JP2012103653A - Spectacle frame and method for forming inorganic metal oxide photocatalytic film on spectacle frame - Google Patents
Spectacle frame and method for forming inorganic metal oxide photocatalytic film on spectacle frame Download PDFInfo
- Publication number
- JP2012103653A JP2012103653A JP2010265728A JP2010265728A JP2012103653A JP 2012103653 A JP2012103653 A JP 2012103653A JP 2010265728 A JP2010265728 A JP 2010265728A JP 2010265728 A JP2010265728 A JP 2010265728A JP 2012103653 A JP2012103653 A JP 2012103653A
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- spectacle frame
- film
- photocatalyst
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 33
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 24
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 104
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 98
- 239000011941 photocatalyst Substances 0.000 claims abstract description 71
- 239000007788 liquid Substances 0.000 claims abstract description 37
- 239000011882 ultra-fine particle Substances 0.000 claims abstract description 27
- 230000014759 maintenance of location Effects 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 17
- 229910052709 silver Inorganic materials 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 31
- 235000019646 color tone Nutrition 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 34
- 238000000576 coating method Methods 0.000 description 30
- 239000011248 coating agent Substances 0.000 description 27
- 229910004298 SiO 2 Inorganic materials 0.000 description 19
- 239000002585 base Substances 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910010413 TiO 2 Inorganic materials 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 7
- 239000000057 synthetic resin Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002657 fibrous material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000007602 hot air drying Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 210000004508 polar body Anatomy 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000009718 spray deposition Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- -1 ZnO alkali metal hydroxides Chemical class 0.000 description 1
- FQIRQSFRGRZFDS-UHFFFAOYSA-N [O-2].[Ti+4].[Ag+] Chemical compound [O-2].[Ti+4].[Ag+] FQIRQSFRGRZFDS-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000000160 carbon, hydrogen and nitrogen elemental analysis Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012764 semi-quantitative analysis Methods 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Eyeglasses (AREA)
Abstract
Description
本発明は、眼鏡のレンズを保持するレンズ枠、耳かけ部のモダン、前記レンズ枠から蝶番を介してモダンに連接するテンプル、前記レンズ枠間を連接するブリッジ、鼻かけ部であるパッド等の部品基材からなる眼鏡フレームであって、このフレームに光触媒無機酸化金属膜を形成して眼鏡フレームの色の光沢を長期に亘り保持するようにした眼鏡フレームに関するものである。 The present invention includes a lens frame that holds a lens of a spectacle, a modern ear hook, a temple that is modernly connected from the lens frame via a hinge, a bridge that connects the lens frames, a pad that is a nose hook, and the like. The present invention relates to a spectacle frame made of a component base material, wherein the photocatalyst inorganic metal oxide film is formed on the frame to maintain the gloss of the color of the spectacle frame over a long period of time.
近時、酸化チタンの光触媒作用を利用した脱臭及び殺菌機能を備えた各種製品が開発されている。これらの製品は、酸化チタン等の光触媒作用により、製品表面に付着した微生物や臭気物質が分解されることによる防菌、防臭する効果をねらったものである。この酸化チタンの光触媒作用は、酸化チタン粒子に紫外線を照射することにより、光触媒の表面に発生した正孔が、光触媒表面の吸着水と反応して、ラジカルOH(水酸基ラジカル)が生成され、このラジカルOHが有機物の分子結合を切断することにより、これが粒子表面へ拡散して周囲の有機物質へ酸化又は還元作用としてはたらくためと考えられている。 Recently, various products having deodorizing and sterilizing functions utilizing the photocatalytic action of titanium oxide have been developed. These products are aimed at antibacterial and deodorizing effects due to decomposition of microorganisms and odorous substances adhering to the product surface by photocatalytic action such as titanium oxide. The photocatalytic action of titanium oxide is that when the titanium oxide particles are irradiated with ultraviolet rays, the holes generated on the surface of the photocatalyst react with the adsorbed water on the surface of the photocatalyst to generate radical OH (hydroxyl radical). It is considered that the radical OH breaks the molecular bond of the organic substance, which diffuses to the particle surface and acts as an oxidizing or reducing action on the surrounding organic substance.
酸化チタンは、その化学的特性を利用した用途が広く、例えば酸素と適当な結合力を有すると共に耐酸性を有するため、酸化還元触媒あるいは担体、紫外線の遮断力を利用した化粧材料またはプラスティックの表面コート剤、さらには高屈折を利用した反射防止コート剤、導電性を利用した帯電防止材として用いられたり、これら効果を組み合わせて機能性ハードコート材に用いられたり、さらに光触媒作用を使用した防菌剤、防汚剤、超親水性被膜などに用いられている。 Titanium oxide has a wide range of uses that make use of its chemical properties. For example, it has a suitable binding force with oxygen and has acid resistance, so it has a redox catalyst or carrier, a cosmetic material or a plastic surface that uses ultraviolet blocking power. It is used as a coating agent, an anti-reflection coating agent that utilizes high refraction, an antistatic material that utilizes electrical conductivity, a combination of these effects, and a functional hard coating material. Used for fungicides, antifouling agents, super hydrophilic coatings, etc.
光触媒として使用される酸化チタンは無定型酸化チタンのみならず、アナタース型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタン及びこれらの混晶体、共晶体等の結晶性の酸化チタンが好ましく、特にアナタース型酸化チタン、ブルッカイト型酸化チタンはバンドギャップが高いので広く利用されている。 The titanium oxide used as a photocatalyst is not limited to amorphous titanium oxide, but is preferably crystalline titanium oxide such as anatase-type titanium oxide, brookite-type titanium oxide, rutile-type titanium oxide, and mixed crystals and eutectics thereof. Type titanium oxide and brookite type titanium oxide are widely used because of their high band gap.
また、前記酸化チタン粒子及び酸化チタンと酸化チタン以外の酸化物からなる酸化チタン系複合酸化物粒子の水分散ゾルの濃度としては特に制限はないが、酸化物として5〜40重量%の範囲にあり、このような濃度範囲にあれば、ゾルは安定であり、アルカリ処理時に粒子が凝集することがなく、効率的に酸化チタン粒子を製造できることが知られている。 The concentration of the water-dispersed sol of the titanium oxide particles and the titanium oxide-based composite oxide particles composed of oxides other than titanium oxide and titanium oxide is not particularly limited, but ranges from 5 to 40% by weight as oxides. In such a concentration range, it is known that the sol is stable and the titanium oxide particles can be produced efficiently without aggregation of the particles during the alkali treatment.
また、このような光触媒作用を有する酸化チタン被膜は、製膜時に高温処理(150℃〜400℃以上)が必要であるため、耐熱性のないガラス、プラスティック、木材、繊維、布などへの製膜は困難である。このため、高温処理した酸化チタン粒子を用いて被膜形成用塗布液を調整し、この塗布液を基材上に塗布して被膜を形成することによって、比較的低温で硬化膜を形成することが試みられている。しかしながら、高温処理された酸化チタン粒子は一般に粒子径が大きく、屈折率が高いために被膜中での酸化チタン粒子による光の散乱が大きく、透明性にすぐれた酸化チタン被膜が得られない欠点がある。 In addition, since such a titanium oxide film having a photocatalytic action requires high-temperature treatment (150 ° C. to 400 ° C. or more) during film formation, it can be produced on glass, plastic, wood, fiber, cloth, etc. that are not heat resistant. The membrane is difficult. For this reason, it is possible to form a cured film at a relatively low temperature by adjusting the coating liquid for forming a film using titanium oxide particles treated at a high temperature, and forming the film by applying this coating liquid on a substrate. Has been tried. However, high-temperature treated titanium oxide particles generally have a large particle diameter and a high refractive index, so that light scattering by the titanium oxide particles in the coating is large, and a titanium oxide coating with excellent transparency cannot be obtained. is there.
さらに、酸化チタン被膜の形成方法としては、酸化チタン塗布液を基材表面にスピナー法、バーコーター法、スプレー法、フレキソ法などで塗布した後、乾燥し、高温で過熱硬化することが知られている。 Furthermore, as a method of forming a titanium oxide film, it is known that a titanium oxide coating solution is applied to the surface of a substrate by a spinner method, a bar coater method, a spray method, a flexo method, etc., and then dried and overheated at a high temperature. ing.
従来、例えば先行特許文献1には、「表面にコーティングされた眼鏡枠の製造方法において、光触媒酸化チタン剤のコーティングを物理蒸着法、例えばイオンプレーティング法、スパッタリング法或いは真空蒸着法により製膜して、光触媒酸化チタン剤のコーティングを、眼鏡枠に光触媒酸化チタン剤を加熱することなく強固に固着することができ、小さな衝撃により、或いは経年効果により光触媒酸化チタン剤が剥がれる問題が生じない眼鏡枠を得ることができる眼鏡枠とその製造方法」が提供されている。 Conventionally, for example, in
しかしながら、このような物理蒸着法によれば、眼鏡フレームの基材がプラスティック又は通電性の弱いものであれば充分な通電が得られないため蒸着が弱く強固な接着力が得らない。また、物理蒸着においては金属(Ti、Si、Zn等)としてのみの製膜は果たせても、無機物質(TiO2 SiO2、ZnO等)の効能を含んだとして製膜は得られない。即ち、製膜する基材によっては、逆に膜剥離が生じ易くなる。また、この公報には、膜厚、膜硬度、光沢保持率に関する記載はされていない。However, according to such a physical vapor deposition method, if the base material of the spectacle frame is plastic or weakly conductive, sufficient current cannot be obtained, so vapor deposition is weak and a strong adhesive force cannot be obtained. Further, in physical vapor deposition, even if a film can be formed only as a metal (Ti, Si, Zn, etc.), the film formation cannot be obtained because the effect of an inorganic substance (TiO 2 SiO 2 , ZnO, etc.) is included. That is, depending on the substrate on which the film is formed, film peeling tends to occur. Further, this publication does not describe the film thickness, film hardness, and gloss retention.
また、先行特許文献2には、「銀系チタンのコーティングを行う対象物を準備し、第一の処理液で前記対象物の表面を洗浄し、この第一の処理液の乾燥処理後に、前記対象物の表面の少なくとも一部に第二の処理駅を噴霧又は塗布し、若しくは前記第二の処理液に前記対象物の少なくとも一部を浸して、所定温度でコーティング前処理を行い、このコーティング前処理を行った部分に銀系酸化チタン水溶液を噴霧又は塗布し、若しくは前記銀系酸化チタン水溶液に前記対象物を浸して、前記対象物の一部又は全部に銀系酸化チタンのコーティングを行う。前記第二の処理液は、アミノ酸、鉱石粉、金属粉、塩類、有用微生物を含む水溶液とする銀系酸化チタンのコーティング方法及び銀系酸化チタンのコーティング物」が記載されている。 Further, in the prior patent document 2, “preparing an object to be coated with silver-based titanium, washing the surface of the object with a first treatment liquid, and after drying the first treatment liquid, The coating station is sprayed or applied to at least a part of the surface of the object, or at least a part of the object is immersed in the second treatment liquid, and a coating pretreatment is performed at a predetermined temperature. A silver-based titanium oxide aqueous solution is sprayed or applied to the pretreated portion, or the object is immersed in the silver-based titanium oxide aqueous solution, and a part or all of the object is coated with silver-based titanium oxide. In the second treatment liquid, a silver-based titanium oxide coating method and a silver-based titanium oxide coating product in which an aqueous solution containing amino acids, ore powder, metal powder, salts, and useful microorganisms are described.
そして、「眼鏡レンズや眼鏡枠、携帯電話等の対象物に高い密着度で銀系酸化チタンをコーティングするため、対象物に銀系酸化チタン膜を形成する前に、所定の温度内で対象物の表面の少なくとも一部に第二の処理液を噴霧又は塗布し、若しくは第二の処理液に対象物の少なくとも一部を浸して、定着性改善のためのコーティング前処理を行う」旨、また、前記第二の処理液が「アミノ酸、鉱石粉、金属粉、塩類、有用微生物を含む」旨、さらに「前記銀系酸化チタンが、例えば対象物が眼鏡レンズである場合は、0.1μm〜1.0μm程度であることがこのましい」旨説明されている。 And, “Because silver-titanium oxide film is coated on a target object such as a spectacle lens, a spectacle frame, a mobile phone, etc. with high adhesion, before the silver-based titanium oxide film is formed on the target object, Spraying or applying the second treatment liquid to at least a part of the surface of the substrate or immersing at least a part of the object in the second treatment liquid to perform a coating pretreatment for improving the fixing property ”, or In addition, the second treatment liquid is "containing amino acids, ore powder, metal powder, salts, useful microorganisms", and further "the silver-based titanium oxide, for example, when the object is a spectacle lens, 0.1μm ~ It is preferable that it is about 1.0 μm ”.
しかしながら、この発明においては、対象物と銀系酸化チタン膜とに、第二の処理液である「アミノ酸、鉱石粉、金属粉、塩類、有用微生物を含む層」が介在すると対象物の色調が曇り、光沢度が劣化する可能性が高い。また、銀系酸化チタンの粒径が0.1μm〜1.0μm程度と粗いため膜の硬度及び密着性が劣る。 However, in the present invention, if the object and the silver-based titanium oxide film are interposed with a layer containing amino acid, ore powder, metal powder, salt, and useful microorganisms as the second treatment liquid, the color tone of the object is changed. Cloudy, glossiness is likely to deteriorate. Moreover, since the silver-based titanium oxide has a coarse particle size of about 0.1 μm to 1.0 μm, the hardness and adhesion of the film are inferior.
また、先行特許文献3には、「眼鏡枠表面に光触媒酸化チタン剤をコーティングするもので、眼鏡枠を例えばPTAゾル中に浸漬するか、或いは眼鏡枠表面にPTAゾルをミスト状にして吹き付けるアンダーコート工程と、その吹き付けられたPTAゾルを強制乾燥する強制乾燥工程と、PTSゾルを噴霧蒸着により眼鏡枠のアンダーコート膜表面に吹き付ける2次処理工程と、強制乾燥又は自然乾燥による乾燥工程を順次行う眼鏡とその製造方法」が記載されている。 In addition, the prior patent document 3 discloses that “the photocatalytic titanium oxide agent is coated on the surface of the spectacle frame, and the spectacle frame is immersed in, for example, PTA sol, or the PTA sol is sprayed on the surface of the spectacle frame in the form of a mist. A coating process, a forced drying process for forcibly drying the sprayed PTA sol, a secondary treatment process for spraying the PTS sol onto the undercoat film surface of the spectacle frame by spray deposition, and a drying process by forced drying or natural drying in order “Spectacles to be performed and a manufacturing method thereof” are described.
そして、「アンダーコート用PTAゾルは粒子径が約10nm、トップコート用PTSゾルは粒子径が約10nm」である」旨説明されている。 “The particle diameter of the undercoat PTA sol is about 10 nm, and the particle diameter of the topcoat PTS sol is about 10 nm”.
しかしながら、この発明においては、Agが添加されておらないため、膜の密着性、硬度に極めて大きな効果を奏する粒子形状が繊維状であるかどうか記載されていない。また、浸漬後の強制乾燥と噴霧蒸着後の強制乾燥とを繰返すため、形成した膜内に膜剥離の原因となるひずみやひび割れの発生しが易いとともに、そのため、膜の光沢が劣化する。 However, in this invention, since Ag is not added, it is not described whether or not the particle shape that has a great effect on the adhesion and hardness of the film is fibrous. Moreover, since forced drying after immersion and forced drying after spray deposition are repeated, distortion and cracks that cause film peeling are likely to occur in the formed film, and the gloss of the film deteriorates.
また、先行特許文献4には、「微細薄片状物質に微粒子酸化チタンを被覆した微粒子酸化チタン被覆物からなる光触媒であって、光触媒活性率に優れ、塗膜として利用した場合に伸展性及び平滑性に優れたパール光沢を有する光触媒体」が記載されている。 In addition, the prior patent document 4 states that “a photocatalyst comprising a fine titanium oxide coating on which a fine flaky substance is coated with fine titanium oxide, which has an excellent photocatalytic activity rate, and exhibits excellent extensibility and smoothness when used as a coating film. Describes a photocatalyst having a pearly luster having excellent properties.
しかしながら、この発明においては、Ag、Si、Znを含む旨記載されているが、酸化チタンとの組成比率が記載されておらず、また、酸化チタンの粒子径が1〜125μmと粗く、粒子形状が繊維状であるかどうか記載されていない。さらに、雲母等に酸化チタンを被服するもので独自のパール光沢を有する光触媒体であって、各種着色を有する眼鏡フレームに被覆して光沢度を向上させるものではない。 However, in the present invention, it is described that it contains Ag, Si, and Zn, but the composition ratio with titanium oxide is not described, and the particle diameter of titanium oxide is as coarse as 1 to 125 μm, and the particle shape It is not described whether or not is fibrous. Furthermore, it is a photocatalyst having a unique pearly luster that is coated with titanium oxide on mica or the like, and is not intended to improve the glossiness by covering a spectacle frame having various colors.
さらに、先行特許文献5には、「密閉室内の衣服等の繊維物質に液状光触媒を噴出する光触媒噴出手段と、前記繊維物質に付着する光触媒に紫外線を照射する紫外線照射手段と、前記繊維物質に付着する液状光触媒に熱風を送風して乾燥させる熱風乾燥手段とからなり、前記光触媒噴出手段において光触媒が繊維状酸化チタン超微粒子であり、該繊維状酸化チタン超微粒子を適量分散させた透明液状光触媒を噴出するようにし、前記熱風乾燥手段における熱風の温度を30〜120℃とし、密閉室内に充満する繊維状酸化チタン超微粒子を熱風により前記繊維物質の繊維全体へ均一に固着乾燥させるようにした光触媒脱臭殺菌方法」が記載されている。 Further, in
そして、「請求項2」には「液状光触媒中の無機元素が半定量値において、少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含む」旨、また、[請求項2]には「液状光触媒中の有機元素が定量値において少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含む」旨、さらに、「請求項3」には「前記液状光触媒中における酸化チタンが繊維状の超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m2/g以上である」旨記載されている。And, "Claim 2" states that "at least 90 to 97 wt% of Ti, 2.3 to 3.0 wt% of Si, and 1.4 to 2.2 wt% of Ag in the semi-quantitative value of the inorganic element in the liquid photocatalyst. %, Zn is contained in an amount of 0.2 to 0.3 wt%, and [Claim 2] states that “the organic element in the liquid photocatalyst is a quantitative value of at least C of 55 to 65 wt% and H of 8 to 12 wt%. , N is contained in an amount of 0.2 to 0.4 wt%. Further, “Claim 3” includes “Titanium oxide in the liquid photocatalyst is a fibrous ultrafine particle having an average fiber width and thickness of 1 to 1. 50 nm, an average fiber length of 10 to 1000 nm, an average aspect ratio of 2 to 100, and a specific surface area of 30 m 2 / g or more ”.
この発明における無機質光触媒酸化物の組成範囲及び粒子形状は本発明と略同様である。しかしながら、この発明においては、これら無機質光触媒酸化物の適用対象が衣服等の繊維物質であり、本発明の如き表面平滑かつ極湾曲棒体ではない。したがって、単に噴霧等の吹きつける熱風乾燥工法のみでは眼鏡フレームのような極湾曲棒体に高密度かつ強硬度に密着して膜剥離を抑制し、眼鏡フレームの光沢度を長期にわたり維持するものではない。また、繊維と異なり眼鏡フレームのような極湾曲棒体面に対する無機質光触媒酸化膜の塗布した定着状態もまったく異なるものである。さらに、基材面への無機質光触媒酸化物の付着力及び硬度は各種製膜方法によっても大きく変化する。 The composition range and particle shape of the inorganic photocatalyst oxide in this invention are substantially the same as in the present invention. However, in the present invention, the application target of these inorganic photocatalyst oxides is a fiber material such as clothes, and is not a surface smooth and extremely curved rod as in the present invention. Therefore, the hot air drying method that simply sprays, etc., only adheres to a very curved rod like a spectacle frame with high density and high hardness, suppresses film peeling, and maintains the glossiness of the spectacle frame for a long time. Absent. Further, unlike the fiber, the fixing state where the inorganic photocatalytic oxide film is applied to the surface of the pole body such as a spectacle frame is completely different. Furthermore, the adhesive force and hardness of the inorganic photocatalyst oxide on the substrate surface vary greatly depending on various film forming methods.
また、先行特許文献6には、「眼鏡のフレームや鼻パッド等の少なくとも人体に接触する部位に光触媒粒子単独からなる表面層または光触媒粒子を含む表面層を設けたので、光触媒粒子の酸化還元作用により、フレーム等に分泌物、垢、化粧品に由来する汚れが付着しにくく、付着した汚れも分解除去され、更に表面が親水性となるので付着した汚れを簡単に落とすことができる眼鏡」が記載されている。 In addition, the prior patent document 6 states that “the surface layer comprising the photocatalyst particles alone or the surface layer containing the photocatalyst particles is provided at least at the site of contact with the human body such as the frame of the eyeglasses or the nose pad. `` Glasses that makes it difficult for stains derived from secretions, dirt, cosmetics, etc. to adhere to the frame etc., and the attached dirt is also decomposed and removed, and the surface becomes hydrophilic, so that the attached dirt can be easily removed '' Has been.
しかしながら、この発明においては、Si、Ag、Zn等を含む旨説明されているが、シリカ(SiO2)の酸化チタンに対する混合割合が極めて多いのは光触媒膜の光沢化を大きく阻害する。また、酸化チタンの粒子形状が繊維状であり、かつ超微粒子(nm単位)である点について記載されていない。さらに、Agが添加されておらないため、光触媒本来の高度な親水性及び帯電防止等の効果の向上が期待できない。However, in the present invention, it is explained that Si, Ag, Zn, and the like are contained. However, if the mixing ratio of silica (SiO 2 ) to titanium oxide is extremely large, the gloss of the photocatalytic film is greatly inhibited. Moreover, it does not describe that the particle shape of titanium oxide is fibrous and is an ultrafine particle (unit: nm). Furthermore, since Ag is not added, it is not possible to expect improvement in effects such as the high hydrophilicity inherent in the photocatalyst and antistatic property.
先行特許文献1 特開2005−122030号公報
先行特許文献2 特開2005−034685号公報
先行特許文献3 特開2003−066379号公報
先行特許文献4 特開平11−244709号公報
先行特許文献5 特開2010−069469号公報
先行特許文献6 特開平9−080357号公報
本発明は、眼鏡フレームのような極湾曲体に高密度かつ強硬度に密着して膜剥離を抑制し、各種着色を有する眼鏡フレームの色調が曇らず光沢度を向上させ、それを長期にわたり維持するようにした眼鏡フレームを提供するものである。The present invention suppresses film peeling by adhering to a highly curved body such as a spectacle frame with high density and high hardness, and improves the glossiness of the spectacle frame having various colors without fogging and maintaining it for a long period of time. An eyeglass frame is provided.
請求項1の発明は、液状光触媒中の無機酸化金属である少なくとも酸化チタンが繊維状超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m2/g以上であり、光触媒中の無機元素が半定量値において少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含み、有機元素が定量値において少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含み、眼鏡フレーム基材面に定着させた酸化チタンを含む光触媒無機酸化金属膜の膜厚が5nm〜2μm、膜硬度が鉛筆硬度で約3H以上、光沢保持率が約10年で80%以上である眼鏡フレームを提供するものである。In the invention of
この発明においては、光触媒である無機酸化物金属の粒子を繊維状超微粒子としているので光が乱反射し、比表面積が大きいのでさらにその乱反射を増幅させて光沢度を向上させることができる。また、膜厚が薄くかつ硬度が高く表面平滑であるので光沢度を鮮明にすることができる。さらに、眼鏡フレームのような極湾曲棒体に高密度かつ強硬度に密着して膜剥離を抑制し、SiO2添加量が少ないので曇りが生じることなく、各種着色を有する眼鏡フレームの色調と光沢度を向上させると共に、それを長期にわたり維持することができる。膜厚が5nm未満では膜剥離が発生しやすく、2μmを超えると光沢度が劣化する。好ましくは、10nm〜100nmである。また、硬度が3H未満であると膜の剥離が生じ易い。In the present invention, since the inorganic oxide metal particles, which are photocatalysts, are fibrous ultrafine particles, the light is irregularly reflected and the specific surface area is large, so that the irregular reflection can be further amplified to improve the glossiness. Further, since the film thickness is thin, the hardness is high, and the surface is smooth, the glossiness can be made clear. Furthermore, it adheres to a very curved rod such as a spectacle frame with high density and high hardness and suppresses film peeling, and since the amount of SiO 2 added is small, the color tone and gloss of the spectacle frame having various colors can be prevented without clouding. It can be improved and maintained for a long time. When the film thickness is less than 5 nm, film peeling tends to occur, and when it exceeds 2 μm, the glossiness deteriorates. Preferably, it is 10 nm to 100 nm. Further, when the hardness is less than 3H, the film is easily peeled off.
また、請求項に示す前記繊維状超微粒子に対してAgを適当量含有することによりTi−Ag系光触媒においてもより光触媒活を向上させることができると共に、さらに、可視光においも被膜表面をより高度に親水化させるため、基材面に付着した水滴を崩し広がらせて曇りを防止する同時に、該繊維状超微粒酸化チタン粒子は比表面積が大きく相乗的に光触媒活性が向上する上に、Agを添加することと繊維状超微粒酸化チタン粒子が重なりあって定着することの相乗効果により酸化チタン金属膜が極めて電気を通し易い状態となるため、帯電防止効果が大幅に高くなる。そのため埃の基材面への付着がほとんど生じない。 Further, by containing an appropriate amount of Ag with respect to the fibrous ultrafine particles shown in the claims, the photocatalytic activity can be further improved in the Ti-Ag photocatalyst, and further, the surface of the coating can be further improved in the odor of visible light. In order to make it highly hydrophilic, water droplets adhering to the substrate surface are broken and spread to prevent fogging, and at the same time, the fibrous ultrafine titanium oxide particles have a large specific surface area and synergistically improve photocatalytic activity. As a result of the synergistic effect of adding and fixing the fibrous ultrafine titanium oxide particles to each other, the titanium oxide metal film becomes extremely easy to conduct electricity, so that the antistatic effect is greatly enhanced. Therefore, dust hardly adheres to the substrate surface.
さらに、SiO2の混合比率が大きいと曇りが生じるが、SiO2の混合比率を低くできるので光触媒膜の光沢度を劣化させることなく、SiO2の混合比率が低い分ZnOを適量添加してそれ自体の吸着性によりコーティング膜の眼鏡フレームの極湾曲体面への付着性を強固にすることができる。Furthermore, although cloudiness and the mixture ratio of SiO 2 is large, without degrading the glossiness of the photocatalyst film so the mixing ratio of SiO 2 can be lowered, it the mixing ratio of SiO 2 is lower partial ZnO add an appropriate amount The adhesion of the coating film to the polar body surface of the spectacle frame can be strengthened by its own adsorptivity.
さらに、CHN比により低温で乾燥硬化できるため、基材がプラスティックのような熱に弱いものに対してでも、基材に対して熱の支障がなく使用できる。 Furthermore, since it can be dried and cured at a low temperature by the CHN ratio, even if the base material is weak against heat such as a plastic, it can be used without any trouble on the base material.
請求項2の発明は、無機酸化金属である少なくとも酸化チタンが繊維状超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m2/g以上であり、光触媒中の無機元素が半定量値において少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含み、有機元素が定量値において少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含み、酸化チタン等の無機酸化物金属を有機バインダーと合わせた合計含量の約15%以上とした液状光触媒中に、透明光学基材を約1分以上浸漬した後、600℃以下で加熱乾燥させて無機酸化金属を基材面に高密度に定着させて、膜厚が5nm〜2μm、膜硬度が鉛筆硬度で約3H以上、光沢保持率が10年で80%以上となるように調整した眼鏡フレームへの光触媒無機酸化金属膜形成方法を提供するものである。In the invention of claim 2, at least titanium oxide, which is an inorganic metal oxide, is fibrous ultrafine particles, the average fiber width and thickness are 1 to 50 nm, the average fiber length is 10 to 1000 nm, and the average aspect ratio is 2 to 100. The specific surface area is 30 m 2 / g or more, and the inorganic elements in the photocatalyst are at least 90 to 97 wt%, Si is 2.3 to 3.0 wt%, and Ag is 1.4 to 2.2 wt. %, Zn is contained in an amount of 0.2 to 0.3 wt%, and the organic element contains a quantitative value of at least C in an amount of 55 to 65 wt%, H in an amount of 8 to 12 wt%, N in an amount of 0.2 to 0.4 wt%, titanium oxide After immersing the transparent optical base material in a liquid photocatalyst that is about 15% or more of the total content of the inorganic oxide metal combined with the organic binder for about 1 minute or more, it is dried by heating at 600 ° C. or less to form the inorganic metal oxide. High density on substrate surface A method for forming a photocatalytic inorganic metal oxide film on a spectacle frame adjusted to have a film thickness of 5 nm to 2 μm, a film hardness of about 3 H or more in pencil hardness, and a gloss retention of 80% or more in 10 years. It is to provide.
この発明においては、請求項1と同様、光触媒である無機酸化物金属の粒子を繊維状超微粒子としているので光が乱反射し、比表面積が大きいのでさらにその乱反射を増幅させて光沢度を向上させることができる。また、膜厚が薄くかつ硬度が高く表面平滑であるので光沢度を鮮明にすることができる。さらに、眼鏡フレームのような極湾曲棒体に高密度かつ強硬度に密着して膜剥離を抑制し、SiO2添加量が少ないので曇りが生じることなく、各種着色を有する眼鏡フレームの色調と光沢度を向上させると共に、それを長期にわたり維持することができる。膜厚が5nm未満では膜剥離が発生しやすく、2μmを超えると光沢度が劣化する。好ましくは、10nm〜100nmである。また、硬度が3H未満であると膜の剥離が生じ易い。In the present invention, the inorganic oxide metal particles that are photocatalysts are fibrous ultrafine particles as in the first aspect, so that the light is irregularly reflected and the specific surface area is large, so that the irregular reflection is further amplified to improve the glossiness. be able to. Further, since the film thickness is thin, the hardness is high, and the surface is smooth, the glossiness can be made clear. Furthermore, it adheres to a very curved rod such as a spectacle frame with high density and high hardness and suppresses film peeling, and since the amount of SiO 2 added is small, the color tone and gloss of the spectacle frame having various colors can be prevented without clouding. It can be improved and maintained for a long time. When the film thickness is less than 5 nm, film peeling tends to occur, and when it exceeds 2 μm, the glossiness deteriorates. Preferably, it is 10 nm to 100 nm. Further, when the hardness is less than 3H, the film is easily peeled off.
また、前記繊維状超微粒子に対してAgを適当量含有することによりTi−Ag系光触媒においてもより光触媒活を向上させることができると共に、さらに、可視光においも被膜表面をより高度に親水化させるため、基材面に付着した水滴を崩し広がらせて曇りを防止する同時に、該繊維状超微粒酸化チタン粒子は比表面積が大きく相乗的に光触媒活性が向上する上に、Agを添加することと繊維状超微粒酸化チタン粒子が重なりあって定着することの相乗効果により酸化チタン金属膜が極めて電気を通し易い状態となるため、帯電防止効果が大幅に高くなる。そのため埃の基材面への付着がほとんど生じない。また、SiO2の混合比率が大きいと曇りが生じるが、SiO2の混合比率を低くできるので光触媒膜の光沢度を劣化させることなく、SiO2の混合比率が低い分ZnOを適量添加してそれ自体の吸着性によりコーティング膜の眼鏡フレームの極湾曲体面への付着性を強固にすることができる。さらに、CHN比により低温で乾燥硬化できるため、基材がプラスティックのような熱に弱いものに対してでも、基材に対して熱の支障がなく使用できる。In addition, by containing an appropriate amount of Ag with respect to the above-mentioned fibrous ultrafine particles, the photocatalytic activity can be further improved in the Ti-Ag photocatalyst, and the coating surface is also made highly hydrophilic in the visible light. Therefore, the water droplets adhering to the substrate surface are broken and spread to prevent fogging. At the same time, the fibrous ultrafine titanium oxide particles have a large specific surface area and synergistically improve the photocatalytic activity, and Ag is added. Since the titanium oxide metal film is in a state where it can conduct electricity very much due to the synergistic effect of overlapping and fixing the fibrous ultrafine titanium oxide particles, the antistatic effect is greatly enhanced. Therefore, dust hardly adheres to the substrate surface. Although cloudiness and the mixture ratio of SiO 2 is large, without degrading the glossiness of the photocatalyst film so the mixing ratio of SiO 2 can be lowered, it the mixing ratio of SiO 2 is lower partial ZnO add an appropriate amount The adhesion of the coating film to the polar body surface of the spectacle frame can be strengthened by its own adsorptivity. Furthermore, since it can be dried and cured at a low temperature by the CHN ratio, even if the base material is weak against heat such as a plastic, it can be used without any trouble on the base material.
以下に、本発明の一実施例を示す眼鏡を図面に基づき説明する。図1に示す如く、眼鏡フレーム1はプラスティックレンズ10を保持するレンズ枠2を設けており、このレンズ枠2、2間を連結するブリッジ3と各枠2、2の外縁部に蝶番4、4を介してテンプル5、5と、このテンプル5、5に耳かけモダン6、6を設けている。また、各枠2、2の内縁部には鼻あてパッド7、7が金属製の棒状の脚8、8を介して取り付けられている。前記レンズ枠2、2及びブリッジ5、5は棒状又は管状の金属製、例えば、光沢度の高い金、プラチナ、チタン等の無機質金属素材であって、これら部品の有する元来の色調を意匠的に高い光沢度で長期に維持することが望まれる。前記モダン6、6及び鼻あてパッド7、7は合成樹脂製であるが、前記と同様これら部品の有する元来の色調を意匠的に高い光沢度で長期に維持することが望まれる。このように、眼鏡フレームの各構成部品は一般に金属製部材と合成樹脂部材とからなり、これら部品に対する光触媒のコーティング処理は、通常夫々別途に処理されてから組み立てられる。 Hereinafter, glasses showing an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the
一方、液状光触媒の作成について、繊維状酸化チタン超微粒子の生成は、酸化チタン系複合酸化物が水に分散してなる水分散ゾルを、少なくともSiO2、AgO、ZnOのアルカリ金属水酸化物の存在下で水熱処理することにより得られる。これら繊維状酸化チタンの粒子径は、繊維幅及び厚さが1〜50nm、繊維長さが10〜1000nm、アスペクト比が2〜100以上が好ましく使用され、酸化チタン系複合酸化物粒子の水分散ゾルを用いる。上記粒子径であれば安定な水分散ゾルが得られ、非常に高いレベルで単独の粒子分散性に優れた繊維状酸化チタン超微粒子が得られる。On the other hand, for the production of a liquid photocatalyst, the production of fibrous titanium oxide ultrafine particles is carried out by using an aqueous dispersion sol in which a titanium oxide-based composite oxide is dispersed in water, using at least SiO 2 , AgO and ZnO alkali metal hydroxides. It can be obtained by hydrothermal treatment in the presence. These fibrous titanium oxides preferably have a fiber width and thickness of 1 to 50 nm, a fiber length of 10 to 1000 nm, and an aspect ratio of 2 to 100 or more, and water dispersion of titanium oxide composite oxide particles. Use sol. With the above particle size, a stable water-dispersed sol can be obtained, and fibrous titanium oxide ultrafine particles having excellent particle dispersibility at a very high level can be obtained.
前記酸化チタン粒子、酸化チタンと酸化チタン以外の酸化物からなる酸化チタン系複合酸化物粒子の水分散ゾルの濃度としては、酸化物として2〜50重量%の範囲にあることが好ましい。このような濃度範囲であれば、ゾルは安定であり、アルカリ処理時に粒子が凝集することもなく、効率的に繊維状酸化チタン超微粒子を生成させることができる。 The concentration of the water-dispersed sol of the titanium oxide particles and the titanium oxide-based composite oxide particles composed of oxides other than titanium oxide and titanium oxide is preferably in the range of 2 to 50% by weight as oxides. In such a concentration range, the sol is stable and the fibrous titanium oxide ultrafine particles can be efficiently generated without aggregation of the particles during the alkali treatment.
上記のように、特にSiO2、AgO、ZnOのアルカリ金属水酸化物が含まれると、繊維状酸化チタン超微粒子が生成しやすく、繊維状酸化チタン超微粒子の紫外線吸収領域や光触媒活性を調整することができ、さらに熱的安定性や化学的安定性を得ることができる。上記酸化チタン以外の酸化物の含有量は1〜25重量%、好ましくは3〜8重量%である。このような範囲において繊維状酸化チタン超微粒子は高いレベルで生成する。As described above, particularly when an alkali metal hydroxide of SiO 2 , AgO, or ZnO is contained, fibrous titanium oxide ultrafine particles are easily generated, and the ultraviolet absorption region and photocatalytic activity of the fibrous titanium oxide ultrafine particles are adjusted. Furthermore, thermal stability and chemical stability can be obtained. Content of oxides other than the said titanium oxide is 1-25 weight%, Preferably it is 3-8 weight%. In such a range, fibrous titanium oxide ultrafine particles are generated at a high level.
本実施例では、複合酸化チタン超微粒子に対してチタン過酸化物または複合チタン過酸化物と、有機高分子化合物とからなるバインダーを使用する。このようなチタン過酸化物または複合チタン過酸化物は通常溶液状態(透明液状光触媒)となる。このようなチタン過酸化物または複合チタン過酸化物は、前記複合酸化チタン微粒子と同程度の屈折率を有しているので、被膜構成成分による光の散乱がなく、透明性に優れた液状光触媒とすることができる。 In this embodiment, a binder made of titanium peroxide or composite titanium peroxide and an organic polymer compound is used for the composite titanium oxide ultrafine particles. Such titanium peroxide or composite titanium peroxide is usually in a solution state (transparent liquid photocatalyst). Such a titanium peroxide or composite titanium peroxide has a refractive index comparable to that of the composite titanium oxide fine particles, so that it does not scatter light due to coating components and has excellent transparency. It can be.
塩化チタン水溶液を純水で希釈してTiO2として濃度5重量%の塩化チタン水溶液を調整した。この水溶液を、温度を5℃に調整した濃度15%のアンモニア水に添加して中和・加水分解した。ついで生成したゲルを濾過洗浄し、TiO2として濃度9重量%のオルソチタン酸のゲルを得た。A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% aqueous ammonia adjusted to a temperature of 5 ° C. Subsequently, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 9% by weight as TiO 2 .
このオルソチタン酸のゲル100gを純水2900gに分散させた後、濃度35重量%の過酸化水素水800gを加え、攪拌しながら85℃で3時間加熱し、ペルオキソチタン酸水溶液を調整した。得られたペルオキソチタン酸水溶液のTiO2として濃度は0.5重量%であった。ついで95℃で10時間加熱して酸化チタン粒子分散液とし、この酸化チタン粒子分散液に分散液中のTiO2に対するモル比が0.016となるようにテトラメチルアンモニウムハイドロオキサドを添加した。ついで、SiO2、AgO、ZnOを若干量添加して、230℃で5時間水熱処理して複合酸化チタン粒子分散液、即ち本発明で使用する透明液状光触媒を調整した。この時の酸化チタンは、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100の繊維状酸化チタン超微粒子であった。After 100 g of this orthotitanic acid gel was dispersed in 2900 g of pure water, 800 g of hydrogen peroxide having a concentration of 35% by weight was added and heated at 85 ° C. for 3 hours with stirring to prepare a peroxotitanic acid aqueous solution. The concentration of the obtained peroxotitanic acid aqueous solution as TiO 2 was 0.5% by weight. Then heated for 10 hours at 95 ° C. and a titanium oxide particle dispersion liquid, the molar ratio of TiO 2 dispersion in the titanium oxide particle dispersion liquid was added tetramethylammonium hydroxide oxa de so that 0.016. Next, a slight amount of SiO 2 , AgO and ZnO was added and hydrothermally treated at 230 ° C. for 5 hours to prepare a composite titanium oxide particle dispersion, that is, a transparent liquid photocatalyst used in the present invention. The titanium oxide at this time was fibrous titanium oxide ultrafine particles having an average fiber width and thickness of 1 to 50 nm, an average fiber length of 10 to 1000 nm, and an average aspect ratio of 2 to 100.
液状光触媒組成の測定;上記透明液状光触媒の無機元素及び有機元素の組成比の測定結果を以下に示す。尚、透明液状光触媒の組成を把握するために、この透明液状光触媒から水を蒸発させて、溶解成分のみを濃縮採取し、それに含まれる無機元素及び有機元素の量を調べた。試料溶液をビーカーに入れ、120℃のホットプレートを用いて水を蒸発させ、触媒成分を濃縮採取した。有機物の存在が予想されるのでCHN分析も追加した。 Measurement of liquid photocatalyst composition: The measurement results of the composition ratio of the inorganic element and organic element of the transparent liquid photocatalyst are shown below. In order to grasp the composition of the transparent liquid photocatalyst, water was evaporated from the transparent liquid photocatalyst, and only the dissolved components were concentrated and collected, and the amounts of inorganic elements and organic elements contained therein were examined. The sample solution was put into a beaker, water was evaporated using a 120 ° C. hot plate, and the catalyst component was concentrated and collected. CHN analysis was also added because of the expected presence of organics.
無機元素の定性・半定量(蛍光X線法);
以下の装置・条件で測定し、含有元素の定性・半定量を行った。
装置;理学電気(株)製 全自動蛍光X線分析装置、RIX−3000
管球;Rh管球 測定径;25mmφQualitative and semi-quantitative determination of inorganic elements (fluorescence X-ray method);
Measured with the following equipment and conditions, qualitative and semi-quantitative analysis of the contained elements.
Apparatus: Rigaku Electric Co., Ltd. fully automatic X-ray fluorescence analyzer, RIX-3000
Tube; Rh tube Measurement diameter: 25mmφ
CHNの定量(燃焼熱伝導度法);
装置;ヤナコ製 MT−700CN
Determination of CHN (combustion thermal conductivity method);
Equipment: MT-700CN made by Yanaco
測定結果の解析
前記測定結果より、液状光触媒に含まれる元素量は、以下のように計算される。
Analysis of measurement results From the measurement results, the amount of elements contained in the liquid photocatalyst is calculated as follows.
上記無機元素の含有量は、下記式で測定値から算出した。
無機元素含有量=無機元素測定×(100−CHN含有量)/100すなわち、有機物由来と考えられるCHNの含有量(約70%)を全量から除き、その残りの(約30%)を無機元素含有量で割り振った。ただし、本測定では、必ず含まれているO(酸素)の含有量を把握できないため、無機元素の含有量には“<”を付した。Tiの形態をTiO2と仮定すると、含まれるTiとOとの重量比は100:67となり、上表の推算値は次表のように換算される。Content of the said inorganic element was computed from the measured value by the following formula.
Inorganic element content = Inorganic element measurement × (100−CHN content) / 100 That is, the content of CHN that is considered to be derived from organic matter (about 70%) is excluded from the total amount, and the remaining (about 30%) is inorganic element Allocated by content. However, in this measurement, the content of O (oxygen) that is always included cannot be grasped, so the content of inorganic elements is marked with “<”. Assuming that the form of Ti is TiO 2 , the weight ratio of Ti and O contained is 100: 67, and the estimated values in the above table are converted as shown in the following table.
CNは有機バインダーに由来する元素と判断され、含有物の約70%以上(その他、酸素Oが存在している可能性も高い)を占めている。Ti(TiO2)は光触媒の主成分である。また、上記酸化チタン等の無機酸化物金属は有機バインダーと合わせた合計含量の約18%以上となるので、特に酸化チタンがバインダー成分中に埋もれるのを防止し、かつ表面に酸化チタンの繊維状微粒子が緻密重なり合って、基材面において互いに極めて高密度に結合させる。さらに、CNH比により低温で乾燥できるため、光学透明基材が、例えば、プラスティックのような熱に弱いものに対してでも、基材に熱の影響なく使用できる。CN is judged to be an element derived from an organic binder, and occupies about 70% or more of the content (in addition, there is a high possibility that oxygen O is present). Ti (TiO 2 ) is the main component of the photocatalyst. In addition, since the inorganic oxide metal such as titanium oxide is about 18% or more of the total content combined with the organic binder, titanium oxide is prevented from being buried in the binder component, and the surface of the titanium oxide is fibrous. The fine particles are densely overlapped and bonded to each other at an extremely high density on the substrate surface. Furthermore, since it can be dried at a low temperature by the CNH ratio, the optically transparent base material can be used for the base material without being affected by heat, for example, against a material that is weak against heat such as plastic.
実験例1;眼鏡フレームのプラチナ製枠2、2及びブリッジ5、5の基材面へ上記光触媒無機酸化物を塗膜した。即ち、無機酸化金属である少なくとも酸化チタンが繊維状超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m2/g以上であり、光触媒中の無機元素が半定量値において少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含み、有機元素が定量値において少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含み、酸化チタン等の無機酸化物金属を有機バインダーと合わせた合計含量の約15%以上とした液状光触媒中に、眼鏡フレームの茶褐色のプラチナ製枠2、2及びブリッジ5、5の基材面へ約10分間浸漬した後、約300℃で焼成させて無機酸化金属を基材面に高密度に定着させるようにした。このときの光触媒膜厚は約4nmであった。乾燥後さらに、前記液状光触媒中に、約10分間浸漬した後、約200℃で焼成させて無機酸化金属を基材面に高密度に定着させるようにした。このときの光触媒膜厚は前記の膜厚と合わせ約5nmであった。乾燥後さらに、前記液状光触媒中に、約10分間浸漬した後、約80℃で乾燥させて無機酸化金属を基材面に高密度に定着させるようにした。このときの光触媒膜厚は前記の膜厚と合わせ6nmであった。この操作(約10分間浸漬した後、約80℃で乾燥)をさらに3回繰り返して膜厚と合わせ約38nmとした。Experimental Example 1 The photocatalyst inorganic oxide was coated on the base material surfaces of the platinum frames 2 and 2 and the
上記光触媒の金属塗膜面について、膜の硬度はJIS K5400(鉛筆硬度測定法)によって測定した結果4Hであったが、4日後同様に測定した結果は6Hであった。また、色差計と光沢度計(入射角度45度)で膜表面の数箇所を測定した結果、SiO2が少ないせいか色差が大きく光沢度も高かった。過去の実験から推察すると約10年で80%の光沢保持率があるものと考えられる。As for the metal coating surface of the photocatalyst, the hardness of the film was 4H as measured by JIS K5400 (pencil hardness measurement method), but the result of the measurement after 4 days was 6H. In addition, as a result of measuring several points on the film surface with a color difference meter and a gloss meter (incident angle of 45 degrees), the color difference was large and the glossiness was high due to the small amount of SiO 2 . Inferred from past experiments, it is considered that there is an 80% gloss retention in about 10 years.
実験例2;眼鏡フレームの前記合成樹脂であるモダン6、6及び鼻あてパッド7、7の基材面へ上記光触媒無機酸化物を塗膜した。即ち、無機酸化金属である少なくとも酸化チタンが繊維状超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m2/g以上であり、光触媒中の無機元素が半定量値において少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含み、有機元素が定量値において少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含み、酸化チタン等の無機酸化物金属を有機バインダーと合わせた合計含量の約15%以上とした液状光触媒中に、眼鏡フレームの薄い茶褐色のプラチナ製枠2、2及びブリッジ5、5の基材面へ約10分間浸漬した後、約120℃で温風処理させて無機酸化金属を基材面に高密度に定着させるようにした。このときの光触媒膜厚は約5nmであった。乾燥後さらに、前記液状光触媒中に、約10分間浸漬した後、約80℃で焼成させて無機酸化金属を基材面に高密度に定着させるようにした。このときの光触媒膜厚は前記の膜厚と合わせ約10nmであった。乾燥後さらに、前記液状光触媒中に、約10分間浸漬した後、常温乾燥させて無機酸化金属を基材面に高密度に定着させるようにした。このときの光触媒膜厚は前記の膜厚と合わせ約15nmであった。Experimental Example 2 The above photocatalyst inorganic oxide was coated on the base material surfaces of Modern 6 and 6 and nose pad 7 and 7 which are the synthetic resin of the spectacle frame. That is, at least titanium oxide, which is an inorganic metal oxide, is fibrous ultrafine particles, the average fiber width and thickness are 1 to 50 nm, the average fiber length is 10 to 1000 nm, the average aspect ratio is 2 to 100, and the specific surface area is 30 m. 2 / g or more, and the inorganic element in the photocatalyst is at least 90 to 97 wt% Ti, 2.3 to 3.0 wt% Si, 1.4 to 2.2 wt% Ag, and 0 to Zn in a semi-quantitative value. Inorganic oxide metal such as titanium oxide, containing 2 to 0.3 wt%, organic elements containing at least C in a quantitative value of 55 to 65 wt%, H containing 8 to 12 wt%, N containing 0.2 to 0.4 wt% In a liquid photocatalyst with a total content of about 15% or more combined with an organic binder, the glasses frame is immersed in the base surfaces of the light brown platinum frames 2, 2 and
上記光触媒の合成樹脂塗膜面について、膜の硬度はJIS K5400(鉛筆硬度測定法)によって測定した結果3Hであったが、4日後測定した結果は5Hであった。また、色差計と光沢度計(入射角度45度)で膜表面の数箇所を測定した結果、SiO2が少ないせいか色差が大きく光沢度も高かった。過去の実験から推察すると約10年で80%の光沢保持率があるものと考えられる。As for the synthetic resin coating surface of the photocatalyst, the film hardness was 3H as measured by JIS K5400 (pencil hardness measurement method), but the result measured after 4 days was 5H. In addition, as a result of measuring several points on the film surface with a color difference meter and a gloss meter (incident angle of 45 degrees), the color difference was large and the glossiness was high due to the small amount of SiO 2 . Inferred from past experiments, it is considered that there is an 80% gloss retention in about 10 years.
前記実験例1は、眼鏡フレームのプラチナ製枠2、2及びブリッジ5、5の金属基材面への塗膜であり基材が茶褐色であり、膜厚が1.7μmで良好な光沢度を維持した。これに対し、実験例2は、眼鏡フレームの前記合成樹脂であるモダン6、6及び鼻あてパッド7、7の基材面への塗膜であり基材が薄い茶褐色であり、膜厚が約10nmで良好な光沢度を維持した。このことから、光沢度は、色が濃いほど膜厚が厚く、薄いほど膜圧が薄いほうがよいことが理解される。 The experimental example 1 is a coating film on the metal substrate surface of the platinum frames 2 and 2 and the
前記実験例1は、眼鏡フレームのプラチナ製枠2、2及びブリッジ5、5の金属基材面への塗膜であり加熱焼成温度が高くなるが、実験例2では、眼鏡フレームの前記合成樹脂であるモダン6、6及び鼻あてパッド7、7の基材面への塗膜であり加熱焼成温度が低くしなければならない。 In the experimental example 1, the platinum frames 2 and 2 and the
剥離試験の結果、無機酸化物金属を眼鏡フレームの細い極湾曲棒体に高密度かつ強硬度に密着して膜剥離を抑制し、基材面に対して強固に付着力させることが出来るので膜剥離も抑制することができた。 As a result of the peel test, the inorganic oxide metal can be adhered to the thinly curved rod body of the spectacle frame with high density and high hardness to suppress the film peeling, and the film can be strongly adhered to the substrate surface. Peeling could also be suppressed.
Znは光触媒の吸着性向上のために添加されたものである。酸性のTiO2に塩基性のZnOを添加する場合もある。SiO2の混合比率が低い分ZnOを適量添加することによりその吸着性により眼鏡フレームの細い極湾曲棒体に高密度かつ強硬度に密着して膜剥離を抑制できる。Zn is added for improving the adsorptivity of the photocatalyst. In some cases, basic ZnO is added to acidic TiO 2 . By adding an appropriate amount of ZnO due to the low mixing ratio of SiO 2 , it is possible to suppress film peeling by closely adhering to a thin polar-curved rod body of a spectacle frame with high density and high hardness.
Siはバインダー成分(シリカゾル)であり、粘度を低くすることができ、流動性も高めることができる。加えて、酸化チタン等の無機酸化物金属を有機バインダーと合わせた含量が約15%以上であり、酸化チタンがSiバインダー成分(シリカゾル)中に埋もれるのを防止し、したがって、基材面に酸化チタンの繊維状微粒子が緻密重なり合って、光触媒酸化金属繊維粒子が互いに極めて高密度に結合させると共に、光触媒活性作用(膜剥離抑制、表面摩擦計数、膜硬度向上、表面耐擦傷、可視光触媒活性、超親水性曇り防止、帯電防止効果等)をさらに向上させることが出来る。尚、SiO2は高い温度(約500℃以上)で加熱焼成すると気泡が発生して多孔質体となるので上記光触媒活性作用がより活性化される。Si is a binder component (silica sol), which can lower the viscosity and increase the fluidity. In addition, the content of the inorganic oxide metal such as titanium oxide combined with the organic binder is about 15% or more, preventing the titanium oxide from being buried in the Si binder component (silica sol), and therefore oxidizing the base material surface. Titanium fibrous fine particles are closely overlapped, and photocatalytic metal oxide fiber particles are bonded to each other with extremely high density, and photocatalytic activity (film peeling suppression, surface friction counting, film hardness improvement, surface scratch resistance, visible photocatalytic activity, super Hydrophilic haze prevention, antistatic effect, etc.) can be further improved. Note that when SiO 2 is heated and fired at a high temperature (about 500 ° C. or higher), bubbles are generated and become a porous body, so that the photocatalytic activity is further activated.
この発明においては、光触媒である無機酸化物金属の粒子を繊維状超微粒子としているので光が乱反射し、比表面積が大きいのでさらにその乱反射を増幅させて光沢度を向上させることができる。また、膜厚が薄くかつ硬度が高く表面平滑であるので光沢度を鮮明にすることができる。さらに、眼鏡フレームのような極湾曲棒体に高密度かつ強硬度に密着して膜剥離を抑制し、SiO2添加量が少ないので曇りが生じることなく、各種着色を有する眼鏡フレームの色調と光沢度を向上させると共に、それを長期にわたり維持することができる。In the present invention, since the inorganic oxide metal particles, which are photocatalysts, are fibrous ultrafine particles, the light is irregularly reflected and the specific surface area is large, so that the irregular reflection can be further amplified to improve the glossiness. Further, since the film thickness is thin, the hardness is high, and the surface is smooth, the glossiness can be made clear. Furthermore, it adheres to a very curved rod such as a spectacle frame with high density and high hardness and suppresses film peeling, and since the amount of SiO 2 added is small, the color tone and gloss of the spectacle frame having various colors can be prevented without clouding. It can be improved and maintained for a long time.
また、極めて高硬度に硬化できるので、基材表面の耐擦傷を向上させて基材面を保護することができ、かつ強固に付着力させることが出来るので膜剥離を抑制することが出来る。 In addition, since it can be cured to a very high hardness, the substrate surface can be protected by improving the scratch resistance of the substrate surface, and the film can be peeled off because it can be firmly adhered.
また、前記繊維状超微粒子に対してAgを適当量含有することによりTi−Ag系光触媒においてもより光触媒活を向上させることができると共に、さらに、可視光においも被膜表面をより高度に親水化させるため、基材面に付着した水滴を崩れ広がらせて曇りを防止する同時に、該繊維状超微粒酸化チタン粒子は比表面積が大きく光触媒活性が向上する上に、Agとの相乗効果により酸化チタン金属膜が電気を通し易い状態となるため、帯電防止効果が極めて高くなる。そのため埃の基材面への付着がほとんど生じない。 In addition, by containing an appropriate amount of Ag with respect to the above-mentioned fibrous ultrafine particles, the photocatalytic activity can be further improved in the Ti-Ag photocatalyst, and the coating surface is also made highly hydrophilic in the visible light. Therefore, the water droplets adhering to the substrate surface are crushed and spread to prevent fogging. At the same time, the fibrous ultrafine titanium oxide particles have a large specific surface area and improve photocatalytic activity. Since the metal film can easily conduct electricity, the antistatic effect is extremely high. Therefore, dust hardly adheres to the substrate surface.
さらに、SiO2の混合比率が低い分ZnOを適量添加することによりその吸着性によりコーティング膜の付着性をさらに強固にすることができる。また、SiO2は高い温度(約500℃以上)で加熱焼成した場合は気泡が発生して多孔質体となるので上記光触媒活性作用がより活性化される。Further, by adding an appropriate amount of ZnO due to the low mixing ratio of SiO 2 , the adhesion of the coating film can be further strengthened by its adsorptivity. In addition, when SiO 2 is heated and fired at a high temperature (about 500 ° C. or higher), bubbles are generated and become a porous body, so that the photocatalytic activity is more activated.
CNH比により低温で乾燥できるため、基材が、例えば、プラスティックのような熱に弱いものに対してでも、基材に熱の支障なく使用できる。 Since the substrate can be dried at a low temperature by the CNH ratio, the substrate can be used for the substrate without any trouble of heat even if it is weak against heat such as plastic.
また、上記の酸化物が残存することにより得られる酸化チタンの紫外線吸収領域、誘電率、光触媒活性、プロトン導電性、固体酸特性等を調整することができ、さらに熱的安定性や化学的安定性等を調節することもできる。また、Agを添加することにより、暗い密閉室内であっても高い光触媒活性作用を得ることができる。さらに、Siを含むことにより、粘度を低くすることができほか光触媒液の流動性も高めることができる。 In addition, the ultraviolet absorption region, dielectric constant, photocatalytic activity, proton conductivity, solid acid characteristics, etc. of titanium oxide obtained by the above oxide remaining can be adjusted, and further, thermal stability and chemical stability can be adjusted. Sex etc. can also be adjusted. Further, by adding Ag, a high photocatalytic activity can be obtained even in a dark sealed room. Furthermore, by containing Si, the viscosity can be lowered and the fluidity of the photocatalyst solution can be increased.
また、CHNの有機元素が上記の範囲にあると、前記合成樹脂基材に対する乾燥手段において、熱風の温度を樹脂基材に支障のない120℃以下と極めて低い温度で繊維状酸化チタンを強固に固着させることができると共に、乾燥速度を極めて速くすることができる。 Further, when the organic element of CHN is in the above range, in the drying means for the synthetic resin base material, the temperature of the hot air is strengthened at a very low temperature of 120 ° C. or less which does not affect the resin base material. While being able to fix, drying speed can be made very quick.
1 眼鏡フレーム
2 レンズ枠
3 ブリッジ
4 蝶番
5 テンプル
6 モダン
7 鼻パッド
8 脚
10 レンズDESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010265728A JP5424130B2 (en) | 2010-11-09 | 2010-11-09 | Eyeglass frame and method for forming photocatalytic inorganic metal oxide film on the eyeglass frame |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010265728A JP5424130B2 (en) | 2010-11-09 | 2010-11-09 | Eyeglass frame and method for forming photocatalytic inorganic metal oxide film on the eyeglass frame |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012103653A true JP2012103653A (en) | 2012-05-31 |
JP5424130B2 JP5424130B2 (en) | 2014-02-26 |
Family
ID=46394069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010265728A Expired - Fee Related JP5424130B2 (en) | 2010-11-09 | 2010-11-09 | Eyeglass frame and method for forming photocatalytic inorganic metal oxide film on the eyeglass frame |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5424130B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000288405A (en) * | 1999-04-02 | 2000-10-17 | Otsuka Chem Co Ltd | Photocatalyst body and removing method of harmful material using the same |
JP2003066379A (en) * | 2001-08-28 | 2003-03-05 | Shimizu Shoji:Kk | Spectacles and method of manufacturing the same |
JP2003231722A (en) * | 2002-02-13 | 2003-08-19 | Daikin Ind Ltd | Aqueous dispersion composition of fluororesin |
JP2004243307A (en) * | 2002-06-27 | 2004-09-02 | Showa Denko Kk | High activity photocatalyst particle, manufacturing method therefor and usage thereof |
JP2010069469A (en) * | 2008-09-22 | 2010-04-02 | Kagoshima Eden Denki:Kk | Method of deodorizing/sterilizing with photocatalyst and transparent liquid photocatalyst used for this method |
-
2010
- 2010-11-09 JP JP2010265728A patent/JP5424130B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000288405A (en) * | 1999-04-02 | 2000-10-17 | Otsuka Chem Co Ltd | Photocatalyst body and removing method of harmful material using the same |
JP2003066379A (en) * | 2001-08-28 | 2003-03-05 | Shimizu Shoji:Kk | Spectacles and method of manufacturing the same |
JP2003231722A (en) * | 2002-02-13 | 2003-08-19 | Daikin Ind Ltd | Aqueous dispersion composition of fluororesin |
JP2004243307A (en) * | 2002-06-27 | 2004-09-02 | Showa Denko Kk | High activity photocatalyst particle, manufacturing method therefor and usage thereof |
JP2010069469A (en) * | 2008-09-22 | 2010-04-02 | Kagoshima Eden Denki:Kk | Method of deodorizing/sterilizing with photocatalyst and transparent liquid photocatalyst used for this method |
Also Published As
Publication number | Publication date |
---|---|
JP5424130B2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6657479B2 (en) | Antiviral substrate, antiviral composition, method for producing antiviral substrate, antimicrobial substrate, antimicrobial composition, and method for producing antimicrobial substrate | |
US20120168666A1 (en) | Coating composition and uses thereof | |
Ao et al. | Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings | |
TW200920796A (en) | Transparent aqueous nanometer sol-gel paint composition without reducing visible light and sunlight transmittance of transparent substrates and coating method thereof | |
JP4619601B2 (en) | PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM | |
KR101346631B1 (en) | Hydrophilic anti-fogging film | |
WO2015133316A1 (en) | Photocatalyst coating liquid and photocatalyst film using same | |
JP2007051204A (en) | Hard coat-applying liquid for forming anti-oxidative ultraviolet light-shading membrane for glass, and membrane and glass obtained by using the same | |
JP2006291136A (en) | Coating liquid for forming heat ray and ultraviolet ray shielding film with photocatalytic deodorization and bactericidal function and film using the same and base material | |
JP3584935B1 (en) | Base coating composition for photocatalytic coating film, photocatalytic coated product, and method for producing photocatalytic coated product | |
JP6198921B1 (en) | Photocatalyst composite coating film that transmits visible light and shields ultraviolet rays and infrared rays, and method for producing the same | |
JP5424130B2 (en) | Eyeglass frame and method for forming photocatalytic inorganic metal oxide film on the eyeglass frame | |
JP2001064582A (en) | Photocatalytic hydrophilic coating composition and preparation of photocatalytic hydrophilic composite by using the same | |
JP2008302351A (en) | Composite material and composition containing the same | |
JP4868636B2 (en) | Structure comprising a photocatalyst | |
JP3914609B2 (en) | Silicate-containing sheet | |
JP3537110B2 (en) | Coating composition for forming transparent film having photocatalytic activity and substrate with transparent film | |
WO2009123135A1 (en) | Photocatalyst coating composition | |
JP6152596B2 (en) | Manufacturing method of coated material and coated material | |
JP3678227B2 (en) | Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material | |
JP2010149005A (en) | Article coated with photocatalyst, and photocatalytic coating liquid therefor | |
US9221025B2 (en) | Method of coating surface of inorganic powder particles with silicon-carbon composite and inorganic powder particles coated by the same | |
JP7424867B2 (en) | Silicate-based aqueous solution | |
JP2012093685A (en) | Transparent optical substrate and method for forming photocatalytic inorganic metal oxide film on the substrate surface | |
JP2010150768A (en) | Building material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131114 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5424130 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |