶部から電流しきい値を読み出して電流検出器の検出電流が電流しきい値を超えた時に発振回路の出力を停止させる制御回路とを備える請求項1記載の非接触給電システム。   The power transmission device includes an oscillation circuit that converts electric power received from the outside into AC power and supplies it to the primary coil, and the control unit stores the current threshold value, and stores the current threshold value from the storage unit. The non-contact electric power feeding system according to claim 1, further comprising: a control circuit that reads and stops the output of the oscillation circuit when the detected current of the current detector exceeds a current threshold value. 前記記憶部は異なる検出圧力に対する電流しきい値を表すテーブルを備え、前記制御回路は圧力検出器の検出圧力に基づいてそのテーブルから電流しきい値を読み出す請求項2記載の非接触給電システム。   The non-contact power feeding system according to claim 2, wherein the storage unit includes a table representing current threshold values for different detected pressures, and the control circuit reads the current threshold value from the table based on the detected pressure of the pressure detector. 受電装置は2次コイルを巻回するボビンを備え、そのボビンが前記突出部を形成する請求項1〜3記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein the power receiving device includes a bobbin that winds the secondary coil, and the bobbin forms the protruding portion. 制御回路は、圧力検出器が圧力を検出したときに発振回路を出力させる機能を備える請求項2〜4記載の非接触給電システム。   The contactless power supply system according to claim 2, wherein the control circuit has a function of outputting an oscillation circuit when the pressure detector detects pressure. 送電装置は受電装置との対向面にロック部材係止孔とロック検出手段を備え、受電装置はそれぞれ対応する位置にロック部材を備え、受電装置が送電装置に完全にロックされた状態以外では受電装置を送電装置から機械的に引き離す機構を備える請求項1〜5記載の非接触給電システム。   The power transmission device includes a lock member locking hole and a lock detection unit on a surface facing the power reception device, each power reception device includes a lock member at a corresponding position, and receives power except when the power reception device is completely locked to the power transmission device. The contactless power feeding system according to claim 1, further comprising a mechanism that mechanically separates the device from the power transmission device. 送電装置が第1コアを有し、受電装置が第2コアを有し、送電装置と受電装置との結合時に、第1コアと第2コアによって変圧器用コアが形成され、かつ、変圧器用コアに1次および2次コイルが巻回された変圧器が構成される請求項1〜6記載の非接触給電システム。   The power transmission device has a first core, the power reception device has a second core, and when the power transmission device and the power reception device are coupled, a transformer core is formed by the first core and the second core, and the transformer core The contactless power supply system according to claim 1, wherein a transformer in which a primary coil and a secondary coil are wound around is configured.
JP2010251918A 2010-11-10 2010-11-10 Non-contact power supply system Pending JP2012105456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251918A JP2012105456A (en) 2010-11-10 2010-11-10 Non-contact power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251918A JP2012105456A (en) 2010-11-10 2010-11-10 Non-contact power supply system

Publications (1)

Publication Number Publication Date
JP2012105456A true JP2012105456A (en) 2012-05-31

Family

ID=46395181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251918A Pending JP2012105456A (en) 2010-11-10 2010-11-10 Non-contact power supply system

Country Status (1)

Country Link
JP (1) JP2012105456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063084A (en) * 2017-11-29 2019-06-07 한국철도기술연구원 Wireless power supply and pickup coil for solid-state transformer of railway vehicle and module thereof
CN113196613A (en) * 2018-12-19 2021-07-30 三菱电机株式会社 Non-contact power supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063084A (en) * 2017-11-29 2019-06-07 한국철도기술연구원 Wireless power supply and pickup coil for solid-state transformer of railway vehicle and module thereof
KR102004230B1 (en) * 2017-11-29 2019-10-01 한국철도기술연구원 Wireless power supply and pickup coil for solid-state transformer of railway vehicle and module thereof
CN113196613A (en) * 2018-12-19 2021-07-30 三菱电机株式会社 Non-contact power supply system
CN113196613B (en) * 2018-12-19 2023-08-29 三菱电机株式会社 Contactless power supply system and power receiving device

Similar Documents

Publication Publication Date Title
JP6002513B2 (en) Non-contact power supply system, terminal device, and non-contact power supply method
JP6591851B2 (en) Wireless power transfer apparatus and method
US10862339B2 (en) Power reception device and power transmission device
US11183888B2 (en) System and method for providing inductive power at multiple power levels
KR20140053297A (en) Energy efficient inductive power transmission system and method
KR20170065236A (en) Wireless Charging apparatus, and Method for wirelessly transmitting power, and recording media therefor
JPWO2011089776A1 (en) Non-contact power feeding device
AU2008353278A1 (en) Inductive transmission system
US8948275B2 (en) Power line communication system for vehicle
JP2010104159A (en) Power receiving terminal and contactless power transmission system
US10784707B2 (en) Inductive power transfer system
WO2011027627A1 (en) Extension cord for contactless electricity-supplying device
JP2012105454A (en) Non-contact power supply system
JP2012105458A (en) Non-contact power supply system
US20180006567A1 (en) Control method for power transmitter, power transmitter and noncontact power transfer apparatus
JP2012105456A (en) Non-contact power supply system
KR102439256B1 (en) Wireless power transmitting-receiving apparatus and method for controlling the same
KR101718312B1 (en) Wireless Power Transmitter and Wireless Power Receiver
JP6559209B2 (en) Terminal device
JP6251342B2 (en) Terminal device
KR102086859B1 (en) Hybrid type wireles power receiving device, method of controlling wireless power signal in hybrid type wireles power receiving device, and magnetic resonance type wireless power receiving device related to the same
KR102396721B1 (en) Hybrid type wireles power receiving device, method of controlling wireless power signal in hybrid type wireles power receiving device, and magnetic resonance type wireless power receiving device related to the same
JP6743948B2 (en) Terminal device
KR20240064101A (en) Wireless power receiver and method of operation thereof
CN113937897A (en) Wireless charging equipment