JP2012104452A - Positive electrode can for alkaline battery, method for manufacturing the same, and alkaline battery - Google Patents

Positive electrode can for alkaline battery, method for manufacturing the same, and alkaline battery Download PDF

Info

Publication number
JP2012104452A
JP2012104452A JP2010254312A JP2010254312A JP2012104452A JP 2012104452 A JP2012104452 A JP 2012104452A JP 2010254312 A JP2010254312 A JP 2010254312A JP 2010254312 A JP2010254312 A JP 2010254312A JP 2012104452 A JP2012104452 A JP 2012104452A
Authority
JP
Japan
Prior art keywords
positive electrode
alkaline battery
surface roughness
steel plate
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010254312A
Other languages
Japanese (ja)
Other versions
JP5591070B2 (en
Inventor
Shusuke Tsuzuki
秀典 都築
Shigeyuki Kuniya
繁之 國谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2010254312A priority Critical patent/JP5591070B2/en
Publication of JP2012104452A publication Critical patent/JP2012104452A/en
Application granted granted Critical
Publication of JP5591070B2 publication Critical patent/JP5591070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode can for an alkaline battery securely preventing the alkaline battery from leaking.SOLUTION: The positive electrode can 11 for an alkaline battery 10 is a cylindrical pressed component having an opening 16, a trunk 17, and a bottom 18. The trunk 17 is supplied with a positive electrode mixture 12 under pressure, and the opening 16 is equipped with a sealing gasket 23. The positive electrode can 11 is manufactured by pressing so that the surface roughness of the portion of a steel sheet before pressing to form the inner surface of the positive electrode can 11 is greater than the surface roughness of the inner surface of the positive electrode can 11 after pressing. The surface roughness Ra of the steel sheet before pressing is 1.5 to 3.0 μm, and the surface roughness Ra of the inner surface of the positive electrode can 11 after pressing is 1.0 to 2.5 μm.

Description

本発明は、鋼板をプレス加工して有底筒状の正極缶を製造するアルカリ電池用正極缶の製造方法、アルカリ電池用正極缶及びその正極缶を用いて構成されたアルカリ電池に関するものである。   The present invention relates to a method for producing a positive electrode can for an alkaline battery in which a bottomed cylindrical positive electrode can is manufactured by pressing a steel plate, a positive electrode can for an alkaline battery, and an alkaline battery configured using the positive electrode can. .

一般に、アルカリ電池は、有底筒状の正極缶と、その正極缶内に収納されるリング状の正極合剤と、正極缶の中心部に配置されるゲル状負極合剤と、正極合剤とゲル状負極合剤との間に介在される有底筒状のセパレータと、正極缶の開口部に装着される集電体とを備えている。なお、集電体は、負極端子板、封口板、及び封口ガスケットからなる。また、アルカリ電池の正極缶は、ニッケルめっき鋼板を有底筒状にプレス成形することで作製されている。正極合剤は、二酸化マンガンやオキシ水酸化ニッケルを主成分とする正極合剤粉を整粒した後、円筒状にプレス成形することで作製され、正極缶の内側に圧入されている。   Generally, an alkaline battery includes a bottomed cylindrical positive electrode can, a ring-shaped positive electrode mixture housed in the positive electrode can, a gel-like negative electrode mixture disposed in the center of the positive electrode can, and a positive electrode mixture. And a gelled negative electrode mixture, and a bottomed cylindrical separator, and a current collector attached to the opening of the positive electrode can. The current collector includes a negative terminal plate, a sealing plate, and a sealing gasket. Moreover, the positive electrode can of an alkaline battery is produced by press-molding a nickel-plated steel sheet into a bottomed cylindrical shape. The positive electrode mixture is prepared by adjusting the positive electrode mixture powder mainly composed of manganese dioxide or nickel oxyhydroxide and then press-molding it into a cylindrical shape, and is press-fitted inside the positive electrode can.

従来のアルカリ電池では、プレス加工時に正極缶の内面を粗くして、正極缶と正極合剤との密着性を良くし、放電性能を向上させている。また、特許文献1には、表面粗さRaが0.8μm〜2μmである表面処理鋼板を使用してアルカリ電池用正極缶を製造することが開示されている。   In the conventional alkaline battery, the inner surface of the positive electrode can is roughened during press processing, the adhesion between the positive electrode can and the positive electrode mixture is improved, and the discharge performance is improved. Patent Document 1 discloses manufacturing a positive electrode can for an alkaline battery using a surface-treated steel sheet having a surface roughness Ra of 0.8 μm to 2 μm.

特開平11−111243号公報JP-A-11-111243

ところで、正極缶をプレス加工する際に内面の表面粗さを大きくする場合、その表面のニッケルめっきが割れ、下地の鉄が部分的に露出してしまうことがある。この場合、長期間の保存時において、正極缶の鉄素地がアルカリ電解液によって腐食され、電池内でガスが発生してしまう。このガス発生に伴い、電池内圧が上昇して封口ガスケットに設けられている安全弁が作動し、液漏れを起こす場合があった。   By the way, when the surface roughness of the inner surface is increased when pressing the positive electrode can, the nickel plating on the surface may be broken, and the underlying iron may be partially exposed. In this case, during long-term storage, the iron base of the positive electrode can is corroded by the alkaline electrolyte, and gas is generated in the battery. As the gas is generated, the internal pressure of the battery rises and the safety valve provided in the sealing gasket is operated, which may cause liquid leakage.

本発明は上記の課題に鑑みてなされたものであり、その目的は、アルカリ電池の漏液を確実に防止することができるアルカリ電池用正極缶の製造方法を提供することにある。また、別の目的は、耐漏液性能に優れ、信頼性の高いアルカリ電池用正極缶及びアルカリ電池を提供することにある。   This invention is made | formed in view of said subject, The objective is to provide the manufacturing method of the positive electrode can for alkaline batteries which can prevent the leakage of an alkaline battery reliably. Another object of the present invention is to provide a positive electrode can for alkaline batteries and an alkaline battery that are excellent in leakage resistance and have high reliability.

上記課題を解決するための手段[1]〜[5]を以下に列挙する。   Means [1] to [5] for solving the above problems are listed below.

[1]鋼板をプレス加工して有底筒状のアルカリ電池用正極缶を製造する方法であって、プレス加工前の前記鋼板において正極缶の内面となる部分の表面粗さが、プレス加工後の前記正極缶の内面の表面粗さよりも大きくなるように、プレス加工を行うことを特徴とするアルカリ電池用正極缶の製造方法。   [1] A method for producing a bottomed cylindrical positive electrode can for an alkaline battery by pressing a steel plate, wherein the surface roughness of the portion that becomes the inner surface of the positive electrode can in the steel plate before press processing is after the press processing A method for producing a positive electrode can for alkaline batteries, wherein the press working is performed so as to be larger than the surface roughness of the inner surface of the positive electrode can.

手段1に記載の発明によると、プレス加工によって正極缶を成形する際に、比較的表面粗さが大きな鋼板を多段絞りにて正極缶の内面を滑らかにしている。このようにすると、鉄素地の露出が少なくなり、アルカリ電解液に対して正極缶が腐食しにくくなる。この結果、電池の長期保存時において、電池内で発生するガスを抑制することができ、正極缶の耐漏液性能が向上する。   According to the invention described in Means 1, when forming the positive electrode can by press working, the inner surface of the positive electrode can is smoothed by a multistage drawing of a steel plate having a relatively large surface roughness. If it does in this way, exposure of an iron base will decrease and it will become difficult to corrode a positive electrode can to alkaline electrolyte. As a result, when the battery is stored for a long time, the gas generated in the battery can be suppressed, and the leakage resistance performance of the positive electrode can is improved.

[2]手段1において、プレス加工前の前記鋼板の表面粗さRaが1.5μm以上3.0μm以下であることを特徴とするアルカリ電池用正極缶の製造方法。   [2] A method for producing a positive electrode can for an alkaline battery, characterized in that in the means 1, the surface roughness Ra of the steel sheet before press working is 1.5 μm or more and 3.0 μm or less.

手段2に記載の発明によると、鋼板の表面粗さRaを1.5μm以上3.0μm以下とすることにより、プレス加工後において耐漏液性能に優れた表面粗さの正極缶を製造することができる。   According to the invention described in Means 2, by making the surface roughness Ra of the steel sheet 1.5 μm or more and 3.0 μm or less, a positive electrode can having a surface roughness excellent in leakage resistance performance after press working can be produced. it can.

[3]手段1または2において、プレス加工後の前記正極缶の内面の表面粗さRaが1.0μm以上2.5μm以下であることを特徴とするアルカリ電池用正極缶の製造方法。   [3] A method for producing a positive electrode can for an alkaline battery, characterized in that, in the means 1 or 2, the surface roughness Ra of the inner surface of the positive electrode can after press working is 1.0 μm or more and 2.5 μm or less.

手段3に記載の発明によると、プレス加工後に正極缶の内面の表面粗さRaを1.0μm以上2.5μm以下とすることにより、鉄素地の露出が少なくなり、電池内で発生するガスを確実に低減することができる。   According to the invention described in the means 3, by adjusting the surface roughness Ra of the inner surface of the positive electrode can after the press working to 1.0 μm or more and 2.5 μm or less, the exposure of the iron base is reduced, and the gas generated in the battery It can be surely reduced.

[4]手段1乃至3のいずれか1項の製造方法を用いて製造されたアルカリ電池用正極缶。   [4] A positive electrode can for an alkaline battery manufactured using the manufacturing method according to any one of means 1 to 3.

手段4に記載の発明によると、正極缶の耐漏液性能を向上させることができる。   According to the invention described in the means 4, the leakage resistance performance of the positive electrode can can be improved.

[5]手段4に記載の正極缶を用いて構成されたアルカリ電池。   [5] An alkaline battery configured using the positive electrode can according to means 4.

手段5に記載の発明によると、アルカリ電池の耐漏液性能を向上させることができる。   According to the invention described in means 5, the leakage resistance performance of the alkaline battery can be improved.

以上詳述したように、手段1乃至3に記載の発明によると、アルカリ電池の漏液を確実に防止することができるアルカリ電池用正極缶の製造方法を提供することができる。また、手段4に記載の発明によると、耐漏液性能に優れ、信頼性の高いアルカリ電池用正極缶を提供することができる。さらに、手段5に記載の発明によると、耐漏液性能に優れ、信頼性の高いアルカリ電池を提供することができる。   As described above in detail, according to the inventions described in the means 1 to 3, it is possible to provide a method for producing a positive electrode can for an alkaline battery that can reliably prevent leakage of the alkaline battery. In addition, according to the invention described in the means 4, it is possible to provide a positive electrode can for an alkaline battery that has excellent liquid leakage resistance and high reliability. Furthermore, according to the invention described in the means 5, it is possible to provide an alkaline battery that is excellent in leakage resistance and highly reliable.

一実施の形態のアルカリ電池を示す断面図。Sectional drawing which shows the alkaline battery of one Embodiment.

以下、本発明をアルカリ電池に具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態におけるアルカリ電池10の概略構成を示す断面図である。なお、本実施の形態のアルカリ電池10は、LR6タイプ(単3形)の電池である。   Hereinafter, an embodiment in which the present invention is embodied in an alkaline battery will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an alkaline battery 10 in the present embodiment. In addition, the alkaline battery 10 of the present embodiment is an LR6 type (AA) battery.

図1に示されるように、アルカリ電池10は、有底筒状の正極缶11と、リング状の正極合剤12と、有底筒状のセパレータ13と、ゲル状負極合剤14と、集電体15とを備える。アルカリ電池10において、正極合剤12は、正極缶11の内面に沿って嵌着され、正極合剤12の内側にセパレータ13が挿入されている。ゲル状負極合剤14は、正極缶11の中心部となるセパレータ13の中空部に配置される。   As shown in FIG. 1, the alkaline battery 10 includes a bottomed cylindrical positive electrode can 11, a ring-shaped positive electrode mixture 12, a bottomed cylindrical separator 13, a gelled negative electrode mixture 14, The electric body 15 is provided. In the alkaline battery 10, the positive electrode mixture 12 is fitted along the inner surface of the positive electrode can 11, and a separator 13 is inserted inside the positive electrode mixture 12. The gelled negative electrode mixture 14 is disposed in the hollow portion of the separator 13 that is the central portion of the positive electrode can 11.

正極缶11は、ニッケルめっき鋼板製のプレス加工品であり、開口部16、胴部17及び底部18を有する有底筒状にプレス成形されている。この正極缶11の胴部17に正極合剤12が圧入されるとともに、開口部16に集電体15が装着される。また、正極缶11における底部18の中央には正極端子19が突設されている。   The positive electrode can 11 is a press-processed product made of a nickel-plated steel plate, and is press-formed into a bottomed cylindrical shape having an opening 16, a body portion 17, and a bottom portion 18. The positive electrode mixture 12 is pressed into the body portion 17 of the positive electrode can 11, and the current collector 15 is attached to the opening 16. Further, a positive electrode terminal 19 protrudes from the center of the bottom 18 of the positive electrode can 11.

セパレータ13は、ビニロン・レーヨン不織布やポリオレフィン・レーヨン不織布などのセパレータ原紙を円筒状に巻回し、重なり合う部分を熱融着させることで作製される。ゲル状負極合剤14は、水と酸化亜鉛と水酸化カリウムとを混ぜて溶解し、ポリアクリル酸などのゲル化剤と亜鉛粉とを混合することで作製される。   The separator 13 is produced by winding separator base paper such as vinylon / rayon non-woven fabric or polyolefin / rayon non-woven fabric in a cylindrical shape and heat-sealing the overlapping portions. The gelled negative electrode mixture 14 is produced by mixing water, zinc oxide and potassium hydroxide and dissolving them, and mixing a gelling agent such as polyacrylic acid and zinc powder.

集電体15は、負極端子板21、負極集電子22、及び封口ガスケット23を含んで構成されている。正極缶11の開口部16付近には、集電体15を載置するためのビード部24が形成されている。そして、そのビード部24上に集電体15を載置した状態で、正極缶11の開口部16にカール及び絞り加工を施すことにより、正極缶11が封口されている。   The current collector 15 includes a negative electrode terminal plate 21, a negative electrode current collector 22, and a sealing gasket 23. Near the opening 16 of the positive electrode can 11, a bead portion 24 for mounting the current collector 15 is formed. The positive electrode can 11 is sealed by curling and drawing the opening 16 of the positive electrode can 11 with the current collector 15 placed on the bead portion 24.

集電体15は、真鍮を用いて棒状に形成された負極集電子22をその基端側の頭部で負極端子板21に抵抗溶接するとともに、負極集電子22の首部に封口ガスケット23を嵌着することで、形成されている。そして、負極集電子22の先端側がゲル状負極合剤14に挿入されている。負極端子板21は、正極缶11と同じくニッケルめっき鋼板をプレス成形することで作製され、封口ガスケット23を介して正極缶11の開口部16を封口している。   The current collector 15 has a negative electrode current collector 22 formed in the shape of a rod using brass and resistance-welded to the negative electrode terminal plate 21 at the proximal end thereof, and a sealing gasket 23 is fitted to the neck of the negative electrode current collector 22. It is formed by wearing. The tip side of the negative electrode current collector 22 is inserted into the gelled negative electrode mixture 14. The negative electrode terminal plate 21 is produced by press-molding a nickel-plated steel plate like the positive electrode can 11, and seals the opening 16 of the positive electrode can 11 through a sealing gasket 23.

封口ガスケット23は、樹脂材料を用いて射出成形された樹脂成形品である。封口ガスケット23の形成材料としては、ポリプロピレン樹脂が好適であり、6,12ナイロン樹脂、6,10ナイロン樹脂、6,6ナイロン樹脂などのポリアミド樹脂を用いてもよい。   The sealing gasket 23 is a resin molded product that is injection-molded using a resin material. Polypropylene resin is suitable as a material for forming the sealing gasket 23, and polyamide resin such as 6,12 nylon resin, 6,10 nylon resin, and 6,6 nylon resin may be used.

本実施の形態の封口ガスケット23は、負極集電子22が挿通されるボス部31と、正極缶11の内周面に接触した状態で固定される缶接触部32と、ボス部31と缶接触部32とを連結すべくボス部31の外周面から径方向に延びるように設けられた円盤状部33とを備える。また、封口ガスケット23におけるボス部31と円盤状部33との連結部分には、安全弁として機能する環状薄肉部34が設けられている。アルカリ電池10内において、ガスの発生により内圧が高まった場合には、その圧力上昇により封口ガスケット23の環状薄肉部34を破断させてガスを外部に放出する。   The sealing gasket 23 of the present embodiment includes a boss portion 31 through which the negative electrode current collector 22 is inserted, a can contact portion 32 that is fixed in contact with the inner peripheral surface of the positive electrode can 11, and a contact between the boss portion 31 and the can. And a disk-shaped portion 33 provided so as to extend in the radial direction from the outer peripheral surface of the boss portion 31 in order to connect the portion 32. In addition, an annular thin portion 34 that functions as a safety valve is provided at a connection portion between the boss portion 31 and the disk-shaped portion 33 in the sealing gasket 23. In the alkaline battery 10, when the internal pressure increases due to the generation of gas, the annular thin portion 34 of the sealing gasket 23 is broken by the pressure increase to release the gas to the outside.

次に、正極缶11の製造方法について詳述する。   Next, the manufacturing method of the positive electrode can 11 will be described in detail.

先ず、厚さが0.25mmであり、正極缶11の内面となる面の表面粗さRaが1.5μm以上3.0μm以下である鋼板を準備する。そして、その鋼板の表面に対してニッケルめっきを施し、1μm〜2μm程度の厚さのニッケルめっき層を有するニッケルめっき鋼板を作製する。その後、ニッケルめっき鋼板を用いて段階的に深絞り加工(多段絞り加工)を行うことにより、開口部16及び胴部17の厚さが0.2mmである有底筒状の正極缶11をプレス成形する。本実施の形態では、多段絞り加工により、表面粗さRaが1μm〜2.5μmの範囲内となるよう胴部17の内面を加工前の鋼板よりも滑らかに形成している。また、底部18に突設された正極端子19の外面の表面粗さRaは、1.5μm以上3.0μm以下であり、加工前の鋼板の表面粗さRaと同じ粗さとなっている。つまり、正極端子19の外面の表面粗さは、胴部17の内面よりも大きくなっている。   First, a steel plate having a thickness of 0.25 mm and having a surface roughness Ra of 1.5 μm or more and 3.0 μm or less on the surface serving as the inner surface of the positive electrode can 11 is prepared. And the nickel plating is given with respect to the surface of the steel plate, and the nickel plating steel plate which has a nickel plating layer of thickness about 1 micrometer-2 micrometers is produced. Thereafter, by performing deep drawing (multi-stage drawing) step by step using a nickel-plated steel plate, the bottomed cylindrical positive electrode can 11 having a thickness of the opening 16 and the body portion 17 of 0.2 mm is pressed. Mold. In this Embodiment, the inner surface of the trunk | drum 17 is formed more smoothly than the steel plate before a process so that surface roughness Ra may be in the range of 1 micrometer-2.5 micrometers by multistage drawing. Further, the surface roughness Ra of the outer surface of the positive electrode terminal 19 protruding from the bottom 18 is 1.5 μm or more and 3.0 μm or less, which is the same roughness as the surface roughness Ra of the steel plate before processing. That is, the surface roughness of the outer surface of the positive electrode terminal 19 is larger than that of the inner surface of the body portion 17.

さらに、正極缶11の胴部17の内面には導電塗料が塗布されており、正極合剤12との接触抵抗が低く抑えられている。また、正極缶11において、封口ガスケット23が装着される開口部16の内面にはシール剤25が塗布されている。本実施の形態では、シール剤25として、アスファルトとポリブデンとを含むシール剤が用いられている。このように、正極缶11の開口部16と封口ガスケット23との間にシール剤25を介在させることで密着性が増し、正極クリープ(正極缶11と封口ガスケット23との間を電解液が這う現象)による漏液が防止される。
[実施例]
Further, a conductive paint is applied to the inner surface of the body portion 17 of the positive electrode can 11 so that the contact resistance with the positive electrode mixture 12 is kept low. In the positive electrode can 11, a sealing agent 25 is applied to the inner surface of the opening 16 to which the sealing gasket 23 is attached. In the present embodiment, a sealing agent containing asphalt and polybutene is used as the sealing agent 25. As described above, the sealing agent 25 is interposed between the opening 16 of the positive electrode can 11 and the sealing gasket 23, so that the adhesion is increased, and the electrolyte creeps between the positive electrode creep (the positive electrode can 11 and the sealing gasket 23. Leakage due to phenomenon is prevented.
[Example]

本実施例では、上記製造方法で作製したLR6タイプ(単3形)のアルカリ電池10のサンプルを13種類用意し、これらを対象として、表1に示す試験を行った。その試験結果を表2に示している。

Figure 2012104452
Figure 2012104452
In this example, 13 types of LR6 type (AA) alkaline battery 10 samples prepared by the above manufacturing method were prepared, and the tests shown in Table 1 were performed on these samples. The test results are shown in Table 2.
Figure 2012104452
Figure 2012104452

具体的には、放電性能の評価試験では、アルカリ電池10を60℃で20日間保存した後、1000mAで1分間に10秒、1日に1時間の放電モードで放電を繰り返し行い、最終電圧が0.9Vとなるまでの性能(放電モードのサイクル数)を確認した。そして、試験の判定基準としては、360サイクル以上の放電が行われた場合に「○」、300サイクル以上360サイクル未満の放電が行われた場合に「△」、300サイクル未満の放電では「×」としている。   Specifically, in the evaluation test of the discharge performance, after the alkaline battery 10 was stored at 60 ° C. for 20 days, the discharge was repeated in a discharge mode of 1000 mA for 10 seconds per minute and 1 hour per day, and the final voltage was The performance up to 0.9 V (the number of cycles in the discharge mode) was confirmed. The test criterion is “◯” when a discharge of 360 cycles or more is performed, “Δ” when a discharge of 300 cycles or more and less than 360 cycles is performed, and “×” for a discharge of less than 300 cycles. "

また、耐漏液性能の評価試験では、60℃の温度、90%の湿度で各アルカリ電池10を保存する。そして、試験の判定基準としては、100日間の試験後に安全弁作動による漏液がない場合に「○」、80日以上100日未満の試験期間中に漏液があった場合に「△」、80日未満で漏液がある場合には「×」としている。   Further, in the evaluation test for leakage resistance, each alkaline battery 10 is stored at a temperature of 60 ° C. and a humidity of 90%. The test criterion is “◯” when there is no leakage due to safety valve operation after 100 days of testing, “Δ” when there is leakage during the test period of 80 days or more and less than 100 days, 80 If there is a leak in less than a day, it is marked as “x”.

表2に示されるように、サンプル1〜7では、プレス加工前の鋼板の表面粗さRaを1.0μm〜4.0の範囲で変更し、プレス加工後の缶胴部(正極缶11の胴部17)の内面の表面粗さRaを0.5μm〜3μmの範囲で変更している。また、サンプル1〜7では、鋼板の表面粗さが缶胴部17の表面粗さよりも大きくなっている。   As shown in Table 2, in Samples 1 to 7, the surface roughness Ra of the steel plate before press working was changed in the range of 1.0 μm to 4.0, and the can body portion after press working (of the positive electrode can 11). The surface roughness Ra of the inner surface of the trunk portion 17) is changed in the range of 0.5 μm to 3 μm. Further, in Samples 1 to 7, the surface roughness of the steel plate is larger than the surface roughness of the can barrel portion 17.

サンプル8〜13では、鋼板の表面粗さRaと缶胴部17の内面の表面粗さRaとを0.5μm〜4.0の範囲で変更している。また、サンプル8,10〜13では、鋼板の表面粗さと缶胴部17の表面粗さとがそれぞれ等しくなっており、サンプル9では、鋼板の表面粗さが缶胴部17の表面粗さよりも小さくなっている。   In Samples 8 to 13, the surface roughness Ra of the steel plate and the surface roughness Ra of the inner surface of the can body portion 17 are changed in the range of 0.5 μm to 4.0. In Samples 8 and 10 to 13, the surface roughness of the steel plate is equal to the surface roughness of the can barrel portion 17, and in Sample 9, the surface roughness of the steel plate is smaller than the surface roughness of the can barrel portion 17. It has become.

サンプル8〜13のように、鋼板の表面よりも缶胴部17の表面を滑らかにしない場合には、耐漏液性能が悪くなっている。これに対し、サンプル1〜7のように、鋼板の表面よりも缶胴部17の内面を滑らかにする場合、耐漏液性能が向上されることが確認された。   In the case where the surface of the can body portion 17 is not made smoother than the surface of the steel plate as in Samples 8 to 13, the leakage resistance performance is deteriorated. On the other hand, it was confirmed that when the inner surface of the can body portion 17 is made smoother than the surface of the steel plate as in samples 1 to 7, the leakage resistance performance is improved.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態のアルカリ電池10では、プレス加工によって正極缶11を成形する際に、比較的表面粗さが大きな鋼板をしごいて正極缶11の内面を滑らかにしている。このようにすると、鉄素地の露出が少なくなり、アルカリ電解液に対して正極缶11が腐食しにくくなる。従来技術では、プレス加工によって正極缶11の内面を粗くしているため、耐蝕性を高めるために鋼板表面のニッケルめっき層を厚く(例えば、3μm以上の厚さで)形成する必要がある。これに対して、本実施の形態のように正極缶11の内面を滑らかにすると、ニッケルめっき層を厚くしなくても耐蝕性を高めることができる。この結果、アルカリ電池10の長期保存時において、電池内で発生するガスを抑制することができ、正極缶11の耐漏液性能が向上する。また、ニッケルめっき鋼板のニッケルめっき層を1μm〜2μm程度と薄くできることから、正極缶11の製造コストを抑えることができる。   (1) In the alkaline battery 10 of the present embodiment, when the positive electrode can 11 is formed by pressing, a steel plate having a relatively large surface roughness is ironed to smooth the inner surface of the positive electrode can 11. If it does in this way, exposure of an iron substrate will decrease and it will become difficult to corrode the positive electrode can 11 with respect to alkaline electrolyte. In the prior art, since the inner surface of the positive electrode can 11 is roughened by pressing, it is necessary to form a thick nickel plating layer (for example, with a thickness of 3 μm or more) on the surface of the steel sheet in order to improve corrosion resistance. On the other hand, if the inner surface of the positive electrode can 11 is made smooth as in the present embodiment, the corrosion resistance can be improved without increasing the thickness of the nickel plating layer. As a result, when the alkaline battery 10 is stored for a long time, the gas generated in the battery can be suppressed, and the liquid leakage resistance of the positive electrode can 11 is improved. Moreover, since the nickel plating layer of the nickel-plated steel sheet can be thinned to about 1 μm to 2 μm, the manufacturing cost of the positive electrode can 11 can be suppressed.

(2)本実施の形態のアルカリ電池10では、加工前の鋼板の表面粗さRaを1.5μm以上3.0μm以下とし、プレス加工後に正極缶11の内面の表面粗さRaを1.0μm以上2.5μm以下(サンプル2〜6)としている。このようにすると、放電性能及び耐漏液性能を十分に確保することができ、信頼性の高いアルカリ電池10を製造することができる。   (2) In the alkaline battery 10 of the present embodiment, the surface roughness Ra of the steel sheet before processing is 1.5 μm or more and 3.0 μm or less, and the surface roughness Ra of the inner surface of the positive electrode can 11 is 1.0 μm after press working. This is 2.5 μm or less (Samples 2 to 6). If it does in this way, discharge performance and leak-proof performance can fully be secured, and the alkaline battery 10 with high reliability can be manufactured.

(3)本実施の形態のアルカリ電池10において、正極缶11の底部18に突設された正極端子19の外面の表面粗さが、正極缶11の内面の表面粗さよりも大きくなっている。このように正極端子19の外面を粗くすることにより、正極端子19と外部機器との接触面積が増し、アルカリ電池10の放電性能を十分に確保することが可能となる。   (3) In the alkaline battery 10 of the present embodiment, the surface roughness of the outer surface of the positive electrode terminal 19 protruding from the bottom 18 of the positive electrode can 11 is larger than the surface roughness of the inner surface of the positive electrode can 11. By roughening the outer surface of the positive electrode terminal 19 in this way, the contact area between the positive electrode terminal 19 and the external device is increased, and the discharge performance of the alkaline battery 10 can be sufficiently ensured.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態では、ニッケルめっき鋼板を用いて正極缶11を成形していたが、ニッケルめっき鋼板に熱処理を施すことで下地の鉄とめっき層の界面にFe−Ni拡散層を形成した鋼板を用いて正極缶11を成形してもよい。このようにすれば、正極缶11の耐蝕性をより高めることができる。   In the above embodiment, the positive electrode can 11 is formed using a nickel-plated steel sheet, but a steel sheet in which a Fe—Ni diffusion layer is formed at the interface between the underlying iron and the plated layer by heat-treating the nickel-plated steel sheet. The positive electrode can 11 may be formed using If it does in this way, the corrosion resistance of the positive electrode can 11 can be improved more.

・上記実施の形態では、LR6タイプ(単3形)のアルカリ電池10に具体化したが、LR20タイプ(単1形)、LR14タイプ(単2形)、LR03タイプ(単4形)等の他の電池に具体化してもよい。   In the above embodiment, the alkaline battery 10 of the LR6 type (AA type) is embodied, but other than the LR20 type (AAA type), LR14 type (AA type 2), LR03 type (AAA type), etc. It may be embodied in the battery.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

(1)手段1乃至3のいずれか1項において、プレス加工前の前記鋼板に対してニッケルめっきを施した後にプレス加工を行うことで、加工前の前記鋼板の表面よりも加工後の前記正極缶の内面を滑らかにすることを特徴とするアルカリ電池用正極缶の製造方法。   (1) In any one of the means 1 to 3, the positive electrode after processing rather than the surface of the steel plate before processing by performing press processing after nickel plating on the steel plate before press processing A method for producing a positive electrode can for an alkaline battery, characterized in that the inner surface of the can is smoothed.

(2)手段5において、前記正極缶の底部に突設された正極端子の外面の表面粗さが、前記正極缶の内面の表面粗さよりも大きいことを特徴とするアルカリ電池。   (2) The alkaline battery according to (5), wherein the surface roughness of the outer surface of the positive electrode terminal projecting from the bottom of the positive electrode can is larger than the surface roughness of the inner surface of the positive electrode can.

10…アルカリ電池
11…正極缶
12…正極合剤
DESCRIPTION OF SYMBOLS 10 ... Alkaline battery 11 ... Positive electrode can 12 ... Positive electrode mixture

Claims (5)

鋼板をプレス加工して有底筒状のアルカリ電池用正極缶を製造する方法であって、
プレス加工前の前記鋼板において正極缶の内面となる部分の表面粗さが、プレス加工後の前記正極缶の内面の表面粗さよりも大きくなるように、プレス加工を行うことを特徴とするアルカリ電池用正極缶の製造方法。
A method of manufacturing a bottomed cylindrical alkaline battery positive electrode can by pressing a steel plate,
Alkaline battery characterized by performing pressing so that the surface roughness of the inner surface of the positive electrode can in the steel plate before press processing is larger than the surface roughness of the inner surface of the positive electrode can after pressing. For manufacturing positive electrode cans.
プレス加工前の前記鋼板の表面粗さRaが1.5μm以上3.0μm以下であることを特徴とする請求項1に記載のアルカリ電池用正極缶の製造方法。   2. The method for producing a positive electrode can for an alkaline battery according to claim 1, wherein a surface roughness Ra of the steel plate before press working is 1.5 μm or more and 3.0 μm or less. プレス加工後の前記正極缶の内面の表面粗さRaが1.0μm以上2.5μm以下であることを特徴とする請求項1または2に記載のアルカリ電池用正極缶の製造方法。   3. The method for producing a positive electrode can for an alkaline battery according to claim 1, wherein the surface roughness Ra of the inner surface of the positive electrode can after press working is 1.0 μm or more and 2.5 μm or less. 請求項1乃至3のいずれか1項の製造方法を用いて製造されたアルカリ電池用正極缶。   The positive electrode can for alkaline batteries manufactured using the manufacturing method of any one of Claims 1 thru | or 3. 請求項4に記載の正極缶を用いて構成されたアルカリ電池。   The alkaline battery comprised using the positive electrode can of Claim 4.
JP2010254312A 2010-11-12 2010-11-12 Positive electrode can for alkaline battery, method for producing the same, alkaline battery Active JP5591070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254312A JP5591070B2 (en) 2010-11-12 2010-11-12 Positive electrode can for alkaline battery, method for producing the same, alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254312A JP5591070B2 (en) 2010-11-12 2010-11-12 Positive electrode can for alkaline battery, method for producing the same, alkaline battery

Publications (2)

Publication Number Publication Date
JP2012104452A true JP2012104452A (en) 2012-05-31
JP5591070B2 JP5591070B2 (en) 2014-09-17

Family

ID=46394591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254312A Active JP5591070B2 (en) 2010-11-12 2010-11-12 Positive electrode can for alkaline battery, method for producing the same, alkaline battery

Country Status (1)

Country Link
JP (1) JP5591070B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799686B2 (en) * 1984-02-28 1995-10-25 松下電器産業株式会社 Battery
JPH11111243A (en) * 1997-10-07 1999-04-23 Nippon Steel Corp Nickel plated steel for battery case and battery case
JP2009129664A (en) * 2007-11-22 2009-06-11 Fdk Energy Co Ltd Positive electrode can for alkaline cell, alkaline cell, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799686B2 (en) * 1984-02-28 1995-10-25 松下電器産業株式会社 Battery
JPH11111243A (en) * 1997-10-07 1999-04-23 Nippon Steel Corp Nickel plated steel for battery case and battery case
JP2009129664A (en) * 2007-11-22 2009-06-11 Fdk Energy Co Ltd Positive electrode can for alkaline cell, alkaline cell, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5591070B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5599384B2 (en) Cylindrical nickel-zinc cell with negative can
JP5935013B2 (en) Cylindrical alkaline storage battery
JP3573853B2 (en) Sealed battery
US20090311595A1 (en) Battery case and battery using the same
US8546015B2 (en) Battery can and alkaline battery
JP5108356B2 (en) Metal parts for batteries, manufacturing method thereof, batteries
JP5591070B2 (en) Positive electrode can for alkaline battery, method for producing the same, alkaline battery
JP2009129664A (en) Positive electrode can for alkaline cell, alkaline cell, and manufacturing method thereof
JP5524809B2 (en) Positive electrode can for alkaline battery and alkaline battery
US20220123374A1 (en) Alkaline secondary battery
US8236444B2 (en) Electrochemical cell having low volume collector assembly
JP5108342B2 (en) Metal parts for batteries and batteries
JP3676180B2 (en) Sealed alkaline storage battery
US11038238B2 (en) Alkaline secondary battery
JP5366489B2 (en) Battery cans and cylindrical batteries
JP2010073502A (en) Sealing gasket for cylindrical battery and molding die for the same, and cylindrical alkaline battery
JP2009238608A (en) Sealed alkaline storage battery and its manufacturing method
JP2011216217A (en) Alkaline dry battery
JP2008311198A (en) Battery can and battery provided with the same
JP3594752B2 (en) Air zinc button type battery
JP3924517B2 (en) Alkaline battery
JPH05283099A (en) Alkaline storage battery
JP2010080246A (en) Separator for alkaline battery, method for manufacturing the same, and alkaline battery
JP3681799B2 (en) Button-type alkaline battery
JP2018181698A (en) Can for battery, manufacturing method of can for battery and battery including can for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5591070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250