WO2011027627A1 - Extension cord for contactless electricity-supplying device - Google Patents

Extension cord for contactless electricity-supplying device Download PDF

Info

Publication number
WO2011027627A1
WO2011027627A1 PCT/JP2010/062353 JP2010062353W WO2011027627A1 WO 2011027627 A1 WO2011027627 A1 WO 2011027627A1 JP 2010062353 W JP2010062353 W JP 2010062353W WO 2011027627 A1 WO2011027627 A1 WO 2011027627A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
extension cord
coil
power feeding
unit
Prior art date
Application number
PCT/JP2010/062353
Other languages
French (fr)
Japanese (ja)
Inventor
亮二 松井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011027627A1 publication Critical patent/WO2011027627A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to an extension cord for a non-contact power feeding device, and in particular, a moving body such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, or a walking robot, and a dryer, a shaving machine, an electric toothbrush, and an electric pot.
  • a moving body such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, or a walking robot, and a dryer, a shaving machine, an electric toothbrush, and an electric pot.
  • the present invention relates to an extension cord used in a non-contact power feeding device that supplies power to a small electric device that can be carried or moved by a person such as a portable radio or a notebook computer.
  • the non-contact power supply device supplies electric power by generating an induced electromotive force by electromagnetic coupling between a power receiving unit provided in a moving body or an electric device and a power supply unit installed in a structure such as a building.
  • the non-contact power feeding device is safe because there is no friction part and thus there is no wear of the current collector, and no arc is generated when it is separated.
  • the power supply unit of this non-contact power supply device is applied to the wall outlet of a building, it is installed on the wall surface of the building.
  • commercial AC power has been distributed in general buildings so far, this commercial AC power is replaced.
  • a non-contact power feeding device is used.
  • the AC power is converted into DC power by an AC-DC converter circuit, and then converted into high frequency power by a high frequency generator circuit, and a high frequency current is applied to the primary side of the insulating transformer to generate a magnetic field.
  • the magnetic field is captured by the secondary side of the insulating transformer, and then rectified to direct current to supply direct current power to a desired load.
  • the output voltage can be adjusted by the ratio of the number of windings of the insulating transformer primary side electromagnetic coil and the number of windings of the insulating transformer secondary side electromagnetic coil.
  • DC power is distributed in a building, it is known to supply DC power directly after AC-DC conversion at a power feeding unit.
  • Patent Document 1 discloses a converter that converts to direct current when the primary power supply is an alternating current power supply, and directly operates with switching higher than the commercial alternating current power frequency and converts to alternating current when the primary power supply is a direct current power supply.
  • the converter uses an insulating transformer capable of separating the primary side and the secondary side, the primary side is configured as an outlet body, and the secondary side is configured as an outlet cap.
  • Patent Document 2 molds a voltage conversion control unit that converts an alternating current power source into direct current and further converts direct current into high frequency alternating current and a plurality of primary coils that are connected in parallel to the output of the voltage conversion control unit with an insulating material.
  • An outlet device having a plurality of outlet bodies is disclosed.
  • the plurality of outlet bodies include a plurality of outlet caps, the outlet cap includes a secondary side coil that is electromagnetically coupled to the primary side coil, and an AC / DC conversion unit that converts alternating current into direct current, and the plurality of outlet caps. Changes the number of turns of the secondary coil so that the output voltage value is different.
  • Patent Document 3 discloses a power supply device that includes a plurality of power supply side connectors having different specifications in the power supply device, selects a power supply side connector corresponding to the specification of the vehicle side connector, and is attached to the vehicle side connector. .
  • Patent Document 1 discloses a configuration in which a non-contact power feeding device is provided on the AC power source side or the DC power source side, and a load is connected to the non-contact power feeding device. Therefore, the distance between the power source and the load is limited to the cord length of the non-contact power feeding device.
  • Patent Document 2 discloses an outlet device including a plurality of outlet bodies and a plurality of outlet caps corresponding to the outlet bodies, but the distance that can be connected to the load is determined by the length of the outlet cap.
  • Patent Document 3 selects and pulls out a power supply side connector corresponding to the specification of the vehicle side connector from a plurality of power supply side connectors provided in the power supply device, and attaches the power supply side connector to the vehicle side connector. Thus, the distance to be mounted on the vehicle side connector is determined.
  • the object of the present invention is to provide an extension cord for a non-contact power feeding device that can arbitrarily extend the distance between the power source and the load as described above without being limited by the cord length of the non-contact power feeding device.
  • Another object of the present invention is to provide an extension cord for a non-contact power feeding device having a branch cord.
  • the extension cord for the non-contact power feeding device of the present invention is wound around the power receiving core that is electromagnetically coupled to the electromagnetic core of the power-side power feeding portion around the power receiving portion on one end side of the extension cord for the non-contact power feeding device.
  • the power supply and the load can be connected to any distance by the extension cord for the non-contact power feeding device of the present invention.
  • the extension cord can be inserted by inserting a noise filter. Therefore, the generation of high frequency noise can be suppressed and non-contact power feeding can be performed.
  • a branch cord can be added to the extension cord for the non-contact power feeding device, so that power can be supplied from a plurality of power sources, or power can be supplied to a plurality of loads. become.
  • the block diagram of the extension cord for non-contact electric power feeders which concerns on the 1st Embodiment of this invention is shown.
  • the circuit diagram of the extension cord for non-contact electric power feeders concerning a 1st embodiment of the present invention is shown.
  • the another circuit diagram of the extension cord for non-contact electric power feeders concerning the 1st Embodiment of this invention is shown.
  • the block diagram of the extension cord for non-contact electric power feeders concerning the 2nd Embodiment of this invention is shown.
  • the block diagram of the extension cord for non-contact electric power feeders concerning the 3rd Embodiment of this invention is shown.
  • the circuit diagram of the extension cord for non-contact electric power feeders of a comparative example is shown.
  • the extension cord for a non-contact power feeding device of the present invention has a power receiving coil wound around a power receiving core electromagnetically coupled to an electromagnetic core of a power supply side power feeding unit on one end side, and an electromagnetic core of a load side power receiving unit on the other end side.
  • a power supply coil wound around a power supply core to be electromagnetically coupled is provided.
  • An AC-DC converter and a DC-AC converter are provided between the power receiving coil and the power supply coil, and between the power receiving coil and the AC-DC converter, between the AC-DC converter and the DC-AC converter or the DC.
  • -It is configured by connecting the AC converter and the feeding coil by the power transmission unit.
  • the power supply unit is a distributed power generator such as a solar power generator, a wind power generator, or a fuel cell, or a commercial AC power source.
  • AC power is supplied from a distributed power generator or commercial AC power, it is converted to direct current, and further converted to high frequency AC power by a high frequency conversion circuit.
  • the power supply unit is a DC power supply, the power supply is converted into a high-frequency AC power supply by a high-frequency conversion circuit.
  • the electromagnetic core of the power supply side power supply unit and the power reception core provided on one end side of the extension cord for the non-contact power supply unit are made of a ferromagnetic material, and the coil is wound around and electromagnetically coupled to each other. Is supplied to the extension cord for the non-contact power feeding device.
  • the electromagnetic core of the power supply side power supply unit and the power reception core of the extension cord for the non-contact power supply device can be separated, and the power supply side power supply unit is installed in the building to form a power outlet.
  • the extension cord for a non-contact power feeding device of the present invention has a power feeding core around which a power feeding coil is wound on the other end side, and is electromagnetically coupled to an electromagnetic core provided in a load side power receiving unit. Thereby, power is supplied to the load from the extension cord for the non-contact power feeding device.
  • the load is a moving body such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, or a walking robot, and a dryer, a shaving machine, an electric toothbrush, an electric pot, a portable radio, or a notebook.
  • a small electric device that can be carried or moved by an individual, such as a personal computer, is a typical electric device, and may be an electric device other than these.
  • the extension cord for a non-contact power feeding device of the present invention has a power transmission section between the power receiving core and the AC-DC conversion section, between the AC-DC conversion section and the DC-AC conversion section, or between the DC-AC conversion section and the power supply core.
  • the extension cord for non-contact electric power feeders can be set as the extension cord for non-contact electric power feeders of arbitrary lengths by extending a power transmission part. Further, by continuously connecting a plurality of extension cords for the non-contact power feeding device, the extension cords for the non-contact power feeding device can be made multiple times longer.
  • the extension cord for the non-contact power feeding device is configured by inserting an impedance matching capacitor between the secondary side electromagnetic coil on the extension cable power receiving side and the rectifier circuit. Thereby, power loss can be reduced.
  • the extension cord for the non-contact power feeding device is configured by inserting a noise filter between the power transmission unit of the extension cable and the high frequency generation circuit. Thereby, noise emission from the extension cable can be reduced.
  • the extension cord for the non-contact power feeding device is such that the high frequency generation circuit performs sine wave drive. Thereby, noise generation can be reduced.
  • the extension cord for the non-contact power feeding device has the same number of windings of the power receiving side electromagnetic coil and the power feeding side electromagnetic coil of the extension cable. As a result, the input and output of the extension cord have the same voltage, and there is no need to select the type of extension cable.
  • the extension cord for the non-contact power feeding device is provided with the power supply side power feeding portion on the wall surface of the building. Therefore, a power supply can be supplied to a load with the non-contact electric power feeder from the power supply with which the wall surface of the building was equipped.
  • the extension cord for the non-contact power feeding device includes a load-side power receiving unit electromagnetic core that is electromagnetically coupled to the power feeding core.
  • a power supply can be supplied to an apparatus with a non-contact electric power feeder.
  • the extension cord for the non-contact power feeding device is such that the power receiving unit and the power feeding unit are different in color or shape. Thereby, the power receiving unit and the power feeding unit of the extension cord for the non-contact power feeding device can be recognized at a glance, and an erroneous operation can be prevented.
  • the extension cord for the non-contact power feeding device matches the color or shape of the power supply unit and the power reception unit with those of the power supply unit and the load side power reception unit. Therefore, it is possible to prevent an erroneous operation by matching the colors or shapes of the power supply unit and the power receiving unit. Further, by matching the colors or shapes of the power feeding unit and the device-side power receiving unit, erroneous operations can be prevented.
  • the extension cord for the non-contact power feeding device is provided between the power receiving coil and the AC-DC converter, between the AC-DC converter and the DC-AC converter, or with the DC-AC converter.
  • a branch cord connected between the feeding coils is provided, and a feeding portion is provided at the tip of the branch cord.
  • FIG. 1 is a configuration diagram of an extension cord for a non-contact power feeding device according to a first embodiment.
  • a power receiving unit 21 is provided at one end of the extension cord 20, and the power receiving unit 21 includes an electromagnetic coil 22, a rectifier circuit 24, and a smoothing circuit 25.
  • a power feeding unit 26 is provided at the other end, and the power feeding unit 26 includes a high frequency generation circuit 27 and an electromagnetic coil 28.
  • the high frequency generation circuit 27 generates a high frequency from the commercial AC power supply frequency. For example, the range is several kHz to 150 kHz.
  • a power transmission unit 30 connects between the power reception unit 21 at one end of the extension cord and the power supply unit 26 at the other end.
  • the power transmission unit 30 transmits direct current. What is necessary is just to set the length of the power transmission part 30 to the length which a user can use easily, for example, is made into length like 1m, 2m, 5m, 10m.
  • FIG. 2 shows a circuit diagram of the first embodiment.
  • the power supply unit 10 is a solar power generation system 11.
  • DC power generated by the solar power generation system 11 is converted into high-frequency power by using the drive circuit 12 and the switching element 13.
  • the switching element 13 performs a switching operation at a high frequency of several kHz to 150 kHz, for example.
  • Outputs of the drive circuit 12 and the switching element 13 are output to the isolation transformer 100.
  • the insulating transformer 100 is an insulating transformer in which the primary electromagnetic coil 14 and the secondary electromagnetic coil 22 can be separated.
  • the primary electromagnetic coil 14 is in the power supply unit 10, and the secondary electromagnetic coil 22 is a non-contact power supply device. It is in the power receiving unit 21 of the extension cord for use.
  • the primary side electromagnetic coil 14 and the secondary side electromagnetic coil 22 are electromagnetically coupled.
  • the power supply unit 10 is installed in a building and forms a power outlet.
  • the extension cord 20 for the non-contact power feeding device is configured as shown in the circuit diagram of FIG. Specifically, the rectifier circuit 24 is formed by two diodes 24a and 24b, and rectifies high-frequency power and converts it into direct current.
  • the smoothing circuit 25 is formed by a smoothing capacitor 25a and a smoothing reactor 25b.
  • an impedance matching capacitor 101 is provided between the rectifier circuit 24 and the secondary electromagnetic coil 22 to perform impedance matching with an inductance component from the secondary electromagnetic coil 22 to the primary side. By inserting an impedance matching capacitor, power loss can be reduced.
  • the power feeding unit 26 includes a drive circuit 32 and a switching element 33 similar to those of the power supply side power feeding unit 10, and the switching element 33 operates at the same frequency as the switching element 13.
  • the high-frequency power generated by the high-frequency generation circuit 27 is supplied to the load-side power receiving unit via the insulation transformer 200 (the same principle as that of the insulation transformer 100). Similarly, power is supplied to the DC load 42 via the impedance matching capacitor 201, the rectifier circuit 43, and the smoothing circuit 44.
  • the circuit diagram of FIG. 2 shows an example in which a noise filter 35 is inserted between the power supply unit 26 and the power transmission unit 30.
  • the noise filter 35 is for the purpose of preventing the high frequency component generated by the high frequency generation circuit 27 from leaking to the power transmission unit 30, and is preferably placed immediately before the power supply unit 26.
  • a common mode choke coil is used as the noise filter 35.
  • the power transmission unit 30 carries power. And a voltage value convenient for the drive circuit 32 and the switching element 33 are set. Further, since the turn ratio of the primary side electromagnetic coil 28 and the secondary side electromagnetic coil 41 provided in the load side power receiving unit 40 in the insulating transformer 200 affects the voltage value supplied to the DC load 42, Set according to the optimum voltage.
  • the secondary side electromagnetic coil 41 is connected to the primary side electromagnetic core coil 14 without using the extension cord 20 of the present invention, for example, in order to realize such an operation, an insulating transformer It is preferable that the primary side electromagnetic coil 14 of 100 and the primary side electromagnetic coil 28 of the insulation transformer 200 have the same number of turns.
  • the solar power generation system 11 supplies DC power from a solar panel installed at a position where sunlight can be received, such as a south facing roof of a house.
  • the connection cord is connected to the power supply side power supply unit 10 disposed in the vicinity of the wall surface of the room through the indoor wiring. And it becomes the form where the primary side electromagnetic coil 14 was installed in the wall surface.
  • the primary side electromagnetic coil 14 does not necessarily have to be installed in a form exposed on the wall surface, and in order to prevent dust adhesion and the like, for example, even when not connected, the wall surface is covered. Good.
  • the secondary electromagnetic core 41 provided in the DC load 42 is installed in the primary electromagnetic coil 28 installed on the device surface.
  • the primary side electromagnetic coil 28 does not necessarily have to be installed in a form exposed on the surface of the device.
  • the surface of the device is covered to prevent dust from adhering. It may be configured.
  • the power receiving unit 21 and the power feeding unit 26 of the extension cord 20 for the non-contact power feeding device are different in color or shape. Since the power reception unit 21 and the power supply unit 26 of the extension cord for the non-contact power supply apparatus seem to have the same shape, there is a possibility that the power reception unit 21 and the power supply unit 26 may be mistaken, leading to an erroneous operation. Make it.
  • the power supply unit 10 is the solar power generation system 11
  • a DC power generation device such as a fuel cell may be used, or an AC power generation device or an AC power source such as a commercial AC power source may be used. It can be a power supply.
  • an AC power supply it is necessary to convert it into a direct current by an AC / DC converter and connect it to the power supply unit 10.
  • FIG. 6 shows a circuit diagram of a non-contact extension cable shown as a comparative example of the present invention.
  • DC power supplied from a DC power source 51 is converted into high-frequency power using a drive circuit 52 and a switching element 53.
  • the insulating transformer 400 is a separable insulating transformer, and the primary side electromagnetic coil 54 and the secondary side electromagnetic coil 55 are electromagnetically coupled.
  • the switch element 53 performs a switching operation at a high frequency of, for example, several kHz to 150 kHz.
  • the high frequency power output from the secondary side electromagnetic coil 55 is supplied to the load side power receiving unit 60 as it is through the non-contact extension cable 56 and the insulating transformer 500.
  • a connecting portion 31 (shown by a circle in FIG. 2) is formed in the primary side electromagnetic coil 28 of the insulating transformer 200 and branched by the connecting portion 31.
  • a plurality of power feeding units can be formed.
  • the connection portion 45 may be provided at the connection point between the noise filter 35 and the high frequency generation circuit 27, or the connection portion 71 may be provided at the connection point between the smoothing circuit 25 and the noise filter 35 for branching.
  • branching at the connection portion 45 a separate drive circuit and switch element are required, and when branching at the connection portion 71, a separate drive circuit, switch element, and noise filter are required.
  • the drive circuit 32 and the switch element 33 shown in FIG. 2 are preferably sine wave driven.
  • a resonance capacitor 60 is connected between the switching element 33 and the coil 28 constituting the high frequency generation circuit 27 so as to partially show the high frequency generation circuit 27 of FIG.
  • f 1 / (2 ⁇ (LC))
  • FIG. 4 is a configuration diagram of the extension cord for the non-contact power feeding device according to the second embodiment.
  • the second embodiment is different from the first embodiment in that a high frequency generation circuit 27 is provided in the power reception unit 21 and the high frequency generation circuit 27 and the coil 29 are connected by a power transmission unit 30.
  • the power transmission unit 30 transmits high-frequency power.
  • the circuit of the second embodiment is the same as the circuit of the first embodiment shown in FIG.
  • the second embodiment is suitable for a case where there is a request to reduce the power feeding unit, although the power receiving unit may be somewhat larger.
  • the impedance matching capacitor 101 can be introduced by the power receiving unit 21, the power transmission efficiency of the cable is improved.
  • FIG. 5 is a configuration diagram of the extension cord for the non-contact power feeding device according to the third embodiment.
  • the third embodiment is different from the first embodiment in that the secondary electromagnetic coil 22 of the power reception unit 21 and the rectifier circuit 24 are connected by the power transmission unit 30.
  • the power transmission unit 30 transmits high-frequency power.
  • the circuit of the third embodiment is the same as the circuit of the first embodiment shown in FIG.
  • the third embodiment is suitable for a case where there is a request to make the power receiving unit small, although the power feeding unit may be somewhat larger.
  • the impedance matching capacitor 101 can be introduced at the power receiving unit 21 side or the entrance of the power feeding unit 26, the power transmission efficiency of the cable is improved.

Abstract

Disclosed is an extension cord for a contactless electricity-supplying device that has, at an electricity-receiving section at one of the end-sides thereof, an electricity-receiving coil wound around an electricity-receiving core, which is for magnetically coupling with a magnetic core of a power-supply side electricity-supplying unit. The extension cord for a contactless electricity-supplying device also has, at the other of the end-sides thereof, an electricity-supplying coil wound around an electricity-supplying core, which is for magnetically coupling with a magnetic core of a load-side electricity-receiving unit. Furthermore, an AC-DC converting unit and a DC-AC converting unit are provided between the aforementioned electricity-receiving coil and the aforementioned electricity-supplying coil, and an electricity-transmitting unit connects the aforementioned electricity-receiving coil and the aforementioned AC-DC converting unit, the aforementioned AC-DC converting unit and the aforementioned DC-AC converting unit, or the aforementioned DC-AC converting unit and the aforementioned electricity-supplying coil.

Description

非接触給電装置用延長コードExtension cord for contactless power supply
 本発明は、非接触給電装置用延長コードに関し、特に、物資搬送車、昇降機、ショッピングカート、自走式掃除機、または歩行ロボットなどの移動体、及びドライヤー、髭剃り機、電動歯ブラシ、電気ポット、携帯ラジオ、またはノート型パソコンのように個人が携帯または移動できるような小型電気機器に電力を供給する非接触給電装置に使用される延長コードに関する。 The present invention relates to an extension cord for a non-contact power feeding device, and in particular, a moving body such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, or a walking robot, and a dryer, a shaving machine, an electric toothbrush, and an electric pot. The present invention relates to an extension cord used in a non-contact power feeding device that supplies power to a small electric device that can be carried or moved by a person such as a portable radio or a notebook computer.
 非接触給電装置は、移動体または電気機器に設けた受電部と、建物など構造物に設置した給電部を電磁気結合により誘導起電力を発生させて電力を供給するものである。非接触給電装置は、摩擦部がないので集電子の磨耗がなく、また引き離し時にアークの発生がないので安全である。この非接触給電装置の給電部を建物のコンセントに適用する場合、建物の壁面に設置されるが、これまで、一般的な建物では商用交流電源が配電されているため、この商用交流電源に代えて非接触給電装置が使用される。この非接触給電装置の給電部では、交流-直流変換回路で直流電力に変換した後、高周波生成回路で高周波電力へ変換し、絶縁トランス1次側に高周波電流を印加して磁界を発生させる。そして、受電部では、絶縁トランス2次側により磁界を捉え、その後直流に整流して所望の負荷へ直流電力を給電するものである。ここで、絶縁トランス1次側電磁コイルの巻線数と絶縁トランス2次側電磁コイルの巻線数の比によって出力電圧を調整することができる。また、建物内に直流電力が配電される場合は、給電部で交流-直流変換後に直流電力を直接供給することが公知である。 The non-contact power supply device supplies electric power by generating an induced electromotive force by electromagnetic coupling between a power receiving unit provided in a moving body or an electric device and a power supply unit installed in a structure such as a building. The non-contact power feeding device is safe because there is no friction part and thus there is no wear of the current collector, and no arc is generated when it is separated. When the power supply unit of this non-contact power supply device is applied to the wall outlet of a building, it is installed on the wall surface of the building. However, since commercial AC power has been distributed in general buildings so far, this commercial AC power is replaced. Thus, a non-contact power feeding device is used. In the power supply unit of this non-contact power supply device, the AC power is converted into DC power by an AC-DC converter circuit, and then converted into high frequency power by a high frequency generator circuit, and a high frequency current is applied to the primary side of the insulating transformer to generate a magnetic field. In the power receiving unit, the magnetic field is captured by the secondary side of the insulating transformer, and then rectified to direct current to supply direct current power to a desired load. Here, the output voltage can be adjusted by the ratio of the number of windings of the insulating transformer primary side electromagnetic coil and the number of windings of the insulating transformer secondary side electromagnetic coil. In addition, when DC power is distributed in a building, it is known to supply DC power directly after AC-DC conversion at a power feeding unit.
 非接触給電装置を使用して電気機器に電力を供給する技術が公知である。例えば、特許文献1は、一次側電源が交流電源である場合は直流に変換し、一次側電源が直流電源である場合は直接、商用交流電源周波数より高いスイッチングで動作し、交流に変換するコンバータを備える給電システムを開示している。ここで、コンバータは、一次側と二次側を分離可能な絶縁トランスを用い、一次側をコンセントボディとして構成し、二次側をコンセントキャップとして構成する。
 また、特許文献2は、交流電源を直流に変換し、更に直流を高周波交流に変換する電圧変換制御部と、電圧変換制御部の出力に複数並列接続される一次側コイルとを絶縁材でモールドしたコンセントボディを複数備えるコンセント装置を開示している。ここで、複数のコンセントボディは複数のコンセントキャップを備え、コンセントキャップは一次側コイルと電磁結合する二次側コイルと、交流を直流に変換するAC/DC変換部を有し、複数のコンセントキャップは、二次側コイルの巻数を出力電圧値が異なるように変えている。
 また、特許文献3は、電源装置に仕様が異なる複数の電源側コネクタを備えて、車側コネクタの仕様に対応する電源側コネクタを選択し、車側コネクタに装着する電源装置を開示している。
A technique for supplying electric power to an electrical device using a non-contact power feeding device is known. For example, Patent Document 1 discloses a converter that converts to direct current when the primary power supply is an alternating current power supply, and directly operates with switching higher than the commercial alternating current power frequency and converts to alternating current when the primary power supply is a direct current power supply. Is disclosed. Here, the converter uses an insulating transformer capable of separating the primary side and the secondary side, the primary side is configured as an outlet body, and the secondary side is configured as an outlet cap.
Further, Patent Document 2 molds a voltage conversion control unit that converts an alternating current power source into direct current and further converts direct current into high frequency alternating current and a plurality of primary coils that are connected in parallel to the output of the voltage conversion control unit with an insulating material. An outlet device having a plurality of outlet bodies is disclosed. Here, the plurality of outlet bodies include a plurality of outlet caps, the outlet cap includes a secondary side coil that is electromagnetically coupled to the primary side coil, and an AC / DC conversion unit that converts alternating current into direct current, and the plurality of outlet caps. Changes the number of turns of the secondary coil so that the output voltage value is different.
Patent Document 3 discloses a power supply device that includes a plurality of power supply side connectors having different specifications in the power supply device, selects a power supply side connector corresponding to the specification of the vehicle side connector, and is attached to the vehicle side connector. .
特開平3-212134号公報JP-A-3-212134 特開平3-101110号公報JP-A-3-101110 特開平11-220813号公報Japanese Patent Laid-Open No. 11-2220813
 上記特許文献1は、交流電源側または直流電源側に非接触給電装置を備える構成を開示し、負荷は非接触給電装置に接続されている。従って、電源と負荷の距離は非接触給電装置のコード長さに制限される。
 また、特許文献2は、複数のコンセントボディと、それに対応する複数のコンセントキャップを備えるコンセント装置を開示しているが、コンセントキャップの長さによって、負荷に接続できる距離が決定される。
 また、特許文献3は、電源装置に備えられた複数の電源側コネクタから車側コネクタの仕様に対応する電源側コネクタを選択して引き出し、車側コネクタに装着するので、電源側コネクタの長さによって車側コネクタに装着する距離が決定されてしまう。
Patent Document 1 discloses a configuration in which a non-contact power feeding device is provided on the AC power source side or the DC power source side, and a load is connected to the non-contact power feeding device. Therefore, the distance between the power source and the load is limited to the cord length of the non-contact power feeding device.
Further, Patent Document 2 discloses an outlet device including a plurality of outlet bodies and a plurality of outlet caps corresponding to the outlet bodies, but the distance that can be connected to the load is determined by the length of the outlet cap.
Further, Patent Document 3 selects and pulls out a power supply side connector corresponding to the specification of the vehicle side connector from a plurality of power supply side connectors provided in the power supply device, and attaches the power supply side connector to the vehicle side connector. Thus, the distance to be mounted on the vehicle side connector is determined.
 本発明は上記のように電源と負荷の距離が非接触給電装置のコード長さによって制限されず、任意に延長できる非接触給電装置用延長コードを提供することを目的とする。また、本発明は、分岐コードを有する非接触給電装置用延長コードを提供することを目的とする。 The object of the present invention is to provide an extension cord for a non-contact power feeding device that can arbitrarily extend the distance between the power source and the load as described above without being limited by the cord length of the non-contact power feeding device. Another object of the present invention is to provide an extension cord for a non-contact power feeding device having a branch cord.
 本発明の非接触給電装置用延長コードは、上記課題を解決するため、非接触給電装置用延長コードの一端側の受電部に電源側給電部の電磁コアと電磁結合する受電コアに巻回した受電コイルを有し、他端側に負荷側受電部の電磁コアと電磁結合する給電コアに巻回した給電コイルを有し、更に前記受電コイルと給電コイルの間に交流―直流変換部と直流―交流変換部を備え、前記受電コイルと交流―直流変換部間、前記交流―直流変換部と直流―交流変換部間または前記直流―交流変換部と給電コイル間を送電部によって接続したことを特徴とする。 In order to solve the above problems, the extension cord for the non-contact power feeding device of the present invention is wound around the power receiving core that is electromagnetically coupled to the electromagnetic core of the power-side power feeding portion around the power receiving portion on one end side of the extension cord for the non-contact power feeding device. A power receiving coil having a power receiving coil wound around a power feeding core that is electromagnetically coupled to an electromagnetic core of a load side power receiving unit on the other end side; and an AC-DC converter and a direct current between the power receiving coil and the power feeding coil -An AC converter is provided, and the power receiving coil and the AC-DC converter are connected, the AC-DC converter and the DC-AC converter, or the DC-AC converter and the feeding coil are connected by a power transmitter. Features.
 上記特徴を有する本発明によれば、電源と負荷の間を本発明の非接触給電装置用延長コードによって任意の距離接続することができ、その場合に、ノイズフィルタを挿入することにより、延長コードから高周波ノイズの発生を抑え、非接触給電することが可能になる。また、本発明によれば、非接触給電装置用延長コードに分岐コードを付加することができ、複数の電源から給電を受けることが可能になり、または複数の負荷へ電源を供給することが可能になる。 According to the present invention having the above features, the power supply and the load can be connected to any distance by the extension cord for the non-contact power feeding device of the present invention. In this case, the extension cord can be inserted by inserting a noise filter. Therefore, the generation of high frequency noise can be suppressed and non-contact power feeding can be performed. Further, according to the present invention, a branch cord can be added to the extension cord for the non-contact power feeding device, so that power can be supplied from a plurality of power sources, or power can be supplied to a plurality of loads. become.
本発明の第1の実施形態に係る非接触給電装置用延長コードの構成図を示す。The block diagram of the extension cord for non-contact electric power feeders which concerns on the 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る非接触給電装置用延長コードの回路図を示す。The circuit diagram of the extension cord for non-contact electric power feeders concerning a 1st embodiment of the present invention is shown. 本発明の第1の実施形態に係る非接触給電装置用延長コードの別回路図を示す。The another circuit diagram of the extension cord for non-contact electric power feeders concerning the 1st Embodiment of this invention is shown. 本発明の第2の実施形態に係る非接触給電装置用延長コードの構成図を示す。The block diagram of the extension cord for non-contact electric power feeders concerning the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係る非接触給電装置用延長コードの構成図を示す。The block diagram of the extension cord for non-contact electric power feeders concerning the 3rd Embodiment of this invention is shown. 比較例の非接触給電装置用延長コードの回路図を示す。The circuit diagram of the extension cord for non-contact electric power feeders of a comparative example is shown.
 本発明の非接触給電装置用延長コードは、一端側に電源側給電部の電磁コアと電磁結合する受電コアに巻回した受電コイルを有し、他端側に負荷側受電部の電磁コアと電磁結合する給電コアに巻回した給電コイルを有する。そして、受電コイルと給電コイルの間に交流―直流変換部と直流―交流変換部を備え、受電コイルと交流―直流変換部間、前記交流―直流変換部と直流―交流変換部間または前記直流―交流変換部と給電コイル間を送電部によって接続することにより構成される。
 ここで、電源側給電部は、太陽光発電装置、風力発電装置または燃料電池のような分散型発電装置または商用交流電源である。分散型発電装置または商用交流電源より交流電源が供給される場合は、直流に変換され、更に高周波変換回路により高周波交流電源に変換される。電源供給部が直流電源である場合は、高周波変換回路により高周波交流電源に変換される。
 また、電源側給電部の電磁コアと、非接触給電装置用延長コードの一端側に設けた受電コアは、強磁性体よりなり、コイルが巻きつけられ、互いに電磁結合することにより、電源供給部の高周波電源が非接触給電装置用延長コードへ供給される。電源側給電部の電磁コアと、非接触給電装置用延長コードの受電コアは、分離可能であり、電源側給電部が建物に設置されることにより、電源コンセントを形成する。
 本発明の非接触給電装置用延長コードは、他端側に給電コイルを巻回した給電コアを有し、負荷側受電部に設けた電磁コアと電磁結合する。これにより、非接触給電装置用延長コードより負荷へ電源供給する。
 また、本発明において、負荷は、物資搬送車、昇降機、ショッピングカート、自走式掃除機、または歩行ロボットなどの移動体、及びドライヤー、髭剃り機、電動歯ブラシ、電気ポット、携帯ラジオ、またはノート型パソコンのように個人が携帯または移動できるような小型電気機器を指すが、これらは代表的な電気機器であり、これら以外の電気機器であっても良い。
 また、本発明の非接触給電装置用延長コードは、受電コアと交流―直流変換部間、交流―直流変換部と直流―交流変換部間または直流―交流変換部と給電コア間に送電部を接続したので、送電部を延長することにより、任意の長さの非接触給電装置用延長コードとすることができる。また、複数の非接触給電装置用延長コードを連続接続することにより、非接触給電装置用延長コードは複数倍の長さにすることが可能である。
The extension cord for a non-contact power feeding device of the present invention has a power receiving coil wound around a power receiving core electromagnetically coupled to an electromagnetic core of a power supply side power feeding unit on one end side, and an electromagnetic core of a load side power receiving unit on the other end side. A power supply coil wound around a power supply core to be electromagnetically coupled is provided. An AC-DC converter and a DC-AC converter are provided between the power receiving coil and the power supply coil, and between the power receiving coil and the AC-DC converter, between the AC-DC converter and the DC-AC converter or the DC. -It is configured by connecting the AC converter and the feeding coil by the power transmission unit.
Here, the power supply unit is a distributed power generator such as a solar power generator, a wind power generator, or a fuel cell, or a commercial AC power source. When AC power is supplied from a distributed power generator or commercial AC power, it is converted to direct current, and further converted to high frequency AC power by a high frequency conversion circuit. When the power supply unit is a DC power supply, the power supply is converted into a high-frequency AC power supply by a high-frequency conversion circuit.
In addition, the electromagnetic core of the power supply side power supply unit and the power reception core provided on one end side of the extension cord for the non-contact power supply unit are made of a ferromagnetic material, and the coil is wound around and electromagnetically coupled to each other. Is supplied to the extension cord for the non-contact power feeding device. The electromagnetic core of the power supply side power supply unit and the power reception core of the extension cord for the non-contact power supply device can be separated, and the power supply side power supply unit is installed in the building to form a power outlet.
The extension cord for a non-contact power feeding device of the present invention has a power feeding core around which a power feeding coil is wound on the other end side, and is electromagnetically coupled to an electromagnetic core provided in a load side power receiving unit. Thereby, power is supplied to the load from the extension cord for the non-contact power feeding device.
Further, in the present invention, the load is a moving body such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, or a walking robot, and a dryer, a shaving machine, an electric toothbrush, an electric pot, a portable radio, or a notebook. A small electric device that can be carried or moved by an individual, such as a personal computer, is a typical electric device, and may be an electric device other than these.
Further, the extension cord for a non-contact power feeding device of the present invention has a power transmission section between the power receiving core and the AC-DC conversion section, between the AC-DC conversion section and the DC-AC conversion section, or between the DC-AC conversion section and the power supply core. Since it has connected, it can be set as the extension cord for non-contact electric power feeders of arbitrary lengths by extending a power transmission part. Further, by continuously connecting a plurality of extension cords for the non-contact power feeding device, the extension cords for the non-contact power feeding device can be made multiple times longer.
 また、本発明の実施形態において、非接触給電装置用延長コードは、延長ケーブル受電側の2次側電磁コイルと整流回路の間にインピーダンス整合用コンデンサを挿入して構成される。これにより、電力損失を少なくすることができる。 In the embodiment of the present invention, the extension cord for the non-contact power feeding device is configured by inserting an impedance matching capacitor between the secondary side electromagnetic coil on the extension cable power receiving side and the rectifier circuit. Thereby, power loss can be reduced.
 また、本発明の実施形態において、非接触給電装置用延長コードは、延長ケーブルの送電部と高周波生成回路の間にノイズフィルタを挿入して構成する。これにより、延長ケーブルからのノイズ放射を少なくすることができる。 In the embodiment of the present invention, the extension cord for the non-contact power feeding device is configured by inserting a noise filter between the power transmission unit of the extension cable and the high frequency generation circuit. Thereby, noise emission from the extension cable can be reduced.
 また、本発明の実施形態において、非接触給電装置用延長コードは、高周波生成回路が正弦波駆動を行うものである。これにより、ノイズ発生を少なくすることができる。 Further, in the embodiment of the present invention, the extension cord for the non-contact power feeding device is such that the high frequency generation circuit performs sine wave drive. Thereby, noise generation can be reduced.
 また、本発明の実施形態において、非接触給電装置用延長コードは、延長ケーブルの受電側電磁コイルと給電側電磁コイルの巻線数を同一とする。これにより、延長コードの入力と出力は同一電圧となり、延長ケーブルの種類を選択する必要がなくなる。 In the embodiment of the present invention, the extension cord for the non-contact power feeding device has the same number of windings of the power receiving side electromagnetic coil and the power feeding side electromagnetic coil of the extension cable. As a result, the input and output of the extension cord have the same voltage, and there is no need to select the type of extension cable.
 また、本発明の実施形態において、非接触給電装置用延長コードは、電源側給電部が建造物の壁面に備えられる。これにより、建造物の壁面に備えられた電源から非接触給電装置によって負荷へ電源を供給することができる。 Further, in the embodiment of the present invention, the extension cord for the non-contact power feeding device is provided with the power supply side power feeding portion on the wall surface of the building. Thereby, a power supply can be supplied to a load with the non-contact electric power feeder from the power supply with which the wall surface of the building was equipped.
 また、本発明の実施形態において、非接触給電装置用延長コードは、前記給電コアに電磁結合する負荷側受電部の電磁コアを負荷に備えるものである。これにより、機器へ非接触給電装置によって電源を供給することができる。 Further, in the embodiment of the present invention, the extension cord for the non-contact power feeding device includes a load-side power receiving unit electromagnetic core that is electromagnetically coupled to the power feeding core. Thereby, a power supply can be supplied to an apparatus with a non-contact electric power feeder.
 また、本発明の実施形態において、非接触給電装置用延長コードは、前記受電部と給電部は、色または形状が異なるものである。これにより、非接触給電装置用延長コードの受電部と給電部を一目で認識することができ、誤操作を防止することができる。 In the embodiment of the present invention, the extension cord for the non-contact power feeding device is such that the power receiving unit and the power feeding unit are different in color or shape. Thereby, the power receiving unit and the power feeding unit of the extension cord for the non-contact power feeding device can be recognized at a glance, and an erroneous operation can be prevented.
 また、本発明の実施形態において、非接触給電装置用延長コードは、前記電源側給電部及び受電部と、前記給電部及び負荷側受電部の色または形状を一致させるものである。これにより、電源側給電部と受電部の色または形状を一致させることにより、誤操作を防止することができる。また給電部と機器側受電部の色または形状を一致させることにより、誤操作を防止することができる。 In the embodiment of the present invention, the extension cord for the non-contact power feeding device matches the color or shape of the power supply unit and the power reception unit with those of the power supply unit and the load side power reception unit. Thereby, it is possible to prevent an erroneous operation by matching the colors or shapes of the power supply unit and the power receiving unit. Further, by matching the colors or shapes of the power feeding unit and the device-side power receiving unit, erroneous operations can be prevented.
 また、本発明の実施形態において、非接触給電装置用延長コードは、前記受電コイルと交流―直流変換部間、前記交流―直流変換部と直流―交流変換部間または前記直流―交流変換部と給電コイル間に接続された分岐コードを有し、前記分岐コードの先端に給電部を備えるものである。これにより、複数の電源から給電を受けることが可能になり、または複数の負荷へ電源を供給することが可能になる。 Further, in the embodiment of the present invention, the extension cord for the non-contact power feeding device is provided between the power receiving coil and the AC-DC converter, between the AC-DC converter and the DC-AC converter, or with the DC-AC converter. A branch cord connected between the feeding coils is provided, and a feeding portion is provided at the tip of the branch cord. Thereby, it becomes possible to receive electric power from a plurality of power supplies, or to supply power to a plurality of loads.
 以下、本発明の実施形態について図面を参照して説明する。図において、同じ部品には同じ参照符号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the figure, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
(第1の実施形態)
 第1の実施形態に係る非接触給電装置用延長コードの構成について、以下に説明する。
 図1は、第1の実施形態に係る非接触給電装置用延長コードの構成図を示す。延長コード20の一方の端部に受電部21が備えられ、受電部21は、電磁コイル22、整流回路24と、平滑回路25を備える。他方の端部に給電部26が備えられ、給電部26は、高周波生成回路27と、電磁コイル28を備える。高周波生成回路27は、商用交流電源周波数より高周波を生成する。例えば、数kHz~150kHzの領域である。ここで、電磁コイル22と28は同じ巻数であることが望ましい。
 延長コードの一方の端部の受電部21と、他方の端部の給電部26の間は、送電部30によって接続される。図1に示す第1の実施形態は、送電部30は直流を送電する。送電部30の長さは、ユーザが使いやすい長さに設定すればよく、例えば、1m、2mや5m、10mのような長さにする。
(First embodiment)
The configuration of the extension cord for the non-contact power feeding device according to the first embodiment will be described below.
FIG. 1 is a configuration diagram of an extension cord for a non-contact power feeding device according to a first embodiment. A power receiving unit 21 is provided at one end of the extension cord 20, and the power receiving unit 21 includes an electromagnetic coil 22, a rectifier circuit 24, and a smoothing circuit 25. A power feeding unit 26 is provided at the other end, and the power feeding unit 26 includes a high frequency generation circuit 27 and an electromagnetic coil 28. The high frequency generation circuit 27 generates a high frequency from the commercial AC power supply frequency. For example, the range is several kHz to 150 kHz. Here, it is desirable that the electromagnetic coils 22 and 28 have the same number of turns.
A power transmission unit 30 connects between the power reception unit 21 at one end of the extension cord and the power supply unit 26 at the other end. In the first embodiment illustrated in FIG. 1, the power transmission unit 30 transmits direct current. What is necessary is just to set the length of the power transmission part 30 to the length which a user can use easily, for example, is made into length like 1m, 2m, 5m, 10m.
 図2は、第1の実施形態の回路図を示す。図1と同じ部分には同じ符号を付したので、説明を省略する。図2は、電源側給電部10が太陽光発電システム11である場合を示す。太陽光発電システム11で発電した直流電力は、駆動回路12、スイッチング素子13を用いて、高周波電力に変換される。
 スイッチング素子13は、例えば、数kHz~150kHzの高周波でスイッチング動作を行う。駆動回路12及びスイッチング素子13の出力は、絶縁トランス100に出力される。絶縁トランス100は一次側電磁コイル14と二次側電磁コイル22が分離可能な絶縁トランスであり、一次側電磁コイル14は電源側給電部10にあり、二次側電磁コイル22は非接触給電装置用延長コードの受電部21にある。そして、一次側電磁コイル14と二次側電磁コイル22が電磁結合する。電源側給電部10は、建物に設置され、電源コンセントを形成する。
FIG. 2 shows a circuit diagram of the first embodiment. The same reference numerals are given to the same parts as those in FIG. FIG. 2 shows a case where the power supply unit 10 is a solar power generation system 11. DC power generated by the solar power generation system 11 is converted into high-frequency power by using the drive circuit 12 and the switching element 13.
The switching element 13 performs a switching operation at a high frequency of several kHz to 150 kHz, for example. Outputs of the drive circuit 12 and the switching element 13 are output to the isolation transformer 100. The insulating transformer 100 is an insulating transformer in which the primary electromagnetic coil 14 and the secondary electromagnetic coil 22 can be separated. The primary electromagnetic coil 14 is in the power supply unit 10, and the secondary electromagnetic coil 22 is a non-contact power supply device. It is in the power receiving unit 21 of the extension cord for use. The primary side electromagnetic coil 14 and the secondary side electromagnetic coil 22 are electromagnetically coupled. The power supply unit 10 is installed in a building and forms a power outlet.
 非接触給電装置用延長コード20は、図2の回路図のように構成される。詳細には、整流回路24は2つのダイオード24a、24bで形成され、高周波電力を整流して直流に変換する。平滑回路25は平滑用コンデンサ25aと平滑用リアクトル25bによって形成される。また、インピーダンス整合用コンデンサ101を整流回路24と2次側電磁コイル22との間に設けており、2次側電磁コイル22から1次側へのインダクタンス成分とのインピーダンス整合を行っている。インピーダンス整合用コンデンサを挿入することにより、電力損失を減らすことが可能である。
 給電部26は、電源側給電部10と同様の駆動回路32とスイッチング素子33によって構成されており、スイッチング素子33はスイッチング素子13と同じ周波数で動作している。高周波生成回路27によって発生した高周波電力は、絶縁トランス200を介して負荷側受電部へ供給される(絶縁トランス100と同じ原理)。そして、同様にインピーダンス整合用コンデンサ201、整流回路43、平滑回路44を介して直流負荷42へ電力供給する。
 図2の回路図は、給電部26と送電部30の間にノイズフィルタ35が挿入される例を示す。ノイズフィルタ35は、高周波生成回路27によって生成された高周波成分が送電部30に漏れるのを防止する目的であり、給電部26の直前に置くことが好ましい。ノイズフィルタ35としては、例えばコモンモードチョークコイルを用いる。
The extension cord 20 for the non-contact power feeding device is configured as shown in the circuit diagram of FIG. Specifically, the rectifier circuit 24 is formed by two diodes 24a and 24b, and rectifies high-frequency power and converts it into direct current. The smoothing circuit 25 is formed by a smoothing capacitor 25a and a smoothing reactor 25b. In addition, an impedance matching capacitor 101 is provided between the rectifier circuit 24 and the secondary electromagnetic coil 22 to perform impedance matching with an inductance component from the secondary electromagnetic coil 22 to the primary side. By inserting an impedance matching capacitor, power loss can be reduced.
The power feeding unit 26 includes a drive circuit 32 and a switching element 33 similar to those of the power supply side power feeding unit 10, and the switching element 33 operates at the same frequency as the switching element 13. The high-frequency power generated by the high-frequency generation circuit 27 is supplied to the load-side power receiving unit via the insulation transformer 200 (the same principle as that of the insulation transformer 100). Similarly, power is supplied to the DC load 42 via the impedance matching capacitor 201, the rectifier circuit 43, and the smoothing circuit 44.
The circuit diagram of FIG. 2 shows an example in which a noise filter 35 is inserted between the power supply unit 26 and the power transmission unit 30. The noise filter 35 is for the purpose of preventing the high frequency component generated by the high frequency generation circuit 27 from leaking to the power transmission unit 30, and is preferably placed immediately before the power supply unit 26. For example, a common mode choke coil is used as the noise filter 35.
 上記電源側給電部10に備えられた一次側電磁コイル14と、延長コード20の二次側電磁コイル22の巻数比は、延長ケーブルの直流電圧を決定するので、送電部30によって電力搬送するのに都合のよい電圧値、及び駆動回路32及びスイッチング素子33に都合のよい電圧値になるよう設定する。
 また、絶縁トランス200における一次側電磁コイル28と、負荷側受電部40に備えられた二次側電磁コイル41の巻数比は、直流負荷42に供給する電圧値に影響するので、直流負荷42の最適電圧に応じて設定する。しかし、二次側電磁コイル41は、例えば本発明の延長コード20を介することなく一次側電磁コアコイル14に接続される可能性も想定されるため、そのような動作を実現するためには絶縁トランス100の一次側電磁コイル14と絶縁トランス200の一次側電磁コイル28が同じ巻数であることが好ましい。
Since the turn ratio of the primary side electromagnetic coil 14 provided in the power supply side power supply unit 10 and the secondary side electromagnetic coil 22 of the extension cord 20 determines the DC voltage of the extension cable, the power transmission unit 30 carries power. And a voltage value convenient for the drive circuit 32 and the switching element 33 are set.
Further, since the turn ratio of the primary side electromagnetic coil 28 and the secondary side electromagnetic coil 41 provided in the load side power receiving unit 40 in the insulating transformer 200 affects the voltage value supplied to the DC load 42, Set according to the optimum voltage. However, since there is a possibility that the secondary side electromagnetic coil 41 is connected to the primary side electromagnetic core coil 14 without using the extension cord 20 of the present invention, for example, in order to realize such an operation, an insulating transformer It is preferable that the primary side electromagnetic coil 14 of 100 and the primary side electromagnetic coil 28 of the insulation transformer 200 have the same number of turns.
 図2の電源側給電部10は、太陽光発電システム11によって形成され、太陽光発電システム11は住宅の南向き屋根など太陽光を受光できる位置に設置された太陽光パネルからの直流電力を給電するシステムであり、接続コードが屋内配線を通して室内の壁面付近に配置された電源側給電部10に接続される。そして、一次側電磁コイル14が壁面に設置された形になる。しかし、一次側電磁コイル14が必ずしも壁面に露出された形で設置されていなければならないわけではなく、埃の付着等を防ぐため、例えば未接続時は壁面に蓋をされているような構成でもよい。
 また、直流負荷42に備えられた二次側電磁コア41が、機器表面に設置された一次側電磁コイル28に設置された形となる。しかし、一次側電磁コイル28が必ずしも機器表面に露出された形で設置されていなければならないわけではなく、埃の付着等を防ぐため、例えば未接続時は機器表面に蓋をされているような構成でもよい。
 また、非接触給電装置用延長コード20の受電部21と給電部26は、色または形状を異ならせる。非接触給電装置用延長コードの受電部21と給電部26は、一見同じ形状であるので、受電部21と給電部26を間違う可能性があり、誤操作を招くので、あえて、色または形状を異ならせる。そして、更に、電源側給電部10及び延長コード20の受電部21と、延長コード20の給電部26及び機器側受電部40の色または形状を一致させることにより、延長コード20の接続操作の誤操作を防止することができる。
2 is formed by a solar power generation system 11, and the solar power generation system 11 supplies DC power from a solar panel installed at a position where sunlight can be received, such as a south facing roof of a house. The connection cord is connected to the power supply side power supply unit 10 disposed in the vicinity of the wall surface of the room through the indoor wiring. And it becomes the form where the primary side electromagnetic coil 14 was installed in the wall surface. However, the primary side electromagnetic coil 14 does not necessarily have to be installed in a form exposed on the wall surface, and in order to prevent dust adhesion and the like, for example, even when not connected, the wall surface is covered. Good.
Further, the secondary electromagnetic core 41 provided in the DC load 42 is installed in the primary electromagnetic coil 28 installed on the device surface. However, the primary side electromagnetic coil 28 does not necessarily have to be installed in a form exposed on the surface of the device. For example, when the device is not connected, the surface of the device is covered to prevent dust from adhering. It may be configured.
Further, the power receiving unit 21 and the power feeding unit 26 of the extension cord 20 for the non-contact power feeding device are different in color or shape. Since the power reception unit 21 and the power supply unit 26 of the extension cord for the non-contact power supply apparatus seem to have the same shape, there is a possibility that the power reception unit 21 and the power supply unit 26 may be mistaken, leading to an erroneous operation. Make it. Further, by matching the colors or shapes of the power receiving unit 21 of the power supply side power supply unit 10 and the extension cord 20 with the colors or shapes of the power supply unit 26 of the extension cord 20 and the device side power receiving unit 40, an erroneous operation of the connection operation of the extension cord 20 Can be prevented.
 また、図2の実施形態は電源側給電部10が太陽光発電システム11である場合を示したが、燃料電池のような直流発電装置でもかまわないし、交流発電装置または商用交流電源のような交流電源であってもかまわない。交流電源である場合は、AC/DCコンバータにより直流に変換して電源側給電部10へ接続する必要がある。 2 shows the case where the power supply unit 10 is the solar power generation system 11, a DC power generation device such as a fuel cell may be used, or an AC power generation device or an AC power source such as a commercial AC power source may be used. It can be a power supply. In the case of an AC power supply, it is necessary to convert it into a direct current by an AC / DC converter and connect it to the power supply unit 10.
 図6は、本発明の比較例として示すに非接触延長ケーブルの回路図を示す。
 この回路図では、直流電源51から供給される直流電力は、駆動回路52、スイッチング素子53を用いて、高周波電力に変換される。絶縁トランス400は分離可能な絶縁トランスであり、一次側電磁コイル54と二次側電磁コイル55は電磁結合をする。スイッチ素子53は、例えば、数kHz~150kHzの高周波でスイッチング動作を行う。二次側電磁コイル55から出力される高周波電力は、非接触延長ケーブル56と絶縁トランス500を介してそのまま負荷側受電部60へ供給される。そして、同様に整流回路61、平滑回路62を介して直流負荷63へ電力供給する。
 図6に示す非接触延長ケーブルにおいて、ケーブル56に高周波電力が流れるため、ケーブル外部に高周波ノイズが出力される。この高周波ノイズは、他の家電機器、テレビ、ラジオ等に影響を及ぼすことが想定され、一般家庭等でこのまま使用することは困難である。また、ケーブル56の長さが長くなればなるほどケーブルのインダクタンス成分が増え、高周波電力が減衰したり波形が崩れたりしやすくなり、絶縁トランス500を通過する際にエネルギー損失が大きくなる。また、本構成の延長ケーブルにおいて、二次側電磁コイル55の直後にインピーダンス整合用コンデンサを設置すると、高周波ノイズをさらに多く出力したり、高周波電力波形が崩れたりすることになり、このケーブル構造では上記場所にインピーダンス整合用コンデンサを挿入することが困難である。
FIG. 6 shows a circuit diagram of a non-contact extension cable shown as a comparative example of the present invention.
In this circuit diagram, DC power supplied from a DC power source 51 is converted into high-frequency power using a drive circuit 52 and a switching element 53. The insulating transformer 400 is a separable insulating transformer, and the primary side electromagnetic coil 54 and the secondary side electromagnetic coil 55 are electromagnetically coupled. The switch element 53 performs a switching operation at a high frequency of, for example, several kHz to 150 kHz. The high frequency power output from the secondary side electromagnetic coil 55 is supplied to the load side power receiving unit 60 as it is through the non-contact extension cable 56 and the insulating transformer 500. Similarly, power is supplied to the DC load 63 via the rectifier circuit 61 and the smoothing circuit 62.
In the non-contact extension cable shown in FIG. 6, since high frequency power flows through the cable 56, high frequency noise is output outside the cable. This high-frequency noise is assumed to affect other home appliances, televisions, radios, and the like, and is difficult to use as is in ordinary homes. Further, as the length of the cable 56 becomes longer, the inductance component of the cable increases, the high-frequency power tends to be attenuated or the waveform is easily broken, and the energy loss increases when passing through the insulating transformer 500. Moreover, in the extension cable of this configuration, if an impedance matching capacitor is installed immediately after the secondary electromagnetic coil 55, more high-frequency noise is output or the high-frequency power waveform is disrupted. It is difficult to insert an impedance matching capacitor at the above location.
 また、本発明の実施形態では、図2に示すように、絶縁トランス200の一次側電磁コイル28に接続部31(図2に丸印で示す)を形成し、接続部31で分岐させることにより、複数の給電部を形成することができる。また、ノイズフィルタ35と高周波生成回路27の接続点に接続部45を設けて分岐しても、平滑回路25とノイズフィルタ35の接続点に接続部71を設けて分岐しても構わない。しかし、接続部45で分岐した場合は別途駆動回路とスイッチ素子が必要となり、接続部71で分岐した場合には別途駆動回路とスイッチ素子とノイズフィルタが必要となる。 Further, in the embodiment of the present invention, as shown in FIG. 2, a connecting portion 31 (shown by a circle in FIG. 2) is formed in the primary side electromagnetic coil 28 of the insulating transformer 200 and branched by the connecting portion 31. A plurality of power feeding units can be formed. Further, the connection portion 45 may be provided at the connection point between the noise filter 35 and the high frequency generation circuit 27, or the connection portion 71 may be provided at the connection point between the smoothing circuit 25 and the noise filter 35 for branching. However, when branching at the connection portion 45, a separate drive circuit and switch element are required, and when branching at the connection portion 71, a separate drive circuit, switch element, and noise filter are required.
 また、図2に示した駆動回路32、スイッチ素子33は、正弦波駆動を行うようにするとよい。そのためには、図3に、図2の高周波生成回路27を部分的に示すように、高周波生成回路27を構成するスイッチング素子33とコイル28の間に共振用コンデンサ60を接続する。この場合、共振用コンデンサ60の容量Cと、絶縁トランス200における漏れインダクタンスLと、スイッチング素子33の駆動周波数fを以下のように調整する必要がある。
f=1/(2π√(LC))
 このように共振用コンデンサ60を接続することにより非接触延長ケーブルへ出力するノイズ量を削減することが可能となる。
 また、本実施の形態ではインピーダンス整合用コンデンサ101、および201を用いたが、必ずしも設置する必要はない。設置するとインピーダンス整合により送電効率が向上する。
Further, the drive circuit 32 and the switch element 33 shown in FIG. 2 are preferably sine wave driven. For this purpose, a resonance capacitor 60 is connected between the switching element 33 and the coil 28 constituting the high frequency generation circuit 27 so as to partially show the high frequency generation circuit 27 of FIG. In this case, it is necessary to adjust the capacitance C of the resonance capacitor 60, the leakage inductance L in the insulating transformer 200, and the drive frequency f of the switching element 33 as follows.
f = 1 / (2π√ (LC))
By connecting the resonance capacitor 60 in this way, it is possible to reduce the amount of noise output to the non-contact extension cable.
Further, although impedance matching capacitors 101 and 201 are used in the present embodiment, it is not always necessary to install them. When installed, power transmission efficiency is improved by impedance matching.
(第2の実施形態)
 図4は、第2の実施形態に係る非接触給電装置用延長コードの構成図を示す。第2の実施形態は、高周波生成回路27が受電部21に設けられ、高周波生成回路27とコイル29の間が、送電部30によって接続される点が第1の実施形態と異なる点である。第2の実施形態は、送電部30は高周波電力を送電する。
 第2の実施形態の回路は、図2に示した第1の実施形態の回路と同じである。
 また、第2の実施形態は、受電部が多少大きくなってもよいが、給電部は小さくしたいという要望があった場合に適している。第2の実施形態においては、受電部21でインピーダンス整合用コンデンサ101を導入可能な形になるため、ケーブルの電力伝達効率は向上する。
(Second Embodiment)
FIG. 4 is a configuration diagram of the extension cord for the non-contact power feeding device according to the second embodiment. The second embodiment is different from the first embodiment in that a high frequency generation circuit 27 is provided in the power reception unit 21 and the high frequency generation circuit 27 and the coil 29 are connected by a power transmission unit 30. In the second embodiment, the power transmission unit 30 transmits high-frequency power.
The circuit of the second embodiment is the same as the circuit of the first embodiment shown in FIG.
The second embodiment is suitable for a case where there is a request to reduce the power feeding unit, although the power receiving unit may be somewhat larger. In the second embodiment, since the impedance matching capacitor 101 can be introduced by the power receiving unit 21, the power transmission efficiency of the cable is improved.
(第3の実施形態)
 図5は、第3の実施形態に係る非接触給電装置用延長コードの構成図を示す。第3の実施形態は、受電部21の2次側電磁コイル22と整流回路24の間が、送電部30によって接続される点が第1の実施形態と異なる点である。第3の実施形態は、送電部30は高周波電力を送電する。
 第3の実施形態の回路は、図2に示した第1の実施形態の回路と同じである。
 また、第3の実施形態は、給電部が多少大きくなってもよいが、受電部は小さくしたいという要望があった場合に適している。この第3の実施形態においては、受電部21側もしくは給電部26の入り口でインピーダンス整合用コンデンサ101を導入可能な形になるため、ケーブルの電力伝達効率は向上する。
(Third embodiment)
FIG. 5 is a configuration diagram of the extension cord for the non-contact power feeding device according to the third embodiment. The third embodiment is different from the first embodiment in that the secondary electromagnetic coil 22 of the power reception unit 21 and the rectifier circuit 24 are connected by the power transmission unit 30. In the third embodiment, the power transmission unit 30 transmits high-frequency power.
The circuit of the third embodiment is the same as the circuit of the first embodiment shown in FIG.
The third embodiment is suitable for a case where there is a request to make the power receiving unit small, although the power feeding unit may be somewhat larger. In the third embodiment, since the impedance matching capacitor 101 can be introduced at the power receiving unit 21 side or the entrance of the power feeding unit 26, the power transmission efficiency of the cable is improved.
10 電源側給電部
20 延長コード
21 受電部
22 コイル
23 整流回路
24 平滑回路
25 給電部
26 高周波生成回路
27 コイル
28 送電部
29 接続部
30 負荷側受電部
31 接続部
40 ノイズフィルタ
DESCRIPTION OF SYMBOLS 10 Power supply side electric power feeding part 20 Extension cord 21 Power receiving part 22 Coil 23 Rectification circuit 24 Smoothing circuit 25 Electric power feeding part 26 High frequency generation circuit 27 Coil 28 Power transmission part 29 Connection part 30 Load side electric power reception part 31 Connection part 40 Noise filter

Claims (10)

  1.  非接触給電装置用延長コードの一端側の受電部に電源側給電部の電磁コアに電磁結合する受電コアに巻回した受電コイルを有し、他端側に負荷側受電部の電磁コアと電磁結合する給電コアに巻回した給電コイルを有し、更に前記受電コイルと給電コイルの間に交流―直流変換部と直流―交流変換部を備え、前記受電コイルと交流―直流変換部間、前記交流―直流変換部と直流―交流変換部間または前記直流―交流変換部と給電コイル間を送電部によって接続した非接触給電装置用延長コード。 The power receiving unit on one end side of the extension cord for the non-contact power feeding device has a power receiving coil wound around the power receiving core that is electromagnetically coupled to the electromagnetic core of the power supply side power feeding unit, and the electromagnetic core and electromagnetic of the load side power receiving unit on the other end side. A power supply coil wound around a power supply core to be coupled, further comprising an AC-DC converter and a DC-AC converter between the power receiver coil and the power supply coil, between the power receiver coil and the AC-DC converter, An extension cord for a non-contact power feeding device in which an AC-DC converter and a DC-AC converter or between the DC-AC converter and a feeding coil are connected by a power transmitter.
  2.  延長ケーブル受電側の2次側電磁コイルと整流回路の間に、インピーダンス整合用コンデンサを挿入した請求項1に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to claim 1, wherein an impedance matching capacitor is inserted between the secondary electromagnetic coil on the power receiving side of the extension cable and the rectifier circuit.
  3.  延長ケーブルの送電部と高周波生成回路の間に、ノイズフィルタを挿入した請求項1または2に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to claim 1 or 2, wherein a noise filter is inserted between the power transmission part of the extension cable and the high frequency generation circuit.
  4.  高周波生成回路は、正弦波駆動を行う請求項3に記載の非接触給電装置用延長コード。 4. The extension cord for a non-contact power feeding device according to claim 3, wherein the high frequency generation circuit performs sine wave driving.
  5.  延長ケーブルの受電側電磁コイルと給電側電磁コイルの巻線数は、同一である請求項1から4までのいずれか1項に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to any one of claims 1 to 4, wherein the number of windings of the power receiving side electromagnetic coil and the power feeding side electromagnetic coil of the extension cable is the same.
  6.  前記電源側給電部は、建造物の壁面に備えられた請求項1に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to claim 1, wherein the power supply side power feeding section is provided on a wall surface of a building.
  7.  前記給電コアに電磁結合する負荷側受電部の電磁コアを負荷に備える請求項1に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to claim 1, wherein the load is provided with an electromagnetic core of a load-side power receiving unit that is electromagnetically coupled to the power feeding core.
  8.  前記受電部と給電部は、色または形状が異なる請求項1に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to claim 1, wherein the power receiving unit and the power feeding unit are different in color or shape.
  9.  前記電源側給電部及び受電部と、前記給電部及び負荷側受電部の色または形状を一致させた請求項1に記載の非接触給電装置用延長コード。 The extension cord for a non-contact power feeding device according to claim 1, wherein the color or shape of the power supply side power supply unit and power reception unit, and the power supply unit and load side power reception unit are matched.
  10.  前記受電コイルと交流―直流変換部間、前記交流―直流変換部と直流―交流変換部間または前記直流―交流変換部と給電コイル間に接続された分岐コードを有し、前記分岐コードの先端に給電部を備える請求項1に記載の非接触給電装置用延長コード。 A branch cord connected between the power receiving coil and the AC-DC converter, between the AC-DC converter and the DC-AC converter, or between the DC-AC converter and the feeding coil; The extension cord for a non-contact power feeding device according to claim 1, further comprising a power feeding unit.
PCT/JP2010/062353 2009-09-01 2010-07-22 Extension cord for contactless electricity-supplying device WO2011027627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009201607 2009-09-01
JP2009-201607 2009-09-01

Publications (1)

Publication Number Publication Date
WO2011027627A1 true WO2011027627A1 (en) 2011-03-10

Family

ID=43649175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062353 WO2011027627A1 (en) 2009-09-01 2010-07-22 Extension cord for contactless electricity-supplying device

Country Status (1)

Country Link
WO (1) WO2011027627A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530854A (en) * 2013-05-23 2016-09-29 ジニアテック リミテッド Photovoltaic system
EP3454452A1 (en) * 2017-09-08 2019-03-13 TE Connectivity Nederland B.V. Inductive coupled power transfer (icpt) in multiple gap applications
US10850440B2 (en) 2014-12-01 2020-12-01 Zinniatek Limited Roofing, cladding or siding product
US10858839B2 (en) 2011-11-30 2020-12-08 Zinniatek Limited Roofing, cladding or siding product, its manufacture and its use as part of a solar energy recovery system
US10866012B2 (en) 2014-12-01 2020-12-15 Zinniatek Limited Roofing, cladding or siding apparatus
US10879842B2 (en) 2016-10-17 2020-12-29 Zinniatek Limited Roofing, cladding or siding module or apparatus
US11011912B2 (en) 2011-11-30 2021-05-18 Zinniatek Limited Photovoltaic systems
US11408613B2 (en) 2014-03-07 2022-08-09 Zinniatek Limited Solar thermal roofing system
US11702840B2 (en) 2018-12-19 2023-07-18 Zinniatek Limited Roofing, cladding or siding module, its manufacture and use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101110A (en) * 1989-09-13 1991-04-25 Mitsubishi Electric Corp Electromagnetic outlet device
JPH07299150A (en) * 1994-05-02 1995-11-14 Kaageo P-Shingu Res Lab:Kk Intracorporeal coil for percutaneous charging system for pace maker
JP2001501407A (en) * 1996-09-30 2001-01-30 シーメンス アクチエンゲゼルシヤフト Wireless energy and data transmission for modular peripheral systems
JP2006136045A (en) * 2004-11-02 2006-05-25 Sharp Corp Power supply system and power supply service using the same
JP2007149844A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd L-shaped magnetic core
JP2009159677A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Noncontact power feeding adaptor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101110A (en) * 1989-09-13 1991-04-25 Mitsubishi Electric Corp Electromagnetic outlet device
JPH07299150A (en) * 1994-05-02 1995-11-14 Kaageo P-Shingu Res Lab:Kk Intracorporeal coil for percutaneous charging system for pace maker
JP2001501407A (en) * 1996-09-30 2001-01-30 シーメンス アクチエンゲゼルシヤフト Wireless energy and data transmission for modular peripheral systems
JP2006136045A (en) * 2004-11-02 2006-05-25 Sharp Corp Power supply system and power supply service using the same
JP2007149844A (en) * 2005-11-25 2007-06-14 Matsushita Electric Works Ltd L-shaped magnetic core
JP2009159677A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Noncontact power feeding adaptor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858839B2 (en) 2011-11-30 2020-12-08 Zinniatek Limited Roofing, cladding or siding product, its manufacture and its use as part of a solar energy recovery system
US11011912B2 (en) 2011-11-30 2021-05-18 Zinniatek Limited Photovoltaic systems
JP2016530854A (en) * 2013-05-23 2016-09-29 ジニアテック リミテッド Photovoltaic system
US11018618B2 (en) 2013-05-23 2021-05-25 Zinniatek Limited Photovoltaic systems
US11408613B2 (en) 2014-03-07 2022-08-09 Zinniatek Limited Solar thermal roofing system
US10850440B2 (en) 2014-12-01 2020-12-01 Zinniatek Limited Roofing, cladding or siding product
US10866012B2 (en) 2014-12-01 2020-12-15 Zinniatek Limited Roofing, cladding or siding apparatus
US10879842B2 (en) 2016-10-17 2020-12-29 Zinniatek Limited Roofing, cladding or siding module or apparatus
EP3454452A1 (en) * 2017-09-08 2019-03-13 TE Connectivity Nederland B.V. Inductive coupled power transfer (icpt) in multiple gap applications
US11702840B2 (en) 2018-12-19 2023-07-18 Zinniatek Limited Roofing, cladding or siding module, its manufacture and use

Similar Documents

Publication Publication Date Title
WO2011027627A1 (en) Extension cord for contactless electricity-supplying device
US20120200169A1 (en) Wireless power feeder and wireless power transmission system
US10529484B2 (en) Coil device of wireless power transfer system
JP6115626B2 (en) Wireless power supply device
KR101438910B1 (en) The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same
WO2014010518A1 (en) Power-receiving device and power transfer system
JP5550785B2 (en) Circuit of contactless inductive power transmission system
WO2011089776A1 (en) Contactless electricity-supplying device
WO2013076936A1 (en) Electricity-generation system and wireless power-transmission system
US20140285027A1 (en) Non-contact electricity supply device
CN103762726B (en) A kind of domestic solar wireless power supply system
KR20080096919A (en) Non-directional charging device and wireless charging set of small electronic device
WO2017007163A1 (en) Method for operating wireless power transmission device
KR101994740B1 (en) Non contact type power transmitting appratus, non contact type power transmitting-receiving appratus, contact-non contact type power transmitting appratus and contact-non contact type power transmitting-receiving appratus
CN104953682A (en) Circuit with both functions of wireless power transmitter and wireless power receiver and device thereof
US10742071B2 (en) Wireless power transfer for stationary applications
JP5896161B2 (en) Non-contact transformer system
WO2014173033A1 (en) Receiving end and system and receiving method for wireless power transmission
JP2011078267A (en) Dc power supply system
KR100898059B1 (en) Wireless Mouse Set and/or Small Electronic Device Set using Wireless Electric Power
JP2011234051A (en) Power line communication system
CN113675956A (en) Staggered anti-deviation constant-voltage resonant wireless power transmission system
KR20100025871A (en) System for regeneration of electrical energy by wireless radiowave
US20210066949A1 (en) Mains Power Fixture with Galvanic Isolation
JP2011078266A (en) Noncontact power supply equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP