JP2010104159A - Power receiving terminal and contactless power transmission system - Google Patents

Power receiving terminal and contactless power transmission system Download PDF

Info

Publication number
JP2010104159A
JP2010104159A JP2008273677A JP2008273677A JP2010104159A JP 2010104159 A JP2010104159 A JP 2010104159A JP 2008273677 A JP2008273677 A JP 2008273677A JP 2008273677 A JP2008273677 A JP 2008273677A JP 2010104159 A JP2010104159 A JP 2010104159A
Authority
JP
Japan
Prior art keywords
circuit
power receiving
power
coil
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008273677A
Other languages
Japanese (ja)
Inventor
Shinji Goma
真治 郷間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008273677A priority Critical patent/JP2010104159A/en
Publication of JP2010104159A publication Critical patent/JP2010104159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Rectifiers (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless power receiving terminal and a contactless power transmission system which improve the stability of output voltage to operation frequency fluctuations and power transmission efficiency. <P>SOLUTION: A power receiving terminal 1 is provided with a floating circuit 101 and a load output circuit 102. The floating circuit 101 is provided with a power receiving coil 14 and a capacitor C<SB>0</SB>, and floats from an output line. The power receiving coil 14 is supplied with power from a feeding electric field of a transmission coil 23. The capacitor C<SB>0</SB>is connected to a closed loop including the power receiving coil 14. The load output circuit 102 is provided with a power receiving coil 15, and converts an output voltage from the power receiving coil 15 into a load output voltage to output the load output voltage from the output line. The power receiving coil 15 receives power from the feeding electric field. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、給電電磁界に結合して無接点で給電を受ける受電端末、および送電端末と受電端末とを備える無接点電力伝送システムに関するものである。   The present invention relates to a power receiving terminal that is coupled to a power feeding electromagnetic field and receives power without contact, and a contactless power transmission system including a power transmission terminal and a power receiving terminal.

固定電話の子機、電気シェーバーなどでは、電力線を接続すること無く充電を行うために、送電端末と受電端末とをコイルアンテナで結合させ、無接点での電力伝送を行うことがある(例えば、特許文献1参照。)。   In order to perform charging without connecting a power line in a handset of a fixed telephone, an electric shaver, etc., a power transmission terminal and a power reception terminal may be coupled with a coil antenna to perform power transmission without contact (for example, (See Patent Document 1).

図1は、従来の無接点電力伝送システムの構成例の概略の回路図である。   FIG. 1 is a schematic circuit diagram of a configuration example of a conventional contactless power transmission system.

送電装置110は送電コイル111と昇圧回路112とを備え、直流入力を昇圧回路112で昇圧し交流出力を送電コイル111に印加する。受電装置120は受電コイル121と降圧回路122とを備え、受電コイル121に励起する交流入力を整流平滑回路で整流・平滑して降圧回路122で降圧し直流出力として出力する。この従来例では、送電コイル111の送電電圧と受電コイル121の受電電圧とを高電圧にすることで、コイル電流を小さくして電力伝送効率を改善している。
特開2008−104319号公報
The power transmission device 110 includes a power transmission coil 111 and a booster circuit 112, boosts a DC input by the booster circuit 112, and applies an AC output to the power transmission coil 111. The power receiving device 120 includes a power receiving coil 121 and a step-down circuit 122. The AC input excited in the power receiving coil 121 is rectified and smoothed by a rectifying / smoothing circuit, stepped down by the step-down circuit 122, and output as a DC output. In this conventional example, by increasing the power transmission voltage of the power transmission coil 111 and the power reception voltage of the power reception coil 121, the coil current is reduced and the power transmission efficiency is improved.
JP 2008-104319 A

一般に、受電コイルの受電電圧が高電圧であれば受電コイルの後段で生じるリップルが大きくなり易く、リップル成分に基づく温度上昇が増える虞がある。また、リチウムイオンバッテリ・1セルなどを充電する場合には低電圧の直流出力が必要になるが、高電圧な受電電圧に基づいて低電圧の負荷出力を得る場合、降圧用の回路素子、例えばチョークコイルや平滑用コンデンサ、DC−DCコンバータなどの素子に大容量なものを採用する必要があり回路モジュールの大型化を招来する。巻数比などの調整により送電コイルの送電電圧に比べて受電コイルの受電電圧を低電圧化すればこれらの問題は解決できるが、その場合、受電コイルの巻数が適正範囲から外れて電力伝送効率が著しく低下する虞がある。このため、電力伝送効率を損なわずに受電電圧を低電圧化することは困難である。   In general, if the power receiving voltage of the power receiving coil is high, the ripple generated in the subsequent stage of the power receiving coil tends to be large, and there is a concern that the temperature rise based on the ripple component increases. In addition, when charging a lithium ion battery, one cell, etc., a low voltage DC output is required. When obtaining a low voltage load output based on a high voltage receiving voltage, a step-down circuit element, for example, It is necessary to employ a large capacity element such as a choke coil, a smoothing capacitor, or a DC-DC converter, resulting in an increase in the size of the circuit module. These problems can be solved by lowering the receiving voltage of the receiving coil compared to the transmitting voltage of the transmitting coil by adjusting the turns ratio, etc., but in that case, the number of turns of the receiving coil is out of the proper range and the power transmission efficiency is reduced. There is a risk of significant reduction. For this reason, it is difficult to lower the received voltage without impairing the power transmission efficiency.

また、一般に無接点電力伝送システムでは、商用電源の50−60Hzよりも高い数十〜百数十kHzの動作周波数が採用される。このように比較的高い動作周波数では、動作周波数の微少な変化であっても回路素子の持つインピーダンスが変動することがあり、出力電圧や電力伝送効率が周波数特性を持つに至る。したがって、回路素子のインピーダンス公差により製品毎の動作周波数に差が生じれば、各製品の出力電圧や電力伝送効率が偏差を持つに至る。この偏差が大きいと、出力電圧や電力伝送効率に対する要求性能を満足することができない製品が増え、製造良品率が低下して問題となる。   In general, a contactless power transmission system employs an operating frequency of tens to hundreds of kHz, which is higher than 50-60 Hz of a commercial power source. Thus, at a relatively high operating frequency, even if the operating frequency is very small, the impedance of the circuit element may fluctuate, and the output voltage and power transmission efficiency have frequency characteristics. Therefore, if there is a difference in the operating frequency for each product due to the impedance tolerance of the circuit elements, the output voltage and power transmission efficiency of each product will have a deviation. If this deviation is large, the number of products that cannot satisfy the required performance with respect to the output voltage and power transmission efficiency increases, resulting in a problem in that the yield of non-defective products decreases.

そこで、この発明は、電力伝送効率をあまり損なわずに送電電圧に比べて受電電圧を低電圧化でき、動作周波数の変動に対する出力電圧や電力伝送効率の安定性を高めることが容易な無接点受電端末および無接点電力電送システムの提供を目的とする。   Therefore, the present invention can reduce the receiving voltage compared to the transmission voltage without significantly reducing the power transmission efficiency, and can easily improve the stability of the output voltage and the power transmission efficiency with respect to fluctuations in the operating frequency. The purpose is to provide terminals and contactless power transmission systems.

この発明の受電端末は浮遊回路と負荷出力回路とを備える。浮遊回路は第1の受電コイルとコンデンサとを備え、出力ラインから浮遊する。第1の受電コイルは、送電コイルからの磁束に鎖交して給電を受ける。コンデンサは第1の受電コイルを含む閉ループに接続される。負荷出力回路は、第2の受電コイルを備え、第2の受電コイルの出力電圧を負荷出力電圧に変換し出力ラインから出力する。第2の受電コイルは、浮遊回路からの磁束に鎖交して給電を受ける。   The power receiving terminal of the present invention includes a floating circuit and a load output circuit. The floating circuit includes a first power receiving coil and a capacitor, and floats from the output line. The first power receiving coil is supplied with power linked to the magnetic flux from the power transmitting coil. The capacitor is connected to a closed loop including the first power receiving coil. The load output circuit includes a second power receiving coil, converts the output voltage of the second power receiving coil into a load output voltage, and outputs the load output voltage from the output line. The second power receiving coil is fed with the magnetic flux from the floating circuit.

この構成では、浮遊回路に設けるコンデンサにより、他の回路素子のインピーダンスを変更しなくても、送電端末および受電端末からなる電力伝送回路全体のインピーダンスを変更でき、出力電圧や電力伝送効率の持つ周波数特性に影響を与えることができる。このため、共振コンデンサのインピーダンスを適切に設定すれば、周波数変動に対する出力電圧や電力伝送効率の安定性を高められる。   In this configuration, the impedance of the entire power transmission circuit consisting of the power transmission terminal and the power reception terminal can be changed without changing the impedance of other circuit elements by the capacitor provided in the floating circuit, and the frequency of the output voltage and power transmission efficiency can be changed. Can affect the characteristics. For this reason, if the impedance of the resonant capacitor is set appropriately, the stability of the output voltage and the power transmission efficiency against frequency fluctuations can be improved.

また、浮遊回路を介して負荷出力回路が給電を受けるので、送電コイルの送電電圧を高電圧にして電力損を抑制しても、第2の受電コイルの巻数比によらずに、第2の受電コイルの受電電圧を低電圧にできる。このため、電力伝送効率をあまり損なわずに低電圧な受電電圧を得られる。   In addition, since the load output circuit is supplied with power through the floating circuit, even if the power transmission voltage of the power transmission coil is set to a high voltage and power loss is suppressed, the second power receiving coil does not depend on the turn ratio of the second power receiving coil. The receiving voltage of the receiving coil can be lowered. For this reason, a low receiving voltage can be obtained without significantly reducing the power transmission efficiency.

第2の受電コイルは、送電コイルに粗結合し、第1の受電コイルに密結合すると好適である。これにより、コンデンサによる出力電圧や電力伝送効率の調整効果を高められる。また、電力伝送効率をさらに改善できる。   The second power receiving coil is preferably roughly coupled to the power transmitting coil and tightly coupled to the first power receiving coil. Thereby, the adjustment effect of the output voltage and electric power transmission efficiency by a capacitor | condenser can be heightened. In addition, the power transmission efficiency can be further improved.

負荷出力回路は整流平滑回路を備えると好適である。整流平滑回路は第2の受電コイルの出力を整流・平滑する。第2の受電コイルの出力を整流・平滑すればリップルが生じることがあるが、受電電圧を低電圧にすればこのリップルは小さくなり、後段での温度上昇などのリップルに基づく悪影響を抑制できる。   The load output circuit preferably includes a rectifying / smoothing circuit. The rectifying / smoothing circuit rectifies and smoothes the output of the second power receiving coil. When the output of the second power receiving coil is rectified and smoothed, a ripple may be generated. However, if the power receiving voltage is set to a low voltage, the ripple is reduced, and adverse effects due to the ripple such as a temperature rise in the subsequent stage can be suppressed.

負荷出力回路は降圧回路を備えると好適である。降圧回路は整流平滑回路の出力を降圧する。リチウムイオンバッテリ・1セルなどを充電する場合に必要な低電圧の直流出力を、低電圧な受電電圧の変換により得れば、降圧用の回路素子、例えばチョークコイルや平滑用コンデンサなどの素子に小容量なものを採用でき、回路モジュールを小型化できる。   The load output circuit preferably includes a step-down circuit. The step-down circuit steps down the output of the rectifying / smoothing circuit. If a low-voltage DC output necessary for charging a lithium-ion battery, 1 cell, etc. is obtained by converting the low-voltage receiving voltage, it can be applied to a step-down circuit element such as a choke coil or a smoothing capacitor. Small capacity can be adopted, and the circuit module can be downsized.

受電端末は、出力ラインの出力端に接続される充電池を備えてもよい。   The power receiving terminal may include a rechargeable battery connected to the output end of the output line.

この発明の無接点電力伝送システムは上述の受電端末と送電端末、または送電回路と浮遊回路と負荷出力回路とを備えてもよい。   The contactless power transmission system of the present invention may include the above-described power receiving terminal and power transmission terminal, or a power transmission circuit, a floating circuit, and a load output circuit.

この発明によれば、浮遊回路に設けるコンデンサのインピーダンスを設計段階で適切に設定することにより、出力電圧や電力伝送効率の周波数特性を動作周波数付近でなだらかにできる。これにより、インピーダンス公差が大きな回路素子を採用しても、周波数変動に対する出力電圧や電力伝送効率の安定性を高められる。また、浮遊回路を介して負荷出力回路が給電を受けるので、電力伝送効率をあまり損なわずに低電圧な受電電圧を得られる。   According to the present invention, by appropriately setting the impedance of the capacitor provided in the floating circuit at the design stage, the frequency characteristics of the output voltage and the power transmission efficiency can be made smooth near the operating frequency. Thereby, even if a circuit element having a large impedance tolerance is adopted, the stability of the output voltage and the power transmission efficiency against the frequency fluctuation can be improved. In addition, since the load output circuit is supplied with power via the floating circuit, a low power receiving voltage can be obtained without significantly reducing the power transmission efficiency.

以下、無接点電力伝送システムの具体例として、携帯電話機やモバイルPCなどの充電に利用する二次側充電回路および一次側充電アダプタからなる無接点充電システムを想定して本発明の実施形態を説明する。   Hereinafter, as a specific example of the non-contact power transmission system, an embodiment of the present invention will be described assuming a non-contact charging system including a secondary side charging circuit and a primary side charging adapter used for charging a mobile phone or a mobile PC. To do.

図2は本発明の実施形態に係る無接点電力伝送システムの概略構成例を示す断面図である。   FIG. 2 is a cross-sectional view showing a schematic configuration example of the contactless power transmission system according to the embodiment of the present invention.

無接点電力伝送システムは、二次側の受電端末1と一次側の送電端末2とを備える。充電時に受電端末1が送電端末2上に装着された状態で、送電端末2から受電端末1に無接点電力伝送を行い、受電端末1で充電池13の充電を行う。   The non-contact power transmission system includes a secondary power receiving terminal 1 and a primary power transmitting terminal 2. In a state where the power receiving terminal 1 is mounted on the power transmission terminal 2 at the time of charging, contactless power transmission is performed from the power transmission terminal 2 to the power receiving terminal 1, and the rechargeable battery 13 is charged by the power receiving terminal 1.

送電端末2は非磁性体の筐体21を備え、筐体21に回路モジュール22と送電コイル23と磁性体シート24とを内装する。回路モジュール22は、後述する送電回路200の回路パターンと回路素子とを回路基板に設けたものである。送電コイル23は空芯コイルとして形成され、磁性体シート24の上方に配置されている。磁性体シート24は回路モジュール22と送電コイル23との間に配置され、送電コイル23の鎖交磁束が回路モジュール22側に漏れるのを規制して、送電コイル−受電コイル間を結合し易くしている。   The power transmission terminal 2 includes a non-magnetic casing 21, and the casing 21 includes a circuit module 22, a power transmission coil 23, and a magnetic sheet 24. The circuit module 22 is provided with a circuit pattern and circuit elements of a power transmission circuit 200 described later on a circuit board. The power transmission coil 23 is formed as an air-core coil, and is disposed above the magnetic sheet 24. The magnetic sheet 24 is disposed between the circuit module 22 and the power transmission coil 23, restricts the flux linkage of the power transmission coil 23 from leaking to the circuit module 22 side, and facilitates coupling between the power transmission coil and the power reception coil. ing.

受電端末1は非磁性体の筐体11を備え、筐体11に回路モジュール12と充電池13と受電コイル14,15と磁性体シート16とを内装する。回路モジュール12は、後述する受電回路100や受電端末1の制御回路(不図示)の回路パターンや回路素子(例えばDC−DCコンバータ104やコンデンサC)を回路基板に設けたものである。受電コイル14,15はそれぞれ空芯コイルとして形成され、第1の受電コイルである受電コイル14の鎖交磁束の大部分が第2の受電コイルである受電コイル15の鎖交磁束と共通するように、受電コイル14が受電コイル15の下方で同軸に配置されている。磁性体シート16は受電コイル14,15の上方に配置され、回路モジュール12と受電コイル14,15との間を隔てている。この磁性体シート16は、受電コイル14,15の鎖交磁束が回路モジュール12側に漏れるのを規制して、受電コイル−送電コイル間を結合し易くしている。 The power receiving terminal 1 includes a non-magnetic casing 11, and the casing 11 includes a circuit module 12, a rechargeable battery 13, power receiving coils 14 and 15, and a magnetic sheet 16. The circuit module 12 is a circuit board in which circuit patterns and circuit elements (for example, a DC-DC converter 104 and a capacitor C 0 ) of a power receiving circuit 100 and a control circuit (not shown) of the power receiving terminal 1 described later are provided on a circuit board. The power receiving coils 14 and 15 are each formed as an air-core coil so that most of the interlinkage magnetic flux of the power receiving coil 14 that is the first power receiving coil is common to the interlinkage magnetic flux of the power receiving coil 15 that is the second power receiving coil. In addition, the power receiving coil 14 is coaxially disposed below the power receiving coil 15. The magnetic sheet 16 is disposed above the power receiving coils 14 and 15 and separates the circuit module 12 and the power receiving coils 14 and 15. The magnetic sheet 16 restricts the interlinkage magnetic flux of the power receiving coils 14 and 15 from leaking to the circuit module 12 side, thereby facilitating coupling between the power receiving coil and the power transmitting coil.

図3は無接点電力伝送システムの概略回路例を示す回路図である。受電端末1は受電回路100を備え、送電端末2は送電回路200を備える。   FIG. 3 is a circuit diagram showing a schematic circuit example of the non-contact power transmission system. The power receiving terminal 1 includes a power receiving circuit 100, and the power transmitting terminal 2 includes a power transmitting circuit 200.

送電回路200は、送電コイル23とドライバ回路201と一次側信号処理部202とを備える。ドライバ回路201は、商用電源などから入力ラインに供給される交流入力を百数十kHzの周波数に変換するとともに、充電時に100V超の送電電圧に昇圧して送電コイル23に給電する。一次側信号処理部は、送電コイル23の電圧変化に基づいて受電端末1の装着状態を判定し、ドライバ回路201を制御する。送電コイル23はドライバ回路201からの交流出力が印加されて給電電磁界を励起する。   The power transmission circuit 200 includes a power transmission coil 23, a driver circuit 201, and a primary side signal processing unit 202. The driver circuit 201 converts an AC input supplied to the input line from a commercial power source or the like into a frequency of hundreds of tens of kHz, and boosts the power transmission voltage to 100 V or more and supplies power to the power transmission coil 23 during charging. The primary-side signal processing unit determines the mounting state of the power receiving terminal 1 based on the voltage change of the power transmission coil 23 and controls the driver circuit 201. An AC output from the driver circuit 201 is applied to the power transmission coil 23 to excite the feeding electromagnetic field.

受電回路100は、浮遊回路101と負荷出力回路102とを備える。浮遊回路101は、受電コイル14とコンデンサCとを直列に接続してなるLC直列共振ループ回路である。受電コイル14は、受電端末1が送電端末2の充電可能位置に配置された際に、一次側の送電コイル23に励起する給電電磁界が鎖交し、これにより一次側の送電コイル23に結合する。コンデンサCは、インピーダンス設定用に設けられていて、電力伝送効率や出力電圧の周波数特性の調整に寄与する。 The power receiving circuit 100 includes a floating circuit 101 and a load output circuit 102. Floating circuit 101 is an LC series resonant loop circuit composed of a power receiving coil 14 and the capacitor C 0 connected in series. When the power receiving terminal 1 is disposed at a chargeable position of the power transmission terminal 2, the power receiving coil 14 is linked to a power supply electromagnetic field that excites the primary power transmission coil 23, and is thereby coupled to the primary power transmission coil 23. To do. Capacitor C 0 is provided for impedance setting, it contributes to the adjustment of the frequency characteristic of the power transmission efficiency and the output voltage.

負荷出力回路102は受電コイル15の交流出力を変換して直流出力を出力する回路であり、受電コイル15と整流回路103と平滑コンデンサCとDC−DCコンバータ104と二次側信号処理部105と負荷変調回路106とを備える。 The load output circuit 102 is a circuit that converts the AC output of the power receiving coil 15 and outputs a DC output. The power receiving coil 15, the rectifier circuit 103, the smoothing capacitor C 1 , the DC-DC converter 104, and the secondary side signal processing unit 105. And a load modulation circuit 106.

受電コイル15は、受電端末1が送電端末2の充電可能位置に配置された際に、受電コイル14に鎖交した磁束の大部分と鎖交し、これにより、一次側の送電コイル23と浮遊回路101の受電コイル14とに結合する。   When the power receiving terminal 1 is arranged at the chargeable position of the power transmitting terminal 2, the power receiving coil 15 is linked with most of the magnetic flux interlinked with the power receiving coil 14, thereby floating with the power transmitting coil 23 on the primary side. Coupled to the power receiving coil 14 of the circuit 101.

整流回路103は受電コイル15の交流出力を整流する。平滑コンデンサCは整流回路103の出力を平滑する。整流回路103と平滑コンデンサCとが本発明の整流平滑回路を構成する。ダイオードDは平滑コンデンサCからの電荷の逆流を防止するために、整流回路103と平滑コンデンサCとの間に直列に接続している。DC−DCコンバータ104は本発明の降圧回路であり、平滑コンデンサCの出力を降圧して負荷出力電圧の直流出力に変換する。受電負荷Rは充電池13とその保護回路とを含み、負荷出力回路102の出力ラインに接続される。充電池13はDC−DCコンバータ104の直流出力により充電される。負荷変調回路106は負荷変調抵抗Rと負荷変調スイッチQとを備える。抵抗Rは、整流回路103とダイオードDとの接続点に第一端が接続される。スイッチQは、抵抗Rの第二端とグランドとの間に接続される。二次側信号処理部105は端末識別子を含む送信信号を生成し、この送信信号に応じてスイッチQを制御する。 The rectifier circuit 103 rectifies the AC output of the power receiving coil 15. The smoothing capacitor C 1 smoothes the output of the rectifier circuit 103. A rectifier circuit 103 and a smoothing capacitor C 1 constitute a rectifying smoothing circuit of the present invention. For the diode D 1 is to prevent the backflow of charge from the smoothing capacitor C 1, are connected in series between the rectifier circuit 103 and the smoothing capacitor C 1. DC-DC converter 104 is a step-down circuit of the present invention, converted by lowering the output of the smoothing capacitor C 1 to the DC output of the load output voltage. The power receiving load RL includes the rechargeable battery 13 and its protection circuit, and is connected to the output line of the load output circuit 102. The rechargeable battery 13 is charged by the direct current output of the DC-DC converter 104. The load modulation circuit 106 includes a load modulation resistor R 1 and a load modulation switch Q 1 . The resistor R 1 has a first end connected to a connection point between the rectifier circuit 103 and the diode D 1 . Switch Q 1 is, is connected between the second end and the ground resistor R 1. Secondary signal processing unit 105 generates a transmission signal containing the terminal identifier, and controls the switch Q 1 in response to the transmission signal.

スイッチQのオンオフにより抵抗Rに流れる電流は変調され、負荷変調回路106のインピーダンスが変化し、これにより一次側の送電コイル23から見た二次側の負荷インピーダンスが変化する。そのため送電回路200の一次側信号処理部202では送電コイル23の電圧変化から負荷変調通信の信号を検出できる。 The current flowing through the resistor R 1 is modulated by turning on and off the switch Q 1 , and the impedance of the load modulation circuit 106 is changed, whereby the load impedance on the secondary side as viewed from the power transmission coil 23 on the primary side is changed. Therefore, the primary-side signal processing unit 202 of the power transmission circuit 200 can detect a signal of load modulation communication from the voltage change of the power transmission coil 23.

図4は、無接点電力伝送システムの動作フロー例を示す図であり、図4(A)が受電回路100の動作フローを、図4(B)が送電回路200の動作フローを示す。   4A and 4B are diagrams illustrating an example of an operation flow of the contactless power transmission system. FIG. 4A illustrates an operation flow of the power receiving circuit 100, and FIG. 4B illustrates an operation flow of the power transmission circuit 200.

この無接点電力伝送システムは、負荷変調通信モードと電力伝送モードとを切り替え動作する。   This contactless power transmission system switches between a load modulation communication mode and a power transmission mode.

受電回路100では、二次側信号処理部105が整流回路103の出力電圧からモードの判定を行い、電圧レベルが規定値よりも低ければ、負荷変調通信モードとして動作制御を行う(S11)。   In the power receiving circuit 100, the secondary-side signal processing unit 105 determines the mode from the output voltage of the rectifier circuit 103, and performs operation control as the load modulation communication mode if the voltage level is lower than the specified value (S11).

負荷変調通信モードでは、二次側信号処理部105がスイッチQを制御し、端末固有の端末識別子を送信信号として負荷変調通信を行う(S12)。これによりスイッチQのオンオフが送信信号に応じて切り替わり、一次側の送電コイル23から見た二次側の負荷インピーダンスが変化し、送電コイル23の電圧レベルが変化する。これにより、一次側信号処理部202はモードを電力伝送モードに切り替え、一次側の送電電圧を高める。 In load modulation communication mode, the secondary-side signal processing unit 105 controls the switch Q 1, performs load modulation communication as a transmission signal to terminal unique terminal identifier (S12). Thus switching off of the switch Q 1 is in accordance with the transmission signal, the load impedance changes in the secondary side as viewed from the primary side of the power transmission coil 23, the voltage level of the power transmission coil 23 changes. Thereby, the primary side signal processing unit 202 switches the mode to the power transmission mode and increases the transmission voltage on the primary side.

二次側信号処理部105は負荷変調通信後に、整流回路103の出力を一定時間モニタし、電圧レベルが規定値よりも高い約20Vになれば電力伝送モードとして動作制御を行い、そうならなければ再び負荷変調通信モードでの動作制御を行う(S13)。   The secondary-side signal processing unit 105 monitors the output of the rectifier circuit 103 for a certain period of time after load modulation communication, and performs operation control as a power transmission mode if the voltage level is about 20 V, which is higher than a specified value. Operation control in the load modulation communication mode is performed again (S13).

電力伝送モードでは、受電コイル15の出力を整流・平滑してDC−DCコンバータ104で降圧し、直流出力として受電負荷Rに印加する。これにより、充電池13の充電が進展する(S14)。 In the power transmission mode, the output of the power receiving coil 15 is rectified and smoothed, stepped down by the DC-DC converter 104, and applied to the power receiving load RL as a direct current output. Thereby, charge of the rechargeable battery 13 progresses (S14).

一方、送電回路200では、一次側信号処理部202が待機状態では負荷変調通信モードの動作制御を行い、送電電圧を低電圧に設定する。(S21)。これにより、二次側の受電コイル15に低い電圧レベルで受電電圧が励起して、二次側信号処理部105に20Vよりも低い電圧レベルが検知され、負荷変調通信の送信動作が実施される。   On the other hand, in the power transmission circuit 200, in the standby state, the primary-side signal processing unit 202 performs operation control in the load modulation communication mode, and sets the power transmission voltage to a low voltage. (S21). As a result, the receiving voltage is excited at the secondary receiving coil 15 at a low voltage level, the secondary signal processing unit 105 detects a voltage level lower than 20 V, and the load modulation communication transmission operation is performed. .

次に、一次側信号処理部202は、二次側からの送信信号を検出する(S22)。送信信号を検出した一次側信号処理部202は、端末識別子の認証を行う(S23)。照合が取れれば、送電電圧を高電圧に設定する(S24)。これにより、送電コイル23に励起する給電電磁界が強まり、二次側の受電コイル15に高い電圧レベルで受電電圧が励起し、整流回路103の出力電圧が既定値よりも高い約20Vになって電力伝送モードになり、充電池13の充電が進展する。   Next, the primary side signal processing unit 202 detects a transmission signal from the secondary side (S22). The primary signal processing unit 202 that has detected the transmission signal authenticates the terminal identifier (S23). If verification is possible, the transmission voltage is set to a high voltage (S24). As a result, the feeding electromagnetic field excited in the power transmission coil 23 is strengthened, the power reception voltage is excited in the secondary power reception coil 15 at a high voltage level, and the output voltage of the rectifier circuit 103 is about 20 V, which is higher than the predetermined value. The power transmission mode is set, and charging of the rechargeable battery 13 proceeds.

その後、一定の時間が経過して定期認証タイミングとなると、一次側信号処理部202は、再び負荷変調通信モードでの動作制御を実施する(S25)。   Thereafter, when a certain time elapses and the periodic authentication timing comes, the primary-side signal processing unit 202 performs operation control in the load modulation communication mode again (S25).

以上の無接点電力電送システムでは、浮遊回路101に設けるコンデンサCの設定により、他の回路素子のインピーダンスを変更しなくても、送電回路200および受電回路100からなる回路全体のインピーダンスを変更できる。このため、出力電圧や電力伝送効率の持つ周波数特性を調整して、周波数変動に対する出力電圧や電力伝送効率の安定性を高めルことが可能になる。 In the above non-contact power transmission system, the impedance of the entire circuit including the power transmission circuit 200 and the power reception circuit 100 can be changed without changing the impedance of other circuit elements by setting the capacitor C 0 provided in the floating circuit 101. . For this reason, it is possible to adjust the frequency characteristics of the output voltage and the power transmission efficiency, and to increase the stability of the output voltage and the power transmission efficiency against the frequency fluctuation.

また、浮遊回路101を介して負荷出力回路102が給電を受けるので、電力伝送効率をあまり損なわずに送電電圧に比べて低電圧の受電電圧を得られる。これにより整流回路103の出力に生じるリップルは小さくなり、DC−DCコンバータ104での温度上昇などのリップルに基づく悪影響を抑制できる。また、降圧用の回路素子、DC−DCコンバータ104や平滑コンデンサCに小容量なものを採用でき、回路モジュールを小型化できる。 In addition, since the load output circuit 102 is supplied with power via the floating circuit 101, it is possible to obtain a power reception voltage that is lower than the power transmission voltage without significantly reducing power transmission efficiency. As a result, the ripple generated at the output of the rectifier circuit 103 is reduced, and adverse effects due to ripples such as a temperature rise in the DC-DC converter 104 can be suppressed. The circuit elements of the step-down, can adopt a small capacity DC-DC converter 104 and a smoothing capacitor C 1, can be miniaturized circuit module.

なお、受電コイル15が送電コイル23に粗結合し、受電コイル14に密結合すると、浮遊回路101のコンデンサCによる出力電圧や電力伝送効率の調整効果を高められた、電力伝送効率をさらに改善できる。 Incidentally, the power receiving coil 15 is loosely coupled to the power transmission coil 23, when tightly coupled to the receiving coil 14, an elevated effect of adjusting the output voltage and power transmission efficiency due to the capacitor C 0 of the floating circuit 101, further improving the power transmission efficiency it can.

ここで、本実施形態の受電回路の構成で電力伝送効率を最適化した実施例に対して、浮遊回路101の構成を省き電力伝送効率を最適化した比較例との性能差を確認した結果を説明する。   Here, with respect to the example in which the power transmission efficiency is optimized with the configuration of the power receiving circuit of the present embodiment, the result of confirming the performance difference from the comparative example in which the configuration of the floating circuit 101 is omitted and the power transmission efficiency is optimized is shown. explain.

図5は、比較例の無接点電力伝送システムの回路を示す図である。   FIG. 5 is a diagram illustrating a circuit of a contactless power transmission system of a comparative example.

比較例の受電回路300は、受電コイル35と、平滑コンデンサCと、DC−DCコンバータ304とを備える。受電コイル35は、電力伝送効率を最適化するために巻数を変更していて、受電電圧を約100Vとしている。平滑コンデンサCは整流回路103の出力、約100Vを平滑するため大容量品を採用している。DC−DCコンバータ304は、平滑コンデンサCの約100Vの出力を降圧して12Vの直流出力とするため大容量品を採用している。この受電回路300を採用した場合、全負荷時の電力伝送効率は約60%、モジュール温度は約55℃、動作周波数±10kHzでの伝送電力変動は約10%、回路モジュール12のサイズは約40mm×40mm、筐体11のサイズは約100mm×100mm×20mmとして、受電回路300を構成する必要があった。 The power receiving circuit 300 of the comparative example includes a power receiving coil 35, a smoothing capacitor C 2, and a DC-DC converter 304. The power receiving coil 35 has its number of turns changed to optimize the power transmission efficiency, and the power receiving voltage is about 100V. Smoothing capacitor C 2 is the output of the rectifier circuit 103, about 100V adopted mass product for smoothing. DC-DC converter 304 steps down the output of about 100V of the smoothing capacitor C 2 employs a large article to a DC output of 12V. When this power receiving circuit 300 is adopted, the power transmission efficiency at full load is about 60%, the module temperature is about 55 ° C., the transmission power fluctuation at the operating frequency ± 10 kHz is about 10%, and the size of the circuit module 12 is about 40 mm. The power receiving circuit 300 had to be configured with × 40 mm and the size of the housing 11 being about 100 mm × 100 mm × 20 mm.

一方、本構成例の受電回路100では、電力伝送効率を約60%に維持しながら第2の受電コイル15の受電電圧を約20Vまで抑制できた。その上、12Vの直流出力を得る場合に、モジュール温度を約50℃、動作周波数±10kHzでの伝送電力変動を約3%、回路モジュール12のサイズを約20mm×20mm、筐体11のサイズを約80mm×50mm×15mmとして、受電回路100を構成することができた。また、受電コイル14のサイズは外形φ40mm、厚み1mmであった。   On the other hand, in the power receiving circuit 100 of this configuration example, the power receiving voltage of the second power receiving coil 15 can be suppressed to about 20 V while maintaining the power transmission efficiency at about 60%. In addition, when obtaining a DC output of 12V, the module temperature is about 50 ° C., the transmission power fluctuation is about 3% at the operating frequency ± 10 kHz, the size of the circuit module 12 is about 20 mm × 20 mm, and the size of the housing 11 is The power receiving circuit 100 was able to be configured as approximately 80 mm × 50 mm × 15 mm. The size of the power receiving coil 14 was an outer diameter of 40 mm and a thickness of 1 mm.

このように、本構成例によれば、低電圧の直流出力を得る場合であっても、受電電圧を抑制できるために、降圧用の回路素子であるDC−DCコンバータ104や平滑コンデンサCに小容量なものを採用でき、回路モジュールを小型化できた。また、リップルが小さくなってDC−DCコンバータ104での電力損を抑制できることもあり、モジュール温度を抑制できた。そして、浮遊回路101のコンデンサCの容量値を適切に設定して、動作周波数近傍での周波数変動に対する電力伝送効率の変動を抑制できた。 As described above, according to this configuration example, even when a low-voltage DC output is obtained, the received voltage can be suppressed. Therefore, the DC-DC converter 104 or the smoothing capacitor C 1 that is a step-down circuit element is used. A small capacity can be adopted, and the circuit module can be miniaturized. In addition, the ripple is reduced and the power loss in the DC-DC converter 104 can be suppressed, and the module temperature can be suppressed. And the capacitance value of the capacitor C 0 of the floating circuit 101 was appropriately set, and fluctuations in power transmission efficiency with respect to frequency fluctuations near the operating frequency could be suppressed.

次に、本発明の実施形態の他の構成例を説明する。   Next, another configuration example of the embodiment of the present invention will be described.

図6は、他の構成例での断面図である。
上述の受電端末1では受電コイル14と受電コイル15とをそれぞれ上下方向の別層に配置したが、本構成の受電端末3では、第1の受電コイル34と第2の受電コイル35とを、それぞれ単一の層内で内外方向に交互に配置したパラ巻き構造を採用している。このように受電コイル34,35を配置しても本発明は好適に実施できる。
FIG. 6 is a cross-sectional view of another configuration example.
In the power receiving terminal 1 described above, the power receiving coil 14 and the power receiving coil 15 are arranged in separate layers in the vertical direction, but in the power receiving terminal 3 of this configuration, the first power receiving coil 34 and the second power receiving coil 35 are A para-winding structure is employed in which each layer is alternately arranged in the inner and outer directions within a single layer. Thus, even if it arrange | positions the receiving coils 34 and 35, this invention can be implemented suitably.

他にも、浮遊回路を受電端末ではなく送電端末に設けるような構成を採用してもよい。この場合にも、やはり浮遊回路により電力伝送効率や出力電圧の周波数特性を調整でき、製造良品率の改善に有効である。   In addition, a configuration in which a floating circuit is provided in the power transmission terminal instead of the power reception terminal may be employed. Also in this case, the power transmission efficiency and the frequency characteristic of the output voltage can be adjusted by the floating circuit, which is effective in improving the yield rate of manufactured products.

また、浮遊回路には、1次側からの受電用のコイルと、負荷出力回路への送電用のコイルとを別々に設けるようにしてもよい。また、浮遊回路のコンデンサは受電コイルと並列共振が生じるように配置してもよい。その場合にも、やはり浮遊回路により電力伝送効率や出力電圧の周波数特性を調整でき、製造良品率の改善に有効である。   The floating circuit may be separately provided with a coil for receiving power from the primary side and a coil for transmitting power to the load output circuit. Further, the capacitor of the floating circuit may be arranged so as to cause parallel resonance with the power receiving coil. Even in such a case, the power transmission efficiency and the frequency characteristic of the output voltage can be adjusted by the floating circuit, which is effective in improving the yield of non-defective products.

以上の実施形態で示したように本発明は実施できるが、本発明の範囲は、上述の実施形態ではなく特許請求の範囲によって示され、本発明の範囲には特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the present invention can be implemented as shown in the above embodiments, the scope of the present invention is shown not by the above-described embodiments but by the scope of claims, and the scope of the present invention is equivalent to the scope of claims. And all changes within the scope are intended to be included.

従来の無接点電力伝送システムの構成例を説明する回路図である。It is a circuit diagram explaining the structural example of the conventional non-contact electric power transmission system. 本発明の実施形態に係る無接点電力伝送システムの概略断面図である。の回路図である。1 is a schematic cross-sectional view of a contactless power transmission system according to an embodiment of the present invention. FIG. 図2に示す無接点電力伝送システムの概略の回路図である。FIG. 3 is a schematic circuit diagram of the non-contact power transmission system shown in FIG. 2. 図2に示す無接点電力伝送システムの動作フローを説明する図である。It is a figure explaining the operation | movement flow of the non-contact electric power transmission system shown in FIG. 比較例とする構成の無接点電力伝送システムの概略の回路図である。It is a schematic circuit diagram of a non-contact power transmission system having a configuration as a comparative example. 本発明の他の実施形態に係る無接点電力伝送システムの概略断面図である。It is a schematic sectional drawing of the non-contact electric power transmission system which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1…受電端末
2…送電端末
11,21…筐体
12,22…回路モジュール
13…充電池
14,15…受電コイル
23…送電コイル
16,24…磁性体シート
100…受電回路
200…送電回路
101…浮遊回路
102…負荷出力回路
103…整流回路
104…DC−DCコンバータ
105…二次側信号処理部
106…負荷変調回路
201…ドライバ回路
202…一次側信号処理部
…コンデンサ
…受電負荷
DESCRIPTION OF SYMBOLS 1 ... Power receiving terminal 2 ... Power transmitting terminal 11, 21 ... Case 12, 22 ... Circuit module 13 ... Rechargeable battery 14, 15 ... Power receiving coil 23 ... Power transmitting coil 16, 24 ... Magnetic material sheet 100 ... Power receiving circuit 200 ... Power transmitting circuit 101 ... floating circuit 102 ... load output circuit 103 ... rectifier circuit 104 ... DC-DC converter 105 ... secondary signal processing unit 106 ... load modulator 201 ... driver circuit 202 ... primary signal processor C 0 ... capacitor R L ... receiving load

Claims (7)

送電コイルからの磁束に鎖交して給電を受ける第1の受電コイル、および、前記第1の受電コイルを含む閉ループに接続されたコンデンサ、を備え、出力ラインから浮遊する浮遊回路と、
前記浮遊回路からの磁束に鎖交して給電を受ける第2の受電コイルを備え、前記第2の受電コイルの出力電圧を負荷出力電圧に変換し前記出力ラインから出力する負荷出力回路と、
を備える受電端末。
A floating circuit that floats from an output line, comprising: a first power receiving coil interlinked with magnetic flux from the power transmitting coil; and a capacitor connected to a closed loop including the first power receiving coil;
A load output circuit that includes a second power receiving coil that receives power in linkage with the magnetic flux from the floating circuit, and converts an output voltage of the second power receiving coil into a load output voltage and outputs the load output voltage from the output line;
A power receiving terminal.
前記第2の受電コイルは、前記送電コイルに粗結合し、前記第1の受電コイルに密結合する、請求項1に記載の受電端末。   The power receiving terminal according to claim 1, wherein the second power receiving coil is roughly coupled to the power transmitting coil and is tightly coupled to the first power receiving coil. 前記負荷出力回路は、前記第2の受電コイルの出力を整流・平滑する整流平滑回路を備える、請求項1または2に記載の受電端末。   The power receiving terminal according to claim 1, wherein the load output circuit includes a rectifying / smoothing circuit that rectifies and smoothes the output of the second power receiving coil. 前記負荷出力回路は、前記整流平滑回路の出力を降圧する降圧回路を備える、請求項3に記載の受電端末。   The power receiving terminal according to claim 3, wherein the load output circuit includes a step-down circuit that steps down an output of the rectifying and smoothing circuit. 前記出力ラインの出力端に接続される充電池を備える、請求項4に記載の受電端末。   The power receiving terminal according to claim 4, comprising a rechargeable battery connected to an output end of the output line. 請求項1〜5のいずれかに記載の受電端末と、
前記送電コイルを備える送電端末と、を備える無接点電力伝送システム。
The power receiving terminal according to any one of claims 1 to 5,
A contactless power transmission system comprising: a power transmission terminal including the power transmission coil.
入力ラインからの入力により励起する送電コイルを備える、第1の筐体に内装された送電回路と、
前記送電コイルからの磁束に鎖交して給電を受ける第1の受電コイル、および、前記第1の受電コイルを含む閉ループに接続されたコンデンサ、を備え、前記入力ラインおよび出力ラインから浮遊する浮遊回路と、
前記浮遊回路からの磁束に鎖交して給電を受ける第2の受電コイルを備え、前記第2の受電コイルの出力電圧を負荷出力電圧に変換し前記出力ラインから出力する、第2の筐体に内装された負荷出力回路と、
を備える無接点電力伝送システム。
A power transmission circuit provided in a first housing, including a power transmission coil that is excited by an input from an input line;
A floating coil that floats from the input line and the output line, and includes a first power receiving coil that is fed with a magnetic flux linked to the magnetic flux from the power transmitting coil, and a capacitor connected to a closed loop including the first power receiving coil. Circuit,
A second casing that includes a second power receiving coil that is fed with the magnetic flux from the floating circuit and that converts the output voltage of the second power receiving coil into a load output voltage and outputs the load output voltage from the output line; A load output circuit built in
A contactless power transmission system.
JP2008273677A 2008-10-24 2008-10-24 Power receiving terminal and contactless power transmission system Pending JP2010104159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273677A JP2010104159A (en) 2008-10-24 2008-10-24 Power receiving terminal and contactless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273677A JP2010104159A (en) 2008-10-24 2008-10-24 Power receiving terminal and contactless power transmission system

Publications (1)

Publication Number Publication Date
JP2010104159A true JP2010104159A (en) 2010-05-06

Family

ID=42294262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273677A Pending JP2010104159A (en) 2008-10-24 2008-10-24 Power receiving terminal and contactless power transmission system

Country Status (1)

Country Link
JP (1) JP2010104159A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255399A (en) * 2011-07-12 2011-11-23 西安电子科技大学 Wireless energy transmission device based on self-resonant electromagnetic induction coupling
CN102377251A (en) * 2010-08-10 2012-03-14 株式会社村田制作所 Power transmission system
JP2012060731A (en) * 2010-09-07 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Resonance type wireless power transmission device
WO2012090700A1 (en) * 2010-12-28 2012-07-05 Tdk株式会社 Wireless power feeder, wireless power receiver, and wireless transmission system
JP2012143131A (en) * 2010-12-28 2012-07-26 Tdk Corp Wireless power supply device and wireless power receiving device
CN103078412A (en) * 2012-12-24 2013-05-01 天津市亚安科技股份有限公司 Device and method for realizing wireless power supply of camera
JP2013536674A (en) * 2010-08-27 2013-09-19 サムスン エレクトロニクス カンパニー リミテッド Active rectifier using delay locked loop and wireless power receiver including active rectifier
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US8829725B2 (en) 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP2015122894A (en) * 2013-12-24 2015-07-02 株式会社ヘッズ Waterproof non-contact feeding device
WO2015108153A1 (en) * 2014-01-20 2015-07-23 日立オートモティブシステムズ株式会社 Non-contact power supply apparatus and torque sensor
CN106655537A (en) * 2016-12-12 2017-05-10 重庆理工大学 Optimum efficiency tracking based self-adaptive wireless power supply system
JP2018033312A (en) * 2017-10-31 2018-03-01 株式会社ヘッズ Waterproof non-contact feeding device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829725B2 (en) 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
CN102377251A (en) * 2010-08-10 2012-03-14 株式会社村田制作所 Power transmission system
US8987941B2 (en) 2010-08-10 2015-03-24 Murata Manufacturing Co., Ltd. Power transmission system
JP2013536674A (en) * 2010-08-27 2013-09-19 サムスン エレクトロニクス カンパニー リミテッド Active rectifier using delay locked loop and wireless power receiver including active rectifier
US9431889B2 (en) 2010-08-27 2016-08-30 Samsung Electronics Co., Ltd. Active rectifier with delay locked loop to compensate for reverse current leakage and wireless power receiving apparatus including active rectifier with delay locked loop to compensate for reverse current leakage
JP2012060731A (en) * 2010-09-07 2012-03-22 Nippon Telegr & Teleph Corp <Ntt> Resonance type wireless power transmission device
WO2012090700A1 (en) * 2010-12-28 2012-07-05 Tdk株式会社 Wireless power feeder, wireless power receiver, and wireless transmission system
US8664803B2 (en) 2010-12-28 2014-03-04 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JPWO2012090700A1 (en) * 2010-12-28 2014-06-05 Tdk株式会社 Wireless power feeding device, wireless power receiving device, wireless transmission system
US8800738B2 (en) 2010-12-28 2014-08-12 Tdk Corporation Wireless power feeder and wireless power receiver
JP2012143131A (en) * 2010-12-28 2012-07-26 Tdk Corp Wireless power supply device and wireless power receiving device
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
CN102255399A (en) * 2011-07-12 2011-11-23 西安电子科技大学 Wireless energy transmission device based on self-resonant electromagnetic induction coupling
CN103078412A (en) * 2012-12-24 2013-05-01 天津市亚安科技股份有限公司 Device and method for realizing wireless power supply of camera
JP2015122894A (en) * 2013-12-24 2015-07-02 株式会社ヘッズ Waterproof non-contact feeding device
WO2015108153A1 (en) * 2014-01-20 2015-07-23 日立オートモティブシステムズ株式会社 Non-contact power supply apparatus and torque sensor
CN105874685A (en) * 2014-01-20 2016-08-17 日立汽车系统株式会社 Non-contact power supply apparatus and torque sensor
JPWO2015108153A1 (en) * 2014-01-20 2017-03-23 日立オートモティブシステムズ株式会社 Non-contact power feeding device and torque sensor
US9960641B2 (en) 2014-01-20 2018-05-01 Hitachi Automotive Systems, Ltd. Non-contact power feeding device used in torque sensor having a coil enclosed in peripheral side of a resonance coil and is magnetically coupled with the resonance coil
CN106655537A (en) * 2016-12-12 2017-05-10 重庆理工大学 Optimum efficiency tracking based self-adaptive wireless power supply system
CN106655537B (en) * 2016-12-12 2019-06-14 重庆理工大学 Adaptive wireless power supply system based on optimum efficiency tracking
JP2018033312A (en) * 2017-10-31 2018-03-01 株式会社ヘッズ Waterproof non-contact feeding device

Similar Documents

Publication Publication Date Title
JP2010104159A (en) Power receiving terminal and contactless power transmission system
JP5550785B2 (en) Circuit of contactless inductive power transmission system
JP6168193B2 (en) Electronic equipment
US8274254B2 (en) Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, method for controlling power transmission, and method for controlling power receiving
US9118357B2 (en) Systems and methods for controlling output power of a wireless power transmitter
US6697272B2 (en) Contactless power transmitting system and contactless charging system
KR101933462B1 (en) Wireless power receiver for controlling magnitude of wireless power
EP2745412B1 (en) Wireless power receiver with multiple receiver coils
US8222860B2 (en) Power transmission control device, power transmission device, power receiving control device, power receiving device, and electronic apparatus
EP2652864B1 (en) Wireless power receiver circuitry
KR101438910B1 (en) The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same
US9088222B2 (en) Systems, methods, and apparatus for a high power factor single phase rectifier
EP3025406B1 (en) Systems and methods for extending the power capability of a wireless charger
WO2013146017A1 (en) Power transmitting system, and power transmitting apparatus used tehrein
US10938238B2 (en) Electronic apparatus and feed system
WO2013094464A1 (en) Power supply device, power supply system, and electronic apparatus
JP2014030288A (en) Power-feeding device and power-feeding system
WO2013058177A1 (en) Power-feed device and power-feed system
JP6252051B2 (en) Power converter
JP2012143092A (en) Charging ac adapter
WO2013111469A1 (en) Electronic device and feed system
WO2013077140A1 (en) Contactless power supply apparatus