JP2012104274A - Electrode, battery, and manufacturing method of electrode - Google Patents

Electrode, battery, and manufacturing method of electrode Download PDF

Info

Publication number
JP2012104274A
JP2012104274A JP2010249942A JP2010249942A JP2012104274A JP 2012104274 A JP2012104274 A JP 2012104274A JP 2010249942 A JP2010249942 A JP 2010249942A JP 2010249942 A JP2010249942 A JP 2010249942A JP 2012104274 A JP2012104274 A JP 2012104274A
Authority
JP
Japan
Prior art keywords
active material
divided
electrode active
material layer
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010249942A
Other languages
Japanese (ja)
Other versions
JP5625770B2 (en
Inventor
Fumihiro Kawamura
文洋 川村
Noboru Yamauchi
昇 山内
Kenji Obara
健児 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010249942A priority Critical patent/JP5625770B2/en
Priority to KR1020110115148A priority patent/KR101330357B1/en
Publication of JP2012104274A publication Critical patent/JP2012104274A/en
Application granted granted Critical
Publication of JP5625770B2 publication Critical patent/JP5625770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode capable of suppressing short circuit current in internal short circuit even in the event of dilation of the electrode.SOLUTION: An electrode (3) includes a plurality of divided active material layers (22, 23) formed on a collector (4). Between the adjacent two divided active material layers (22, 23), a high resistance member (27) which is higher than the active material layers (22, 23) in electric resistance and has ion permeability is included.

Description

この発明は電極、電池および電極の製造方法、特に電池用電極に関する。   The present invention relates to an electrode, a battery, and an electrode manufacturing method, and more particularly to an electrode for a battery.

集電体に形成する活物質層を分割する電池用電極が開示されている(特許文献1参照)。   A battery electrode that divides an active material layer formed on a current collector is disclosed (see Patent Document 1).

特開2008−53088号公報JP 2008-53088 A

ところで、上記特許文献1の技術では、活物質層内部で内部短絡が生じた場合、活物質層が複数に分割されているため分割された1つの活物質層の集電面積が小さくなり、短絡部位への電流集中は抑制される。   By the way, in the technique of the above-mentioned patent document 1, when an internal short circuit occurs inside the active material layer, the active material layer is divided into a plurality of parts, so that the current collection area of one divided active material layer becomes small, and the short circuit occurs. Current concentration on the part is suppressed.

しかしながら、充放電に伴う電極の膨張によって隣り合う2つの分割された活物質層どうしが接触することが考えられ、この場合に短絡部位への電流集中が再び生じる恐れがある。   However, it is conceivable that two adjacent active material layers are brought into contact with each other due to the expansion of the electrode due to charge and discharge, and in this case, there is a possibility that current concentration at the short-circuited portion may occur again.

そこで本発明は、電極の膨張があっても内部短絡時の短絡電流を抑制し得る電極及び電極の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the electrode which can suppress the short circuit current at the time of an internal short circuit even if there exists expansion | swelling of an electrode.

本発明の電極は、集電体に複数に分割した活物質層を形成した電極である。そして、隣り合う2つの分割された活物質層の間に、活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を含む。   The electrode of the present invention is an electrode in which an active material layer divided into a plurality of current collectors is formed. Then, a high resistance member having higher ion resistance and ion permeability than the active material layer is included between two adjacent active material layers.

本発明によれば、電極が膨張した場合においても、高抵抗部材により分割された電極間の電気抵抗が高く維持できるので、内部短絡時の短絡電流を抑制できる。   According to the present invention, even when the electrodes expand, the electrical resistance between the electrodes divided by the high resistance member can be kept high, so that the short circuit current at the time of an internal short circuit can be suppressed.

本発明の第1実施形態の積層型電池の概略平面図である。1 is a schematic plan view of a stacked battery according to a first embodiment of the present invention. 第1実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the first embodiment. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 第2実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the second embodiment. 図4のA−A線断面図である。It is the sectional view on the AA line of FIG. 第3実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the third embodiment. 図6のA−A線断面図である。It is the sectional view on the AA line of FIG. 第3実施形態の2つの双極型電極の概略断面図である。It is a schematic sectional drawing of two bipolar electrodes of 3rd Embodiment. 第4実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the fourth embodiment. 図9のA−A線断面図である。FIG. 10 is a sectional view taken along line AA in FIG. 9. 第4実施形態の2つの双極型電極の概略断面図である。It is a schematic sectional drawing of two bipolar electrodes of 4th Embodiment. 第5実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the fifth embodiment. 図12のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第6実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the sixth embodiment. 図14のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第7実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the seventh embodiment. 図16のA−A線断面図である。It is the sectional view on the AA line of FIG. 第8実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the eighth embodiment. 図18のA−A線断面図である。It is the sectional view on the AA line of FIG. 比較例の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of a comparative example. 図20のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第9実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the ninth embodiment. 図22のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第10実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the tenth embodiment. 図24のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第10実施形態の変形例の概略断面図である。It is a schematic sectional drawing of the modification of 10th Embodiment. 第11実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the eleventh embodiment. 図27のA−A線断面図である。It is the sectional view on the AA line of FIG. 図27のB−B線断面図である。It is the BB sectional drawing of FIG. 第12実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the twelfth embodiment. 図30のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第13実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of the thirteenth embodiment. 図32のA−A線断面図である。It is AA sectional view taken on the line of FIG. 第14実施形態の1つの双極型電極の概略平面図である。It is a schematic plan view of one bipolar electrode of 14th Embodiment. 図34のA−A線断面図である。It is the sectional view on the AA line of FIG. 図34のB−B線断面図である。FIG. 35 is a sectional view taken along line BB in FIG. 34. 電極製造装置の概略構成図である。It is a schematic block diagram of an electrode manufacturing apparatus. 実施例1〜4の場合に第2のプレス装置及び第2の塗布装置で行われる処理を示す説明図である。It is explanatory drawing which shows the process performed with the 2nd press apparatus and the 2nd coating device in the case of Examples 1-4. 実施例5、6の場合に第2のプレス装置及び第2の塗布装置で行われる処理を示す説明図である。It is explanatory drawing which shows the process performed by the 2nd press apparatus and the 2nd coating device in the case of Example 5, 6. FIG. 多孔質粒子の集まりを示すモデル図である。It is a model figure which shows the collection of porous particles. 粒子の集まりを示すモデル図である。It is a model figure which shows the collection of particle | grains. フィラーの集まりを示すモデル図である。It is a model figure which shows the gathering of a filler. 第8実施形態のスタックの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the stack of 8th Embodiment.

以下図面に基づいて実施形態を説明する。以下の図面では、発明の理解を容易にするため、積層型電池を構成する要素などの各層の厚さや形状を誇張して示しているところがある。   Embodiments will be described below with reference to the drawings. In the following drawings, in order to facilitate understanding of the invention, the thickness and shape of each layer such as elements constituting the stacked battery are exaggerated.

(第1実施形態)
図1は本発明の第1実施形態のスタック1の概略縦断面図を示している。なお、負極活物質層、正極活物質層については分割しない状態で示している。
(First embodiment)
FIG. 1 is a schematic longitudinal sectional view of a stack 1 according to a first embodiment of the present invention. Note that the negative electrode active material layer and the positive electrode active material layer are not divided.

まずスタック1について概説する。スタック1は積層型二次電池を構成する一単位である。図1において上方が鉛直上方、下方が鉛直下方であり、上下方向に直交する方向が水平方向であるとする。   First, the stack 1 will be outlined. The stack 1 is a unit constituting a stacked secondary battery. In FIG. 1, it is assumed that the upper direction is the vertical upper direction, the lower direction is the vertical lower direction, and the direction orthogonal to the vertical direction is the horizontal direction.

スタック1は後述するように樹脂−金属複合ラミネートフィルムを外装材として用い、その内部に発電要素2を収納している。発電要素2は、集電体の一方の面に正極活物質層を他方の面に負極活物質層を形成した双極型電極と、その内部をイオンが移動する電解質とを、隣り合う当該双極型電極の正極活物質層と負極活物質層とが当該電解質を介して向き合うように積層することにより複数の単電池層を積層したものである。以下、発電要素2について概説する。   As will be described later, the stack 1 uses a resin-metal composite laminate film as an exterior material, and houses a power generation element 2 therein. The power generation element 2 includes a bipolar electrode in which a positive electrode active material layer is formed on one surface of a current collector and a negative electrode active material layer is formed on the other surface, and an electrolyte in which ions move inside. A plurality of unit cell layers are laminated by laminating a positive electrode active material layer and a negative electrode active material layer of an electrode so as to face each other with the electrolyte therebetween. Hereinafter, the power generation element 2 will be outlined.

短辺側と長辺側とを有する扁平な長方形状の集電体4は、導電性高分子材料に、または非導電性高分子材料に導電性フィラーが添加された樹脂で形成されている。この樹脂製の集電体4によれば、集電体4の面内方向の内部抵抗が、金属製の集電体より相対的に大きくなる。   The flat rectangular current collector 4 having a short side and a long side is formed of a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material. According to the resin current collector 4, the in-plane internal resistance of the current collector 4 is relatively greater than that of the metal current collector.

スタック1は、図1において水平方向に置かれた集電体4の鉛直下面に正極活物質層5(正極)が、集電体4の鉛直上面に負極活物質層6(負極)がそれぞれ形成された双極型電極3を5つ(複数)有している。なお、負極活物質層6のほうが正極活物質層5より表面積が広くされている。各双極型電極3は、鉛直方向に電解質層7を介して積層されて(直列に接続されて)1つのスタック1を形成している。   In the stack 1, the positive electrode active material layer 5 (positive electrode) is formed on the vertical lower surface of the current collector 4 placed in the horizontal direction in FIG. 1, and the negative electrode active material layer 6 (negative electrode) is formed on the vertical upper surface of the current collector 4. There are five (a plurality) of bipolar electrodes 3 formed. The negative electrode active material layer 6 has a larger surface area than the positive electrode active material layer 5. Each bipolar electrode 3 is laminated in the vertical direction via an electrolyte layer 7 (connected in series) to form one stack 1.

ここで、上下方向に隣り合う2つの双極型電極をそれぞれ上段双極型電極、下段双極型電極としたとき、下段双極型電極の上面に位置する負極活物質層6と、上段双極型電極の下面に位置する正極活物質層5とが電解質層7を介して互いに向き合うように、下段、上段の各双極型電極が配置されている。   Here, when two bipolar electrodes adjacent in the vertical direction are respectively an upper bipolar electrode and a lower bipolar electrode, the negative electrode active material layer 6 positioned on the upper surface of the lower bipolar electrode and the lower surface of the upper bipolar electrode The lower and upper bipolar electrodes are arranged so that the positive electrode active material layer 5 located at the position facing each other through the electrolyte layer 7.

正極、負極の2つの電極活物質層5、6の水平方向の外周は、集電体4の水平方向の外周よりも一回り狭く形成されている。この2つの電極活物質層5、6の設けられていない集電体4の周縁部(水平方向の全周)に、所定幅を有するシール材11を挟むことで、正極活物質層5と負極活物質層6とを絶縁すると共に、図1で上下方向に対向する2つの電極活物質層5、6の間に所定の空間8が生じるようにしている。また、シール材11は、2つの各活物質層5、6の水平方向の端部よりも余裕を持って外側に配置されている。   The outer periphery in the horizontal direction of the two electrode active material layers 5 and 6 of the positive electrode and the negative electrode is formed slightly narrower than the outer periphery in the horizontal direction of the current collector 4. The positive electrode active material layer 5 and the negative electrode are formed by sandwiching a sealing material 11 having a predetermined width around the peripheral portion (horizontal circumference) of the current collector 4 where the two electrode active material layers 5 and 6 are not provided. In addition to insulating the active material layer 6, a predetermined space 8 is formed between the two electrode active material layers 5, 6 facing in the vertical direction in FIG. 1. Further, the sealing material 11 is disposed outside the horizontal end portions of the two active material layers 5 and 6 with a margin.

上記の空間8には、液体またはゲル状、もしくは固体の電解質9が充填されることで、電解質層7を形成している。   The space 8 is filled with a liquid, gel, or solid electrolyte 9 to form an electrolyte layer 7.

電解質9が充填されている空間8には、多孔質膜で形成されるセパレータ12が設けられ、このセパレータ12によっても対向する2つの電極活物質層5、6が電気的に接触するのが防止されている。液体またはゲル状の電解質9ではこのセパレータ12を通過し得る。また、固体の電解質9の場合には、セパレータ12は設けない。   The space 8 filled with the electrolyte 9 is provided with a separator 12 formed of a porous film, and the two electrode active material layers 5 and 6 that are opposed by the separator 12 are also prevented from being in electrical contact. Has been. Liquid or gel electrolyte 9 can pass through this separator 12. In the case of the solid electrolyte 9, the separator 12 is not provided.

発電要素2の積層方向の両端に位置する集電体には発電要素2を充放電させるための強電タブ16、17が接続される。すなわち、最上段の負極活物質層6に一方の強電タブ16が、最下段の正極活物質層5に他方の強電タブ17がそれぞれ接続される。双極型二次電池の充電後にプラス端子として機能するのが一方の強電タブ17、充電後にマイナス端子として機能するのが他方の強電タブ16である。   High current tabs 16 and 17 for charging and discharging the power generation element 2 are connected to current collectors positioned at both ends of the power generation element 2 in the stacking direction. That is, one high-power tab 16 is connected to the uppermost negative electrode active material layer 6, and the other high-power tab 17 is connected to the lowermost positive electrode active material layer 5. One high-power tab 17 functions as a positive terminal after charging of the bipolar secondary battery, and the other high-power tab 16 functions as a negative terminal after charging.

電解質層7を挟んだ正極活物質層5及び負極活物質層6から一つの単電池層15(単電池)を構成している。したがって、スタック1は、4つの単電池層15を直列に接続した構成ともなっている。   A single cell layer 15 (single cell) is constituted by the positive electrode active material layer 5 and the negative electrode active material layer 6 sandwiching the electrolyte layer 7. Therefore, the stack 1 has a configuration in which the four cell layers 15 are connected in series.

図示しないが、強電タブ16、17を含む発電要素2の全体は樹脂−金属複合ラミネートフィルムを外装材として用いて、その周辺部を熱融着にて接合することにより、発電要素2を収納し真空にして密封している。樹脂−金属複合ラミネートフィルムの外には、強電タブ16、17と、図示しない5つの電圧検出用端子とが出されている。   Although not shown, the entire power generation element 2 including the high voltage tabs 16 and 17 accommodates the power generation element 2 by using a resin-metal composite laminate film as an exterior material and bonding its peripheral part by heat fusion. Sealed in a vacuum. Out of the resin-metal composite laminate film, high voltage tabs 16 and 17 and five voltage detection terminals (not shown) are provided.

単電池層15を直列に接続した数は図1では4つであるが、単電池層15を直列に接続する数や後述するスタックを直列に接続する数は実際には所望する電圧に応じて調節すればよい。これで、スタック1の概説を終了する。   Although the number of unit cell layers 15 connected in series is four in FIG. 1, the number of unit cell layers 15 connected in series and the number of stacks to be described later connected in series actually depend on the desired voltage. Adjust it. This completes the overview of stack 1.

さて、樹脂製の集電体4を使用することで、集電体4の面内方向の電流の流れを抑制し、局部発熱、微小短絡時による長期信頼性が向上した。しかしながら、電池の高容量化に伴い、容量増加、活物質層の厚塗り化により集電体4の面内方向の内部抵抗が低減し、微小短絡時に電流集中が起こりやすく、再度長期信頼性が低下するという課題が生じた。これは、負極活物質層6、正極活物質層5がひとかたまりで集電体4の各面に形成されているためである。ひとかたまりの活物質層6、5の一部に微小短絡が発生すると、活物質層6、5全体から微小短絡部に電流が集中し、自己放電が促進され、電池寿命が短くなるおそれがあるのである。   By using the current collector 4 made of resin, the current flow in the in-plane direction of the current collector 4 is suppressed, and long-term reliability due to local heat generation and a minute short circuit is improved. However, as the capacity of the battery is increased, the internal resistance in the in-plane direction of the current collector 4 is reduced by increasing the capacity and increasing the thickness of the active material layer. The problem of lowering occurred. This is because the negative electrode active material layer 6 and the positive electrode active material layer 5 are collectively formed on each surface of the current collector 4. If a micro short circuit occurs in a part of the active material layers 6 and 5, current concentrates from the entire active material layers 6 and 5 to the micro short circuit part, which may promote self-discharge and shorten the battery life. is there.

この課題に対して、電極活物質層を複数に分割することによって電極活物質層に生じる電流集中を抑制するようにしているものがある。   In order to solve this problem, there is one in which current concentration generated in the electrode active material layer is suppressed by dividing the electrode active material layer into a plurality of parts.

しかしながら、このような双極型電極においても、双極型電極に作用する応力、例えば、充放電や温度変化による膨張・収縮や外部からの振動等で発生する応力による膨張・収縮などが生じる。この膨張・収縮により、隣り合う2つの分割された電極活物質層どうしが接触することが考えられ、この場合に短絡部位への電流集中が生じる恐れがある。   However, even in such a bipolar electrode, stress acting on the bipolar electrode, for example, expansion / contraction due to stress generated by charging / discharging, temperature change, external vibration, etc. occurs. Due to this expansion / contraction, two adjacent electrode active material layers may be brought into contact with each other. In this case, current concentration may occur in the short-circuited portion.

そこで本実施形態では、隣り合う2つの分割された電極活物質層の間に、電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける。以下詳述する。   Therefore, in the present embodiment, a high resistance member having higher electric resistance and ion permeability than the electrode active material layer is provided between two adjacent electrode active material layers. This will be described in detail below.

図2は第1実施形態の1つの双極型電極3の概略平面図、図3は図2のA−A線断面図である。ただし、図3では集電体4の一方の面(上面)に形成される電極活物質層21のみを示し、集電体4の他方の面(下面)に形成される電極活物質層21は省略して示していない。ここで、「電極活物質層」とは、正極活物質層または負極活物質層のいずれか一方のことである。さらに述べると、集電体4の一方の面、例えば上面に形成される電極活物質層21が負極活物質層であるとき、集電体4の他方の面(下面)に形成される電極活物質層(図示しない)は正極活物質層となる。一方、集電体4の一方の面、例えば上面に形成される電極活物質層21が正極活物質層であるとき、集電体4の他方の面(下面)に形成される電極活物質層(図示しない)は負極活物質層となる。   FIG. 2 is a schematic plan view of one bipolar electrode 3 of the first embodiment, and FIG. 3 is a cross-sectional view taken along line AA of FIG. However, in FIG. 3, only the electrode active material layer 21 formed on one surface (upper surface) of the current collector 4 is shown, and the electrode active material layer 21 formed on the other surface (lower surface) of the current collector 4 is Not abbreviated. Here, the “electrode active material layer” refers to either the positive electrode active material layer or the negative electrode active material layer. More specifically, when the electrode active material layer 21 formed on one surface of the current collector 4, for example, the upper surface is a negative electrode active material layer, the electrode active formed on the other surface (lower surface) of the current collector 4. The material layer (not shown) becomes a positive electrode active material layer. On the other hand, when the electrode active material layer 21 formed on one surface, for example, the upper surface, of the current collector 4 is a positive electrode active material layer, the electrode active material layer formed on the other surface (lower surface) of the current collector 4 (Not shown) is a negative electrode active material layer.

第1実施形態では、ひとかたまりである電極活物質層21を2つに分割(等分)する場合を示している。このため、2つの分割された電極活物質層(この分割された各電極活物質層を以下「分割電極活物質層」という。)22、23は所定の隙間25を空けて並んでいる。分割によって生じたこの隙間25を、以下「分割部位」という。分割電極活物質層22、23は、互いに対向する長辺側側面22a、23a、互いに対向しない長辺側側面22b、23b、集電体4と接触する側の平面(図3で下面)22c、23c、集電体4と接触しない側の平面(図3で上面)22d、23dを有している。分割電極活物質層22、23の断面は、図3に示したように、ほぼ長方形となっている。   In the first embodiment, a case where the electrode active material layer 21 as a group is divided into two (equal parts) is shown. For this reason, the two divided electrode active material layers (the divided electrode active material layers are hereinafter referred to as “divided electrode active material layers”) 22 and 23 are arranged with a predetermined gap 25 therebetween. The gap 25 generated by the division is hereinafter referred to as “divided portion”. The divided electrode active material layers 22 and 23 include long side surfaces 22a and 23a that face each other, long side surfaces 22b and 23b that do not face each other, and a flat surface (lower surface in FIG. 3) 22c that contacts the current collector 4. 23c, planes 22d and 23d on the side not in contact with the current collector 4 (upper surface in FIG. 3). The cross sections of the divided electrode active material layers 22 and 23 are substantially rectangular as shown in FIG.

分割する数を最低の2つとしたのは、簡単化のためである。従って、3つに分割してもかまわない(3つに分割する場合は第8実施形態で説明する)。分割する数は2つや3つに限られず、複数であればかまわない。分割方法にも限定されない。一方向に分割してもかまわないし、格子状に分割してもかまわない。一方向に分割した場合には、図2や後述する図18に示したように、分割電極活物質層が一列に整列し、格子状に分割した場合には、分割電極活物質層がマトリックス状に整列する。   The reason for dividing the number into the minimum two is for simplification. Therefore, it may be divided into three (the case of dividing into three will be described in the eighth embodiment). The number of divisions is not limited to two or three, and may be any number. The division method is not limited. It may be divided in one direction or may be divided in a lattice shape. When divided in one direction, as shown in FIG. 2 and FIG. 18 described later, the divided electrode active material layers are aligned in a line and divided into a lattice shape, the divided electrode active material layers are in a matrix shape. To align.

そして、分割部位25の一部、ここでは分割部位25の中央にだけ、電極活物質層21より電気抵抗が高くイオン透過性を有する高抵抗部材27を設ける。ここで、電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を以下、「イオン透過性を有する高抵抗部材」あるいは単に「高抵抗部材」ということがある。図3に示したように、高抵抗部材27の断面も長方形である。   Then, a high resistance member 27 having an electric resistance higher than that of the electrode active material layer 21 and having ion permeability is provided only in a part of the divided portion 25, here in the center of the divided portion 25. Here, the high resistance member having an electric resistance higher than that of the electrode active material layer and having ion permeability may be hereinafter referred to as “high resistance member having ion permeability” or simply “high resistance member”. As shown in FIG. 3, the cross section of the high resistance member 27 is also rectangular.

電極活物質層より電気抵抗が高い高抵抗部材にイオン透過性をも有させるのは、イオン透過性を有さない高抵抗部材を分割部位25に設けただけだと、この高抵抗部材が介在する部分に電解液が浸透してゆかず、電極特性が低下することが考えられるためである。ここで、イオン透過性は、イオン伝導性とも言われる。また、イオン透過性を有することは、多孔質であることとほぼ同義である。   The reason why the high resistance member having higher electric resistance than the electrode active material layer also has ion permeability is that if the high resistance member having no ion permeability is provided in the divided portion 25, the high resistance member is interposed. This is because the electrolytic solution does not permeate into the portion to be subjected to and the electrode characteristics are considered to deteriorate. Here, ion permeability is also referred to as ion conductivity. Moreover, having ion permeability is almost synonymous with being porous.

イオン透過性を有する高抵抗部材を設ける位置は、分割部位25の中央位置に限られない。分割部位25のいずれかの位置に設ければよい。   The position where the high resistance member having ion permeability is provided is not limited to the center position of the divided portion 25. What is necessary is just to provide in any position of the division | segmentation site | part 25. FIG.

イオン透過性を有する高抵抗部材27の材料としては、アルミナなどの絶縁性のセラミックやポリエチレンオキシド(PEO)などの高抵抗有機物などがある。これらの粒子は、図40に示したように多孔質な粒子71となるので、イオン透過性を有する。   Examples of the material of the high resistance member 27 having ion permeability include an insulating ceramic such as alumina and a high resistance organic material such as polyethylene oxide (PEO). Since these particles become porous particles 71 as shown in FIG. 40, they have ion permeability.

なお、イオン透過性を有する高抵抗部材の材料としては、もともと多孔質の材料にかぎられない。材料そのものが多孔質でなくてもかまわない。例えば、図41に示したように高抵抗の粒子ではあるが孔を有していない粒子72が集まった形状とすることによって、粒子72と粒子72の間に空隙(空孔)73を作ってやれば、全体として多孔質の粒子の集まりと同じ働きをすることになる。同様に、図42に示したように高抵抗の粒子ではあるが孔を有していないフィラー74が集まった形状とすることによって、フィラー74とフィラー74の間に空隙(空孔)75を作ってやれば、全体として多孔質の粒子の集まりと同じ働きをすることになる。   Note that the material of the high resistance member having ion permeability is not limited to the porous material from the beginning. The material itself may not be porous. For example, as shown in FIG. 41, by forming particles 72 that are high-resistance particles but do not have holes, gaps (holes) 73 are created between the particles 72 and the particles 72. If it does, it will perform the same function as a collection of porous particles as a whole. Similarly, as shown in FIG. 42, a void 74 is formed between the filler 74 and the filler 74 by forming a shape in which fillers 74 having high resistance but not having holes are gathered. If it does, it will work the same as a collection of porous particles as a whole.

このように、第1実施形態によれば、集電体4の各面に2つに分割した電極活物質層21を形成した双極型電極3(電極)であって、隣り合う2つの分割電極活物質層22、23の間である分割部位25に、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材27を設けたので、振動や熱による双極型電極3の膨張や収縮などによって集電体4の同一面上に形成されている分割電極活物質層22、23同士が接近しようとしても高抵抗部材27に阻止され、集電体4の同一面上に形成されている分割電極活物質層22、23同士の間が導通することを抑制できる。   Thus, according to the first embodiment, the bipolar electrode 3 (electrode) in which the electrode active material layer 21 divided into two parts is formed on each surface of the current collector 4, and two adjacent divided electrodes are provided. Since the high resistance member 27 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is provided in the divided portion 25 between the active material layers 22 and 23, the bipolar electrode 3 caused by vibration or heat is provided. Even if the divided electrode active material layers 22, 23 formed on the same surface of the current collector 4 due to expansion or contraction of the material are approaching each other, the high resistance member 27 prevents the divided electrode active material layers 22, 23 from approaching each other. It is possible to suppress conduction between the formed divided electrode active material layers 22 and 23.

これによって、一方の分割電極活物質層22内に微小な内部短絡が生じたとしても、他方の分割電極活物質層23からの電流集中を回避できる。すなわち、いずれかの分割電極活物質層22、23内に微小な内部短絡があった場合にも自己放電による電池容量の低下を最小限にできる。   As a result, even if a minute internal short circuit occurs in one divided electrode active material layer 22, current concentration from the other divided electrode active material layer 23 can be avoided. That is, even when there is a minute internal short circuit in any one of the divided electrode active material layers 22 and 23, a decrease in battery capacity due to self-discharge can be minimized.

分割電極活物質層22、23はもともとイオン透過性を有している。分割電極活物質層22、23や高抵抗部材27にイオン透過性を有するということは、分割電極活物質層22、23や高抵抗部材27に多数の空孔を有することと等価である。この場合に、第1実施形態では、高抵抗部材27の平均空孔径を分割電極活物質層22、23の平均空孔径とほぼ等しくしている。このため、高抵抗部材27は電池反応に寄与するイオン(例えばLiイオン)を透過する。これによって、集電体4に近い分割電極活物質層22、23にもLiイオンが供給されやすくなる。   The divided electrode active material layers 22 and 23 originally have ion permeability. Having the ion permeability in the divided electrode active material layers 22 and 23 and the high resistance member 27 is equivalent to having a large number of holes in the divided electrode active material layers 22 and 23 and the high resistance member 27. In this case, in the first embodiment, the average hole diameter of the high resistance member 27 is made substantially equal to the average hole diameter of the divided electrode active material layers 22 and 23. For this reason, the high resistance member 27 permeate | transmits the ion (for example, Li ion) which contributes to a battery reaction. As a result, Li ions are easily supplied to the divided electrode active material layers 22 and 23 close to the current collector 4.

(第2実施形態)
図4は第2実施形態の1つの双極型電極3の概略平面図で、第1実施形態の図2と置き換わるものである。図5は図4のA−A線断面図である。図4、図5において図2、図3と同一部分には同一番号を付している。
(Second Embodiment)
FIG. 4 is a schematic plan view of one bipolar electrode 3 of the second embodiment, which replaces FIG. 2 of the first embodiment. 5 is a cross-sectional view taken along line AA in FIG. 4 and 5, the same parts as those in FIGS. 2 and 3 are denoted by the same reference numerals.

第2実施形態の分割電極活物質層22、23及びイオン透過性を有する高抵抗部材27’の外形寸法は第1実施形態の分割電極活物質層22、23及びイオン透過性を有する高抵抗部材27の外形寸法と同じである。第2実施形態は、イオン透過性を有する高抵抗部材27’の平均空孔径を分割電極活物質層22、23の平均空孔径よりも大きくするものである。   The outer dimensions of the divided electrode active material layers 22 and 23 and the ion-permeable high resistance member 27 ′ of the second embodiment are the same as the divided electrode active material layers 22 and 23 and the ion-permeable high resistance member of the first embodiment. It is the same as the external dimensions of 27. In the second embodiment, the average hole diameter of the high resistance member 27 ′ having ion permeability is made larger than the average hole diameter of the divided electrode active material layers 22 and 23.

ここで、イオン透過性を有する高抵抗部材27’の材料としては、第1実施形態で説明したイオン透過性を有する高抵抗部材27の中から平均空孔径が分割電極活物質層22、23の平均空孔径よりも大きくなるものを選択してやればよい。あるいは、平均空孔径が分割電極活物質層22、23の平均空孔径よりも大きくなるように図41、図42に示した粒子形状やフィラー形状を作成してやればよい。   Here, as a material of the high resistance member 27 ′ having ion permeability, the average pore diameter of the divided electrode active material layers 22 and 23 from the high resistance member 27 having ion permeability described in the first embodiment is used. What is necessary is just to select what becomes larger than an average hole diameter. Alternatively, the particle shape and filler shape shown in FIGS. 41 and 42 may be created so that the average pore diameter is larger than the average pore diameter of the divided electrode active material layers 22 and 23.

また、イオン透過性を有する高抵抗部材27’の材料の平均粒径は、分割電極活物質層22、23を構成する活物質粒子の平均粒径よりも大きいことが望ましい。   The average particle size of the material of the high resistance member 27 ′ having ion permeability is desirably larger than the average particle size of the active material particles constituting the divided electrode active material layers 22 and 23.

第2実施形態によれば、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材27’の平均空孔径が分割電極活物質層22、23の平均空孔径よりも大きいので、電解液が第1実施形態のイオン透過性を有する高抵抗部材27より浸透しやすくなり、第1実施形態の場合より電極特性を向上できる。   According to the second embodiment, the average hole diameter of the high resistance member 27 ′ having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is larger than the average hole diameter of the divided electrode active material layers 22 and 23. Since it is large, the electrolytic solution is more easily penetrated than the high resistance member 27 having ion permeability of the first embodiment, and the electrode characteristics can be improved as compared with the case of the first embodiment.

図6、図9、図12、図14、図16は第3、第4、第5、第6、第7の実施形態の1つの双極型電極3の概略平面図で、第1実施形態の図2と置き換わるものである。図7、図10、図13、図15、図17は図6、図9、図12、図14、図16のA−A線断面図である。図6〜図17において図2、図3と同一部分には同一番号を付している。ただし、第1実施形態と同様に、図7、図10、図13、図15、図17では集電体4の一方の面(上面)に形成される電極活物質層21のみを示し、集電体4の他方の面(下面)に形成される電極活物質層21は省略して示していない。   6, 9, 12, 14, and 16 are schematic plan views of one bipolar electrode 3 of the third, fourth, fifth, sixth, and seventh embodiments. FIG. 2 replaces FIG. 7, FIG. 10, FIG. 13, FIG. 15 and FIG. 17 are sectional views taken along line AA of FIG. 6, FIG. 9, FIG. 6 to 17, the same parts as those in FIGS. 2 and 3 are denoted by the same reference numerals. However, as in the first embodiment, FIGS. 7, 10, 13, 15, and 17 show only the electrode active material layer 21 formed on one surface (upper surface) of the current collector 4, The electrode active material layer 21 formed on the other surface (lower surface) of the electric body 4 is not shown.

(第3実施形態)
まず図6、図7に示す第3実施形態は、2つの分割電極活物質層22、23の全て及び分割部位25の全てを、活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材28で被覆したものである。このため、イオン透過性を有する高抵抗部材28の断面は、図7に示したようにEの字を伏せたような形状になっている。
(Third embodiment)
First, in the third embodiment shown in FIGS. 6 and 7, all of the two divided electrode active material layers 22 and 23 and all of the divided portions 25 are high resistance members having higher electric resistance and ion permeability than the active material layer. 28. For this reason, the cross section of the high resistance member 28 having ion permeability has a shape in which the shape of the letter “E” is depressed as shown in FIG.

第3実施形態では、2つの双極型電極3が上下方向に積層されるとき、図8に示したように互いの高抵抗部材28が対向する。この場合、鉛直上方に位置する一方の双極型電極3の分割電極活物質層22、23が正極活物質層であれば、鉛直下方に位置する他方の双極型電極3の分割電極活物質層22、23は負極活物質層となる。   In the third embodiment, when the two bipolar electrodes 3 are stacked in the vertical direction, the high resistance members 28 face each other as shown in FIG. In this case, if the divided electrode active material layers 22 and 23 of one bipolar electrode 3 positioned vertically upward are positive electrode active material layers, the divided electrode active material layer 22 of the other bipolar electrode 3 positioned vertically downward is the same. , 23 are negative electrode active material layers.

第3実施形態によれば、隣り合う2つの分割電極活物質層22、23の間である分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材28を設けたので、集電体4の同一面上に形成されている分割電極活物質層22、23同士が接近しようとしても高抵抗部材28に阻止され、集電体4の同一面上に形成されている分割電極活物質層22、23同士の間が導通することを第1実施形態よりもさらに抑制できる。   According to the third embodiment, all of the divided portions 25 between the two adjacent divided electrode active material layers 22 and 23 have a higher resistance and higher ion resistance than the divided electrode active material layers 22 and 23. Since the member 28 is provided, even if the divided electrode active material layers 22 and 23 formed on the same surface of the current collector 4 try to approach each other, the high resistance member 28 prevents the divided electrode active material layers 22 and 23 from approaching each other. It is possible to further suppress the conduction between the divided electrode active material layers 22 and 23 formed in the first embodiment as compared with the first embodiment.

また、第3実施形態によれば、積層方向に隣り合う2つの双極型電極3の対向面の全面に高抵抗部材28が配置されるので、積層方向に隣り合う一方の双極型電極3の分割電極活物質層22、23と、積層方向に隣り合う他方の双極型電極3の分割電極活物質層22、23との間での内部短絡の発生確率を低下させることができる。   In addition, according to the third embodiment, since the high resistance member 28 is disposed on the entire opposing surface of the two bipolar electrodes 3 adjacent in the stacking direction, the division of one bipolar electrode 3 adjacent in the stacking direction is performed. The probability of occurrence of an internal short circuit between the electrode active material layers 22 and 23 and the divided electrode active material layers 22 and 23 of the other bipolar electrode 3 adjacent in the stacking direction can be reduced.

また、第3実施形態によれば、積層方向に隣り合う一方の双極型電極3の分割電極活物質層22、23と、積層方向に隣り合う他方の双極型電極3の分割電極活物質層22、23との間の積層方向距離を一定にすることができるので、電池の反応が均一に進みやすくなる。一方、積層方向に隣り合う2つの双極型電極3の間で積層方向に対向する2つの分割電極活物質層の間の距離が異なることは、分割電極活物質層内で抵抗が異なる(イオンの移動距離が変わるため、抵抗が変わる)ことを意味する。すると、分割電極活物質層内で反応の起こりやすさが変わり、分割電極活物質層内で反応の不均一を生じることになる。   In addition, according to the third embodiment, the divided electrode active material layers 22 and 23 of one bipolar electrode 3 adjacent in the stacking direction and the divided electrode active material layer 22 of the other bipolar electrode 3 adjacent in the stacking direction. , 23 can be made constant in the stacking direction distance, so that the battery reaction easily proceeds uniformly. On the other hand, the difference in the distance between two divided electrode active material layers facing in the stacking direction between two bipolar electrodes 3 adjacent in the stacking direction means that the resistance in the divided electrode active material layer is different (ion of ions). This means that the resistance changes because the moving distance changes). Then, the susceptibility of the reaction changes in the divided electrode active material layer, and the reaction becomes nonuniform in the divided electrode active material layer.

さて、図8に示したように、イオン透過性を有する高抵抗部材28を、集電体4と接触しない側の平面22d、23dを被覆する集電体4に平行な第1の部位28aと、分割部位25に設けられる第2の部位28bと、長辺側側面22a、23aと反対側の長辺側側面22b、23bに沿って設けられる第3の部位28c、28dとに分ける。このとき、第1の部位28aは第2の部位よりも薄いことが望ましい。これは、第1の部位28aを第2の部位より薄くすることで、電池の容量密度をあまり減らさずに済むためである。   Now, as shown in FIG. 8, the high resistance member 28 having ion permeability is connected to the first portion 28a parallel to the current collector 4 covering the flat surfaces 22d and 23d on the side not in contact with the current collector 4. The second portion 28b provided in the divided portion 25 and the third portions 28c and 28d provided along the long side surfaces 22b and 23b opposite to the long side surfaces 22a and 23a are divided. At this time, it is desirable that the first portion 28a is thinner than the second portion. This is because the capacity density of the battery can be reduced not much by making the first part 28a thinner than the second part.

(第4実施形態)
図9、図10に示す第4実施形態は、分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材29を設けると共に、分割電極活物質層22、23のうち分割部位25のある側と反対側の長辺側側面22b、23bにも分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材30、31を沿わせて設けたものである。
(Fourth embodiment)
In the fourth embodiment shown in FIG. 9 and FIG. 10, a high resistance member 29 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is provided in all of the divided portions 25, and the divided electrode active material layers are provided. High resistance members 30 and 31 having higher ion resistance and higher ion resistance than the divided electrode active material layers 22 and 23 are also provided on the long side surfaces 22b and 23b opposite to the side where the divided portion 25 is present. It is provided.

第4実施形態では、2つの双極型電極3が上下方向に積層されるとき、図11に示したようになる。この場合、鉛直上方に位置する一方の双極型電極3の分割電極活物質層22、23が正極活物質層であるとすれば、鉛直下方に位置する他方の双極型電極3の分割電極活物質層22、23は負極活物質層となる。   In the fourth embodiment, when the two bipolar electrodes 3 are stacked in the vertical direction, the result is as shown in FIG. In this case, if the divided electrode active material layers 22 and 23 of one bipolar electrode 3 positioned vertically upward are positive electrode active material layers, the divided electrode active material of the other bipolar electrode 3 positioned vertically downward is provided. The layers 22 and 23 become negative electrode active material layers.

図11を第3実施形態の図8と比較すれば分かるように、第4実施形態は、第3実施形態のイオン透過性を有する高抵抗部材28から第1の部位28aを取り去ったものに相当する。つまり、第4実施形態のイオン透過性を有する高抵抗部材29は、第3実施形態でいう分割部位25に設けられる第2の部位に相当する。第4実施形態のイオン透過性を有する高抵抗部材30、31は第3実施形態でいう分割部位25のある側と反対側の長辺側側面22b、23bに沿って設けられる第3の部位に相当する。   As can be seen from a comparison of FIG. 11 with FIG. 8 of the third embodiment, the fourth embodiment corresponds to a structure in which the first portion 28a is removed from the ion-permeable high resistance member 28 of the third embodiment. To do. That is, the high resistance member 29 having ion permeability according to the fourth embodiment corresponds to a second part provided in the divided part 25 in the third embodiment. The high resistance members 30 and 31 having ion permeability according to the fourth embodiment are provided at third portions provided along the long side surfaces 22b and 23b opposite to the side where the divided portion 25 is referred to in the third embodiment. Equivalent to.

第4実施形態によれば、隣り合う2つの分割電極活物質層22、23の間である分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材29を第3実施形態と同じに設けたので、集電体4の同一面上に形成されている分割電極活物質層22、23同士が接近しようとしても高抵抗部材29に阻止され、集電体4の同一面上に形成されている分割電極活物質層22、23同士の間が導通することを第1実施形態よりもさらに防止できる。   According to the fourth embodiment, all of the divided portions 25 between the two adjacent divided electrode active material layers 22 and 23 have a higher resistance than the divided electrode active material layers 22 and 23 and higher ion resistance. Since the member 29 is provided in the same manner as in the third embodiment, even if the divided electrode active material layers 22 and 23 formed on the same surface of the current collector 4 try to approach each other, the high resistance member 29 prevents the current from collecting. It is possible to further prevent electrical conduction between the divided electrode active material layers 22 and 23 formed on the same surface of the electric body 4 as compared with the first embodiment.

また、第4実施形態によれば、分割電極活物質層22、23の長辺側側面22a、22b、23a、23bの全てに高抵抗部材29、30、31を設けている。言い換えると、分割電極活物質層22、23の集電体4と接触しない側の平面22d、23dには高抵抗部材を設けていないので、その分、電池の容量密度を上げることができる。   Further, according to the fourth embodiment, the high resistance members 29, 30, and 31 are provided on all of the long side surfaces 22 a, 22 b, 23 a, and 23 b of the divided electrode active material layers 22 and 23. In other words, since the high resistance member is not provided on the flat surfaces 22d and 23d on the side where the divided electrode active material layers 22 and 23 do not contact the current collector 4, the capacity density of the battery can be increased accordingly.

(第5実施形態)
図12、図13に示す第5実施形態は、隣り合う2つの分割電極活物質層22、23の各長辺側側面22a、23a(端面)の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33を設けると共に、それぞれ配置した高抵抗部材32、33の間(つまり分割部位25の中央位置)に空隙部34を設けたものである。
(Fifth embodiment)
In the fifth embodiment shown in FIGS. 12 and 13, electric power is supplied from the divided electrode active material layers 22 and 23 to all of the long side surfaces 22 a and 23 a (end surfaces) of the two adjacent divided electrode active material layers 22 and 23. High resistance members 32 and 33 having high resistance and ion permeability are provided, and a gap portion 34 is provided between the high resistance members 32 and 33 (that is, the central position of the divided portion 25).

ここで、空隙部34の水平方向幅W1(空隙部の距離)は、分割電極活物質層22、23の平均空孔径とほぼ同じに設定する。   Here, the horizontal width W <b> 1 (the distance between the gaps) of the gap 34 is set to be approximately the same as the average pore diameter of the divided electrode active material layers 22 and 23.

ここでの高抵抗部材32、33の材料としては、熱可塑性樹脂、熱硬化性樹脂、電池電極用バインダーを用いることができる。熱可塑性樹脂、熱硬化性樹脂、電池電極用バインダーなどを用いて多孔質構造を形成させれば(図41、図42参照)、熱可塑性樹脂、熱硬化性樹脂のように材料自体にイオン透過性がなくても、イオン透過性を有することとなる。   As a material of the high resistance members 32 and 33 here, a thermoplastic resin, a thermosetting resin, and a binder for battery electrodes can be used. If a porous structure is formed using a thermoplastic resin, a thermosetting resin, a battery electrode binder, etc. (see FIGS. 41 and 42), ions permeate into the material itself like a thermoplastic resin and a thermosetting resin. Even if there is no property, it has ion permeability.

第5実施形態によれば、隣り合う2つの分割電極活物質層22、23の各長辺側側面22a、23a(端面)の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33を設けると共に、それぞれ配置した高抵抗部材32、33の間(分割部位25の中央位置)に空隙部34を設けるので、空隙部34の分だけ、第4実施形態の場合より電解液を拡散させることができる。これによって、分割部位25に隣接する集電体4近くの分割電極活物質層22、23にも電解液が浸透性しやすくなるため、電極特性を向上させることができる。   According to the fifth embodiment, all of the long-side side surfaces 22a and 23a (end surfaces) of two adjacent divided electrode active material layers 22 and 23 have higher electric resistance than the divided electrode active material layers 22 and 23, and ion permeation. The high resistance members 32 and 33 having the properties are provided, and the gap portion 34 is provided between the high resistance members 32 and 33 (the center position of the divided portion 25). The electrolyte can be diffused more than in the case of the form. As a result, the electrolytic solution is easily permeable to the divided electrode active material layers 22 and 23 near the current collector 4 adjacent to the divided portion 25, so that the electrode characteristics can be improved.

また、第5実施形態によれば、空隙部34の存在によって、分割電極活物質層22、23の熱膨張時や収縮時に隣り合う2つの分割電極活物質層22、23の間に働く応力を緩和しやすくなる。   Further, according to the fifth embodiment, due to the presence of the gap 34, the stress acting between the two divided electrode active material layers 22 and 23 adjacent to each other when the divided electrode active material layers 22 and 23 are thermally expanded or contracted is exerted. It becomes easy to relax.

(第6実施形態)
図14、図15に示す第6実施形態は、隣り合う2つの分割電極活物質層22、23の各長辺側側面22a、23a(端面)の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33を設けると共に、それぞれ配置した高抵抗部材32、33の間(分割部位25の中央位置)に空隙部34’を設けている点で第5実施形態と同じである。
(Sixth embodiment)
In the sixth embodiment shown in FIGS. 14 and 15, electric power is supplied from the divided electrode active material layers 22 and 23 to all of the long side surfaces 22 a and 23 a (end surfaces) of the two adjacent divided electrode active material layers 22 and 23. The fifth is that high resistance members 32 and 33 having high resistance and ion permeability are provided, and a gap 34 ′ is provided between the high resistance members 32 and 33 (the center position of the divided portion 25). This is the same as the embodiment.

第6実施形態において第5実施形態と相違するのは、空隙部34’の水平方向幅W2(空隙部の距離)を、分割電極活物質層22、23の平均空孔径よりも大きくしている点である。   The sixth embodiment is different from the fifth embodiment in that the horizontal width W2 (the distance between the gaps) of the gap 34 ′ is larger than the average pore diameter of the divided electrode active material layers 22 and 23. Is a point.

第6実施形態によれば、空隙部34’の水平方向幅W2(空隙部の距離)を、分割電極活物質層22、23の平均空孔径よりも大きくするので、電解液が分割部位25に隣接する集電体4側にも浸透性しやすくなるため、電極特性を向上させることができる。   According to the sixth embodiment, the horizontal width W2 (the distance between the gaps) of the gap 34 ′ is made larger than the average pore diameter of the divided electrode active material layers 22 and 23. Since it becomes easy to permeate also to the adjacent collector 4 side, an electrode characteristic can be improved.

(第7実施形態)
図16、図17に示す第7実施形態は、分割電極活物質層22、23の集電体4と接触する側の平面(図17で下面)22c、23cの面積を、第1実施形態の分割電極活物質層22、23の集電体4と接触する側の平面(図3で下面)22c、23cの面積より大きくすると共に、分割電極活物質層22、23の集電体4と接触しない側の平面(図17で上面)22d、23dの面積を、第1実施形態の分割電極活物質層22、23の集電体4と接触しない側の平面(図3で上面)22c、23cの面積より小さくし、かつ分割部位25の全てに分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材35を設けたものである。このため、図17に示したように分割電極活物質層22、23の断面は等脚台形状となり、イオン透過性を有する高抵抗部材35の断面は逆台形状となっている。
(Seventh embodiment)
In the seventh embodiment shown in FIGS. 16 and 17, the areas of the planes (lower surfaces in FIG. 17) 22 c and 23 c of the divided electrode active material layers 22 and 23 in contact with the current collector 4 are the same as those in the first embodiment. The area of the divided electrode active material layers 22 and 23 on the side in contact with the current collector 4 (lower surface in FIG. 3) 22c and 23c is larger than the area, and the divided electrode active material layers 22 and 23 are in contact with the current collector 4 The areas of the non-contact planes (upper surface in FIG. 17) 22d and 23d are the same as the planes (upper surfaces in FIG. 3) 22c and 23c of the divided electrode active material layers 22 and 23 of the first embodiment that do not contact the current collector 4 And a high resistance member 35 having a higher electric resistance than that of the divided electrode active material layers 22 and 23 and having ion permeability. For this reason, as shown in FIG. 17, the cross section of the divided electrode active material layers 22 and 23 is an isosceles trapezoid, and the cross section of the high resistance member 35 having ion permeability is an inverted trapezoid.

第7実施形態によれば、分割電極活物質層22、23と集電体4との接触面積が第1実施形態より大きいので、集電体4と分割電極活物質層22、23との密着力を強くすることができる。   According to the seventh embodiment, the contact area between the divided electrode active material layers 22 and 23 and the current collector 4 is larger than that of the first embodiment, so that the current collector 4 and the divided electrode active material layers 22 and 23 are in close contact with each other. Strength can be strengthened.

また、第7実施形態によれば、分割部位25の水平方向幅が、集電体4から鉛直上方に離れるほど大きくなるので、集電体4から離れた分割部位25の部分で分割電極活物質層22、23の熱膨張時や収縮時に隣り合う2つの分割電極活物質層22、23の間に働く応力を緩和できる。さらに述べると、分割電極活物質層22、23が膨張している時に接触するとお互いに押し合うために、応力が発生する。単純に考えると、初めから接触している場合に発生する応力は、接触していない状態からの膨張量×弾性率で決まる。隣り合う2つの分割電極活物質層22、23同士が接触するまでに、自由に膨張できる隙間があった方が隣り合う2つの分割電極活物質層22、23の間に発生する応力を少なくすることができる。言い換えると、集電体4から鉛直上方に離れるほど分割部位25の水平方向幅が広がり、隣り合う2つの分割電極活物質層22、23の間に働く応力を緩和できる。   In addition, according to the seventh embodiment, the horizontal width of the divided portion 25 increases as it moves vertically upward from the current collector 4, so that the divided electrode active material is separated at the portion of the divided portion 25 away from the current collector 4. The stress acting between the two divided electrode active material layers 22 and 23 adjacent to each other at the time of thermal expansion or contraction of the layers 22 and 23 can be relaxed. More specifically, when the divided electrode active material layers 22 and 23 are in contact with each other when they are expanded, they are pressed against each other, so that stress is generated. Considering simply, the stress generated when the contact is made from the beginning is determined by the amount of expansion from the state where the contact is not made x the elastic modulus. The stress generated between the adjacent two divided electrode active material layers 22 and 23 is reduced when there is a gap that can expand freely until the two adjacent divided electrode active material layers 22 and 23 come into contact with each other. be able to. In other words, as the distance from the current collector 4 increases vertically, the horizontal width of the divided portion 25 increases, and the stress acting between the two adjacent divided electrode active material layers 22 and 23 can be relaxed.

(第8実施形態)
図18は第8実施形態の1つの双極型電極3の概略平面図、図19は図18のA−A線断面図である。
(Eighth embodiment)
18 is a schematic plan view of one bipolar electrode 3 according to the eighth embodiment, and FIG. 19 is a cross-sectional view taken along line AA of FIG.

第8実施形態は、集電体4の各面に形成される負極活物質層41と正極活物質層45とを同数(ここでは3つ)で分割(等分)し、分割された負極活物質層(この分割された負極活物質層を以下「分割負極活物質層」という。)42、43、44と、分割された正極活物質層(この分割された正極活物質層を以下「分割正極活物質層」という。)46、47、48とを集電体4を挟んで互いに対向させると共に、分割負極活物質層42、43、44側の分割部位49、50の水平方向幅を、分割正極活物質層46、47、48側の分割部位51、52の水平方向幅より小さくし、かつ分割負極活物質層42、43、44の側の分割部位49、50に分割負極活物質層42、43、44より電気抵抗が高くイオン透過性を有する高抵抗部材53、54を、分割正極活物質層46、47、48の側の分割部位51、52に分割正極活物質層46、47、48より電気抵抗が高くイオン透過性を有する高抵抗部材55、56を設けたものである。ここで、3つの各分割負極活物質層42、43、44の水平方向幅W3は、3つの各分割正極活物質層46、47、48の水平方向幅W4より大きくなっている。   In the eighth embodiment, the negative electrode active material layer 41 and the positive electrode active material layer 45 formed on each surface of the current collector 4 are divided (equally divided) into the same number (here, three), and the divided negative electrode active materials are divided. The material layer (this divided negative electrode active material layer is hereinafter referred to as “divided negative electrode active material layer”) 42, 43, 44 and the divided positive electrode active material layer (this divided positive electrode active material layer is hereinafter referred to as “divided negative electrode active material layer”). The positive electrode active material layer is referred to as the positive electrode active material layer.) 46, 47 and 48 are opposed to each other with the current collector 4 interposed therebetween, and the horizontal widths of the divided portions 49 and 50 on the divided negative electrode active material layers 42, 43 and 44 side are The divided negative electrode active material layer is made smaller than the horizontal width of the divided portions 51, 52 on the divided positive electrode active material layers 46, 47, 48 side, and is divided on the divided portions 49, 50 on the divided negative electrode active material layers 42, 43, 44 side. High resistance member 53 having higher electrical resistance than 42, 43 and 44 and having ion permeability 54, high resistance members 55 and 56 having higher electric resistance and ion permeability than the divided positive electrode active material layers 46, 47, 48 are provided at the divided portions 51, 52 on the divided positive electrode active material layers 46, 47, 48 side. It is a thing. Here, the horizontal width W3 of the three divided negative electrode active material layers 42, 43, 44 is larger than the horizontal width W4 of the three divided positive electrode active material layers 46, 47, 48.

さらに説明する。いま、同じ外形寸法である3つの分割負極活物質層42、43、44を、第1分割負極活物質層42、第2分割負極活物質層43、第3分割負極活物質層44で区別する。また、同じ外形寸法である3つの分割正極活物質層46、47、48を、第1分割正極活物質層46、第2分割正極活物質層47、第3分割正極活物質層48で区別する。このとき、第1分割負極活物質層42の長手方向中心線C1と第1分割正極活物質層46の長手方向中心線(図示しない)を図18、図19で左右方向に一致させる。同様にして、第2分割負極活物質層43の長手方向中心線C2と第2分割正極活物質層47の長手方向中心線(図示しない)を図18、図19で左右方向に一致させる。同様にして、第3分割負極活物質層44の長手方向中心線C3と第3分割正極活物質層48の長手方向中心線(図示しない)を図18、図19で左右方向に一致させる。   Further explanation will be given. Now, three divided negative electrode active material layers 42, 43, and 44 having the same outer dimensions are distinguished by a first divided negative electrode active material layer 42, a second divided negative electrode active material layer 43, and a third divided negative electrode active material layer 44. . Further, the three divided positive electrode active material layers 46, 47, and 48 having the same outer dimensions are distinguished by the first divided positive electrode active material layer 46, the second divided positive electrode active material layer 47, and the third divided positive electrode active material layer 48. . At this time, the longitudinal center line C1 of the first divided negative electrode active material layer 42 and the longitudinal center line (not shown) of the first divided positive electrode active material layer 46 are aligned in the left-right direction in FIGS. Similarly, the longitudinal center line C2 of the second divided negative electrode active material layer 43 and the longitudinal center line (not shown) of the second divided positive electrode active material layer 47 are aligned in the left-right direction in FIGS. Similarly, the longitudinal center line C3 of the third divided negative electrode active material layer 44 and the longitudinal center line (not shown) of the third divided positive electrode active material layer 48 are aligned in the left-right direction in FIGS.

これによって、図19に示したように、分割負極活物質層42、43、44が、集電体4を挟んでそれぞれ分割正極活物質層46、47、48を包含することとなる。   Accordingly, as shown in FIG. 19, the divided negative electrode active material layers 42, 43, and 44 include the divided positive electrode active material layers 46, 47, and 48 with the current collector 4 interposed therebetween.

なお、分割負極活物質層42、43、44は、互いに対向する長辺側側面42a、43a、43b、44b、互いに対向しない長辺側側面42b、44a、集電体4と接触する側の平面(図19で下面)42c、43c、44c、集電体4と接触しない側の平面(図19で上面)42d、43d、44dを有している。同様に、分割正極活物質層46、47、48は、互いに対向する長辺側側面46a、47a、47b、48b、互いに対向しない長辺側側面46b、48a、集電体4と接触する側の平面(図19で上面)46c、47c、48c、集電体4と接触しない側の平面(図19で下面)46d、47d、48dを有している。分割負極活物質層42、43、44、分割正極活物質層46、47、48の各断面は、図19に示したように、ほぼ長方形となっている。   The divided negative electrode active material layers 42, 43, 44 have long side surfaces 42 a, 43 a, 43 b, 44 b that face each other, long side surfaces 42 b, 44 a that do not face each other, and planes that come into contact with the current collector 4. (Lower surface in FIG. 19) 42c, 43c, 44c and flat surfaces (upper surface in FIG. 19) 42d, 43d, 44d on the side not in contact with the current collector 4. Similarly, the divided positive electrode active material layers 46, 47, 48 are arranged on the long side surfaces 46 a, 47 a, 47 b, 48 b facing each other, the long side surfaces 46 b, 48 a not facing each other, and the side in contact with the current collector 4. Planes (upper surface in FIG. 19) 46c, 47c, 48c, and flat surfaces (lower surface in FIG. 19) 46d, 47d, 48d on the side not in contact with the current collector 4 are provided. As shown in FIG. 19, the cross sections of the divided negative electrode active material layers 42, 43, 44 and the divided positive electrode active material layers 46, 47, 48 are substantially rectangular.

そして、分割負極活物質層42〜44側の分割部位49、50の一部、ここでも分割部位49、50の中央にだけ分割負極活物質層42〜44より電気抵抗が高くイオン透過性を有する高抵抗部材53、54を設けている。また、分割正極活物質層46〜48側の分割部位51、52の一部、ここでも分割部位51、52の中央にだけ分割正極活物質層46〜48より電気抵抗が高くイオン透過性を有する高抵抗部材55、56を設けている。高抵抗部材53、54、55、56の断面も長方形である。   In addition, a part of the divided portions 49 and 50 on the divided negative electrode active material layers 42 to 44 side, here also in the center of the divided portions 49 and 50, has higher electrical resistance than the divided negative electrode active material layers 42 to 44 and has ion permeability. High resistance members 53 and 54 are provided. In addition, a part of the divided parts 51 and 52 on the divided positive electrode active material layers 46 to 48 side, here also has a higher electric resistance and ion permeability than the divided positive electrode active material layers 46 to 48 only at the center of the divided parts 51 and 52. High resistance members 55 and 56 are provided. The cross sections of the high resistance members 53, 54, 55, and 56 are also rectangular.

第8実施形態によれば、集電体の各面形成される負極活物質層41と正極活物質層45とを同数で分割し、分割負極活物質層42〜44と、分割正極活物質層46〜48とを集電体4を挟んで互いに対向させると共に、分割負極活物質層42〜44側の分割部位49、50の水平方向幅を、分割正極活物質層46〜48側の分割部位51、52の水平方向幅より小さくし、かつ分割負極活物質層42〜44の側の分割部位49、50に分割負極活物質層42〜44より電気抵抗が高くイオン透過性を有する高抵抗部材53、54、55、56を、分割正極活物質層46〜48の側の分割部位51、52に分割正極活物質層46〜48より電気抵抗が高くイオン透過性を有する高抵抗部材55、56を設けたので、図43に示したように積層方向に隣り合う2つの双極型電極3を考えたとき、積層方向に隣り合う一方の双極型電極3の分割正極活物質層46、47、48が、積層方向に隣り合う他方の双極型電極3の分割負極活物質層42、43、44内に包含される。これによって、積層型二次電池の充電時には、積層方向に隣り合う一方の双極型電極3の分割正極活物質層46のLiイオンを電解質(電解液)を介して、積層方向に隣り合う他方の双極型電極3の分割負極活物質層42に受け入れることができることから、充放電効率を向上できる。第1〜第7の実施形態に比べ耐久時の容量劣化を抑制することができる。ここで、図43は第8実施形態の双極型電極3を鉛直方向に3つ積層したスタック1の概略縦断面図である。なお、双極型電極3を3つ積層する場合に限定されるものでない。   According to the eighth embodiment, the negative electrode active material layer 41 and the positive electrode active material layer 45 formed on each surface of the current collector are divided into the same number, and divided negative electrode active material layers 42 to 44 and divided positive electrode active material layers. 46 to 48 are opposed to each other with the current collector 4 interposed therebetween, and the horizontal widths of the divided portions 49 and 50 on the divided negative electrode active material layers 42 to 44 side are divided into divided portions on the divided positive electrode active material layers 46 to 48 side. The high resistance member which is smaller than the horizontal width of 51 and 52 and has higher electric resistance and ion permeability than the divided negative electrode active material layers 42 to 44 at the divided portions 49 and 50 on the divided negative electrode active material layers 42 to 44 side. 53, 54, 55, and 56 are divided into portions 51 and 52 on the side of the divided positive electrode active material layers 46 to 48, and have high resistance members 55 and 56 having higher electric resistance and ion permeability than the divided positive electrode active material layers 46 to 48. As shown in FIG. When two bipolar electrodes 3 adjacent to each other are considered, the divided positive electrode active material layers 46, 47, 48 of one bipolar electrode 3 adjacent to the stacking direction of the other bipolar electrode 3 adjacent to each other in the stacking direction It is included in the divided negative electrode active material layers 42, 43 and 44. As a result, when the stacked secondary battery is charged, the Li ion of the split positive electrode active material layer 46 of one bipolar electrode 3 adjacent in the stacking direction is exchanged with the other adjacent in the stacking direction via the electrolyte (electrolytic solution). Since it can be received by the divided negative electrode active material layer 42 of the bipolar electrode 3, the charge / discharge efficiency can be improved. Compared with the first to seventh embodiments, it is possible to suppress capacity deterioration during durability. Here, FIG. 43 is a schematic longitudinal sectional view of a stack 1 in which three bipolar electrodes 3 of the eighth embodiment are stacked in the vertical direction. Note that the present invention is not limited to the case where three bipolar electrodes 3 are stacked.

さらに説明する。積層方向に隣り合う一方の双極型電極3の分割正極活物質層と対向していない部分であって、積層方向に隣り合う他方の双極型電極3の分割負極活物質層は、積層方向に隣り合う一方の双極型電極3の分割正極活物質層のLiイオンをほとんど受け入れることができない。積層方向に隣り合う一方の双極型電極3の分割正極活物質層の対向部に、積層方向に隣り合う他方の双極型電極3の分割負極活物質層がないと、積層方向に隣り合う一方の双極型電極3の分割正極活物質層からでたLiイオンは、違うところにリチウム(Li)として析出したりする恐れがある。そこで、第8実施形態では、積層方向に隣り合う他方の双極型電極3の分割負極活物質層の水平方向幅W3を、積層方向に隣り合う一方の双極型電極3の分割正極活物質層の水平方向幅W4よりも大きめにして、積層方向に隣り合う一方の双極型電極3の分割正極活物質層から出たLiイオンを確実に積層方向に隣り合う他方の双極型電極3の分割負極活物質層に取り込むようにしている。   Further explanation will be given. A portion of the other bipolar electrode 3 adjacent in the stacking direction that is not opposed to the divided positive electrode active material layer of the other bipolar electrode 3 and that is adjacent in the stacking direction is adjacent to the stacked negative electrode active material layer in the stacking direction. Almost no Li ions in the split positive electrode active material layer of the matching bipolar electrode 3 can be accepted. If there is no divided negative electrode active material layer of the other bipolar electrode 3 adjacent in the stacking direction at the facing portion of the divided positive electrode active material layer of one bipolar electrode 3 adjacent in the stacking direction, There is a possibility that Li ions coming out from the divided positive electrode active material layer of the bipolar electrode 3 may be deposited as lithium (Li) in different places. Therefore, in the eighth embodiment, the horizontal width W3 of the divided negative electrode active material layer of the other bipolar electrode 3 adjacent in the stacking direction is set to the horizontal width W3 of the one divided bipolar electrode 3 adjacent in the stack direction. It is made larger than the horizontal width W4, and Li ions emitted from the divided positive electrode active material layer of one bipolar electrode 3 adjacent in the stacking direction are surely divided into the negative electrode active of the other bipolar electrode 3 adjacent in the stacking direction. Incorporated into the material layer.

この意味で、第1〜第7の実施形態においても、積層方向に隣り合う2つの双極型電極3を考えたとき、隣り合う一方の双極型電極3に設けられる高抵抗部材と、隣り合う他方の双極型電極3に設けられる高抵抗部材とが集電体(あるいはセパレータ)を挟んで対向していることが好ましい。   In this sense, also in the first to seventh embodiments, when considering two bipolar electrodes 3 adjacent in the stacking direction, the high resistance member provided on one adjacent bipolar electrode 3 and the other adjacent It is preferable that the high resistance member provided on the bipolar electrode 3 is opposed to the current collector (or separator).

(比較例)
図20は比較例の1つの双極型電極3の概略平面図、図21は図20のA−A線断面図である。図20、図21において第8実施形態の図18、図19と同一部分には同一番号を付している。比較例は、図18、図19に示した第8実施形態の双極型電極3から高抵抗部材を除いたものである。つまり、比較例には高抵抗部材は設けられていない。
(Comparative example)
20 is a schematic plan view of one bipolar electrode 3 of the comparative example, and FIG. 21 is a cross-sectional view taken along line AA of FIG. 20 and 21, the same reference numerals are given to the same portions as those in FIGS. 18 and 19 of the eighth embodiment. The comparative example is obtained by removing the high resistance member from the bipolar electrode 3 of the eighth embodiment shown in FIGS. That is, the high resistance member is not provided in the comparative example.

図22、図24、図27、図30、図32、図34は第9、第10、第11、第12、第13、第14の実施形態の1つの双極型電極3の概略平面図である。図23は図22のA−A線断面図、図25は図24のA−A線断面図、図28、図29は図27のA−A線断面図、B−B線断面図である。図31は図30のA−A線断面図、図33は図32のA−A線断面図、図35、図36は図34のA−A線断面図、B−B線断面図である。第1実施形態の図2、図3と同一部分には同一番号を付している。ただし、第1実施形態の図3と同様に、図23、図25、図26、図28、図29、図31、図33、図35、図36では集電体4の一方の面(上面)に形成される電極活物質層21のみを示し、集電体4の他方の面(下面)に形成される電極活物質層21は省略して示していない。第9〜第14の実施形態は、イオン透過性を有する高抵抗部材の形状や配置が第1〜第8の実施形態と相違するものである。   22, 24, 27, 30, 32, and 34 are schematic plan views of one bipolar electrode 3 of the ninth, tenth, eleventh, twelfth, thirteenth, and fourteenth embodiments. is there. 23 is a cross-sectional view taken along line AA in FIG. 22, FIG. 25 is a cross-sectional view taken along line AA in FIG. 24, and FIGS. 28 and 29 are cross-sectional views taken along line AA in FIG. . 31 is a cross-sectional view taken along line AA in FIG. 30, FIG. 33 is a cross-sectional view taken along line AA in FIG. 32, and FIGS. 35 and 36 are cross-sectional views taken along line AA in FIG. . The same parts as those in FIGS. 2 and 3 of the first embodiment are denoted by the same reference numerals. However, as in FIG. 3 of the first embodiment, in FIG. 23, FIG. 25, FIG. 26, FIG. 28, FIG. 29, FIG. The electrode active material layer 21 formed on the other surface (lower surface) of the current collector 4 is not shown. The ninth to fourteenth embodiments are different from the first to eighth embodiments in the shape and arrangement of a high resistance member having ion permeability.

(第9実施形態)
まず図22、図23に示す第9実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材61の下面61aを集電体4上に固定して設けるものである。この場合に、分割電極活物質層22、23の長辺側側面22a、23aに対向する高抵抗部材61の両側面61b、61cは分割電極活物質層22、23の長辺側側面22a、23aに当接させていない。
(Ninth embodiment)
First, in the ninth embodiment shown in FIGS. 22 and 23, the lower surface 61 a of the high resistance member 61 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is fixed on the current collector 4. Is. In this case, both side surfaces 61b and 61c of the high-resistance member 61 facing the long side surfaces 22a and 23a of the divided electrode active material layers 22 and 23 are the long side surfaces 22a and 23a of the divided electrode active material layers 22 and 23. It is not in contact with.

(第10実施形態)
図24、図25に示す第10実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材62の両側面62b、62cを分割電極活物質層22、23の互いに対向する長辺側側面22a、23aに固定するものである。
(10th Embodiment)
In the tenth embodiment shown in FIGS. 24 and 25, both side surfaces 62b and 62c of the high resistance member 62 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 are provided on the divided electrode active material layers 22 and 23. It fixes to the long side surface 22a, 23a which mutually opposes.

図26は第10実施形態の変形例で、図25と置き換わるものである。この変形例では、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材62の側面62b、62cの一方(ここでは側面62b)を、分割電極活物質層22、23の互いに対向する長辺側側面22a、23aの一方(ここでは長辺側側面22a)に固定するものである。   FIG. 26 shows a modification of the tenth embodiment, which replaces FIG. In this modification, one of the side surfaces 62b and 62c (the side surface 62b in this case) of the high resistance member 62 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is used as the divided electrode active material layers 22 and 23. Are fixed to one of the long side surfaces 22a and 23a facing each other (here, the long side surface 22a).

(第11実施形態)
図22、図23で前述したように第9実施形態では、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材61の下面61aを、分割部位25の中央の一箇所で集電体4上に固定した。一方、図27〜図29に示す第11実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材63、64の下面63a、64aを、分割部位25の端部の二箇所で集電体4上に固定するものである。つまり、第11実施形態では、イオン透過性を有する2つの高抵抗部材63、64からなり、一方の高抵抗部材63は分割部位25の一方の端に固定され、他方の高抵抗部材64は分割部位25の他方の端に固定されている。第11実施形態でも、分割電極活物質層22、23の長辺側側面22a、23aに対向する高抵抗部材63、64の両側面63b、63c、64b、64cは分割電極活物質層22、23の長辺側側面22a、23aに当接させていない。
(Eleventh embodiment)
As described above with reference to FIGS. 22 and 23, in the ninth embodiment, the lower surface 61 a of the high resistance member 61 having higher electric resistance and ion permeability than the divided electrode active material layers 22, 23 is provided at the center of the divided portion 25. It fixed on the collector 4 at the location. On the other hand, in the eleventh embodiment shown in FIGS. 27 to 29, the lower surfaces 63 a and 64 a of the high resistance members 63 and 64 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 are formed on the divided portions 25. It fixes on the electrical power collector 4 at two places of an edge part. That is, in the eleventh embodiment, the two high resistance members 63 and 64 having ion permeability are formed. One high resistance member 63 is fixed to one end of the divided portion 25 and the other high resistance member 64 is divided. It is fixed to the other end of the region 25. Also in the eleventh embodiment, the side surfaces 63b, 63c, 64b, 64c of the high resistance members 63, 64 facing the long side surfaces 22a, 23a of the divided electrode active material layers 22, 23 are the divided electrode active material layers 22, 23. The long side surfaces 22a and 23a are not brought into contact with each other.

(第12実施形態)
図30、図31に示す第12実施形態では、電極活物質層21を3つに分割(等分)している。このため、これら3つの分割された電極活物質層(この分割された電極活物質層を以下「分割電極活物質層」という。)22、23、24は所定の隙間25を空けて並んでいる。この分割によって生じた隙間25、26も以下「分割部位」という。
(Twelfth embodiment)
In the twelfth embodiment shown in FIGS. 30 and 31, the electrode active material layer 21 is divided into three (equal parts). For this reason, these three divided electrode active material layers (this divided electrode active material layer is hereinafter referred to as “divided electrode active material layer”) 22, 23, 24 are arranged with a predetermined gap 25 therebetween. . The gaps 25 and 26 generated by this division are also referred to as “divided parts” hereinafter.

図22、図23に示した第9実施形態、図27〜図29に示した第11実施形態では、イオン透過性を有する高抵抗部材61、63、64の側面61b、61c、63b、63c、64b、64cを分割電極活物質層22、23の長辺側側面22a、23aに当接させていない。一方、図30、図31に示す第12実施形態は、分割電極活物質層22、23、24より電気抵抗が高くイオン透過性を有する高抵抗部材65、66の下面65a、66aを集電体4上に固定すると共に、高抵抗部材65、66の一方の側面65c、66cを分割電極活物質23、24の一方の長辺側側面23a、24aに当接させたものである。   In the ninth embodiment shown in FIGS. 22 and 23 and the eleventh embodiment shown in FIGS. 27 to 29, the side surfaces 61b, 61c, 63b, 63c of the high resistance members 61, 63, 64 having ion permeability are provided. 64b and 64c are not brought into contact with the long side surfaces 22a and 23a of the divided electrode active material layers 22 and 23, respectively. On the other hand, in the twelfth embodiment shown in FIGS. 30 and 31, the lower surfaces 65a and 66a of the high resistance members 65 and 66 having higher electric resistance and ion permeability than the divided electrode active material layers 22, 23 and 24 are provided on the current collector. 4, and one side surfaces 65 c and 66 c of the high resistance members 65 and 66 are brought into contact with one of the long side surfaces 23 a and 24 a of the divided electrode active materials 23 and 24.

(第13実施形態)
図32、図33に示す第13実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材67の断面を、三角形状として、集電体4上に固定して設けたものである。
(13th Embodiment)
In the thirteenth embodiment shown in FIG. 32 and FIG. 33, the cross section of the high resistance member 67 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is fixed on the current collector 4 in a triangular shape. It is provided.

(第14実施形態)
図34〜図36に示す第14実施形態は、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材68、69の下面68a、69aを、分割部位25の二箇所で集電体4上に固定すると共に、一方の高抵抗部材68の一方の側面68cを分割電極活物質層23の一方の長辺側側面23aのみに、他方の高抵抗部材69の一方の側面69bを分割電極活物質層22の一方の長辺側側面22aのみに当接させたものである。
(14th Embodiment)
In the fourteenth embodiment shown in FIGS. 34 to 36, the lower surfaces 68 a and 69 a of the high resistance members 68 and 69 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 are provided at two locations of the divided portion 25. The one side surface 68c of one high resistance member 68 is fixed to only one long side surface 23a of the divided electrode active material layer 23 and one side surface of the other high resistance member 69. 69b is brought into contact with only one long side surface 22a of the divided electrode active material layer 22.

上記第1〜第7の実施形態及び比較例に対して、それぞれ実施例1〜7及び比較例を作製した。この実施例1〜7及び比較例について次に説明する。ここでは、7つの各実施例及び比較例に共通する事項を先に述べ、その後に7つの各実施例及び比較例について共通事項と異なる点を個別に説明する。   Examples 1-7 and a comparative example were produced with respect to the said 1st-7th embodiment and a comparative example, respectively. Examples 1 to 7 and a comparative example will be described next. Here, the matters common to the seven examples and the comparative example are described first, and thereafter, the points different from the common matters are individually described for the seven examples and the comparative example.

<正極スラリーの調整>
正極活物質としてリチウムマンガン酸化物(LiMn24)を85wt%、導電助剤としてアセチレンブラックを5wt%、バインダーとしてポリフッ化ビニリデン(PVDF)を10wt%の割合で混合して正極スラリーを調整した。スラリー粘度調整溶媒としてはN−メチル−ピロリドン(NMP)を用いた。
<Preparation of positive electrode slurry>
A positive electrode slurry was prepared by mixing 85 wt% of lithium manganese oxide (LiMn 2 O 4 ) as a positive electrode active material, 5 wt% of acetylene black as a conductive additive, and 10 wt% of polyvinylidene fluoride (PVDF) as a binder. . N-methyl-pyrrolidone (NMP) was used as the slurry viscosity adjusting solvent.

<負極スラリーの調整>
負極活物質としてハードカーボンを90wt%、バインダーとしてポリフッ化ビニリデン(PVDF)を10wt%の割合で混合して負極スラリーを調整した。スラリー粘度調整溶媒としてはN−メチル−ピロリドン(NMP)を用いた。
<Adjustment of negative electrode slurry>
A negative electrode slurry was prepared by mixing 90 wt% of hard carbon as a negative electrode active material and 10 wt% of polyvinylidene fluoride (PVDF) as a binder. N-methyl-pyrrolidone (NMP) was used as the slurry viscosity adjusting solvent.

<集電体の作製>
導電性を有する層としてポリエチレン(PE)樹脂にカーボン材料を分散させた導電性高分子材料を延伸によって、厚さ100μmのフィルム状に成型して、導電性を有する樹脂層を含む集電体を作製した。
<Preparation of current collector>
As a conductive layer, a conductive polymer material in which a carbon material is dispersed in polyethylene (PE) resin is stretched to form a film having a thickness of 100 μm, and a current collector including a conductive resin layer is obtained. Produced.

<双極型電極の作製>
上記の負極スラリーを上記集電体の一方の面に塗布し乾燥させて負極活物質層を形成した。負極活物質層の厚みは50μmになるようにプレスを行った。
<Production of bipolar electrode>
The negative electrode slurry was applied to one surface of the current collector and dried to form a negative electrode active material layer. The negative electrode active material layer was pressed to a thickness of 50 μm.

続いて上記の正極スラリーを上記の集電体の他方の面に塗布し乾燥させて正極活物質層を形成した。正極活物質層の厚みは60μmになるようにプレスを行った。   Subsequently, the positive electrode slurry was applied to the other surface of the current collector and dried to form a positive electrode active material layer. Pressing was performed so that the thickness of the positive electrode active material layer was 60 μm.

これによって、集電体の一方の面に負極活物質層が、他方の面に正極活物質層が形成された双極型電極が完成した。   Thus, a bipolar electrode was completed in which the negative electrode active material layer was formed on one surface of the current collector and the positive electrode active material layer was formed on the other surface.

双極型電極を140mm×90mmに切断し、電極の周辺部10mmはあらかじめ電極(正負ともに)を塗布していない部分のあるものを作成し、これにより120mm×70mmの電極部と周辺部に10mmのシール代ができた双極型電極を作製した。   The bipolar electrode is cut into 140 mm × 90 mm, and the peripheral portion of the electrode 10 mm is prepared with a portion to which the electrode (both positive and negative) is not applied in advance, so that the electrode portion of 120 mm × 70 mm and the peripheral portion of 10 mm A bipolar electrode with a seal allowance was fabricated.

<高抵抗部材の作製>
絶縁体材料とバインダー材料を混合してスラリーを作製した。絶縁体材料としてアルミナを用いた。バインダーとしてカルボキシメチルセルロース(CMC)を2wt%の割合で用いた。溶媒としてN−メチル−ピロリドン(NMP)を用いた。
<Production of high resistance member>
An insulator material and a binder material were mixed to prepare a slurry. Alumina was used as the insulator material. As a binder, carboxymethyl cellulose (CMC) was used at a ratio of 2 wt%. N-methyl-pyrrolidone (NMP) was used as a solvent.

<電解液の作製>
エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を、EC:DEC=1:1(体積比)の割合で混合した非水溶媒に、電解質塩としての六フッ化リン酸リチウム(LiPF6)を濃度が1mol/lとなるように溶解させて、非水電解液を作製した。
<Preparation of electrolyte>
Concentration of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a ratio of EC: DEC = 1: 1 (volume ratio) Was dissolved to 1 mol / l to prepare a non-aqueous electrolyte.

<積層型二次電池の作製>
上記得られた双極型電極を6つ用意し、正極活物質層、負極活物質層の周囲にポリエチレン(PE)製フィルムからなるシール部材を配置した。さらに、隣り合う一方の双極型電極の正極活物質層と、隣り合う他方の双極型電極の負極活物質層とが対向するように、かつこれら隣り合う2つの双極型電極の間に厚み35μmのポリエチレン(PE)からなるセパレータを配置して積層した。次いで、各層の注液部以外のシール部三辺を上下からプレス(プレス圧力:0.2MPa、プレス温度:140℃、プレス時間:5秒間)し、各層のシール部材を融嫡し、各層をシールして、各層の注液部のみが開口された袋状とした。
<Preparation of laminated secondary battery>
Six bipolar electrodes obtained as described above were prepared, and a sealing member made of a polyethylene (PE) film was disposed around the positive electrode active material layer and the negative electrode active material layer. Furthermore, the positive electrode active material layer of one adjacent bipolar electrode and the negative electrode active material layer of the other adjacent bipolar electrode are opposed to each other, and a thickness of 35 μm is provided between these two adjacent bipolar electrodes. A separator made of polyethylene (PE) was placed and laminated. Next, the three sides of the seal part other than the liquid injection part of each layer are pressed from above and below (press pressure: 0.2 MPa, press temperature: 140 ° C., press time: 5 seconds), the sealing member of each layer is fused, Sealed to form a bag shape in which only the liquid injection part of each layer was opened.

さらに、各層の注液部のみが開口された部位に、作製した電解液を注液し、シール材部を真空密封した。   Furthermore, the produced electrolyte solution was injected into a portion where only the liquid injection portion of each layer was opened, and the sealing material portion was vacuum-sealed.

その後、発電要素の投影面全体を覆うことのできる縦130mm×横80mm×厚み100μmのアルミニウム板の一部が電池要素投影面外部まで延びている部分がある強電端子で発電要素を挟み込み、これらを覆うようにアルミニウムラミネートフィルムで真空密封し、上下の両面から発電要素全体を大気圧で押すことにより、強電端子と発電要素間の接触を高めた。これにより、図1に示すような積層型二次電池が得られた。これで7つの各実施例及び比較例に共通する事項の説明を終える。   After that, the power generation element is sandwiched between high-power terminals having a portion in which a part of an aluminum plate having a length of 130 mm × width of 80 mm × thickness of 100 μm that can cover the entire projection surface of the power generation element extends to the outside of the battery element projection surface. The aluminum laminate film was vacuum-sealed so as to cover it, and the entire power generation element was pushed at atmospheric pressure from both the upper and lower sides, thereby increasing the contact between the high voltage terminal and the power generation element. As a result, a stacked secondary battery as shown in FIG. 1 was obtained. This completes the description of matters common to the seven examples and comparative examples.

(実施例1)
前述の共通する事項と同様にして積層型二次電池を作製した(図2、図3参照)。
Example 1
A stacked secondary battery was fabricated in the same manner as described above (see FIGS. 2 and 3).

次に、前述の共通する事項で述べなかった分割電極活物質層の作製方法について述べる。すなわち、高固形分の負極スラリーを塗布し負極活物質層を形成する負極活物質層形成工程と、形成した負極活物質層を乾燥させる乾燥工程の間に、パターン型をプレスし負極活物質層を複数に分割する負極活物質分割工程と、負極活物質層が分割された部分に負極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける高抵抗部材設置工程とを追加した。同様に、高固形分の正極スラリーを塗布し正極活物質層を形成する正極活物質層形成工程と、形成した正極活物質層を乾燥させる乾燥工程の間に、パターン型をプレスし正極活物質層を複数に分割する正極活物質分割工程と、正極活物質層が分割された部分に正極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける高抵抗部材設置工程とを追加した。   Next, a method for manufacturing a divided electrode active material layer that has not been described in the above-described common matters will be described. That is, a negative electrode active material layer is formed by pressing a pattern mold between a negative electrode active material layer forming step of applying a high solid content negative electrode slurry to form a negative electrode active material layer and a drying step of drying the formed negative electrode active material layer. A negative electrode active material dividing step for dividing the negative electrode active material layer and a high resistance member installation step for providing a high resistance member having a higher electric resistance and ion permeability than the negative electrode active material layer in the divided portion of the negative electrode active material layer . Similarly, a positive electrode active material is formed by pressing a pattern mold between a positive electrode active material layer forming step of applying a high solid content positive electrode slurry to form a positive electrode active material layer and a drying step of drying the formed positive electrode active material layer. A positive electrode active material dividing step for dividing a layer into a plurality of layers and a high resistance member installing step for providing a high resistance member having higher electric resistance and ion permeability than the positive electrode active material layer in a portion where the positive electrode active material layer is divided are added. did.

詳述すると、上記の活物質分割工程でプレス型を用いて、集電体上に形成した負極活物質層、正極活物質層をそれぞれプレスすることにより、負極活物質層、正極活物質層を2つに分割した。分割負極活物質層、分割正極活物質層はいずれも36mm×70mmの大きさとなった。この場合、分割負極活物質層側の分割部位と、分割正極活物質層側の分割部位とが集電体を挟んで対向するようにした。   More specifically, the negative electrode active material layer and the positive electrode active material layer are respectively pressed by pressing the negative electrode active material layer and the positive electrode active material layer formed on the current collector using the press mold in the active material dividing step. Divided into two. Both the divided negative electrode active material layer and the divided positive electrode active material layer had a size of 36 mm × 70 mm. In this case, the divided part on the divided negative electrode active material layer side and the divided part on the divided positive electrode active material layer side were opposed to each other with the current collector interposed therebetween.

上記の高抵抗部材設置工程では、分割部位の中央位置に、カルボキシメチルセルロース(CMC)を2wt%とアルミナ98wt%と粘度調整溶媒として水を混合した高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×20mmの高抵抗部材を作製した。   In the high resistance member installation step, a high resistance member precursor solution in which 2 wt% carboxymethyl cellulose (CMC), 98 wt% alumina, and water as a viscosity adjusting solvent are mixed is applied and dried at the center position of the divided portion. Thus, a high resistance member of 60 μm × 20 mm was produced.

(実施例2)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図4、図5参照)。
(Example 2)
After producing a divided negative electrode active material layer and a divided positive electrode active material layer in the same manner as in Example 1, a laminated secondary battery was produced in the same manner as described above (see FIGS. 4 and 5).

分割部位に高抵抗部材を設けるため、カルボキシメチルセルロース(CMC)を2wt%と平均粒径30μmのアルミナ98wt%と粘度調整溶媒として水を混合した高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×20mmの高抵抗部材を作製した。   In order to provide a high resistance member at the divided part, by applying and drying a precursor solution of a high resistance member in which carboxymethyl cellulose (CMC) is mixed with 2 wt%, alumina 98 wt% with an average particle size of 30 μm and water as a viscosity adjusting solvent. A high resistance member of 60 μm × 20 mm was produced.

(実施例3)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図6、図7、図8参照)。
(Example 3)
After producing a divided negative electrode active material layer and a divided positive electrode active material layer in the same manner as in Example 1, a laminated secondary battery was produced in the same manner as described above (see FIGS. 6, 7, and 8). ).

分割負極活物質の全面及び分割正極活物質層の全面に、カルボキシメチルセルロース(CMC)を2wt%、アルミナを98wt%、粘度調整溶媒として水を混合した高抵抗部材の前駆体溶液を塗布し乾燥させることにより、高抵抗部材を作製した。   The entire surface of the divided negative electrode active material and the entire surface of the divided positive electrode active material layer are coated with a precursor solution of a high resistance member in which 2 wt% carboxymethyl cellulose (CMC), 98 wt% alumina, and water as a viscosity adjusting solvent are mixed and dried. Thus, a high resistance member was produced.

(実施例4)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図9、図10、図11参照)。
Example 4
After producing a divided negative electrode active material layer and a divided positive electrode active material layer in the same manner as in Example 1, a laminated secondary battery was produced in the same manner as described above (see FIGS. 9, 10, and 11). ).

分割負極活物質層の集電体と接触しない側の平面に高抵抗部材が作製されないように、分割負極活物質層の集電体と接触しない側の平面にマスキングテープを貼り、分割部位及び分割部位のある側と反対側の長辺側側面に高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×70mmの高抵抗部材を作製した。同様に、分割正極活物質層の集電体と接触しない側の平面に高抵抗部材が作製されないように、分割正極活物質層の集電体と接触しない側の平面にマスキングテープを貼り、分割部位及び分割部位のある側と反対側の長辺側側面に高抵抗部材の前駆体溶液を塗布し乾燥させることにより、60μm×70mmの高抵抗部材を作製した。   A masking tape is affixed to the flat surface of the divided negative electrode active material layer that does not contact the current collector so that a high resistance member is not formed on the flat surface of the divided negative electrode active material layer that does not contact the current collector. A high resistance member of 60 μm × 70 mm was produced by applying a precursor solution of the high resistance member to the side surface of the long side opposite to the side where the part was present and drying. Similarly, masking tape is affixed to the flat surface of the divided positive electrode active material layer that does not contact the current collector so that a high resistance member is not formed on the flat surface of the divided positive electrode active material layer that does not contact the current collector. A high resistance member of 60 μm × 70 mm was produced by applying the precursor solution of the high resistance member to the side surface of the long side opposite to the side having the part and the divided part and drying.

(実施例5)
実施例1と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図12、図13参照)。
(Example 5)
After producing a divided negative electrode active material layer and a divided positive electrode active material layer in the same manner as in Example 1, a laminated secondary battery was produced in the same manner as described above (see FIGS. 12 and 13).

高固形分の負極スラリーを塗布し活物質層を形成する活物質層形成工程と、形成した負極活物質層を乾燥させる乾燥工程の間に、活物質層の分割及び高抵抗部材の転写を共に行う工程を追加した。同様に、高固形分の正極スラリーを塗布し活物質層を形成する活物質層形成工程と、形成した負極活物質層を乾燥させる乾燥工程の間に、活物質層の分割及び高抵抗部材の転写を共に行う工程を追加した。   During the active material layer forming step of applying a high solid content negative electrode slurry to form an active material layer and the drying step of drying the formed negative electrode active material layer, both the division of the active material layer and the transfer of the high resistance member are performed. Added steps to perform. Similarly, the active material layer is divided and the high resistance member is separated between an active material layer forming step of applying a high solid content positive electrode slurry to form an active material layer and a drying step of drying the formed negative electrode active material layer. Added a process to transfer together.

この工程では、高抵抗部材の前駆体溶液をプレス型の表面に予め塗布し、乾燥させておき、このプレス型を用いてプレスすることにより、負極活物質層、正極活物質層の各分割と25μm×70mmの高抵抗部材の転写とを同時に行った。   In this step, the precursor solution of the high resistance member is applied in advance to the surface of the press die, dried, and pressed using this press die, thereby dividing each of the negative electrode active material layer and the positive electrode active material layer. The transfer of a high resistance member of 25 μm × 70 mm was performed simultaneously.

(実施例6)
実施例5と同様にして負極活物質層、正極活物質層の各分割と高抵抗部材の転写とを同時に行うことにより、10μm×70mmの高抵抗部材の作製を行った。その後に、前述の共通する事項と同様にして積層型二次電池を作製した(図14、図15参照)。
(Example 6)
In the same manner as in Example 5, each division of the negative electrode active material layer and the positive electrode active material layer and the transfer of the high resistance member were simultaneously performed to produce a 10 μm × 70 mm high resistance member. Thereafter, a stacked secondary battery was fabricated in the same manner as described above (see FIGS. 14 and 15).

(実施例7)
実施例4と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図16、図17参照)。
(Example 7)
After producing a divided negative electrode active material layer and a divided positive electrode active material layer in the same manner as in Example 4, a laminated secondary battery was produced in the same manner as described above (see FIGS. 16 and 17).

ただし、プレスには三角山型のプレス型を用いた。   However, a triangular mountain type press die was used for the press.

(比較例)
実施例8と同様にして分割負極活物質層、分割正極活物質層を作製した後に、前述の共通する事項と同様にして積層型二次電池を作製した(図20、図21参照)。
(Comparative example)
After the divided negative electrode active material layer and the divided positive electrode active material layer were produced in the same manner as in Example 8, a multilayer secondary battery was produced in the same manner as described above (see FIGS. 20 and 21).

ただし、実施例8と相違して、高抵抗部材は設けなかった。   However, unlike Example 8, the high resistance member was not provided.

[性能評価]
上記実施例1〜7及び比較例の積層型二次電池について、0.5Cで5時間初回充電放電を行った(各層の上限電圧4.2V)。その後、45℃の充放電サイクル試験を100サイクル行い、保存後の容量測定を0.5Cの充放電測定で測定した。得られた結果を表1にまとめた。
[Performance evaluation]
The stacked secondary batteries of Examples 1 to 7 and the comparative example were subjected to initial charge / discharge at 0.5 C for 5 hours (upper limit voltage of 4.2 V for each layer). Thereafter, a charge / discharge cycle test at 45 ° C. was performed 100 cycles, and the capacity measurement after storage was measured by 0.5C charge / discharge measurement. The results obtained are summarized in Table 1.

Figure 2012104274
Figure 2012104274

表中の「レート特性」とは、4.2V、1Cで2.5時間、CCCV(Constant Current Constant Voltage)充電した後、3Cで2.5VまでCC(Constant Current)放電した際の放電容量を、比較例の電池での放電容量を100とする相対値で表したものである。   "Rate characteristics" in the table is the discharge capacity when CC (Constant Current Constant Voltage) is charged at 4.2V and 1C for 2.5 hours and then CC (Constant Current) is discharged at 3C to 2.5V. These are expressed as relative values with the discharge capacity of the battery of the comparative example as 100.

表1に示したように、実施例1では、サイクル試験後の容量劣化が比較例に比べて改善している。これは、高温で充放電を繰り返した際に膨張・収縮に伴い発生する可能性のある分割電極活物質層同士の電気的接触を防止できるためである。また、実施形態1では高抵抗部材を分割部位の一部にしか設けていないため電解液の浸透性が良く、比較例に対してレート特性の低下は小さいものとなっている。   As shown in Table 1, in Example 1, the capacity deterioration after the cycle test is improved as compared with the comparative example. This is because it is possible to prevent electrical contact between the divided electrode active material layers that may occur with expansion and contraction when charging and discharging are repeated at a high temperature. Further, in the first embodiment, the high resistance member is provided only in a part of the divided part, so that the permeability of the electrolytic solution is good, and the deterioration of the rate characteristic is small compared to the comparative example.

実施例2では、高抵抗部材内の平均空孔径が分割電極活物質層の平均空孔径よりも大きいことにより、電解液が高抵抗部材内を浸透性しやすくなるため、表1に示したように、レート特性の低下が実施例1より小さくなっている(実施例1より電極特性が向上する)。   In Example 2, since the average pore diameter in the high resistance member is larger than the average pore diameter in the divided electrode active material layer, the electrolyte easily penetrates the high resistance member. In addition, the rate characteristic is lower than that of the first embodiment (the electrode characteristics are improved as compared with the first embodiment).

実施例3では、分割負極活物質層、分割正極活物質層の各全面に高抵抗部材が配置されているため、積層方向に隣り合う一方の双極型電極の分割電極活物質層と、積層方向に隣り合う他方の双極型電極の分割電極活物質層との間での内部短絡の発生確率が低下する。また、積層方向に隣り合う一方の双極型電極の分割負極活物質層と、積層方向に隣り合う他方の双極型電極の分割正極活物質層との間の積層方向距離を一定にすることができるので、活物質層内の反応が均一に進みやすくなる。この結果、表1のように実施例1、2よりもサイクル試験後の容量維持率が向上している。   In Example 3, since the high resistance members are arranged on the entire surfaces of the divided negative electrode active material layer and the divided positive electrode active material layer, the divided electrode active material layer of one bipolar electrode adjacent in the stacking direction, and the stacking direction The probability of occurrence of an internal short circuit between the other bipolar electrode adjacent to the divided electrode active material layer decreases. Further, the stacking direction distance between the divided negative electrode active material layer of one bipolar electrode adjacent in the stacking direction and the split positive electrode active material layer of the other bipolar electrode adjacent in the stacking direction can be made constant. Therefore, the reaction in the active material layer easily proceeds uniformly. As a result, as shown in Table 1, the capacity retention rate after the cycle test is improved as compared with Examples 1 and 2.

実施例4では、積層方向に隣り合う一方の双極型電極の分割負極活物質層と、積層方向に隣り合う他方の双極型電極の分割正極活物質層との間に高抵抗部材がないため、電池の容量密度を上げることができる。この結果、表1のようにサイクル試験後の容量維持率は実施例3と同様となっている。   In Example 4, since there is no high resistance member between the divided negative electrode active material layer of one bipolar electrode adjacent in the stacking direction and the divided positive electrode active material layer of the other bipolar electrode adjacent in the stacking direction, The capacity density of the battery can be increased. As a result, as shown in Table 1, the capacity retention rate after the cycle test is the same as that of Example 3.

実施例5では、空隙部を電解液が拡散することができるため、集電体近くの分割負極活物質層や分割正極活物質層にも電解液が浸透性しやすくなるため、電極特性が向上する。この結果、実施例1、2ほどではないにせよ、表1のようにレート特性の低下は小さいものとなっている。   In Example 5, since the electrolyte solution can diffuse through the voids, the electrolyte solution easily penetrates into the divided negative electrode active material layer and the divided positive electrode active material layer near the current collector, so that the electrode characteristics are improved. To do. As a result, although not as much as in the first and second embodiments, as shown in Table 1, the decrease in rate characteristics is small.

実施例6では、空隙部の水平方向幅を分割負極活物質層や分割正極活物質層の平均空孔径よりも大きくすることにより、電解液が空隙部を介して集電体側にも浸透性しやすくなるため、電極特性が向上する。この結果、表1のように実施例5よりはレート特性の低下を小さくすることができている。   In Example 6, by making the horizontal width of the void portion larger than the average pore diameter of the divided negative electrode active material layer or the divided positive electrode active material layer, the electrolyte solution penetrates the current collector side through the void portion. Since it becomes easy, an electrode characteristic improves. As a result, as shown in Table 1, the reduction in rate characteristics can be made smaller than in Example 5.

次に、双極型電極の製造方法について説明する。ここでは、先に比較的高固形の電極混練物(負極スラリーまたは正極スラリー)を用いる双極型電極の製造方法を先に説明し、その後に、本発明の双極型電極の製造方法について説明する。   Next, a method for manufacturing a bipolar electrode will be described. Here, a bipolar electrode manufacturing method using a relatively highly solid electrode mixture (negative electrode slurry or positive electrode slurry) will be described first, and then the bipolar electrode manufacturing method of the present invention will be described.

双極型電極の製造方法の第1実施形態では、比較的高固形の電極混練物を集電体に塗布することで、乾燥工程に要する時間を短縮するとともに、乾燥工程前に溶媒を含有する電極混練物を押圧するプレス工程を実施する。   In the first embodiment of the bipolar electrode manufacturing method, an electrode containing a solvent prior to the drying step is shortened by reducing the time required for the drying step by applying a relatively high-solid electrode kneaded material to the current collector. A pressing step of pressing the kneaded product is performed.

図37は、積層型二次電池の電極製造時に使用する電極製造装置100の概略構成図である。電極製造装置100は、搬送装置110と、混練装置120と、塗布装置130と、プレス装置140と、乾燥装置150とを備える。電極製造装置100は、搬送装置110によって搬送される集電体4の表面に、混練装置120で混練した電極混練物121を塗布装置130によって塗布し、プレス装置140によって電極混練物121の嵩密度を調整した後、乾燥装置150によって乾燥させて電極を製造する装置である。   FIG. 37 is a schematic configuration diagram of an electrode manufacturing apparatus 100 used when manufacturing an electrode of a stacked secondary battery. The electrode manufacturing apparatus 100 includes a transport device 110, a kneading device 120, a coating device 130, a press device 140, and a drying device 150. The electrode manufacturing apparatus 100 applies the electrode kneaded material 121 kneaded by the kneading device 120 to the surface of the current collector 4 conveyed by the conveying device 110 by the coating device 130, and the bulk density of the electrode kneaded material 121 by the press device 140. After the adjustment, the electrode is manufactured by drying with the drying device 150.

以下、電極製造装置100を構成する各装置について詳述する。搬送装置110は、引取ロール111と、巻取ロール112と、サポートロール113とを備える。搬送装置110は、ロールトゥロール方式によって薄い膜状の集電体4を引取ロール111から巻取ロール112へと搬送する。   Hereinafter, each apparatus which comprises the electrode manufacturing apparatus 100 is explained in full detail. The transport device 110 includes a take-up roll 111, a take-up roll 112, and a support roll 113. The transport device 110 transports the thin film-like current collector 4 from the take-up roll 111 to the take-up roll 112 by a roll-to-roll method.

引取ロール111には、集電体4が巻かれる。引取ロール111は制動機構115を備えており、この制動機構115によって引取ロール111の回転が適宜規制され、集電体4に所定の張力が付与される。巻取ロール112は、駆動モータ116によって回転駆動され、引取ロール111から引き取った集電体4を巻き取る。サポートロール113は、引取ロール111と巻取ロール112との間の集電体搬送経路に複数設けられ、搬送中の集電体4の下面を保持する。   The current collector 4 is wound around the take-up roll 111. The take-up roll 111 includes a braking mechanism 115, and the rotation of the take-up roll 111 is appropriately restricted by the braking mechanism 115, and a predetermined tension is applied to the current collector 4. The take-up roll 112 is rotationally driven by the drive motor 116 and takes up the current collector 4 taken up from the take-up roll 111. A plurality of support rolls 113 are provided in the current collector conveyance path between the take-up roll 111 and the take-up roll 112, and hold the lower surface of the current collector 4 being conveyed.

混練装置120は二軸混練機であり、電極材を溶媒中で均一に分散させて、せん断速度(シアレート)[1/sec]において、所定の粘度[Pa・s]に調整されたスラリー状の電極混練物121を製造する装置である。混練装置120は、製造された電極混練物121の温度が40[℃]〜60[℃]となるように、加温しつつ電極材を溶媒中で均一に分散させている。混練装置120は二軸混練機に限られるものではなく、例えば遊星式ミキサやニーダを用いても良い。ここで、電極混練物121が高固形の混練物となるように溶媒の量を調節している。具体的には、溶媒の重量パーセント(wt%)が、電極材に対して10[wt%]〜30[wt%]となるように調節している。   The kneading apparatus 120 is a biaxial kneader, in which a slurry is adjusted to a predetermined viscosity [Pa · s] at a shear rate (shear rate) [1 / sec] by uniformly dispersing an electrode material in a solvent. This is an apparatus for manufacturing the electrode kneaded material 121. The kneading apparatus 120 uniformly disperses the electrode material in the solvent while heating so that the temperature of the manufactured electrode kneaded material 121 is 40 [° C.] to 60 [° C.]. The kneading apparatus 120 is not limited to the twin-screw kneader, and for example, a planetary mixer or a kneader may be used. Here, the amount of the solvent is adjusted so that the electrode kneaded material 121 becomes a highly solid kneaded material. Specifically, the weight percent (wt%) of the solvent is adjusted to be 10 [wt%] to 30 [wt%] with respect to the electrode material.

このように、集電体4に塗布する電極混練物121を高固形とすることで、乾燥前に電極混練物121をプレスすることを可能としている。また、高固形とすることで、電極混練物中の溶媒量が相対的に少なくなるので、乾燥時間も短くすることができる。   Thus, the electrode kneaded material 121 applied to the current collector 4 is made highly solid, so that the electrode kneaded material 121 can be pressed before drying. In addition, since the amount of the solvent in the electrode kneaded product is relatively reduced by making it highly solid, the drying time can be shortened.

一般的に電極は、電極材と溶媒とを混練させた比較的低固形のスラリー状の電極混練物を集電体に塗布し、その後に電極混練物中の溶媒を揮発させて電極材を形成する乾燥工程、及び電極材を圧縮してその嵩密度(厚さ)を調整するプレス工程を経て製造される。しかしながら、乾燥工程の後にプレス工程を実施すると、電極混練物中の溶媒を全て揮発させた後の電極材を押圧することになる。そのため、溶媒がない分、電極材を構成する電極活物質粒子の流動性が低下するので、電極材を押圧しても電極材中に比較的大きな空隙が残ってしまい、電池性能が低下してしまう。また、比較的低固形の電極混練物を集電体に塗布するのでは、電極混練物中の溶媒量が相対的に多くなり、乾燥工程に要する時間が長くなる。乾燥工程に要する時間が長くなるほど、乾燥炉長を長くする必要があり、設備投資額が増加する。そこで、電極混練物121が高固形の混練物となるように溶媒の量を調節したのである。   In general, an electrode is formed by applying a relatively low solid slurry-like electrode kneaded material obtained by kneading an electrode material and a solvent to a current collector, and then volatilizing the solvent in the electrode kneaded material. It is manufactured through a drying process, and a pressing process in which the electrode material is compressed to adjust its bulk density (thickness). However, when the pressing step is performed after the drying step, the electrode material after all the solvent in the electrode kneaded product is volatilized is pressed. Therefore, since there is no solvent, the fluidity of the electrode active material particles constituting the electrode material is reduced, so even if the electrode material is pressed, a relatively large gap remains in the electrode material, resulting in a decrease in battery performance. End up. In addition, when a relatively low solid electrode kneaded material is applied to the current collector, the amount of solvent in the electrode kneaded material is relatively increased, and the time required for the drying process is increased. As the time required for the drying process becomes longer, it is necessary to lengthen the drying furnace length, and the amount of capital investment increases. Therefore, the amount of the solvent was adjusted so that the electrode kneaded material 121 became a highly solid kneaded material.

なお、本実施形態でいう高固形の混練物とは、せん断速度が50[1/sec]から4000[1/sec]の範囲における粘度が、10[Pa・s]から1000[Pa・s]の範囲にあるものをいう。この中でも、せん断速度が200[1/sec]から4000[1/sec]の範囲における粘度が、10[Pa・s]から1000[Pa・s]の範囲にあることが好ましい。   The highly solid kneaded material referred to in the present embodiment has a viscosity of 10 [Pa · s] to 1000 [Pa · s] in a shear rate range of 50 [1 / sec] to 4000 [1 / sec]. The one in the range. Among these, it is preferable that the viscosity in the range of 200 [1 / sec] to 4000 [1 / sec] is in the range of 10 [Pa · s] to 1000 [Pa · s].

電極混練物としての正極スラリーを製造する場合は、混練装置120に電極材としての正極活物質、導電助剤、及びバインダ(結着剤)が投入され、これらが溶媒中で均一に分散させられる。電極混練物としての負極スラリーを製造する場合は、混練装置120に電極材としての負極活物質、導電助剤、及びバインダが投入され、これらが溶媒中で均一に分散させられる。   In the case of producing a positive electrode slurry as an electrode kneaded product, a positive electrode active material, a conductive auxiliary agent, and a binder (binder) as electrode materials are charged into the kneading apparatus 120, and these are uniformly dispersed in a solvent. . In the case of producing a negative electrode slurry as an electrode kneaded product, a negative electrode active material, a conductive auxiliary agent, and a binder as an electrode material are charged into the kneading apparatus 120, and these are uniformly dispersed in a solvent.

塗布装置130は、混練装置120で製造された電極混練物121を金属箔114の表面に塗布する装置であって、ギヤポンプ131と、スリットダイ132とを備える。ギヤポンプ131は、混練装置120とスリットダイ132との間に設けられ、混練装置120で製造された電極混練物121を加圧してスリットダイ132へ送り込む。スリットダイ132は、先端部に形成されたスリット132aを介して電極混練物121を吐出し、搬送途中の集電体4の表面に電極混練物121を塗布する。スリットダイ132は、集電体4の搬送方向に所定の間隔を空けて電極混練物121を塗布する。   The coating device 130 is a device that applies the electrode kneaded material 121 manufactured by the kneading device 120 to the surface of the metal foil 114, and includes a gear pump 131 and a slit die 132. The gear pump 131 is provided between the kneading device 120 and the slit die 132, pressurizes the electrode kneaded material 121 manufactured by the kneading device 120, and sends it to the slit die 132. The slit die 132 discharges the electrode kneaded product 121 through the slit 132a formed at the tip, and applies the electrode kneaded product 121 to the surface of the current collector 4 being conveyed. The slit die 132 applies the electrode kneaded material 121 at a predetermined interval in the conveying direction of the current collector 4.

プレス装置140は、塗布装置130よりも下流側の金属箔搬送経路に設けられて、電極混練物121を押圧する装置であり、ローラプレス141と、バキュームポンプ142と、を備える。ローラプレス141は、集電体4の表面側から電極混練物121を直接押圧する第1ローラ141aと、集電体4の裏面側から集電体4を介して電極混練物121を押圧する第2ローラ141bとを備える。ローラプレス141は、電極混練物121を第1ローラ141aと第2ローラ141bとで挟みこんで圧縮する。このとき、電極混練物121が第1ローラ141aのローラ面143に付着しないようにローラ面143を所定温度に保持しつつ、圧縮時に電極混練物121から染み出した溶媒をローラ面143を介して吸い取ることで、電極混練物121が所定の嵩密度となるように調整している。そのために、第1ローラ141aには、負圧室144と、連通孔145と、ヒータ146と、が設けられる。   The press device 140 is a device that is provided in the metal foil conveyance path on the downstream side of the coating device 130 and presses the electrode kneaded material 121, and includes a roller press 141 and a vacuum pump 142. The roller press 141 includes a first roller 141 a that directly presses the electrode kneaded material 121 from the front surface side of the current collector 4, and a first roller 141 a that presses the electrode kneaded material 121 from the back surface side of the current collector 4 via the current collector 4. 2 rollers 141b. The roller press 141 sandwiches and compresses the electrode mixture 121 between the first roller 141a and the second roller 141b. At this time, the solvent exuded from the electrode kneaded material 121 during compression is passed through the roller surface 143 while maintaining the roller surface 143 at a predetermined temperature so that the electrode kneaded material 121 does not adhere to the roller surface 143 of the first roller 141a. The electrode kneaded material 121 is adjusted to have a predetermined bulk density by sucking. For this purpose, the first roller 141a is provided with a negative pressure chamber 144, a communication hole 145, and a heater 146.

負圧室144は、第1ローラ141aの内部に形成された所定の容積を持つ空間である。負圧室144はバキュームポンプ142に接続されており、バキュームポンプ142によって減圧される。   The negative pressure chamber 144 is a space having a predetermined volume formed inside the first roller 141a. The negative pressure chamber 144 is connected to the vacuum pump 142 and is depressurized by the vacuum pump 142.

連通孔145は、負圧室144と第1ローラ141aのローラ面143とを連通する通路である。連通孔145を介して電極混練物121から染み出した溶媒が減圧された負圧室144へと吸い取られ、除去される(減圧除去)。   The communication hole 145 is a passage that communicates the negative pressure chamber 144 with the roller surface 143 of the first roller 141a. The solvent that has oozed out of the electrode kneaded product 121 through the communication hole 145 is sucked into the negative pressure chamber 144 that has been decompressed and removed (removed under reduced pressure).

ヒータ146は、第1ローラ141aの内部に設けられ、第1ローラ141aのローラ面143を加熱する。ローラ面143の温度が25[℃]から60[℃]の範囲に収まるように、ヒータ146によってローラ面143を加熱している。   The heater 146 is provided inside the first roller 141a and heats the roller surface 143 of the first roller 141a. The roller surface 143 is heated by the heater 146 so that the temperature of the roller surface 143 falls within the range of 25 [° C.] to 60 [° C.].

乾燥装置150は熱風乾燥炉であり、プレス装置140よりも下流側の集電体搬送経路に設けられる。乾燥装置150は、電極混練物121に熱風を吹き付けて電極混練物中の溶媒を揮発除去し、電極混練物121を乾燥させる装置である。   The drying device 150 is a hot air drying furnace, and is provided in the current collector conveyance path on the downstream side of the pressing device 140. The drying device 150 is a device that blows hot air to the electrode kneaded material 121 to volatilize and remove the solvent in the electrode kneaded material 121 and dry the electrode kneaded material 121.

これで、比較的高固形の電極混練物を用いる電極の製造方法の説明を終了する。   This concludes the description of the electrode manufacturing method using a relatively highly solid electrode kneaded product.

さて、双極型電極3の製造方法の第1実施形態では、図37に示したように、プレス装置140と乾燥装置150との間に第2のプレス装置160(活物質分割工程)と第2の塗布装置170(高抵抗部材設置工程)とを追加している。ここで、第2のプレス装置160は、実施例1〜6を対象として電極活物質層を分割するための装置、第2の塗布装置170は実施例1〜6を対象として分割部位に高抵抗部材を設けるための装置である。   Now, in the first embodiment of the method for manufacturing the bipolar electrode 3, as shown in FIG. 37, the second press device 160 (active material dividing step) and the second press device 140 are arranged between the press device 140 and the drying device 150. Application device 170 (high resistance member installation step). Here, the 2nd press apparatus 160 is an apparatus for dividing | segmenting an electrode active material layer for Examples 1-6, and the 2nd coating apparatus 170 is high resistance to a division | segmentation site | part for Examples 1-6. It is an apparatus for providing a member.

第2のプレス装置160及び第2の塗布装置170で行われる処理は、実施例1〜4と実施例5、6とで異なるため、まず実施例1〜4の場合に第2のプレス装置160及び第2の塗布装置170で行われる処理を図38を参照して説明する。ただし、ここでは、実施例3の場合で代表させる。   Since the processing performed in the second press device 160 and the second coating device 170 differs between the first to fourth embodiments and the fifth and sixth embodiments, first, in the case of the first to fourth embodiments, the second press device 160 is used. And the process performed with the 2nd coating device 170 is demonstrated with reference to FIG. However, here, the case of Example 3 is used as a representative.

図38(a)、(b)に示すプレス工程では、プレス型81を用いて、集電体4上に形成した電極活物質層21をプレスすることにより、電極活物質層21を2つに分割する。プレス型81には分割部位25を形成するための突起82が形成されており、この突起82が電極活物質層21の一部を押しのけることで分割電極活物質層22、23及び分割部位25が形成される。ここで、図38(a)はプレス型81でプレスする前の状態を、図38(b)はプレス型81でプレスした後の状態を示している。   In the pressing step shown in FIGS. 38A and 38B, the electrode active material layer 21 formed on the current collector 4 is pressed by using a press die 81, so that the electrode active material layer 21 is divided into two. To divide. The press die 81 has a protrusion 82 for forming the divided portion 25, and the protrusion 82 pushes away a part of the electrode active material layer 21, whereby the divided electrode active material layers 22, 23 and the divided portion 25 are formed. It is formed. Here, FIG. 38A shows a state before pressing with the press die 81, and FIG. 38B shows a state after pressing with the press die 81.

図38(c)に示す塗工工程では、プレスにより生じた分割部位25に分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材の前駆体溶液を塗布することにより、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材28を作製する。図38(c)では、集電体4と接触しない側の平面22d、23dにも高抵抗部材28が設けられている。実施例4のように、当該平面22d、23dに高抵抗部材28が設けられないようにするには、当該平面22d、23dにマスキングを行えばよい。   In the coating step shown in FIG. 38 (c), by applying a precursor solution of a high resistance member having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 to the divided portion 25 generated by pressing. Then, the high resistance member 28 having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is produced. In FIG. 38 (c), the high resistance member 28 is also provided on the flat surfaces 22 d and 23 d on the side not in contact with the current collector 4. To prevent the high resistance member 28 from being provided on the flat surfaces 22d and 23d as in the fourth embodiment, the flat surfaces 22d and 23d may be masked.

次に、実施例5、6の場合に第2のプレス装置160及び第2の塗布装置170で行われる処理を図39を参照して説明する。ただし、ここでは実施例5の場合で代表させる。   Next, processing performed in the second press device 160 and the second coating device 170 in the case of Examples 5 and 6 will be described with reference to FIG. However, the case of Example 5 is representative here.

図39(a)、(b)に示すプレス・塗工工程では、プレス工程と塗工工程とを同時に行う。すなわち、図39(a)は分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材の前駆体溶液をプレス型81の突起82の外周表面に予め塗布し乾燥させて、分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材の前駆体83を形成している状態を示している。   In the pressing / coating process shown in FIGS. 39A and 39B, the pressing process and the coating process are performed simultaneously. That is, in FIG. 39A, a precursor solution of a high resistance member having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is applied in advance to the outer peripheral surface of the protrusion 82 of the press die 81 and dried. 3 shows a state in which a precursor 83 of a high resistance member having higher electric resistance and ion permeability than the divided electrode active material layers 22 and 23 is formed.

図39(b)は、この前駆体83を形成しているプレス型81を用いてプレスした後の状態を示しており、プレス型81が引き抜かれた後に分割電極活物質層22、23より電気抵抗が高くイオン透過性を有する高抵抗部材32、33が分割電極活物質層22、23の端面に形成されると共に、2つの高抵抗部材32、33の間の全てに空隙部34が生じている。   FIG. 39B shows a state after pressing using the press die 81 forming the precursor 83, and after the press die 81 is pulled out, the electric power is supplied from the divided electrode active material layers 22 and 23. High resistance members 32 and 33 having high resistance and ion permeability are formed on the end faces of the divided electrode active material layers 22 and 23, and voids 34 are formed between the two high resistance members 32 and 33. Yes.

実施形態では、分割電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材の厚さを分割電極活物質層の厚さと同等で記載しているが、分割電極活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材の厚さは分割電極活物質層の厚さより薄いことが好ましい。高抵抗部材にはイオン透過性がある、言い換えると多孔質であるとはいえ、イオンの移動の邪魔になるので、高抵抗部材の厚さが薄いほうがイオンの拡散性が高くなるためである。   In the embodiment, the thickness of the high resistance member having higher ion resistance and higher ion resistance than that of the divided electrode active material layer is described as being equivalent to the thickness of the divided electrode active material layer. The thickness of the high resistance member having high ion permeability is preferably smaller than the thickness of the divided electrode active material layer. This is because, although the high resistance member has ion permeability, in other words, is porous, it interferes with the movement of ions, so that the thinner the high resistance member, the higher the ion diffusibility.

1 スタック(積層型電池)
3 双極型電極
4 集電体
21 電極活物質層
22、23 分割電極活物質層
25 分割部位
27、27’ 高抵抗部材
28、29、32、33 高抵抗部材
34、34’ 空隙部
35 高抵抗部材
41 負極活物質層
42、43、44 分割負極活物質層
45 正極活物質層
46、47、48 分割正極活物質層
49、50、51、52 分割部位
53、54、55、56 高抵抗部材
100 電極製造装置
120 混練装置
130 塗布装置
140 プレス装置
150 乾燥装置
160 第2のプレス装置
170 第2の塗布装置
1 stack (stacked battery)
3 Bipolar Electrode 4 Current Collector 21 Electrode Active Material Layer 22, 23 Divided Electrode Active Material Layer 25 Divided Sites 27, 27 ′ High Resistance Member 28, 29, 32, 33 High Resistance Member 34, 34 ′ Gap 35 High Resistance Member 41 Negative electrode active material layer 42, 43, 44 Split negative electrode active material layer 45 Positive electrode active material layer 46, 47, 48 Split positive electrode active material layer 49, 50, 51, 52 Split part 53, 54, 55, 56 High resistance member DESCRIPTION OF SYMBOLS 100 Electrode manufacturing apparatus 120 Kneading apparatus 130 Coating apparatus 140 Press apparatus 150 Drying apparatus 160 2nd press apparatus 170 2nd coating apparatus

Claims (10)

集電体に複数に分割した活物質層を形成した電極であって、
隣り合う2つの分割された活物質層の間に、活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を含むことを特徴とする電極。
An electrode in which an active material layer divided into a plurality of current collectors is formed,
An electrode comprising: a high-resistance member having higher ion resistance and higher ion resistance than an active material layer between two adjacent active material layers.
前記高抵抗部材内の平均空孔径は前記活物質層の平均空孔径より大きいことを特徴とする請求項1に記載の電極。   The electrode according to claim 1, wherein an average pore diameter in the high resistance member is larger than an average pore diameter of the active material layer. 前記隣り合う2つの分割された活物質層の間の全てに前記高抵抗部材を設けることを特徴とする請求項1または2に記載の電極。   The electrode according to claim 1, wherein the high resistance member is provided at all between the two adjacent active material layers. 前記隣り合う2つの分割された活物質層の端面の全てに前記高抵抗部材をそれぞれ配置し、
それぞれ配置した高抵抗部材の間に空隙部を設けることを特徴とする請求項1または2に記載の電極。
The high resistance members are respectively disposed on all end faces of the adjacent two divided active material layers,
The electrode according to claim 1, wherein a gap is provided between the high resistance members arranged.
前記空隙部の距離は前記活物質層の平均空孔径よりも大きいことを特徴とする請求項4に記載の電極。   The electrode according to claim 4, wherein a distance between the voids is larger than an average pore diameter of the active material layer. 前記電極は集電体の一方の面に負極活物質層を、他方の面に正極活物質層を形成する双極型電極であり、
前記負極活物質層と正極活物質層の分割される数は同数であり、
分割された負極活物質層と、分割された正極活物質層とが電解質を挟んで互いに対向すると共に、
隣り合う2つの分割された負極活物質の間の間隔が、隣り合う2つの分割された正極活物質層の間の間隔より小さいことを特徴とする請求項1または2に記載の電極。
The electrode is a bipolar electrode that forms a negative electrode active material layer on one surface of a current collector and a positive electrode active material layer on the other surface;
The number of the negative electrode active material layer and the positive electrode active material layer divided is the same number,
The divided negative electrode active material layer and the divided positive electrode active material layer face each other across the electrolyte,
3. The electrode according to claim 1, wherein a distance between two adjacent divided negative electrode active materials is smaller than a distance between two adjacent divided positive electrode active material layers.
請求項1から6までのいずれか一つに記載の電極を用いた電池。   A battery using the electrode according to any one of claims 1 to 6. 集電体に高固形分のスラリーを塗布し活物質層を形成する活物質層形成工程と、
この形成された活物質層にパターン型をプレスし活物質層を複数に分割する活物質分割工程と、
活物質層が分割された部分に活物質層より電気抵抗が高くイオン透過性を有する高抵抗部材を設ける高抵抗部材設置工程と
を含むことを特徴とする電極の製造方法。
An active material layer forming step of forming an active material layer by applying a high solid content slurry to a current collector;
An active material dividing step of pressing a pattern mold on the formed active material layer to divide the active material layer into a plurality of parts,
And a high resistance member installation step of providing a high resistance member having a higher electric resistance and ion permeability than the active material layer in a portion where the active material layer is divided.
前記高抵抗部材設置工程は、前記高抵抗部材を含む溶液を前記活物質層が分割された部分に塗布することを特徴とする請求項8に記載の電極の製造方法。   The method for manufacturing an electrode according to claim 8, wherein in the high resistance member installation step, a solution containing the high resistance member is applied to a portion where the active material layer is divided. 前記活物質分割工程及び前記高抵抗部材設置工程は、前記高抵抗部材を表面に形成したパターン型を前記活物質層にプレスすることにより、活物質層の分割及び高抵抗部材の転写を共に行うことを特徴とする請求項8に記載の電極の製造方法。   In the active material dividing step and the high-resistance member installing step, the active material layer is divided and the high-resistance member is transferred by pressing a pattern mold having the high-resistance member formed on the surface onto the active material layer. The method for producing an electrode according to claim 8.
JP2010249942A 2010-11-08 2010-11-08 Electrode, battery, and electrode manufacturing method Active JP5625770B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010249942A JP5625770B2 (en) 2010-11-08 2010-11-08 Electrode, battery, and electrode manufacturing method
KR1020110115148A KR101330357B1 (en) 2010-11-08 2011-11-07 Electrode, battery and manufacturing method of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249942A JP5625770B2 (en) 2010-11-08 2010-11-08 Electrode, battery, and electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2012104274A true JP2012104274A (en) 2012-05-31
JP5625770B2 JP5625770B2 (en) 2014-11-19

Family

ID=46267164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249942A Active JP5625770B2 (en) 2010-11-08 2010-11-08 Electrode, battery, and electrode manufacturing method

Country Status (2)

Country Link
JP (1) JP5625770B2 (en)
KR (1) KR101330357B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352501A (en) * 2016-07-15 2018-07-31 株式会社Lg化学 Cathode and secondary cell comprising it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023044903A (en) * 2021-09-21 2023-04-03 トヨタ自動車株式会社 Secondary battery electrode and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064514A (en) * 1996-08-13 1998-03-06 Yuasa Corp Lithium ion secondary battery
JP2005011660A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Secondary battery electrode, manufacturing method of the same, and secondary battery using the same
JP2009043718A (en) * 2007-07-17 2009-02-26 Panasonic Corp Secondary battery and its manufacturing method
JP2010080427A (en) * 2008-05-22 2010-04-08 Panasonic Corp Electrode group for secondary battery and secondary battery using the same
JP2011100674A (en) * 2009-11-09 2011-05-19 Panasonic Corp Electrode group for nonaqueous secondary battery, and nonaqueous secondary battery using this
JP2011119145A (en) * 2009-12-04 2011-06-16 Panasonic Corp Nanoqueous secondary battery
JP2011146219A (en) * 2010-01-14 2011-07-28 Panasonic Corp Electrode group for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206366A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Flat battery
JPH06267526A (en) * 1993-03-12 1994-09-22 Yuasa Corp Battery and its manufacture
JPH10294098A (en) * 1997-04-17 1998-11-04 Yuasa Corp Lithium battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064514A (en) * 1996-08-13 1998-03-06 Yuasa Corp Lithium ion secondary battery
JP2005011660A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Secondary battery electrode, manufacturing method of the same, and secondary battery using the same
JP2009043718A (en) * 2007-07-17 2009-02-26 Panasonic Corp Secondary battery and its manufacturing method
JP2010080427A (en) * 2008-05-22 2010-04-08 Panasonic Corp Electrode group for secondary battery and secondary battery using the same
JP2011100674A (en) * 2009-11-09 2011-05-19 Panasonic Corp Electrode group for nonaqueous secondary battery, and nonaqueous secondary battery using this
JP2011119145A (en) * 2009-12-04 2011-06-16 Panasonic Corp Nanoqueous secondary battery
JP2011146219A (en) * 2010-01-14 2011-07-28 Panasonic Corp Electrode group for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352501A (en) * 2016-07-15 2018-07-31 株式会社Lg化学 Cathode and secondary cell comprising it
JP2019503560A (en) * 2016-07-15 2019-02-07 エルジー・ケム・リミテッド Negative electrode and secondary battery including the same
CN108352501B (en) * 2016-07-15 2021-06-04 株式会社Lg化学 Negative electrode and secondary battery comprising same
US11094937B2 (en) 2016-07-15 2021-08-17 Lg Chem, Ltd. Negative electrode and secondary battery including the same

Also Published As

Publication number Publication date
JP5625770B2 (en) 2014-11-19
KR101330357B1 (en) 2013-11-15
KR20120049145A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US9099694B2 (en) Method of manufacturing electrode body
KR101363763B1 (en) Bipolar battery manufacturing method, and bipolar battery
JP3615491B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US9601745B2 (en) Non-aqueous electrolyte secondary battery
KR101583120B1 (en) Process for production of battery electrode
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP4041044B2 (en) Method for manufacturing electrochemical device
JP5875487B2 (en) Manufacturing method and manufacturing apparatus for lithium ion secondary battery
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
JP2010073421A (en) Bipolar electrode and its manufacturing method
US9012078B2 (en) Method for producing battery electrode
US20200313229A1 (en) Electrode body for all-solid-state battery and production method thereof
JP5392328B2 (en) Solid electrolyte battery
JP5601186B2 (en) Method for manufacturing bipolar electrode
US20240097142A1 (en) Dry battery electrode plate and battery
WO2023221823A1 (en) Electrode sheet, battery, and electric vehicle
WO2015145806A1 (en) Apparatus for manufacturing power storage device, and method for manufacturing power storage device
KR102264546B1 (en) Electrode assembly for secondary battery
WO2008026358A1 (en) Electrode for nonaqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
CN110402506A (en) Lithium ion secondary battery
JP5625770B2 (en) Electrode, battery, and electrode manufacturing method
JPWO2015156213A1 (en) Lithium ion secondary battery and method and apparatus for manufacturing the same
CN115461909A (en) Electrochemical device and electronic device comprising same
WO2019198495A1 (en) Battery production method
JP2011198559A (en) Electrode manufacturing method, electrode manufacturing apparatus, and electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R151 Written notification of patent or utility model registration

Ref document number: 5625770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151