JPH1064514A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH1064514A
JPH1064514A JP8213527A JP21352796A JPH1064514A JP H1064514 A JPH1064514 A JP H1064514A JP 8213527 A JP8213527 A JP 8213527A JP 21352796 A JP21352796 A JP 21352796A JP H1064514 A JPH1064514 A JP H1064514A
Authority
JP
Japan
Prior art keywords
mixture
positive electrode
secondary battery
ion secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8213527A
Other languages
Japanese (ja)
Inventor
Tomohiko Noda
智彦 野田
Takashi Ito
伊藤  隆
Hiroyoshi Yoshihisa
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP8213527A priority Critical patent/JPH1064514A/en
Publication of JPH1064514A publication Critical patent/JPH1064514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance high rate discharge characteristics and suppress temperature rising in high rate discharge by arranging a mixture containing an active material formed on a current collector of a negative electrode or a positive electrode so as to have the density difference in the plane direction of the current collector. SOLUTION: A negative electrode formed by arranging a negative mixture containing a negative active material such as carbon capable of absorbing/releasing lithium on a current collector and a positive electrode formed by arranging a positive mixture containing a positive active material comprising a composite oxide containing lithium such as LiNiO2 on a current collector are stacked through a separator, and they are housed in a battery container together with a nonaqueous or solid electrolyte to constitute a lithium ion secondary battery. In the lithium ion secondary battery, at least one mixture, for example a positive (negative) mixture 11 on an about 10-50μm thick Al(Cu) current collector 12 is distributed in a doted shape, and an electrolyte is supplied to between the dots. The mixture 11 is preferable to be arranged so as to have a thickness of 80μm or more, a volume ratio of 30 volume percent or more, a diameter or a maximum diagonal length of 3mm or less, and a distance of 0.5mm or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池に関するもので、さらに詳しく言えば、その高率放
電特性が改良でき、高率放電時の温度上昇が抑制できる
リチウムイオン二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery, and more particularly, to a lithium ion secondary battery capable of improving its high-rate discharge characteristics and suppressing a temperature rise during high-rate discharge. It is.

【0002】[0002]

【従来の技術】近年、携帯用電子機器の小型化、多機能
化に伴ってその電源として使用される小型電池は軽量
化、大容量化が求められ、電気自動車用などの大容量が
要求される大型電池にも軽量化、長寿命化が求められて
いる。リチウムイオン二次電池はリチウムを吸蔵、放出
できる負極活物質を含む負極合剤を用いているため、負
極活物質にリチウムやリチウムを主体とする合金を用い
た二次電池のように、充電時に負極上に析出するデンド
ライトによって内部短絡を生じるという問題がないこと
から、各方面から注目されている。
2. Description of the Related Art In recent years, as portable electronic devices have become smaller and more multifunctional, small batteries used as power sources have been required to be lighter and have larger capacities. Large batteries are also required to be lighter and have a longer life. Since a lithium ion secondary battery uses a negative electrode mixture containing a negative electrode active material that can store and release lithium, it can be used during charging like a secondary battery that uses lithium or an alloy mainly composed of lithium as the negative electrode active material. Attention has been drawn from various directions because there is no problem of causing an internal short circuit due to dendrite deposited on the negative electrode.

【0003】上記したリチウムを吸蔵、放出できる負極
活物質を含む負極合剤を用いたリチウムイオン二次電池
は電解質に非水電解液を用いたものが既に実用化され、
その高率放電特性の改良、高率放電時の温度上昇の抑制
といった面での研究がなされている。
A lithium ion secondary battery using a negative electrode mixture containing a negative electrode active material capable of inserting and extracting lithium has already been put into practical use using a non-aqueous electrolyte as an electrolyte.
Studies have been made on improving the high rate discharge characteristics and suppressing the temperature rise during high rate discharge.

【0004】前記リチウムイオン二次電池の代表的なも
のは、正極が集電体としてのアルミニウム箔の表面に正
極活物質としてのコバルト酸リチウムLiCoO2 を均
一な厚みで塗布したものからなり、負極が集電体として
の銅箔の表面に負極活物質としての炭素等の粒子を均一
な厚みで塗布したものからなり、このような正極と負極
とがセパレータを介して重ね合わされて渦巻状に巻き込
まれたり、平板状に複数枚積層されて電槽内に収容され
たものがある。
[0004] A typical lithium ion secondary battery has a positive electrode in which lithium cobalt oxide LiCoO 2 as a positive electrode active material is applied with a uniform thickness on the surface of an aluminum foil as a current collector. Is formed by applying particles of carbon or the like as a negative electrode active material with a uniform thickness on the surface of a copper foil as a current collector, and such a positive electrode and a negative electrode are superimposed via a separator and are spirally wound. In some cases, a plurality of sheets are stacked in a flat plate shape and housed in a battery case.

【0005】[0005]

【発明が解決しようとする課題】上記したリチウムイオ
ン二次電池は、高率放電時に、正極活物質および負極活
物質内でリチウムイオンの拡散が追いつかないことによ
って放電容量が低下するという問題、正極および負極の
エッジ部に電流が集中することによって放電容量が低下
するという問題、正極活物質および負極活物質が均一な
厚みであるため、正極および負極の全面で発熱して温度
上昇が増大するという問題があった。
The above-mentioned lithium ion secondary battery has a problem that the discharge capacity is reduced due to the inability of lithium ions to diffuse in the positive electrode active material and the negative electrode active material during high-rate discharge. And the problem that the discharge capacity decreases due to the concentration of current at the edge of the negative electrode, and that the positive electrode active material and the negative electrode active material have a uniform thickness, so that the entire surface of the positive electrode and the negative electrode generate heat and the temperature rise increases. There was a problem.

【0006】[0006]

【課題を解決する為の手段】上記課題を解決するため、
請求項1記載の発明は、リチウム吸蔵、放出できる負極
活物質を含む負極合剤からなる負極と、リチウムを含む
複合酸化物からなる正極活物質を含む正極合剤からなる
正極と、電解質とからなるリチウムイオン二次電池にお
いて、少なくとも一方の合剤を、集電体の平面方向に対
して密度の差を設けて配設したことを特徴とするもので
あり、これにより、低密度の部分でリチウムイオンを容
易に拡散させることができ、高密度の部分のエッジ部に
電流を分散させることができる。
Means for Solving the Problems To solve the above problems,
The invention according to claim 1 includes a negative electrode composed of a negative electrode mixture containing a negative electrode active material capable of inserting and extracting lithium, a positive electrode composed of a positive electrode mixture containing a positive electrode active material composed of a composite oxide containing lithium, and an electrolyte. The lithium ion secondary battery is characterized in that at least one mixture is provided with a difference in density with respect to the planar direction of the current collector, thereby, in the low density portion Lithium ions can be easily diffused, and current can be dispersed at the edge portion of the high-density portion.

【0007】また、請求項2記載の発明は、請求項1記
載のリチウムイオン二次電池において、負極または正極
の、少なくとも一方の合剤をドット状に分布させたこと
を特徴とするものであり、これにより、ドット状に分布
させた合剤の間隙には非水電解液や固体電解質のような
電解質が充填され、この間隙でリチウムイオンを容易に
拡散させることができる。
According to a second aspect of the present invention, in the lithium ion secondary battery of the first aspect, at least one mixture of the negative electrode and the positive electrode is distributed in a dot shape. Thereby, the gaps between the mixtures distributed in the form of dots are filled with an electrolyte such as a non-aqueous electrolyte or a solid electrolyte, and lithium ions can be easily diffused in the gaps.

【0008】また、請求項3記載の発明は、請求項1ま
たは2記載のリチウムイオン二次電池において、ドット
状に分布させた合剤は厚みが80μm以上、体積比率が
30容量%以上であることを特徴とするものであり、こ
れにより、低密度の部分でのリチウムイオンの拡散を効
率よく行うこができ、高密度の部分でのエッジ部への電
流を効果的に分散させることができる。
According to a third aspect of the present invention, in the lithium ion secondary battery according to the first or second aspect, the mixture distributed in a dot shape has a thickness of 80 μm or more and a volume ratio of 30% by volume or more. This makes it possible to efficiently diffuse lithium ions in a low-density portion and to effectively disperse a current to an edge portion in a high-density portion. .

【0009】また、請求項4記載の発明は、請求項1ま
たは2記載のリチウムイオン二次電池において、ドット
状に分布させた合剤は直径または最大対角線長が3mm
以下、間隔が0.5mm以上であることを特徴とするも
のであり、これにより、低密度の部分でのリチウムイオ
ンの拡散を効率よく行うこができ、高密度の部分でのエ
ッジ部への電流を効果的に分散させることができる。
According to a fourth aspect of the present invention, in the lithium ion secondary battery according to the first or second aspect, the mixture distributed in a dot shape has a diameter or a maximum diagonal length of 3 mm.
Hereinafter, the interval is 0.5 mm or more, characterized in that it is possible to efficiently diffuse lithium ions in the low density portion, and to the edge portion in the high density portion The current can be effectively dispersed.

【0010】[0010]

【発明の実施の形態】以下、本発明をその実施の形態に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.

【0011】図1は本発明の実施の形態に係るリチウム
イオン二次電池に使用する正極1の平面図(a)および
断面図(b)で、11はニッケル酸リチウムLiNiO
2 を正極活物質として含む正極合剤、12はアルミニウ
ム箔からなる集電体である。前記正極1は前記集電体1
2上に正極合剤11が円形のドット状に配設されて構成
され、ドット状の正極合剤11の直径を3mm以下と
し、間隔を0.5mm以上になるようにするとともに、
厚みを80μm以上とし、体積比率を30容量%以上と
している。また、前記集電体12は厚みを10〜50μ
mとしている。
FIG. 1 is a plan view (a) and a sectional view (b) of a positive electrode 1 used in a lithium ion secondary battery according to an embodiment of the present invention.
A positive electrode mixture containing 2 as a positive electrode active material, and 12 is a current collector made of aluminum foil. The positive electrode 1 is the current collector 1
2, the positive electrode mixture 11 is arranged in a circular dot shape, the diameter of the dot-shaped positive electrode mixture 11 is set to 3 mm or less, and the interval is set to 0.5 mm or more.
The thickness is 80 μm or more, and the volume ratio is 30% by volume or more. The current collector 12 has a thickness of 10 to 50 μm.
m.

【0012】上記のように正極合剤11を配設すること
により、ドット状に分布した正極合剤11の間隙に非水
電解液や固体電解質のような電解質13を充填すること
ができ、この部分でのリチウムイオンの拡散を促進させ
ることができて高率放電特性を改良することができると
ともに、高率放電時の電流をドット状の正極合剤11の
各エッジに分散させることができ、それに伴う発熱が前
記非水電解液の対流や固体電解質を介在させての放熱に
よって緩和され、温度上昇を抑制することができる。
By disposing the positive electrode mixture 11 as described above, the gaps between the positive electrode mixture 11 distributed in a dot shape can be filled with the electrolyte 13 such as a non-aqueous electrolyte or a solid electrolyte. The diffusion of lithium ions in the portion can be promoted, and the high-rate discharge characteristics can be improved, and the current at the time of the high-rate discharge can be dispersed to each edge of the dot-shaped positive electrode mixture 11, The accompanying heat generation is mitigated by the convection of the nonaqueous electrolyte and heat radiation through the solid electrolyte, thereby suppressing a rise in temperature.

【0013】上記した実施の形態では、正極合剤11を
円形のドット状に配設しているが、その形状は円形に限
るものではなく、ドット状の正極合剤11の最大対角線
長を3mm以下とし、間隔を0.5mm以上になるよう
にするとともに、厚みを80μm以上とし、体積比率を
30容量%以上とすれば、図2のような三角形、図3の
ような四角形、図4のような六角形などの多角形であっ
てもよいことは言うまでもない。
In the above-described embodiment, the positive electrode mixture 11 is arranged in a circular dot shape. However, the shape is not limited to a circle, and the maximum diagonal length of the dot-shaped positive electrode mixture 11 is 3 mm. When the distance is set to 0.5 mm or more, the thickness is set to 80 μm or more, and the volume ratio is set to 30% by volume or more, a triangle as shown in FIG. 2, a square as shown in FIG. Needless to say, it may be a polygon such as a hexagon.

【0014】また、上記した実施の形態では、ドット状
に分布した正極合剤11の間隙は空間にしているが、ド
ット状の活物質の直径または最大対角線長を3mm以下
とし、間隔を0.5mm以上になるようにするととも
に、厚みを80μm以上とし、体積比率を30容量%以
上とすれば、図5のような異なる厚みの別のドット状の
正極合剤11’を設けることもできる。
Further, in the above-described embodiment, the gap between the positive electrode mixture 11 distributed in a dot shape is a space, but the diameter or the maximum diagonal length of the dot-shaped active material is set to 3 mm or less, and the interval is set to 0.1 mm. If the thickness is set to 5 mm or more, the thickness is set to 80 μm or more, and the volume ratio is set to 30% by volume or more, another dot-shaped positive electrode mixture 11 ′ having a different thickness as shown in FIG. 5 can be provided.

【0015】同様に、本発明の実施の形態に係るリチウ
ムイオン二次電池に使用する負極の場合は、炭素粒子を
負極活物質として含む負極合剤を銅箔からなる集電体上
に円形のドット状に配設し、ドット状の負極合剤の直径
を3mm以下とし、間隔を0.5mm以上になるように
するとともに、厚みを80μm以上とし、体積比率を3
0容量%以上としている。また、前記集電体は厚みを1
0〜50μmとしている。
Similarly, in the case of the negative electrode used in the lithium ion secondary battery according to the embodiment of the present invention, a negative electrode mixture containing carbon particles as a negative electrode active material is formed on a current collector made of copper foil in a circular shape. Arranged in a dot shape, the dot-shaped negative electrode mixture has a diameter of 3 mm or less, an interval of 0.5 mm or more, a thickness of 80 μm or more, and a volume ratio of 3
0% by volume or more. The current collector has a thickness of 1
It is 0 to 50 μm.

【0016】上記のように作製した正極と負極とをポリ
エチレン製の微孔膜からなるセパレータを介在させて積
層し、渦巻状に巻き込んだ巻回体または複数枚積層した
積層体とし、非水電解液とともに電槽内に収納して本発
明のリチウムイオン二次電池とする。なお、前記非水電
解液とセパレータに代えて固体電解質を用いてもよい。
また、前記正極または負極は少なくとも一方が上記のよ
うに作製されたものであってもよい。
The positive electrode and the negative electrode prepared as described above are laminated with a separator made of polyethylene microporous film interposed therebetween to form a spirally wound roll or a laminate of a plurality of rolls. The lithium ion secondary battery of the present invention is stored in a battery case together with the liquid. Note that a solid electrolyte may be used instead of the nonaqueous electrolyte and the separator.
Further, at least one of the positive electrode and the negative electrode may be manufactured as described above.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0018】(実施例1)正極活物質としてのニッケル
酸リチウムLiNiO2 粉末が90重量部と導電剤とし
てのアセチレンブラック粉末が10重量部とからなる混
合粉末74重量部、非水電解液としての溶質LiPF6
を混合溶媒エチレンカーボネイト、ジエチルカーボネイ
ト、ジメチルカーボネイトに溶解させたもの22重量
部、結着材としてのエポキシアクリレート樹脂4重量部
を混練して正極合剤ペーストとし、これを厚みが20μ
mの集電体としてのアルミニウム箔上に、直径が約2.
5mmの円形で、約0.5mmの間隔でドット状に分布
するようにプリントし、紫外線を照射して硬化させて正
極とする。こうして得られた正極合剤の厚みは120μ
m、体積比率は50容量%であった。一方、負極活物質
としての炭素粉末が65重量部、前記組成と同一の非水
電解液が30重量部、前記結着材樹脂が5重量部を混練
して負極合剤ペーストとし、これを厚みが10μmの集
電体としての銅箔上に正極と同様にプリントし、紫外線
を照射して硬化させて負極とする。この負極の負極合剤
も正極の正極合剤と同様にドット状に分布し、厚みは1
10μm、体積比率は55容量%であった。次に、前記
正極および負極の40mm×30mmのものを、セパレ
ータとしての厚みが25μmの微孔性ポリエチレン膜を
介在させて積層してユニットセルとし、このユニットセ
ルを複数枚重ね合わせ、各ユニットセルを並列に接続し
た後、金属電槽に収納し、非水電解液を注液した後、封
口して1000mAhの電池を作製した。
(Example 1) 74 parts by weight of a mixed powder composed of 90 parts by weight of lithium nickel oxide LiNiO 2 powder as a positive electrode active material and 10 parts by weight of acetylene black powder as a conductive agent, Solute LiPF 6
Was dissolved in a mixed solvent of ethylene carbonate, diethyl carbonate, and dimethyl carbonate, and 22 parts by weight of the mixture and 4 parts by weight of an epoxy acrylate resin as a binder were kneaded to obtain a positive electrode mixture paste having a thickness of 20 μm.
m on an aluminum foil as a current collector having a diameter of about 2.
A 5 mm circle is printed so as to be distributed in the form of dots at intervals of about 0.5 mm, and is irradiated with ultraviolet rays to be cured to obtain a positive electrode. The thickness of the positive electrode mixture thus obtained was 120 μm.
m, the volume ratio was 50% by volume. On the other hand, 65 parts by weight of a carbon powder as a negative electrode active material, 30 parts by weight of a nonaqueous electrolyte having the same composition as above, and 5 parts by weight of the binder resin were kneaded to form a negative electrode mixture paste, which was then formed into a paste. Is printed on a copper foil as a current collector having a thickness of 10 μm in the same manner as the positive electrode, and is cured by irradiation with ultraviolet rays to obtain a negative electrode. This negative electrode mixture of the negative electrode is also distributed in a dot shape similarly to the positive electrode mixture of the positive electrode, and has a thickness of 1.
10 μm, the volume ratio was 55% by volume. Next, 40 mm × 30 mm of the positive electrode and the negative electrode were laminated with a microporous polyethylene film having a thickness of 25 μm as a separator interposed therebetween to form a unit cell. Were connected in parallel, stored in a metal battery case, injected with a non-aqueous electrolyte, and sealed to produce a 1000 mAh battery.

【0019】(実施例2)ドット状に分布した負極合剤
の厚みを95μmとした以外は実施例1と同一の電池を
作製した。
(Example 2) The same battery as in Example 1 was produced except that the thickness of the negative electrode mixture distributed in a dot shape was 95 µm.

【0020】(比較例1)正極合剤の厚みを均一の10
5μmとし、負極合剤の厚みを均一の95μmとした以
外は実施例1と同一の電池を作製した。
Comparative Example 1 A positive electrode mixture having a uniform thickness of 10
A battery was manufactured in the same manner as in Example 1, except that the thickness was 5 μm and the thickness of the negative electrode mixture was 95 μm, which was uniform.

【0021】(比較例2)正、負極とも直径を5mmの
円形とし、間隔を約0.3mmとし、正極合剤の厚みを
110μmとし、負極合剤の厚みを105μmとしてド
ット状に分布させた以外は実施例1と同一の電池を作製
した。
(Comparative Example 2) Both the positive electrode and the negative electrode were formed into a circle having a diameter of 5 mm, the interval was set to about 0.3 mm, the thickness of the positive electrode mixture was set to 110 μm, and the thickness of the negative electrode mixture was set to 105 μm. Except for this, the same battery as in Example 1 was produced.

【0022】上記した実施例および比較例の電池を、室
温下において0.2Cの充電電流で充電終止電圧が4.
2Vまで充電した後、2Cの放電電流で放電終止電圧
2.7まで放電させる高率放電試験と短絡試験に供した
ところ、高率放電試験では室温下での0.2Cの放電電
流での放電容量を100%とすると、実施例1のものは
88%、実施例2のものは86%、比較例1のものは6
7%、比較例2のものは74%であり、短絡試験では実
施例1および実施例2のものは異常は認められなかった
のに対し、比較例1のものは破裂し、比較例2のものは
安全弁が開いて電解液の蒸気が噴出したことが確認され
た。
The end-of-charge voltage of the batteries of the above Examples and Comparative Examples was 4.C at room temperature at a charge current of 0.2C.
The battery was charged to 2 V and then subjected to a high-rate discharge test and a short-circuit test in which the battery was discharged at a discharge current of 2 C to a discharge end voltage of 2.7. In the high-rate discharge test, discharge was performed at a discharge current of 0.2 C at room temperature. Assuming that the capacity is 100%, that of Example 1 is 88%, that of Example 2 is 86%, and that of Comparative Example 1 is 6%.
7% and 74% in Comparative Example 2 showed no abnormality in Examples 1 and 2 in the short-circuit test, whereas the one in Comparative Example 1 burst and the one in Comparative Example 2 It was confirmed that the safety valve was opened and the vapor of the electrolytic solution erupted.

【0022】このことから、本発明に係るリチウムイオ
ン二次電池は高率放電特性にすぐれ、短絡時のような過
大な電流が流れた時も温度上昇が抑制でき、それによっ
て安全性も向上できたことがわかる。
From the above, the lithium ion secondary battery according to the present invention has excellent high rate discharge characteristics and can suppress the temperature rise even when an excessive current such as a short circuit flows, thereby improving the safety. You can see that

【0023】上記した実施例および比較例では、正、負
極合剤の厚みが95μm以上、体積比率が55容量%で
あったが、正、負極合剤の厚みが60〜70μm程度以
下の場合や体積比率が20〜30容量%程度以下の場合
には、単位面積当りの電流密度が小さくなるので、高率
放電特性や温度上昇といった点での問題はないので、本
発明の構成は特に大容量形のリチウムイオン二次電池の
高率放電特性を改良したり、温度特性を向上させる上で
有効である。
In the above Examples and Comparative Examples, the thickness of the positive / negative electrode mixture was 95 μm or more and the volume ratio was 55% by volume. However, when the thickness of the positive / negative electrode mixture was about 60 to 70 μm or less, When the volume ratio is about 20 to 30% by volume or less, the current density per unit area becomes small, and there is no problem in terms of high-rate discharge characteristics and temperature rise. This is effective in improving the high-rate discharge characteristics of the lithium ion secondary battery and in improving the temperature characteristics.

【0024】[0024]

【発明の効果】以上、詳述した如く、本発明のリチウム
イオン二次電池は、高率放電特性にすぐれ、高率放電時
の温度上昇も抑制できるから、安全性の点においてすぐ
れ、きわめて工業的価値の高いものである。
As described in detail above, the lithium ion secondary battery of the present invention is excellent in high-rate discharge characteristics and can suppress the temperature rise during high-rate discharge. High value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るリチウムイオン二次
電池の正極活物質の分布を示す平面図(a)および断面
図(b)である。
FIG. 1 is a plan view (a) and a cross-sectional view (b) showing distribution of a positive electrode active material of a lithium ion secondary battery according to an embodiment of the present invention.

【図2】前記実施の形態に係る変形例の平面図である。FIG. 2 is a plan view of a modification according to the embodiment.

【図3】前記実施の形態に係る変形例の平面図である。FIG. 3 is a plan view of a modification according to the embodiment.

【図4】前記実施の形態に係る変形例の平面図である。FIG. 4 is a plan view of a modification according to the embodiment.

【図5】前記実施の形態に係る変形例の平面図である。FIG. 5 is a plan view of a modification according to the embodiment.

【符号の説明】[Explanation of symbols]

1 正極 11 正極合剤 12 集電体 13 電解質 DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Positive electrode mixture 12 Current collector 13 Electrolyte

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵、放出できる負極活物質
を含む負極合剤からなる負極と、リチウムを含む複合酸
化物からなる正極活物質を含む正極合剤からなる正極
と、電解質とからなるリチウムイオン二次電池におい
て、少なくとも一方の合剤を、集電体の平面方向に対し
て密度の差を設けて配設したことを特徴とするリチウム
イオン二次電池。
1. A negative electrode comprising a negative electrode mixture containing a negative electrode active material capable of inserting and extracting lithium, a positive electrode comprising a positive electrode mixture comprising a positive electrode active material comprising a composite oxide containing lithium, and lithium comprising an electrolyte A lithium ion secondary battery, wherein at least one mixture is provided with a difference in density with respect to the planar direction of the current collector.
【請求項2】 請求項1記載のリチウムイオン二次電池
において、負極または正極の、少なくとも一方の合剤を
ドット状に分布させたことを特徴とするリチウムイオン
二次電池。
2. The lithium ion secondary battery according to claim 1, wherein at least one mixture of the negative electrode and the positive electrode is distributed in a dot shape.
【請求項3】 請求項1または2記載のリチウムイオン
二次電池において、ドット状に分布させた合剤は厚みが
80μm以上、体積比率が30容量%以上であることを
特徴とするリチウムイオン二次電池。
3. The lithium ion secondary battery according to claim 1, wherein the mixture distributed in a dot shape has a thickness of 80 μm or more and a volume ratio of 30% by volume or more. Next battery.
【請求項4】 請求項1または2記載のリチウムイオン
二次電池において、ドット状に分布させた合剤は直径ま
たは最大対角線長が3mm以下、間隔が0.5mm以上
であることを特徴とするリチウムイオン二次電池。
4. The lithium ion secondary battery according to claim 1, wherein the mixture distributed in a dot shape has a diameter or a maximum diagonal length of 3 mm or less and an interval of 0.5 mm or more. Lithium ion secondary battery.
JP8213527A 1996-08-13 1996-08-13 Lithium ion secondary battery Pending JPH1064514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8213527A JPH1064514A (en) 1996-08-13 1996-08-13 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8213527A JPH1064514A (en) 1996-08-13 1996-08-13 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH1064514A true JPH1064514A (en) 1998-03-06

Family

ID=16640675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8213527A Pending JPH1064514A (en) 1996-08-13 1996-08-13 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH1064514A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298922A (en) * 2001-03-29 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005209411A (en) * 2004-01-20 2005-08-04 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2004114441A3 (en) * 2003-06-18 2005-11-03 Nissan Motor Method of manufacturing secondary battery electrode, apparatus for manufacturing the same and secondary battery electrode
US7288340B2 (en) * 2003-03-20 2007-10-30 Matsushita Electric Industrial Co., Ltd. Integrated battery
JP2008117630A (en) * 2006-11-02 2008-05-22 Toyota Motor Corp Energy storage device
JP2009302074A (en) * 2009-09-30 2009-12-24 Nissan Motor Co Ltd Electrode for secondary battery
JP2012104274A (en) * 2010-11-08 2012-05-31 Nissan Motor Co Ltd Electrode, battery, and manufacturing method of electrode
US8202642B2 (en) * 2006-11-15 2012-06-19 Panasonic Corporation Current collector for non-aqueous secondary battery, electrode plate for non-aqueous secondary battery using the same, and non-aqueous secondary battery
US8637178B2 (en) 2006-08-25 2014-01-28 Toyota Jidosha Kabushiki Kaisha Electrode for a power storing apparatus and power storing apparatus provided with that electrode
CN103904290A (en) * 2012-12-28 2014-07-02 华为技术有限公司 Aqueous lithium ion battery composite electrode, preparation method of composite electrode and aqueous lithium ion battery
CN104979525A (en) * 2015-05-26 2015-10-14 广东烛光新能源科技有限公司 Positive electrode sheet, electrochemical energy storage device containing positive electrode sheet, and preparation method of electrochemical energy storage device
CN106252586A (en) * 2016-08-30 2016-12-21 深圳博磊达新能源科技有限公司 A kind of anode composite sheet and preparation method thereof, lithium ion battery
WO2017169988A1 (en) 2016-03-30 2017-10-05 Necエナジーデバイス株式会社 Electrode, method for manufacturing same, and secondary cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298922A (en) * 2001-03-29 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
US7288340B2 (en) * 2003-03-20 2007-10-30 Matsushita Electric Industrial Co., Ltd. Integrated battery
WO2004114441A3 (en) * 2003-06-18 2005-11-03 Nissan Motor Method of manufacturing secondary battery electrode, apparatus for manufacturing the same and secondary battery electrode
KR100799013B1 (en) 2003-06-18 2008-01-28 닛산 지도우샤 가부시키가이샤 Method of manufacturing secondary battery electrode, apparatus for manufacturing the same and secondary battery electrode
JP2005209411A (en) * 2004-01-20 2005-08-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP4649113B2 (en) * 2004-01-20 2011-03-09 株式会社東芝 Nonaqueous electrolyte secondary battery
US8637178B2 (en) 2006-08-25 2014-01-28 Toyota Jidosha Kabushiki Kaisha Electrode for a power storing apparatus and power storing apparatus provided with that electrode
JP2008117630A (en) * 2006-11-02 2008-05-22 Toyota Motor Corp Energy storage device
US8202642B2 (en) * 2006-11-15 2012-06-19 Panasonic Corporation Current collector for non-aqueous secondary battery, electrode plate for non-aqueous secondary battery using the same, and non-aqueous secondary battery
JP2009302074A (en) * 2009-09-30 2009-12-24 Nissan Motor Co Ltd Electrode for secondary battery
JP2012104274A (en) * 2010-11-08 2012-05-31 Nissan Motor Co Ltd Electrode, battery, and manufacturing method of electrode
CN103904290A (en) * 2012-12-28 2014-07-02 华为技术有限公司 Aqueous lithium ion battery composite electrode, preparation method of composite electrode and aqueous lithium ion battery
CN104979525A (en) * 2015-05-26 2015-10-14 广东烛光新能源科技有限公司 Positive electrode sheet, electrochemical energy storage device containing positive electrode sheet, and preparation method of electrochemical energy storage device
WO2017169988A1 (en) 2016-03-30 2017-10-05 Necエナジーデバイス株式会社 Electrode, method for manufacturing same, and secondary cell
CN106252586A (en) * 2016-08-30 2016-12-21 深圳博磊达新能源科技有限公司 A kind of anode composite sheet and preparation method thereof, lithium ion battery

Similar Documents

Publication Publication Date Title
JP5758560B2 (en) Charging method of lithium ion secondary battery
JP2008078008A (en) Battery pack and its manufacturing method
CN110661030B (en) Lithium ion battery and preparation method thereof
JPH11238528A (en) Lithium secondary battery
JPH1064514A (en) Lithium ion secondary battery
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JPH07122252A (en) Set battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JPH10112323A (en) Battery
JP2010062299A (en) Electricity storage device
JPH10125291A (en) Battery structure
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
CN115172661A (en) Pole piece, electrode component, battery monomer, battery and power consumption device
US9728786B2 (en) Electrode having active material encased in conductive net
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP2002313348A (en) Secondary battery
JPH09115552A (en) Lithium ion secondary battery
US20220416305A1 (en) Battery Pack and Battery Cell
JP2000306607A (en) Nonaqueous electrolyte battery
JPH10261428A (en) Battery
JP2000149979A (en) Sealed battery
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP5910652B2 (en) Lithium ion secondary battery