JP5524809B2 - Positive electrode can for alkaline battery and alkaline battery - Google Patents

Positive electrode can for alkaline battery and alkaline battery Download PDF

Info

Publication number
JP5524809B2
JP5524809B2 JP2010254311A JP2010254311A JP5524809B2 JP 5524809 B2 JP5524809 B2 JP 5524809B2 JP 2010254311 A JP2010254311 A JP 2010254311A JP 2010254311 A JP2010254311 A JP 2010254311A JP 5524809 B2 JP5524809 B2 JP 5524809B2
Authority
JP
Japan
Prior art keywords
positive electrode
opening
alkaline battery
surface roughness
sealing gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010254311A
Other languages
Japanese (ja)
Other versions
JP2012104451A (en
Inventor
秀典 都築
繁之 國谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2010254311A priority Critical patent/JP5524809B2/en
Publication of JP2012104451A publication Critical patent/JP2012104451A/en
Application granted granted Critical
Publication of JP5524809B2 publication Critical patent/JP5524809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、開口部、胴部及び底部を有する有底筒状にプレス加工されたアルカリ電池用正極缶、及びその正極缶を用いて構成されたアルカリ電池に関するものである。   The present invention relates to a positive electrode can for an alkaline battery that is pressed into a bottomed cylindrical shape having an opening, a body, and a bottom, and an alkaline battery that is configured using the positive electrode can.

一般に、アルカリ電池は、有底筒状の正極缶と、その正極缶内に収納されるリング状の正極合剤と、正極缶の中心部に配置されるゲル状負極合剤と、正極合剤とゲル状負極合剤との間に介在される有底筒状のセパレータと、正極缶の開口部に装着される集電体とを備えている。なお、集電体は、負極端子板、封口板、及び封口ガスケットからなる。また、アルカリ電池の正極缶は、ニッケルめっき鋼板を有底筒状にプレス成形することで作製されている。正極合剤は、二酸化マンガンやオキシ水酸化ニッケルを主成分とする正極合剤粉を整粒した後、円筒状にプレス成形することで作製され、正極缶の内側に圧入されている。   Generally, an alkaline battery includes a bottomed cylindrical positive electrode can, a ring-shaped positive electrode mixture housed in the positive electrode can, a gel-like negative electrode mixture disposed in the center of the positive electrode can, and a positive electrode mixture. And a gelled negative electrode mixture, and a bottomed cylindrical separator, and a current collector attached to the opening of the positive electrode can. The current collector includes a negative terminal plate, a sealing plate, and a sealing gasket. Moreover, the positive electrode can of an alkaline battery is produced by press-molding a nickel-plated steel sheet into a bottomed cylindrical shape. The positive electrode mixture is prepared by adjusting the positive electrode mixture powder mainly composed of manganese dioxide or nickel oxyhydroxide and then press-molding it into a cylindrical shape, and is press-fitted inside the positive electrode can.

従来のアルカリ電池では、正極缶において正極合剤が配置される胴部の内面を粗くすることにより、正極缶と正極合剤との接触面積を確保し放電性能を向上させている(例えば、特許文献1参照)。また、正極缶において、封口ガスケットが装着される開口部の表面を滑らかにすることにより、正極クリープ(正極缶と封口ガスケットの間を電解液が這う現象)による漏液を防いでいた(例えば、特許文献1〜3参照)。   In the conventional alkaline battery, the inner surface of the body part in which the positive electrode mixture is arranged in the positive electrode can is roughened, thereby ensuring the contact area between the positive electrode can and the positive electrode mixture and improving the discharge performance (for example, patents). Reference 1). Further, in the positive electrode can, by smoothing the surface of the opening portion where the sealing gasket is mounted, leakage due to positive electrode creep (a phenomenon in which the electrolytic solution clogs between the positive electrode can and the sealing gasket) was prevented (for example, Patent Literatures 1 to 3).

特開2003−249232号公報JP 2003-249232 A 特開2006−179227号公報JP 2006-179227 A 特開2007−5167号公報JP 2007-5167 A

ところで、正極缶をプレス加工する際に胴部の表面を粗くすると、その表面のニッケルめっきが割れ、下地の鉄が部分的に露出してしまうことがある。この場合、電池の長期保存時において、正極缶の鉄素地がアルカリ電解液によって腐食され、電池内でガスが発生してしまう。また、正極缶の開口部の表面を滑らかにして、正極缶とガスケットとの間を密着させすぎると、そこから抜けるガスが少なくなり、電池内部にガスが蓄積されてしまう。従って、正極缶において、胴部の内面を粗くして開口部の内面を滑らかにすると、ガス発生に伴い電池圧力が上昇してガスケットの安全弁が早期に作動する。このため、安全弁の作動による漏液の発生タイミングを早める原因となってしまう。   By the way, when the surface of the body portion is roughened when the positive electrode can is pressed, the nickel plating on the surface may be broken and the underlying iron may be partially exposed. In this case, during long-term storage of the battery, the iron base of the positive electrode can is corroded by the alkaline electrolyte, and gas is generated in the battery. Further, if the surface of the opening of the positive electrode can is smoothed and the positive electrode can and the gasket are brought into close contact with each other, the amount of gas that escapes from the surface decreases, and gas accumulates inside the battery. Therefore, in the positive electrode can, when the inner surface of the body portion is roughened and the inner surface of the opening portion is made smooth, the battery pressure increases as the gas is generated, and the safety valve of the gasket is activated early. For this reason, it will become a cause which advances the generation | occurrence | production timing of the liquid leakage by the action | operation of a safety valve.

本発明は上記の課題に鑑みてなされたものであり、その目的は、アルカリ電池の漏液を確実に防止することができるアルカリ電池用正極缶を提供することにある。また、別の目的は、耐漏液性能に優れた信頼性の高いアルカリ電池を提供することにある。   This invention is made | formed in view of said subject, The objective is to provide the positive electrode can for alkaline batteries which can prevent the leakage of an alkaline battery reliably. Another object is to provide a highly reliable alkaline battery with excellent leakage resistance.

上記課題を解決するための手段[1]〜[5]を以下に列挙する。   Means [1] to [5] for solving the above problems are listed below.

[1]開口部、胴部及び底部を有する有底筒状のプレス加工品であり、前記胴部には電極合剤が圧入され、前記開口部には封口ガスケットが装着されるアルカリ電池用正極缶において、前記開口部の内面の表面粗さが前記胴部の内面の表面粗さよりも大きいことを特徴とするアルカリ電池用正極缶。   [1] A positive electrode for an alkaline battery, which is a bottomed cylindrical press-processed product having an opening, a body, and a bottom, wherein an electrode mixture is press-fitted into the body, and a sealing gasket is attached to the opening. The positive electrode can for alkaline batteries, wherein the surface roughness of the inner surface of the opening is greater than the surface roughness of the inner surface of the body.

手段1に記載の発明によると、正極缶の胴部の内面を滑らかにすることにより、鉄素地の露出が少なくなり、その正極缶が腐食し難くなる。この結果、長期保存時においても電池内で発生するガスを抑制することができる。また、電池内部でガスが発生したとしても、正極缶の開口部の内面が粗くなっているので、その開口部と封口ガスケットとの間からガスを効率よく逃がすことができる。従って、アルカリ電池の長期保存時においても漏液を防止することができる。   According to the invention described in Means 1, by smoothing the inner surface of the barrel portion of the positive electrode can, the exposure of the iron base is reduced, and the positive electrode can is hardly corroded. As a result, the gas generated in the battery can be suppressed even during long-term storage. Even if gas is generated inside the battery, the inner surface of the opening of the positive electrode can is rough, so that the gas can be efficiently released from between the opening and the sealing gasket. Therefore, leakage can be prevented even during long-term storage of alkaline batteries.

[2]手段1において、前記開口部の内面の表面粗さRaが1μm以上3μm以下であり、前記胴部の内面の表面粗さRaが0.5μm以上2μm以下であることを特徴とするアルカリ電池用正極缶。   [2] Alkali, wherein in the means 1, the surface roughness Ra of the inner surface of the opening is 1 μm or more and 3 μm or less, and the surface roughness Ra of the inner surface of the body is 0.5 μm or more and 2 μm or less. Positive electrode can for batteries.

手段2に記載の発明のように、正極缶において開口部の内面の表面粗さRaを1μm以上3μm以下とすることにより、電池内部で発生したガスを開口部と封口ガスケットとの間から効率よく逃がすことができ、かつ正極クリープによる漏液を防ぐことができる。また、胴部の内面の表面粗さRaを0.5μm以上2μm以下とすることにより、電池内部で発生するガスを確実に低減することができ、正極缶と正極合剤との接触を保つことができる。   As in the invention described in the means 2, by setting the surface roughness Ra of the inner surface of the opening in the positive electrode can to 1 μm or more and 3 μm or less, the gas generated inside the battery can be efficiently discharged from between the opening and the sealing gasket. It is possible to escape, and leakage due to positive electrode creep can be prevented. In addition, by setting the surface roughness Ra of the inner surface of the body part to 0.5 μm or more and 2 μm or less, the gas generated inside the battery can be reliably reduced, and the contact between the positive electrode can and the positive electrode mixture can be maintained. Can do.

[3]手段1または2において、前記胴部の内面に導電塗料が塗布されていることを特徴とするアルカリ電池用正極缶。   [3] A positive electrode can for alkaline batteries, characterized in that, in the means 1 or 2, a conductive paint is applied to the inner surface of the body portion.

手段3に記載の発明によると、胴部の内面に導電塗料が塗布されているので、正極合剤と正極缶とを確実に接触させることができ、アルカリ電池の放電性能を高めることができる。   According to the invention described in Means 3, since the conductive paint is applied to the inner surface of the body portion, the positive electrode mixture and the positive electrode can can be reliably brought into contact with each other, and the discharge performance of the alkaline battery can be improved.

[4]手段1乃至3のいずれかに記載の正極缶を用いて構成されたアルカリ電池。   [4] An alkaline battery configured using the positive electrode can according to any one of means 1 to 3.

手段4に記載の発明によると、耐漏液性能を向上させることができ、長期信頼性の高いアルカリ電池を提供することができる。   According to the invention described in the means 4, the leakage resistance can be improved, and an alkaline battery with high long-term reliability can be provided.

[5]手段4において、前記開口部に装着される前記封口ガスケットの材質がポリプロピレンであることを特徴とするアルカリ電池。   [5] The alkaline battery according to item 4, wherein the material of the sealing gasket attached to the opening is polypropylene.

手段5に記載の発明によると、比較的柔らかい材質であるポリプロピレンを用いて封口ガスケットが形成されているので、、正極クリープによる漏液を防ぎつつ、電池内部で発生したガスをその封口ガスケットと開口部との間から確実に逃がすことができる。   According to the invention described in Means 5, since the sealing gasket is formed using polypropylene which is a relatively soft material, the gas generated inside the battery is prevented from leaking due to positive electrode creep and the opening gasket and the opening are opened. It can be surely escaped from between the parts.

以上詳述したように、手段1乃至3に記載の発明によると、アルカリ電池の漏液を確実に防止することができるアルカリ電池用正極缶を提供することができる。また、手段4または5に記載の発明によると、耐漏液性能に優れた信頼性の高いアルカリ電池を提供することができる。   As described above in detail, according to the inventions described in the means 1 to 3, it is possible to provide a positive electrode can for an alkaline battery that can reliably prevent leakage of the alkaline battery. Further, according to the invention described in means 4 or 5, it is possible to provide a highly reliable alkaline battery excellent in leakage resistance performance.

一実施の形態のアルカリ電池を示す断面図。Sectional drawing which shows the alkaline battery of one Embodiment. 一実施の形態の正極缶を示す断面図。Sectional drawing which shows the positive electrode can of one Embodiment.

以下、本発明をアルカリ電池に具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態におけるアルカリ電池10の概略構成を示す断面図である。なお、本実施の形態のアルカリ電池10は、LR6タイプ(単3形)の電池である。   Hereinafter, an embodiment in which the present invention is embodied in an alkaline battery will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an alkaline battery 10 in the present embodiment. In addition, the alkaline battery 10 of the present embodiment is an LR6 type (AA) battery.

図1に示されるように、アルカリ電池10は、有底筒状の正極缶11と、リング状の正極合剤12と、有底筒状のセパレータ13と、ゲル状負極合剤14と、集電体15とを備える。アルカリ電池10において、正極合剤12は、正極缶11の内面に沿って嵌着され、正極合剤12の内側にセパレータ13が挿入されている。ゲル状負極合剤14は、正極缶11の中心部となるセパレータ13の中空部に配置される。   As shown in FIG. 1, the alkaline battery 10 includes a bottomed cylindrical positive electrode can 11, a ring-shaped positive electrode mixture 12, a bottomed cylindrical separator 13, a gelled negative electrode mixture 14, The electric body 15 is provided. In the alkaline battery 10, the positive electrode mixture 12 is fitted along the inner surface of the positive electrode can 11, and a separator 13 is inserted inside the positive electrode mixture 12. The gelled negative electrode mixture 14 is disposed in the hollow portion of the separator 13 that is the central portion of the positive electrode can 11.

正極缶11は、ニッケルめっき鋼板製のプレス加工品であり、開口部16、胴部17及び底部18を有する有底筒状にプレス成形されている。この正極缶11の胴部17に正極合剤12が圧入されるとともに、開口部16に集電体15が装着される。また、正極缶11における底部18の中央には正極端子19が突設されている。   The positive electrode can 11 is a press-processed product made of a nickel-plated steel plate, and is press-formed into a bottomed cylindrical shape having an opening 16, a body portion 17, and a bottom portion 18. The positive electrode mixture 12 is pressed into the body portion 17 of the positive electrode can 11, and the current collector 15 is attached to the opening 16. Further, a positive electrode terminal 19 protrudes from the center of the bottom 18 of the positive electrode can 11.

セパレータ13は、ビニロン・レーヨン不織布やポリオレフィン・レーヨン不織布などのセパレータ原紙を円筒状に巻回し、重なり合う部分を熱融着させることで作製される。ゲル状負極合剤14は、水と酸化亜鉛と水酸化カリウムとを混ぜて溶解し、ポリアクリル酸などのゲル化剤と亜鉛粉とを混合することで作製される。   The separator 13 is produced by winding separator base paper such as vinylon / rayon non-woven fabric or polyolefin / rayon non-woven fabric in a cylindrical shape and heat-sealing the overlapping portions. The gelled negative electrode mixture 14 is produced by mixing water, zinc oxide and potassium hydroxide and dissolving them, and mixing a gelling agent such as polyacrylic acid and zinc powder.

集電体15は、負極端子板21、負極集電子22、及び封口ガスケット23を含んで構成されている。正極缶11の開口部16付近には、集電体15を載置するためのビード部24が形成されている。そして、そのビード部24上に集電体15を載置した状態で、正極缶11の開口部16にカール及び絞り加工を施すことにより、正極缶11が封口されている。   The current collector 15 includes a negative electrode terminal plate 21, a negative electrode current collector 22, and a sealing gasket 23. Near the opening 16 of the positive electrode can 11, a bead portion 24 for mounting the current collector 15 is formed. The positive electrode can 11 is sealed by curling and drawing the opening 16 of the positive electrode can 11 with the current collector 15 placed on the bead portion 24.

集電体15は、真鍮を用いて棒状に形成された負極集電子22をその基端側の頭部で負極端子板21に抵抗溶接するとともに、負極集電子22の首部に封口ガスケット23を嵌着することで、形成されている。そして、負極集電子22の先端側がゲル状負極合剤14に挿入されている。負極端子板21は、正極缶11と同じくニッケルめっき鋼板をプレス成形することで作製され、封口ガスケット23を介して正極缶11の開口部16を封口している。   The current collector 15 has a negative electrode current collector 22 formed in the shape of a rod using brass and resistance-welded to the negative electrode terminal plate 21 at the proximal end thereof, and a sealing gasket 23 is fitted to the neck of the negative electrode current collector 22. It is formed by wearing. The tip side of the negative electrode current collector 22 is inserted into the gelled negative electrode mixture 14. The negative electrode terminal plate 21 is produced by press-molding a nickel-plated steel plate like the positive electrode can 11, and seals the opening 16 of the positive electrode can 11 through a sealing gasket 23.

封口ガスケット23は、樹脂材料を用いて射出成形された樹脂成形品である。封口ガスケット23の形成材料としては、ポリプロピレン樹脂が好適であり、6,12ナイロン樹脂、6,10ナイロン樹脂、6,6ナイロン樹脂などのポリアミド樹脂を用いてもよい。   The sealing gasket 23 is a resin molded product that is injection-molded using a resin material. Polypropylene resin is suitable as a material for forming the sealing gasket 23, and polyamide resin such as 6,12 nylon resin, 6,10 nylon resin, and 6,6 nylon resin may be used.

本実施の形態の封口ガスケット23は、負極集電子22が挿通されるボス部31と、正極缶11の内周面に接触した状態で固定される缶接触部32と、ボス部31と缶接触部32とを連結すべくボス部31の外周面から径方向に延びるように設けられた円盤状部33とを備える。また、封口ガスケット23におけるボス部31と円盤状部33との連結部分には、安全弁として機能する環状薄肉部34が設けられている。アルカリ電池10内において、ガスの発生により内圧が高まった場合には、その圧力上昇により封口ガスケット23の環状薄肉部34を破断させてガスを外部に放出する。   The sealing gasket 23 of the present embodiment includes a boss portion 31 through which the negative electrode current collector 22 is inserted, a can contact portion 32 that is fixed in contact with the inner peripheral surface of the positive electrode can 11, and a contact between the boss portion 31 and the can. And a disk-shaped portion 33 provided so as to extend in the radial direction from the outer peripheral surface of the boss portion 31 in order to connect the portion 32. In addition, an annular thin portion 34 that functions as a safety valve is provided at a connection portion between the boss portion 31 and the disk-shaped portion 33 in the sealing gasket 23. In the alkaline battery 10, when the internal pressure increases due to the generation of gas, the annular thin portion 34 of the sealing gasket 23 is broken by the pressure increase to release the gas to the outside.

次に、本実施の形態のアルカリ電池10に使用されている正極缶11の構成について詳述する。   Next, the structure of the positive electrode can 11 used in the alkaline battery 10 of the present embodiment will be described in detail.

図2に示されるように、正極缶11は、開口部16の内径D1よりも胴部17の内径D2のほうが小さくなるよう形成されている。また、正極缶11において、開口部16の板厚は、胴部17の板厚とほぼ等しく、例えば0.2mmの厚さを有している。この正極缶11の開口部16において、胴部17との境界部分には、その胴部17側(図2では下側)ほど縮径するよう傾斜面が形成されている。   As shown in FIG. 2, the positive electrode can 11 is formed such that the inner diameter D <b> 2 of the trunk portion 17 is smaller than the inner diameter D <b> 1 of the opening 16. Moreover, in the positive electrode can 11, the plate | board thickness of the opening part 16 is substantially equal to the plate | board thickness of the trunk | drum 17, and has thickness of 0.2 mm, for example. In the opening portion 16 of the positive electrode can 11, an inclined surface is formed at a boundary portion with the body portion 17 so that the diameter decreases toward the body portion 17 side (lower side in FIG. 2).

正極缶11において、開口部16の内面の表面粗さが胴部17の内面の表面粗さよりも大きくなっている。具体的には、開口部16の内面の表面粗さRaを1μm〜3μmとし、胴部17の内面の表面粗さRaを0.5μ〜2μmとしている。本実施の形態の正極缶11は、段階的に深絞りを行う多段絞り加工にて形成されている。その多段絞り加工における一工程(例えば最終工程)にて開口部16の部分の金型への流れを悪くすることで、開口部16の内面を胴部17内面よりも粗く形成している。   In the positive electrode can 11, the surface roughness of the inner surface of the opening 16 is larger than the surface roughness of the inner surface of the body portion 17. Specifically, the surface roughness Ra of the inner surface of the opening 16 is 1 μm to 3 μm, and the surface roughness Ra of the inner surface of the trunk portion 17 is 0.5 μm to 2 μm. The positive electrode can 11 of the present embodiment is formed by multistage drawing processing in which deep drawing is performed in stages. The inner surface of the opening 16 is formed to be rougher than the inner surface of the body 17 by reducing the flow of the opening 16 to the mold in one step (for example, the final step) in the multistage drawing.

さらに、正極缶11の胴部17の内面には導電塗料が塗布されており、正極合剤12との接触抵抗が低く抑えられている。また、正極缶11において、封口ガスケット23が装着される開口部16の内面にはシール剤25が塗布されている。本実施の形態では、シール剤25として、アスファルトとポリブデンとを含むシール剤が用いられている。このように、正極缶11の開口部16と封口ガスケット23との間にシール剤25を介在させることで密着性が増し、正極クリープによる漏液が防止される。
[実施例]
Further, a conductive paint is applied to the inner surface of the body portion 17 of the positive electrode can 11 so that the contact resistance with the positive electrode mixture 12 is kept low. In the positive electrode can 11, a sealing agent 25 is applied to the inner surface of the opening 16 to which the sealing gasket 23 is attached. In the present embodiment, a sealing agent containing asphalt and polybutene is used as the sealing agent 25. As described above, the sealing agent 25 is interposed between the opening 16 of the positive electrode can 11 and the sealing gasket 23, thereby increasing the adhesion and preventing leakage due to the positive electrode creep.
[Example]

本実施例では、LR6タイプ(単3形)のアルカリ電池10のサンプルを17種類用意し、これらを対象として、表1に示す試験を行った。その試験結果を表2及び表3に示している。

Figure 0005524809
Figure 0005524809
Figure 0005524809
In this example, 17 types of LR6 type (AA) alkaline battery 10 samples were prepared, and the tests shown in Table 1 were performed on these samples. The test results are shown in Tables 2 and 3.
Figure 0005524809
Figure 0005524809
Figure 0005524809

具体的には、正極漏液の評価試験では、70℃の温度で4時間保持、30分で20℃まで温度を下げて2時間保持、30分で−20℃まで温度を下げて4時間保持、1時間で70℃の温度に戻すといった合計12時間のヒートサイクル試験を各アルカリ電池10に対して繰り返し行う。そして、試験の判定基準としては、20日間の試験後に漏液がない場合に「○」、10日以上20日未満の試験期間中に漏液があった場合に「△」、10日未満で漏液がある場合には「×」としている。   Specifically, in the positive electrode leakage evaluation test, the temperature was maintained at 70 ° C. for 4 hours, the temperature was lowered to 20 ° C. in 30 minutes and held for 2 hours, and the temperature was lowered to −20 ° C. in 30 minutes and held for 4 hours. A heat cycle test of a total of 12 hours such as returning to a temperature of 70 ° C. in 1 hour is repeated for each alkaline battery 10. The test criterion is “◯” when there is no leakage after the 20-day test, “△” when there is leakage during the test period of 10 days or more and less than 20 days, “△” or less than 10 days. When there is a leak, “X” is indicated.

また、安全弁作動の評価試験では、60℃の温度、90%の湿度で各アルカリ電池10を保存する。そして、試験の判定基準としては、100日間の試験後に安全弁作動(封口ガスケット23における環状薄肉部34の破断)による漏液がない場合に「○」、80日以上100日未満の試験期間中に漏液があった場合に「△」、80日未満で漏液がある場合には「×」としている。   In the safety valve operation evaluation test, each alkaline battery 10 is stored at a temperature of 60 ° C. and a humidity of 90%. The test criterion is “◯” when there is no leakage due to the safety valve operation (rupture of the annular thin portion 34 in the sealing gasket 23) after the test for 100 days, during the test period of 80 days or more and less than 100 days. “△” indicates that there is a leak, and “X” indicates that there is a leak in less than 80 days.

さらに、放電性能の評価試験では、250mAにて1日に1時間放電し、最終電圧(EPV)が0.9Vとなるまでの放電時間をそれぞれのアルカリ電池10で確認する。そして、放電時間が8時間以上である場合に「○」、放電時間が7時間以上8時間未満である場合に「△」、放電時間が7時間未満である場合に「×」としている。   Further, in the discharge performance evaluation test, the battery is discharged at 250 mA for 1 hour a day, and the discharge time until the final voltage (EPV) becomes 0.9 V is confirmed with each alkaline battery 10. Then, “◯” is indicated when the discharge time is 8 hours or more, “Δ” is indicated when the discharge time is 7 hours or more and less than 8 hours, and “X” is indicated when the discharge time is less than 7 hours.

表2に示されるように、サンプル1〜10では、正極缶11の開口部16の表面粗さRaを0.5μm〜5μmの範囲で変更し、胴部17の表面粗さRaを1μmとした。また、サンプル1〜4,6,8,10ではポリプロピレン製の封口ガスケット23を用い、サンプル5,7,9ではナイロン製の封口ガスケット23を用いた。さらに、各サンプル1〜10において、内面に導電塗料を塗布することで導電膜を形成した正極缶11を用いた。   As shown in Table 2, in Samples 1 to 10, the surface roughness Ra of the opening 16 of the positive electrode can 11 was changed in the range of 0.5 μm to 5 μm, and the surface roughness Ra of the trunk portion 17 was set to 1 μm. . Samples 1-4, 6, 8, and 10 used polypropylene sealing gaskets 23, and samples 5, 7, and 9 used nylon sealing gaskets 23. Furthermore, in each sample 1-10, the positive electrode can 11 which formed the electrically conductive film by apply | coating the electrically conductive coating to the inner surface was used.

表3に示されるように、サンプル11〜17では、正極缶11の開口部16の表面粗さRaを2μmとし、胴部17の表面粗さRaを0.3μm〜3μmの範囲で変更した。また、サンプル11,12,14,16,17では、内面に導電塗料を塗布することで導電膜を形成した正極缶11を用い、サンプル13,15では、導電膜を形成しない正極缶11を用いた。さらに、各サンプル11〜17では、ポリプロピレン製の封口ガスケット23を用いた。   As shown in Table 3, in Samples 11 to 17, the surface roughness Ra of the opening 16 of the positive electrode can 11 was changed to 2 μm, and the surface roughness Ra of the trunk portion 17 was changed in the range of 0.3 μm to 3 μm. Samples 11, 12, 14, 16, and 17 use a positive electrode can 11 in which a conductive film is formed by applying a conductive paint on the inner surface. Samples 13 and 15 use a positive electrode can 11 that does not form a conductive film. It was. Furthermore, in each sample 11-17, the sealing gasket 23 made from a polypropylene was used.

表2に示されるように、正極漏液の試験では、胴部17の表面粗さRaを1μmとし、ポリプロピレン製の封口ガスケット23を使用する場合、サンプル1〜4,6のように開口部16の表面粗さRaを3μm以下とすると、20日間の試験期間で漏液が生じることはなかった。また、ナイロン製の封口ガスケット23を使用する場合では、ポリプロピレン製の封口ガスケット23を使用する場合よりも若干耐漏液性能が低下し、サンプル7のように開口部16の表面粗さRaを3μmとすると、10日以上20日未満の試験期間で漏液が生じた。但し、ナイロン製の封口ガスケット23を使用した場合でも、サンプル5のように開口部16の表面粗さRaを2μmとすると、20日間の試験後に漏液が生じることはなかった。これに対して、サンプル8〜10のように開口部16の表面粗さRaを4μm以上とすると、ポリプロピレン製及びナイロン製のいずれの封口ガスケット23を使用した場合でも、10日未満の試験で漏液が生じた。   As shown in Table 2, in the positive electrode leakage test, when the surface roughness Ra of the body portion 17 is 1 μm and the sealing gasket 23 made of polypropylene is used, the openings 16 as in samples 1 to 4 and 6 are used. When the surface roughness Ra was 3 μm or less, no leakage occurred in the test period of 20 days. Further, when the nylon sealing gasket 23 is used, the leakage resistance performance is slightly lower than when the polypropylene sealing gasket 23 is used, and the surface roughness Ra of the opening 16 is 3 μm as in the sample 7. Then, leakage occurred in a test period of 10 days or more and less than 20 days. However, even when the sealing gasket 23 made of nylon was used, if the surface roughness Ra of the opening 16 was 2 μm as in the sample 5, no leakage occurred after the 20-day test. On the other hand, when the surface roughness Ra of the opening 16 is 4 μm or more as in Samples 8 to 10, even when any of the sealing gaskets 23 made of polypropylene and nylon is used, the leakage is less than 10 days. A liquid formed.

安全弁作動の試験では、サンプル1〜3のように開口部16の表面粗さRaを1μm以下とした場合、80日未満の試験期間で安全弁が作動(環状薄肉部34が破断)して漏液が生じた。また、サンプル4,5のように開口部16の表面粗さRaを2μmとした場合、80日以上100日未満の試験期間で漏液が生じた。さらに、サンプル6〜10のように開口部16の表面粗さRaを3μm以上とした場合、100日の試験期間で安全弁が作動せず、漏液が生じることはなかった。また、放電性能の試験では、各サンプル1〜10で8時間以上の放電時間が確保されることが確認された。   In the safety valve operation test, when the surface roughness Ra of the opening 16 is set to 1 μm or less as in Samples 1 to 3, the safety valve operates (the annular thin-walled portion 34 breaks) in a test period of less than 80 days and leaks. Occurred. Further, when the surface roughness Ra of the opening 16 was set to 2 μm as in Samples 4 and 5, liquid leakage occurred in a test period of 80 days or more and less than 100 days. Further, when the surface roughness Ra of the opening 16 was set to 3 μm or more as in the samples 6 to 10, the safety valve did not operate during the test period of 100 days, and no leakage occurred. Moreover, in the test of discharge performance, it was confirmed that the discharge time of 8 hours or more is ensured with each sample 1-10.

表3に示されるように、正極漏液の試験では、サンプル11〜17のように開口部16の表面粗さRaを2μmとした場合、20日間の試験期間で漏液が生じることはなかった。   As shown in Table 3, in the positive electrode leakage test, when the surface roughness Ra of the opening 16 was 2 μm as in Samples 11 to 17, no leakage occurred in the 20-day test period. .

安全弁作動の試験では、サンプル11〜15のように胴部17の表面粗さRaを1μm以下とすると、100日の試験期間で安全弁が作動せず、漏液が生じることはなかった。また、サンプル16,17のように胴部17の表面粗さRaを2μm以上とする場合には、80日未満の試験期間で安全弁が作動して漏液が生じた。   In the test of the safety valve operation, when the surface roughness Ra of the body portion 17 was 1 μm or less as in Samples 11 to 15, the safety valve did not operate during the test period of 100 days, and no leakage occurred. Further, when the surface roughness Ra of the body portion 17 was set to 2 μm or more as in the samples 16 and 17, the safety valve was activated in the test period of less than 80 days, and liquid leakage occurred.

放電性能の試験では、サンプル11のように胴部17の表面粗さRaを0.3μmとすると、放電時間が7時間未満に悪化した。また、サンプル13,15のように胴部17の表面粗さRaを0.5μ〜1μmとし、その表面に導電膜を形成しない場合、放電時間が7時間以上8時間未満となった。さらに、サンプル12,14,16,17のように胴部17の表面粗さRaを0.5μm以上としてその表面に導電膜を形成した場合、放電時間が8時間以上となることが確認された。   In the discharge performance test, when the surface roughness Ra of the body portion 17 was set to 0.3 μm as in the sample 11, the discharge time deteriorated to less than 7 hours. Moreover, when the surface roughness Ra of the trunk | drum 17 was 0.5 micrometer-1 micrometer like the samples 13 and 15, and the electrically conductive film was not formed in the surface, discharge time became 7 hours or more and less than 8 hours. Further, it was confirmed that when the surface roughness Ra of the body portion 17 was 0.5 μm or more as in Samples 12, 14, 16, and 17, and the conductive film was formed on the surface, the discharge time was 8 hours or more. .

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態のアルカリ電池10では、正極缶11の胴部17の内面を従来よりも滑らかにすることにより、鉄素地の露出が少なくなり、正極缶11が腐食しにくくなる。この結果、長期保存時においてもアルカリ電池10内で発生するガスを抑制することができる。また、アルカリ電池10内部でガスが発生したとしても、正極缶11の開口部16の内面を胴部17よりも粗くすることにより、開口部16と封口ガスケット23との間からガスが抜けやすくなる。従って、アルカリ電池10の長期保存時においても漏液を確実に防止することができる。   (1) In the alkaline battery 10 of the present embodiment, the inner surface of the body portion 17 of the positive electrode can 11 is made smoother than before, so that the exposure of the iron base is reduced and the positive electrode can 11 is hardly corroded. As a result, gas generated in the alkaline battery 10 can be suppressed even during long-term storage. Even if gas is generated inside the alkaline battery 10, the inner surface of the opening 16 of the positive electrode can 11 is made rougher than the body 17, so that the gas can easily escape from between the opening 16 and the sealing gasket 23. . Therefore, leakage can be reliably prevented even when the alkaline battery 10 is stored for a long time.

(2)本実施の形態のアルカリ電池10では、正極缶11において開口部16の内面の表面粗さRaを1μm以上3μm以下とすることにより、電池内部で発生したガスを開口部16と封口ガスケット23との隙間から効率よく逃がすことができる。また、胴部17の内面の表面粗さRaを0.5μm以上2μm以下とすることにより、電池内部で発生するガスを低減することができる。   (2) In the alkaline battery 10 of the present embodiment, the surface roughness Ra of the inner surface of the opening 16 in the positive electrode can 11 is set to 1 μm or more and 3 μm or less, so that the gas generated inside the battery can be removed from the opening 16 and the sealing gasket. It is possible to efficiently escape from the gap with 23. Moreover, the gas generated inside the battery can be reduced by setting the surface roughness Ra of the inner surface of the body portion 17 to 0.5 μm or more and 2 μm or less.

(3)本実施の形態のアルカリ電池10において、正極缶11の胴部17の内面に導電塗料が塗布されているので、正極合剤12と正極缶11との接触を十分に確保することができ、放電性能を高めることができる。   (3) In the alkaline battery 10 of the present embodiment, since the conductive paint is applied to the inner surface of the body portion 17 of the positive electrode can 11, sufficient contact between the positive electrode mixture 12 and the positive electrode can 11 can be ensured. And discharge performance can be improved.

(4)本実施の形態のアルカリ電池10において、比較的柔らかい材質であるポリプロピレンを用いて封口ガスケット23を形成すると、電池内部で発生したガスをその封口ガスケット23と開口部16との隙間から逃がすことができ、耐漏液性能をより高めることができる。   (4) In the alkaline battery 10 of the present embodiment, when the sealing gasket 23 is formed using polypropylene, which is a relatively soft material, the gas generated inside the battery is released from the gap between the sealing gasket 23 and the opening 16. And leakage resistance can be further improved.

(5)本実施の形態のアルカリ電池10において、正極缶11は、開口部16の内径D1よりも胴部17の内径D2のほうが小さくなるよう形成されている。この場合、正極缶11において、開口部16から胴部17内に正極合剤12を容易に充填することができる。また、開口部16と胴部17との内径が異なるので、プレス加工時において、開口部16と胴部17とで表面粗さの差を容易につけることができる。   (5) In the alkaline battery 10 of the present embodiment, the positive electrode can 11 is formed such that the inner diameter D2 of the trunk portion 17 is smaller than the inner diameter D1 of the opening portion 16. In this case, in the positive electrode can 11, the positive electrode mixture 12 can be easily filled into the body portion 17 from the opening 16. Further, since the inner diameters of the opening 16 and the body 17 are different, a difference in surface roughness can be easily made between the opening 16 and the body 17 during press working.

(6)本実施の形態では、正極缶11において、封口ガスケット23が装着される開口部16の内面には、ポリブデンを含んだシール剤25が塗布されている。この場合、開口部16の内面を粗くしても正極漏液を防止することができ、アルカリ電池10の耐漏液性能を高めることができる。   (6) In the present embodiment, in the positive electrode can 11, the sealing agent 25 containing polybutene is applied to the inner surface of the opening 16 to which the sealing gasket 23 is attached. In this case, even if the inner surface of the opening 16 is roughened, the positive electrode leakage can be prevented, and the leakage resistance performance of the alkaline battery 10 can be improved.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態では、開口部16の内径D1よりも胴部17の内径D2のほうが小さい正極缶11を用いてアルカリ電池10を構成していたが、これに限定されるものではない。開口部16及び胴部17の内径が等しく形成された正極缶を用いてアルカリ電池を構成してもよい。また、正極缶11において開口部16及び胴部17を同じ厚さ(0.2mmの厚さ)で形成していたが、これに限定されるものではない。例えば、正極缶11において、開口部16を胴部17よりも厚く形成してもよい。このように正極缶11を形成すると、開口部16と胴部17とで表面粗さの差を容易につけることができる。また、正極缶11において開口部16の強度を高めることができるため、集電体15を開口部16に確実に固定することができる。   In the above embodiment, the alkaline battery 10 is configured by using the positive electrode can 11 in which the inner diameter D2 of the trunk portion 17 is smaller than the inner diameter D1 of the opening portion 16, but is not limited thereto. You may comprise an alkaline battery using the positive electrode can in which the internal diameter of the opening part 16 and the trunk | drum 17 was formed equally. Moreover, although the opening part 16 and the trunk | drum 17 were formed in the positive electrode can 11 by the same thickness (thickness of 0.2 mm), it is not limited to this. For example, in the positive electrode can 11, the opening 16 may be formed thicker than the body 17. When the positive electrode can 11 is thus formed, the difference in surface roughness between the opening 16 and the body portion 17 can be easily provided. Further, since the strength of the opening 16 in the positive electrode can 11 can be increased, the current collector 15 can be reliably fixed to the opening 16.

・上記実施の形態では、LR6タイプ(単3形)のアルカリ電池10に具体化したが、LR20タイプ(単1形)、LR14タイプ(単2形)、LR03タイプ(単4形)等の他の電池に具体化してもよい。   In the above embodiment, the alkaline battery 10 of the LR6 type (AA type) is embodied, but other than the LR20 type (AAA type), LR14 type (AA type 2), LR03 type (AAA type), etc. It may be embodied in the battery.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiments described above are listed below.

(1)手段1乃至3のいずれか1項において、前記開口部の内径よりも前記胴部の内径のほうが小さいことを特徴とするアルカリ電池用正極缶。   (1) The positive electrode can for an alkaline battery according to any one of the means 1 to 3, wherein an inner diameter of the body is smaller than an inner diameter of the opening.

(2)手段5において、前記開口部には、ポリブデンを含んだシール材が塗布されていることを特徴とするアルカリ電池。   (2) The alkaline battery characterized in that, in the means 5, a sealing material containing polybutene is applied to the opening.

10…アルカリ電池
11…正極缶
12…電極合剤としての正極合剤
16…開口部
17…胴部
18…底部
24…封口ガスケット
DESCRIPTION OF SYMBOLS 10 ... Alkaline battery 11 ... Positive electrode can 12 ... Positive electrode mixture as electrode mixture 16 ... Opening part 17 ... Body part 18 ... Bottom part 24 ... Sealing gasket

Claims (5)

開口部、胴部及び底部を有する有底筒状のプレス加工品であり、前記胴部には電極合剤が圧入され、前記開口部には封口ガスケットが装着されるアルカリ電池用正極缶において、
前記開口部の内面の表面粗さが前記胴部の内面の表面粗さよりも大きいことを特徴とするアルカリ電池用正極缶。
In a positive electrode can for alkaline batteries in which a bottomed cylindrical press-processed product having an opening, a body and a bottom, an electrode mixture is press-fitted into the body, and a sealing gasket is attached to the opening,
A positive electrode can for an alkaline battery, wherein the surface roughness of the inner surface of the opening is greater than the surface roughness of the inner surface of the body portion.
前記開口部の内面の表面粗さRaが1μm以上3μm以下であり、前記胴部の内面の表面粗さRaが0.5μm以上2μm以下であることを特徴とする請求項1に記載のアルカリ電池用正極缶。   2. The alkaline battery according to claim 1, wherein a surface roughness Ra of the inner surface of the opening is 1 μm or more and 3 μm or less, and a surface roughness Ra of the inner surface of the body is 0.5 μm or more and 2 μm or less. Positive electrode can. 前記胴部の内面に導電塗料が塗布されていることを特徴とする請求項1または2に記載のアルカリ電池用正極缶。   The positive electrode can for an alkaline battery according to claim 1, wherein a conductive paint is applied to an inner surface of the body portion. 請求項1乃至3のいずれか1項に記載の正極缶を用いて構成されたアルカリ電池。   The alkaline battery comprised using the positive electrode can of any one of Claims 1 thru | or 3. 前記開口部に装着される前記封口ガスケットの材質がポリプロピレンであることを特徴とする請求項4に記載のアルカリ電池。   The alkaline battery according to claim 4, wherein a material of the sealing gasket attached to the opening is polypropylene.
JP2010254311A 2010-11-12 2010-11-12 Positive electrode can for alkaline battery and alkaline battery Active JP5524809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254311A JP5524809B2 (en) 2010-11-12 2010-11-12 Positive electrode can for alkaline battery and alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254311A JP5524809B2 (en) 2010-11-12 2010-11-12 Positive electrode can for alkaline battery and alkaline battery

Publications (2)

Publication Number Publication Date
JP2012104451A JP2012104451A (en) 2012-05-31
JP5524809B2 true JP5524809B2 (en) 2014-06-18

Family

ID=46394590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254311A Active JP5524809B2 (en) 2010-11-12 2010-11-12 Positive electrode can for alkaline battery and alkaline battery

Country Status (1)

Country Link
JP (1) JP5524809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2251574A1 (en) * 2022-12-23 2024-06-24 Northvolt Ab A cylindrical can for secondary cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843763U (en) * 1981-09-18 1983-03-24 日立マクセル株式会社 battery
JP3567577B2 (en) * 1995-12-01 2004-09-22 東洋製罐株式会社 Battery can and manufacturing method thereof
JP2003249232A (en) * 2002-02-25 2003-09-05 Toshiba Battery Co Ltd Cylindrical alkaline cell
JP4936502B2 (en) * 2005-06-24 2012-05-23 日立マクセルエナジー株式会社 Cylindrical alkaline battery and manufacturing method thereof
JP5078482B2 (en) * 2007-07-23 2012-11-21 Fdkエナジー株式会社 Sealed battery and battery can

Also Published As

Publication number Publication date
JP2012104451A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US8859139B2 (en) Alkaline storage battery
JP5599384B2 (en) Cylindrical nickel-zinc cell with negative can
JP5935013B2 (en) Cylindrical alkaline storage battery
EP2328198B1 (en) Battery can and alkaline battery
US11038238B2 (en) Alkaline secondary battery
JP4931492B2 (en) Cylindrical storage battery
JP5524809B2 (en) Positive electrode can for alkaline battery and alkaline battery
US3114659A (en) Voltaic cell with venting valve
JP5108356B2 (en) Metal parts for batteries, manufacturing method thereof, batteries
US8236444B2 (en) Electrochemical cell having low volume collector assembly
JP5591070B2 (en) Positive electrode can for alkaline battery, method for producing the same, alkaline battery
US20220123374A1 (en) Alkaline secondary battery
JP2009238608A (en) Sealed alkaline storage battery and its manufacturing method
JP2009135008A (en) Gasket for alkaline cell, and alkaline cell
JP5546275B2 (en) Alkaline battery gasket and alkaline battery
JP2015176655A (en) Cylindrical battery and method of manufacturing the same
JP5108342B2 (en) Metal parts for batteries and batteries
JP2010073502A (en) Sealing gasket for cylindrical battery and molding die for the same, and cylindrical alkaline battery
JP5366489B2 (en) Battery cans and cylindrical batteries
JP2006202637A (en) Alkaline battery
JP2020021676A (en) Alkaline battery
JP2008311198A (en) Battery can and battery provided with the same
WO2021192978A1 (en) Alkaline storage battery
JP3681799B2 (en) Button-type alkaline battery
JP3594752B2 (en) Air zinc button type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250