JP2010069469A - Method of deodorizing/sterilizing with photocatalyst and transparent liquid photocatalyst used for this method - Google Patents

Method of deodorizing/sterilizing with photocatalyst and transparent liquid photocatalyst used for this method Download PDF

Info

Publication number
JP2010069469A
JP2010069469A JP2008271407A JP2008271407A JP2010069469A JP 2010069469 A JP2010069469 A JP 2010069469A JP 2008271407 A JP2008271407 A JP 2008271407A JP 2008271407 A JP2008271407 A JP 2008271407A JP 2010069469 A JP2010069469 A JP 2010069469A
Authority
JP
Japan
Prior art keywords
photocatalyst
titanium oxide
fiber
fibrous
hot air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008271407A
Other languages
Japanese (ja)
Other versions
JP4840615B2 (en
Inventor
Masaru Kawasaki
勝 川崎
Tetsuo Yamagami
哲男 山神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGOSHIMA EDEN DENKI KK
Original Assignee
KAGOSHIMA EDEN DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGOSHIMA EDEN DENKI KK filed Critical KAGOSHIMA EDEN DENKI KK
Priority to JP2008271407A priority Critical patent/JP4840615B2/en
Publication of JP2010069469A publication Critical patent/JP2010069469A/en
Application granted granted Critical
Publication of JP4840615B2 publication Critical patent/JP4840615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the exposure level of a particle surface by uniformly dispersing an ultrafine particle fibrous titanium oxide alone in the fiber of clothes and make the fibrous titanium oxide adhere firmly to the fiber, and achieve the anchoring of the ultrafine particle of the fibrous titanium oxide strongly into the fibers of the clothes for a long time through drying at an extremely low temperature. <P>SOLUTION: This method employs a photocatalyst jet means to jet a liquid photocatalyst to a fibrous material e.g. clothes inside an airtight chamber, an ultraviolet irradiation means to irradiate ultraviolet rays to the photocatalyst adhering to the fibrous material, and a hot blast drying means to send a hot blast to and dry the liquid photocatalyst sticking to the fibrous material. The photocatalyst of the photocatalyst jet means is a fibrous titanium oxide ultrafine particle. Thus, a transparent liquid photocatalyst having an appropriate amount of the ultrafine particle dispersed is jetted. Besides, the temperature of the hot blast in the hot blast drying means is 30 to 120°C, and the ultrafine particle, with which the interior of the airtight chamber is filled, is uniformly fixed and dried in the interior of the fiber of the fibrous material by hot blast. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、病院、老人ホーム、クリーニング店、食品加工工場、畜産施設、スポーツ施設等に設置して、特に衣服、白衣、トレーニング服等繊維製品の脱臭・殺菌を行うための光触媒脱臭殺菌方法及びこれに使用する透明液状光触媒に関するものである。  The present invention is a photocatalytic deodorizing and sterilizing method for deodorizing and sterilizing textile products such as clothes, lab coats, training clothes, etc., particularly in hospitals, nursing homes, laundry shops, food processing factories, livestock facilities, sports facilities, etc. The present invention relates to a transparent liquid photocatalyst used for this.

発明の背景Background of the Invention

近時、酸化チタンの光触媒作用を利用した脱臭及び殺菌機能を備えた各種製品が開発されている。これらの製品は、酸化チタン等の光触媒作用により、製品表面に付着した微生物や臭気物質が分解されることによる防菌、防臭する効果をねらったものである。この酸化チタンの光触媒作用は、酸化チタン粒子に紫外線を照射することにより、光触媒の表面に発生した正孔が、光触媒表面の吸着水と反応して、ラジカルOH(水酸基ラジカル)が生成され、このラジカルOHが有機物の分子結合を切断することにより、これが粒子表面へ拡散して周囲の有機物質へ酸化又は還元作用としてはたらくためと考えられている。  Recently, various products having deodorizing and sterilizing functions utilizing the photocatalytic action of titanium oxide have been developed. These products are aimed at antibacterial and deodorizing effects due to decomposition of microorganisms and odorous substances adhering to the product surface by photocatalytic action such as titanium oxide. The photocatalytic action of titanium oxide is that when the titanium oxide particles are irradiated with ultraviolet rays, the holes generated on the surface of the photocatalyst react with the adsorbed water on the surface of the photocatalyst to generate radical OH (hydroxyl radical). It is considered that the radical OH breaks the molecular bond of the organic substance, which diffuses to the particle surface and acts as an oxidizing or reducing action on the surrounding organic substance.

酸化チタンは、その化学的特性を利用した用途が広く、例えば酸素と適当な結合力を有すると共に耐酸性を有するため、酸化還元触媒あるいは担体、紫外線の遮断力を利用した化粧材料またはプラスティックの表面コート剤、さらには高屈折を利用した反射防止コート剤、導電性を利用した帯電防止材として用いられたり、これら効果を組み合わせて機能性ハードコート材に用いられたり、さらに光触媒作用を使用した防菌剤、防汚剤、超親水性被膜などに用いられている。  Titanium oxide has a wide range of uses that make use of its chemical properties. For example, it has a suitable binding force with oxygen and has acid resistance, so it has a redox catalyst or carrier, a cosmetic material or a plastic surface that uses ultraviolet blocking power. It is used as a coating agent, an anti-reflection coating agent that utilizes high refraction, an antistatic material that utilizes electrical conductivity, a combination of these effects, and a functional hard coating material. Used for fungicides, antifouling agents, super hydrophilic coatings, etc.

光触媒として使用される酸化チタンは無定型酸化チタンのみならず、アナタース型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタン及びこれらの混晶体、共晶体などの結晶性の酸化チタンが好ましく、特にアナタース型酸化チタン、ブルッカイト型酸化チタンはバンドギャップが高いので広く利用されている。  The titanium oxide used as the photocatalyst is not limited to amorphous titanium oxide, but is preferably crystalline titanium oxide such as anatase-type titanium oxide, brookite-type titanium oxide, rutile-type titanium oxide, and mixed crystals and eutectics thereof. Type titanium oxide and brookite type titanium oxide are widely used because of their high band gap.

また、前記酸化チタン粒子及び酸化チタンと酸化チタン以外の酸化物からなる酸化チタン系複合酸化物粒子の水分散ゾルの濃度としては特に制限はないが、酸化物として5〜40重量%の範囲にあり、このような濃度範囲にあれば、ゾルは安定であり、アルカリ処理時に粒子が凝集することがなく、効率的に酸化チタン粒子を製造できることが知られている。  The concentration of the water-dispersed sol of the titanium oxide particles and the titanium oxide-based composite oxide particles composed of oxides other than titanium oxide and titanium oxide is not particularly limited, but ranges from 5 to 40% by weight as oxides. In such a concentration range, it is known that the sol is stable and the titanium oxide particles can be produced efficiently without aggregation of the particles during the alkali treatment.

また、このような光触媒作用を有する酸化チタン被膜は、製膜時に高温処理(150℃〜400℃以上)が必要であるため、耐熱性のないガラス、プラスティック、木材、繊維、布などへの製膜は困難である。このため、高温処理した酸化チタン粒子を用いて被膜形成用塗布液を調整し、この塗布液を基材上に塗布して被膜を形成することによって、比較的低温で硬化膜を形成することが試みられている。しかしながら、高温処理された酸化チタン粒子は一般に粒子径が大きく、屈折率が高いために被膜中での酸化チタン粒子による光の散乱が大きく、透明性にすぐれた酸化チタン被膜が得られない欠点がある。  In addition, since such a titanium oxide film having a photocatalytic action requires high-temperature treatment (150 ° C. to 400 ° C. or more) during film formation, it can be produced on glass, plastic, wood, fiber, cloth, etc. that are not heat resistant. The membrane is difficult. For this reason, it is possible to form a cured film at a relatively low temperature by adjusting the coating liquid for forming a film using titanium oxide particles treated at a high temperature, and forming the film by applying this coating liquid on a substrate. Has been tried. However, high-temperature treated titanium oxide particles generally have a large particle diameter and a high refractive index, so that light scattering by the titanium oxide particles in the coating is large, and a titanium oxide coating with excellent transparency cannot be obtained. is there.

さらに、酸化チタン被膜の形成方法としては、酸化チタン塗布液を基材表面にスピナー法、バーコーター法、スプレー法、ディップ法、フレキソ法などで塗布した後、乾燥し、高温で過熱硬化することが知られている。  Furthermore, as a method for forming a titanium oxide film, a titanium oxide coating solution is applied to the surface of a substrate by a spinner method, a bar coater method, a spray method, a dip method, a flexo method, etc., and then dried and cured at high temperature. It has been known.

従来、例えば引用文献1(特開2000−288405号公報)には、「繊維状酸化チタンを造粒し多孔質粒子にしたことを特徴とする光触媒体、繊維状酸化チタン及び粒子状酸化チタンの混合物を造粒し多孔質粒子にしたことを特徴とする光触媒体」が提供されている。  Conventionally, for example, Cited Document 1 (Japanese Patent Laid-Open No. 2000-288405) discloses that “a photocatalyst characterized by granulating fibrous titanium oxide into porous particles, fibrous titanium oxide, and particulate titanium oxide. There is provided a photocatalyst body characterized by granulating a mixture into porous particles.

そして、該公報[0012]に「これらの繊維状酸化チタンの形状としては、平均繊維径0.05〜30μm、好ましくは0.1〜5μm、平均繊維長3〜500μm、好ましくは5〜200μm、平均アスペクト比3〜1000、好ましくは6〜200のものを例示できる」旨説明されている。  And in the publication [0012], “as the shape of these fibrous titanium oxides, the average fiber diameter is 0.05 to 30 μm, preferably 0.1 to 5 μm, the average fiber length is 3 to 500 μm, preferably 5 to 200 μm, Examples having an average aspect ratio of 3 to 1000, preferably 6 to 200 can be exemplified.

しかしながら、この発明においては、造粒体を多孔質粒子として被処理物に対する接触面積を増大させ、高い光触媒活性が得られるようにしようとするものであるが、繊維径が粗く繊維長さが長いため、衣服の繊維に噴霧した場合に、ナノメートル単位の粒子でないため繊維内に充分に分散せず、繊維への付着力が弱い。また、ナノメートルの分散体でなく多孔質体であるので、酸化チタンの比表面積が制限され、粒子表面の露出割合が全体として極めて少なく、高い光触媒活性作用を得ることができない。  However, in the present invention, the granule is made into porous particles to increase the contact area with the object to be processed so as to obtain high photocatalytic activity. However, the fiber diameter is coarse and the fiber length is long. For this reason, when sprayed on the fiber of clothes, it is not a nanometer-sized particle, so it is not sufficiently dispersed in the fiber, and the adhesion to the fiber is weak. Further, since it is not a nanometer dispersion but a porous body, the specific surface area of titanium oxide is limited, and the exposed ratio of the particle surface is extremely small as a whole, and a high photocatalytic activity cannot be obtained.

また、引用文献2(特開2001−205099号公報)には、「二酸化チタン(TiO)を用いた光触媒において、該二酸化チタンは、空孔率が5〜90%である多孔質のチタン(Ti)合金を焼結することにより酸化して形成したアナターゼ型の二酸化チタンであることを特徴とする光触媒」が記載されている。Further, in cited document 2 (Japanese Patent Application Laid-Open No. 2001-205099), “in a photocatalyst using titanium dioxide (TiO 2 ), the titanium dioxide is porous titanium having a porosity of 5 to 90% ( "Photocatalyst characterized in that it is anatase-type titanium dioxide formed by oxidation by sintering Ti) alloy".

そして、[0024]に「本発明の二酸化チタン触媒101・・・で1200〜1350℃で焼結することにより形成したチタン合金であり、チタン微粉末は20nm〜200μm程度の微粒子である」旨、また「このチタン合金は、その後800℃以下の酸化雰囲気中で酸化させることにより、・・・空孔率(又は気孔率)が5〜90%であるアナターゼ型の多孔質の二酸化チタン合金となる」旨説明されている。  And, [0024] “It is a titanium alloy formed by sintering at 1200 to 1350 ° C. with the titanium dioxide catalyst 101 of the present invention, and the titanium fine powder is a fine particle of about 20 nm to 200 μm”, “This titanium alloy is then oxidized in an oxidizing atmosphere of 800 ° C. or lower to become an anatase-type porous titanium dioxide alloy having a porosity (or porosity) of 5 to 90%. Is explained.

しかしながら、この発明においては、空孔率5〜90%の多孔質チタン合金であり、繊維状でないか、または繊維をメッシュ状に織り込んだ織物を焼成したものであり、衣服に噴霧した場合に繊維への付着力が弱く、メッシュ状に織り込んだ焼成物は衣服の繊維内に充分に入り込まず付着力も悪い。  However, in the present invention, it is a porous titanium alloy having a porosity of 5 to 90% and is not fibrous, or is obtained by firing a woven fabric in which fibers are woven into a mesh shape, and when sprayed on clothes, Adhesive strength to the fabric is weak, and the baked product woven in a mesh shape does not sufficiently penetrate into the fibers of the clothes, resulting in poor adhesion.

また、引用文献3(特開2005−329101号公報)には、「持ち運び可能な一体型のものであって、複数本の紫外線ランプと送風機からなり、空気が紫外線に照射されるエリアを長尺状空間とし、該空間の長手方向に紫外線ランプを設置したオゾン発生装置によって室内にオゾンを供給すると共に、該室内に光触媒の粉体を液体に懸濁させた懸濁液を噴霧することを特徴とする脱臭及び悪臭発生予防方法」が記載されている。  Further, cited document 3 (Japanese Patent Laid-Open No. 2005-329101) states that “a portable one-piece type comprising a plurality of ultraviolet lamps and a blower, and an area where air is irradiated with ultraviolet rays is long. And ozone is supplied into the room by an ozone generator provided with an ultraviolet lamp in the longitudinal direction of the space, and a suspension in which the photocatalyst powder is suspended in a liquid is sprayed into the room. And "deodorization and foul odor prevention method".

そして、[0025]に「この光触媒は微粉末として市販されている。サイズは数nm〜数μm程度のものである。これを、水やアルコールに加えて懸濁液とする」旨、[0027]にこの光触媒懸濁液を噴霧すると、例えば、布や壁面に付着しそこに残存する。よって、その付近に存在する有機物を光分解反応によって分解することは当然であるが、将来その付近に付着したものも分解する。よって、予防効果を発揮するのである」旨説明されている。  [0025] “This photocatalyst is commercially available as a fine powder. The size is about several nm to several μm. This is added to water or alcohol to form a suspension.” [0027 When this photocatalyst suspension is sprayed on, for example, it adheres to a cloth or a wall surface and remains there. Therefore, it is natural to decompose the organic matter present in the vicinity by a photolysis reaction, but in the future, those attached in the vicinity will be decomposed. Therefore, it is demonstrated that it exhibits a preventive effect. "

しかしながら、光触媒懸濁液の噴霧は[0026]に記載の通り、「通常の霧吹きのようなものや、スプレーでよい」旨説明され、[0030]〜[0033]に記載の通り、光触媒懸濁液の噴霧は、この発明のオゾン発生装置とは別途に行うものである。したがって、この発明の光触媒懸濁液の噴霧は、オゾン発生装置によるオゾン供給後に別途行う予防方法の後工程として提供されている。  However, as described in [0026], the spraying of the photocatalyst suspension is explained to be “a normal spray or spraying”, and the photocatalyst suspension is described as described in [0030] to [0033]. The spraying of the liquid is performed separately from the ozone generator of the present invention. Therefore, the spraying of the photocatalyst suspension of the present invention is provided as a post-process of a preventive method that is separately performed after ozone supply by the ozone generator.

また、引用文献3には酸化チタンの粒子径が数nm〜数μmと記載されているのみで、酸化チタンが繊維状である旨の記載がなく、繊維幅及び厚さ、繊維長さ、アスペクト比、比表面積が不明である。したがって、衣服へ噴霧した場合に繊維へ充分な付着力が得られるかどうか理解できない。Moreover, in the cited document 3, the particle diameter of titanium oxide is only described as several nm to several μm, and there is no description that titanium oxide is fibrous, and the fiber width and thickness, fiber length, aspect ratio are not described. The ratio and specific surface area are unknown. Therefore, it cannot be understood whether or not sufficient adhesion to fibers can be obtained when sprayed on clothes.

また、引用文献4(特開2005−034254号公報)には、「少なくとも光触媒と、気体分子の平均径以上の孔を有する構造体とを備え、前記光触媒が前記構造体に担持された消臭体であり、消臭体に少なくとも紫外線を含む光を照射する照射手段、送風手段を備えた脱臭装置」が記載されている。  Further, cited document 4 (Japanese Patent Laid-Open No. 2005-034254) states that “deodorant comprising at least a photocatalyst and a structure having pores having an average diameter of gas molecules or more, and the photocatalyst carried on the structure. A deodorizing apparatus including an irradiating means and a blowing means for irradiating light containing at least ultraviolet rays to a deodorizing body is described.

そして、[0039]には[0038]に説明される方法にて作成された酸化チタンを含む脱臭体(ナノ脱臭体)を図4に示すような「測定皿44に脱臭体を入れて」測定した旨、また図5に示すハニカム体は[0041]に「この脱臭体(酸化チタンを含む)をシリカゾル30wt%を含むスラリーにし、セラミックハニカムにディップ後、乾燥焼成した200セルのハニカム体」である旨説明されている。  Then, in [0039], a deodorizing body (nano-deodorizing body) containing titanium oxide prepared by the method described in [0038] was measured as shown in FIG. In addition, the honeycomb body shown in FIG. 5 is a “200-cell honeycomb body in which this deodorized body (including titanium oxide) is made into a slurry containing 30 wt% silica sol, dipped in a ceramic honeycomb, and dried and fired” in [0041]. It is explained that there is.

したがって、この発明における脱臭体は、気体分子の平均径以上の多孔質構造体、または脱臭体(酸化チタンを含む)ハニカム体であり、衣服の繊維に噴霧できる繊維状の超微粒子を含有する透明液状触媒ではない。  Therefore, the deodorizing body in this invention is a porous structure having an average diameter of gas molecules or more, or a deodorizing body (including titanium oxide) honeycomb body, and contains transparent ultrafine particles that can be sprayed on the clothes fibers. It is not a liquid catalyst.

また、引用文献5(特開平9−104852号公報)には、「抗菌部材または帯電防止剤の内一方を含んだことを特徴とする糊」[請求項1]であって、「空気圧または気化ガスにより糊が噴霧されるスプレー型とし」[請求項6]、「この糊には二酸化チタン等の光触媒を含み、光触媒の外形寸法が0.03〜100μm粉末状であり、塗布後乾燥させること、被塗布物が衣類又は紙類であり、スプレー塗布後アイロンかけにより糊を乾燥、固定するようにすること」[請求項20]〜[請求項25]が記載されている。  Further, cited document 5 (Japanese Patent Laid-Open No. 9-104852) discloses “a paste characterized by containing one of an antibacterial member and an antistatic agent” [Claim 1], wherein “air pressure or vaporization”. A spray type in which paste is sprayed by gas ”[Claim 6],“ This paste contains a photocatalyst such as titanium dioxide, and the external dimensions of the photocatalyst are 0.03 to 100 μm in powder form, and are dried after application. The article to be coated is clothing or paper, and the paste is dried and fixed by ironing after spray application ”[Claim 20] to [Claim 25].

そして、[0022]〜[0023]には「本発明は・・・家庭用または業務用における糊付けおよびアイロン掛け作業の一環として、抗菌部材または帯電防止剤の内少なくとも一方を衣類やタオル、シーツ類に簡単に塗布し付着固定させられる。その結果、家庭においても殺菌した衣類を着用可能にし、健康で快適な生活を可能にする」旨説明されている。  And [0022] to [0023], “In the present invention, as part of gluing and ironing operations for home use or business use, at least one of the antibacterial member and antistatic agent is applied to clothing, towels, sheets, etc. As a result, it is possible to wear sterilized clothing even at home, and to enable a healthy and comfortable life.

さらに、[0050]には「糊に含ませる二酸化チタンまたは二酸化チタンと活性炭との混合物等からなる光触媒の微粉末粒子は0.03〜100μmの外形を有し・・・数μm〜100μmの膜厚にスプレー塗布または印刷すればよい」旨説明されている。  Furthermore, [0050] states that “a fine powder particle of photocatalyst made of titanium dioxide or a mixture of titanium dioxide and activated carbon included in the paste has an outer shape of 0.03 to 100 μm, a film of several μm to 100 μm It may be sprayed or printed to a thickness ".

しかしながら、この発明においては、酸化チタン等の光触媒の微粉末粒子は0.03〜100μmの外形と極めて粗く、酸化チタンは繊維状である旨の記載がなく、繊維幅及び厚さ、繊維長さ、アスペクト比、比表面積が不明なため、衣服に噴霧した場合、繊維に対する充分な付着力を有するかどうか不明である。また、被塗布物が衣服である旨記載されているが、糊状であるため衣服の繊維内に充分進入できないと共に、糊状であるので水分が多く乾燥時間が長くかかり、さらに光触媒粒子に前記糊が被服するため粒子の表面露出度が極めて悪い。However, in this invention, the fine powder particles of photocatalyst such as titanium oxide are extremely rough with an outer shape of 0.03 to 100 μm, and there is no description that titanium oxide is fibrous, and the fiber width and thickness, and fiber length. Since the aspect ratio and specific surface area are unknown, it is unclear whether or not it has sufficient adhesion to fibers when sprayed on clothes. In addition, although the article to be coated is described as clothing, it is pasty, so it cannot sufficiently enter into the fibers of the clothing, and since it is pasty, it takes a lot of moisture and takes a long time to dry. Since the paste is coated, the surface exposure of the particles is extremely poor.

また、引用文献6(特開平10−314543号公報)には、「脱臭塔3内で被処理空気11中の悪臭ガス成分を二酸化チタン粒子5に吸着し、この二酸化チタン粒子5を管37を通して再生塔7に導き、ブラックライト照明器31からブラックライトを照射することで、吸着した悪臭ガス成分を酸化分解し再生する」旨記載されている。  Further, in cited document 6 (Japanese Patent Laid-Open No. 10-314543), “the malodorous gas component in the air to be treated 11 is adsorbed to the titanium dioxide particles 5 in the deodorizing tower 3, and the titanium dioxide particles 5 are passed through the pipe 37. It is guided to the regeneration tower 7 and irradiated with black light from the black light illuminator 31 to oxidatively decompose and regenerate the adsorbed malodorous gas component ”.

そして、「二酸化チタン粒子は比重が軽く、また直径を1.4〜2.0mmとすることで、空気流によって容易に流動状態になる」[0026]」旨、また、「・・・浮遊する二酸化チタン粒子5に対し、再生棚27の側方に設けられたブラックライト照明器31から紫外線などのブラックライトが照射される。この照射により、二酸化チタン粒子5に吸着されていた悪臭ガス成分はブラックライトの光エネルギーで酸化分解し無臭化される。二酸化チタン粒子5は光触媒として酸化分解を促進する。このようにして二酸化チタン粒子5は再び吸着性能を再生する」[0027]旨説明されている。  "Titanium dioxide particles have a light specific gravity and a diameter of 1.4 to 2.0 mm, so that they can be easily fluidized by air flow" [0026] "and" ... float. The titanium dioxide particles 5 are irradiated with black light such as ultraviolet rays from a black light illuminator 31 provided on the side of the reproduction shelf 27. By this irradiation, malodorous gas components adsorbed on the titanium dioxide particles 5 are emitted. It is oxidized and decomposed by the light energy of black light and is not brominated.Titanium dioxide particles 5 promote oxidative decomposition as a photocatalyst.Thus, titanium dioxide particles 5 regenerate the adsorption performance again ”[0027] Yes.

しかしながら、この発明においては、酸化チタン粒子は1.4〜2.0mmと粗く[請求項2]、また衣服の繊維に噴霧した場合に、ナノメートル単位の粒子でないため繊維内に充分に分散せず繊維への付着力が弱い。また、ナノメートルの分散体でなく比表面積が限定され、粒子表面の露出割合が少なく、高い光触媒活性作用を得ることができない。  However, in the present invention, the titanium oxide particles are as coarse as 1.4 to 2.0 mm [Claim 2], and when sprayed onto the fibers of clothes, they are not nanometer-sized particles and are sufficiently dispersed in the fibers. The adhesion to fibers is weak. In addition, the specific surface area is not limited to a nanometer dispersion, the exposure rate of the particle surface is small, and a high photocatalytic activity cannot be obtained.

また、引用文献7(実用新案登録第3124458号公報)には、「機体、オゾン発生機器、殺菌装置、ファン、設置テーブルから構成された多機能殺菌除臭装置であって、内部に殺菌・消毒を行う物品を収容する空間を有し、上部に通風孔を設けた密閉型の箱からなる機体と、機体内部上端に設置されてオゾンを噴出して殺菌するオゾン発生機器と、機体内壁面に設置され、同様に殺菌・徐臭作用を行う殺菌装置と、機体上方に設置し通風孔から機体内部の空気を外部に排出するファンと、殺菌・消毒を行う物品を載置するテーブルとから構成されることを特徴する多機能殺菌除臭装置」[請求項1]が記載されている。  Further, cited document 7 (utility model registration No. 312458) discloses a “multifunctional sterilization deodorizing apparatus composed of a fuselage, an ozone generator, a sterilizer, a fan and an installation table, and sterilized / disinfected inside. The airframe is composed of a sealed box with a space for storing articles to be used, and has an air vent at the top, an ozone generator that is installed at the upper end of the airframe and sterilizes by blowing out ozone, It is composed of a sterilizer that is installed and performs sterilization / slow odor action, a fan that is installed above the machine and exhausts air inside the machine from the ventilation holes, and a table on which articles to be sterilized and disinfected are placed. A multi-functional sterilization deodorizing apparatus characterized in that "Claim 1" is described.

そして、「前記殺菌装置が紫外線管[請求項6]、光触媒殺菌器[請求項7]、ブラックライト紫外線管[請求項9]」である旨が記載されている。  And it is described that “the sterilizer is an ultraviolet ray tube [Claim 6], a photocatalyst sterilizer [Claim 7], a black light ultraviolet ray tube [Claim 9]”.

この殺菌装置は[0010]に説明されているように、それぞれが独立した殺菌装置であり、酸化チタンからなる光触媒の活性化を促進するために設けられた紫外線管、ブラックライト紫外線管ではない。As described in [0010], each of these sterilizers is an independent sterilizer and is not an ultraviolet tube or a black light ultraviolet tube provided to promote activation of a photocatalyst made of titanium oxide.

また、引用文献8(特開平11−028144号公報)には、「箪笥等に吊り下げるフックを備えた衣類保持用内型と蝶番により貝殻状に開閉でき、かつ前記衣類保持用内型と間隙を保持して取り付けられる外カバーと、前記外カバー内壁に開口した排気口及び空気噴出穴と、脱臭器及びファンを備えた脱臭箱と、前記排気口と前記脱臭箱を連通し、その内部を排気が通流する排気管と、前記空気吹出穴と前記脱臭箱を連通し、その内部を空気が通流する吸気管とを備えたことを特徴とする衣類脱臭装置」[請求項1]が記載されている。  Further, in cited document 8 (Japanese Patent Laid-Open No. 11-028144), “a clothing holding inner mold provided with a hook suspended on a bag or the like and a hinge can be opened and closed like a shell, and the clothing holding inner mold and the gap A deodorizing box having a deodorizer and a fan, and an exhaust port and the deodorizing box in communication with each other. A clothing deodorizing apparatus comprising an exhaust pipe through which exhaust flows, an intake pipe through which the air blowing hole communicates with the deodorizing box and through which the air flows ”[Claim 1] Are listed.

そして、「前記脱臭器として紫外線脱臭器、光触媒脱臭器、オゾン脱臭器、オゾン触媒脱臭器のうち少なくとも1つの脱臭器を備える」[請求項5]旨記載されている。  Further, it is stated that “the deodorizer includes at least one deodorizer among an ultraviolet deodorizer, a photocatalyst deodorizer, an ozone deodorizer, and an ozone catalyst deodorizer” [Claim 5].

この殺菌装置は[0020]〜[0022]に説明されているように、「・・・衣類表面に近距離から強く空気を吹出させ、衣類表面を常に新鮮な空気で置換して悪臭を揮発させ、さらに排気中の悪臭を脱臭するようにしたものである。・・・しかも、脱臭剤を使用しないため衣類のシミとか変質の危険が全くない」旨説明されている。  As described in [0020] to [0022], this sterilization apparatus "... blows air strongly to the clothing surface from a short distance and constantly replaces the clothing surface with fresh air to volatilize malodors. Furthermore, it is designed to deodorize bad odors in the exhaust gas .... Moreover, since no deodorant is used, there is no danger of stains or alteration of clothes.

即ち、この発明においては、光触媒脱臭器13については、繊維状酸化チタンである旨の記載がない。したがって、衣服の繊維に噴霧した場合に繊維へ充分な付着力があるかどうか理解できない。また、酸化チタンが分散体でなく多孔質体であるので比表面積が制限され、粒子表面の露出割合が少なく高い光触媒活性作用を得ることができない。  That is, in this invention, the photocatalyst deodorizer 13 is not described as being fibrous titanium oxide. Therefore, it cannot be understood whether or not there is sufficient adhesion to the fibers when sprayed on the fibers of the clothes. In addition, since titanium oxide is not a dispersion but a porous body, the specific surface area is limited, and the exposure rate of the particle surface is small and a high photocatalytic activity cannot be obtained.

また、引用文献9(特開平10−323239号公報)には、「密閉可能に構成された衣類を収納するための収納容器と、この収納容器に設けられ前記衣類に付着した防虫剤および/またはドライクリーニング溶剤の微粒子から発生するガスを分解および/または吸着する脱臭部とを備えることを特徴とする衣類用の脱臭装置」[請求項1]が記載されている。  Further, in cited reference 9 (Japanese Patent Laid-Open No. 10-323239), “a storage container for storing a garment configured to be hermetically sealed, and an insect repellent attached to the garment provided in the storage container and / or A deodorizing apparatus for clothing comprising a deodorizing unit that decomposes and / or adsorbs gas generated from fine particles of a dry cleaning solvent is described.

また、「前記脱臭部は、紫外線ランプと、この紫外線ランプからの紫外線を受光する光触媒とを備える」[請求項4]旨、また「・・・前記収納容器に密封された空気を、当該収納容器内で前記脱臭部を通して強制的に循環させる送風手段とが配置されている」[請求項5]旨記載されている。  Further, “the deodorizing unit includes an ultraviolet lamp and a photocatalyst that receives ultraviolet rays from the ultraviolet lamp” [Claim 4], and “... Stores the air sealed in the storage container. A blower forcibly circulating through the deodorizing part in the container is disposed ”[Claim 5].

そして、「脱臭部は紫外線ランプと、この紫外線ランプからの紫外線を受光する光触媒とを備え・・・光触媒が反応し、その表面において、有毒ガスを分解し、無害・無臭なものに変化させる。これにより、有害ガスを除去できる」[0012][0013]旨説明されている。  “The deodorizing section includes an ultraviolet lamp and a photocatalyst that receives the ultraviolet light from the ultraviolet lamp. The photocatalyst reacts to decompose a toxic gas on the surface and change it into harmless and odorless. By this, it is possible to remove harmful gases ”[0012] [0013].

しかしながら、この発明においては、光触媒脱臭器13については、酸化チタンである旨の記載がなく、また酸化チタンの繊維状微粉末を含む溶剤を衣服の繊維に噴霧するものでない。  However, in the present invention, the photocatalytic deodorizer 13 is not described as being titanium oxide, and is not intended to spray a solvent containing titanium oxide fibrous fine powder onto clothing fibers.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、繊維状酸化チタンを衣服の繊維内に分散して繊維へ強固に付着させて、粒子表面の露出度を90%以上と極めて大きくすると共に、前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で乾燥して、繊維状酸化チタンを熱風により衣服の繊維全体へ均一に強固に固着乾燥させて高い光触媒活性作用を得ることができる光触媒脱臭殺菌方法及びこれに使用する透明液状光触媒を提供することにある。  In the present invention, fibrous titanium oxide is dispersed in the fiber of clothes and firmly adhered to the fiber, and the exposure degree of the particle surface is extremely increased to 90% or more, and the temperature of the hot air in the hot air drying means is changed to the fiber. Photocatalytic deodorizing and sterilizing method, which can be dried at an extremely low temperature of 30 to 120 ° C. without causing any troubles, and the fibrous titanium oxide can be firmly and firmly fixed to the entire fiber of clothes by hot air to obtain a high photocatalytic activity. And it is providing the transparent liquid photocatalyst used for this.

引用文献1 特開2000−288405号公報
引用文献2 特開2001−205099号公報
引用文献3 特開2005−329101号公報
引用文献4 特開2005−034254号公報
引用文献5 特開平09−104852号公報
引用文献6 特開平10−314543号公報
引用文献7 実用新案登録第3124458号公報
引用文献8 特開平11−028144号公報
引用文献9 特開平10−323239号公報
Cited Document 1 JP 2000-288405 JP Cited Document 2 JP 2001-205099 JP Cited Document 3 JP 2005-329101 JP Cited Document 4 JP 2005-034254 JP Cited Document 5 JP 09-104852 A Cited Reference 6 Japanese Patent Laid-Open No. 10-314543 Cited Reference 7 Utility Model Registration No. 31244458 Cited Reference 8 Japanese Patent Laid-Open No. 11-028144 Cited Reference 9 Japanese Patent Laid-Open No. 10-323239

課題を解決する手段Means to solve the problem

請求項1の発明は、密閉室内の衣服等の繊維物質に液状光触媒を噴出する光触媒噴出手段と、前記繊維物質に付着する光触媒に紫外線を照射する紫外線照射手段と、前記繊維物質に付着する液状光触媒に熱風を送風して乾燥させる熱風乾燥手段とからなり、前記光触媒噴出手段において光触媒が繊維状酸化チタン超微粒子であり、該繊維状酸化チタン超微粒子を適量分散させた透明液状光触媒を噴出するようにし、前記熱風乾燥手段における熱風の温度を30〜120℃とし、密閉室内に充満する繊維状酸化チタン超微粒子を熱風により前記繊維物質の繊維全体へ均一に固着乾燥させるようにした光触媒脱臭殺菌方法を提供するものである。  The invention according to claim 1 is a photocatalyst ejecting means for ejecting a liquid photocatalyst to a fiber material such as clothes in a sealed chamber, an ultraviolet irradiation means for irradiating the photocatalyst adhering to the fiber material with ultraviolet light, and a liquid adhering to the fiber material. And hot air drying means for blowing hot air to the photocatalyst and drying the photocatalyst. The photocatalyst ejecting means ejects a transparent liquid photocatalyst in which an appropriate amount of the fibrous titanium oxide ultrafine particles is dispersed. Thus, the temperature of the hot air in the hot air drying means is 30 to 120 ° C., and the fibrous titanium oxide ultrafine particles filling the sealed chamber are uniformly fixed to the whole fiber of the fibrous material by hot air and dried. A method is provided.

この発明においては、繊維状酸化チタン超微粒子を衣服の繊維内に単独分散して繊維へ強固に付着させて、粒子表面の露出度を90%以上と極めて大きくすることができると共に、前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で乾燥固着でき、繊維状酸化チタンを熱風により衣服の繊維全体へ強固に乾燥固着させて暗い密閉室内であっても高い光触媒活性作用を得ることができる。また、前記液状光触媒が透明であるから処理後繊維物が変色せない。そして、長期に渡り防臭、殺菌、防カビ効果を持続させることのできる光触媒脱臭殺菌方法を提供することができる。また、衣服の繊維は、原料となる出発糸と、この糸を縫い合わせた中間原料糸と、この中間原料糸を縫い合わせた最終の織り込み繊維とから構成されているが、本発明の繊維状酸化チタン超微粒子は、原料となる出発糸の繊維にまで進入させて固着することができるので、強固に固着させて長期に渡り上記効果を持続させることができる。  In the present invention, the fibrous titanium oxide ultrafine particles are dispersed in the fibers of the clothes alone and firmly adhered to the fibers, and the degree of exposure of the particle surface can be extremely increased to 90% or more, and the hot air drying is performed. The temperature of the hot air in the means can be dried and fixed at an extremely low temperature of 30 to 120 ° C., which does not interfere with the fiber, and the fibrous titanium oxide is firmly dried and fixed to the entire fiber of the clothes by the hot air, even in a dark sealed room. A photocatalytic activity can be obtained. Moreover, since the said liquid photocatalyst is transparent, a fiber thing after a process does not discolor. And the photocatalyst deodorizing sterilization method which can maintain a deodorizing, disinfection, and antifungal effect over a long period of time can be provided. In addition, the fiber of the garment is composed of a starting yarn as a raw material, an intermediate raw material thread obtained by stitching this yarn, and a final woven fiber obtained by stitching this intermediate raw material yarn. The fibrous titanium oxide of the present invention Since the ultrafine particles can penetrate into the starting yarn fibers that are the raw material and can be fixed, they can be firmly fixed to maintain the above effect over a long period of time.

請求項2の発明は、前記光触媒噴出手段における液状光触媒中の無機元素が半定量値において、少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含む透明液状光触媒を提供するものである。  The invention of claim 2 is that the inorganic element in the liquid photocatalyst in the photocatalyst ejecting means is a semi-quantitative value, at least Ti is 90 to 97 wt%, Si is 2.3 to 3.0 wt%, Ag is 1.4 to 2 A transparent liquid photocatalyst containing 0.2 wt% and 0.2 to 0.3 wt% Zn is provided.

この発明においては、上記の酸化物が残存することにより得られる酸化チタンの紫外線吸収領域、誘電率、光触媒活性、プロトン導電性、固体酸特性等を調整することができ、さらに熱的安定性や化学的安定性等を調節することもできる。また、Agを添加することにより、暗い密閉室内であっても高い光触媒活性作用を得ることができる。さらに、Siを含むことにより粘度を低くして流動性を高めることができ、繊維状酸化チタン超微粒子を衣服の繊維内に容易に進入させると共に、速やかに乾燥させることができる。上記範囲外であるとこれらの効果が得られないものと思われる。  In the present invention, it is possible to adjust the ultraviolet absorption region, dielectric constant, photocatalytic activity, proton conductivity, solid acid characteristics, etc. of titanium oxide obtained by the above oxide remaining, and further, thermal stability and Chemical stability and the like can also be adjusted. Further, by adding Ag, a high photocatalytic activity can be obtained even in a dark sealed room. Furthermore, by containing Si, the viscosity can be lowered and the fluidity can be increased, and the fibrous titanium oxide ultrafine particles can easily enter the fibers of the clothes and can be quickly dried. If it is out of the above range, it is considered that these effects cannot be obtained.

請求項3の発明は、前記光触媒噴出手段における液状光触媒中の有機元素が定量値において、少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含む透明液状光触媒を提供するものである。  According to a third aspect of the present invention, the organic element in the liquid photocatalyst in the photocatalyst ejecting means has a quantitative value, at least C is 55 to 65 wt%, H is 8 to 12 wt%, and N is 0.2 to 0.4 wt%. A liquid photocatalyst is provided.

この発明においては、CHNの有機元素が上記の範囲にあると、前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で繊維状酸化チタンを衣服の繊維に強固に固着させることができると共に、乾燥速度を極めて速くすることができる。上記範囲外であるとこれらの効果が得られないものと思われる。  In the present invention, when the organic element of CHN is in the above range, the temperature of the hot air in the hot air drying means is 30 to 120 ° C., which does not hinder the fibers, and the fibrous titanium oxide is firmly attached to the clothes fibers. And the drying speed can be extremely fast. If it is out of the above range, it is considered that these effects cannot be obtained.

請求項4の発明は、前記液状光触媒中における繊維状酸化チタンが超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m/g以上である透明液状光触媒を提供するものである。In the invention of claim 4, the fibrous titanium oxide in the liquid photocatalyst is ultrafine particles, the average fiber width and thickness are 1 to 50 nm, the average fiber length is 10 to 1000 nm, the average aspect ratio is 2 to 100, A transparent liquid photocatalyst having a specific surface area of 30 m 2 / g or more is provided.

この発明においては、極めて微粒の繊維状酸化チタンを衣服の繊維内にくまなく分散させて衣服の繊維へ強固に付着させできると共に、粒子表面の露出度を90%以上極めて大きくでき、高い光触媒活性作用を得ることができる。また、極めて微粒の繊維状酸化チタンを衣服の繊維内にくまなく分散させて前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で乾燥させることができる。上記範囲外であると、繊維状酸化チタンの反応拡散が充分に行われず、高い光触媒活性作用を得ることができない。好ましくは、平均繊維幅及び厚さが10〜30nm、平均繊維長さが20〜100nm、平均アスペクト比が3〜50、比表面積が50m/g以上であるIn this invention, very fine fibrous titanium oxide can be dispersed throughout the fiber of the garment and firmly adhered to the fiber of the garment, and the degree of exposure of the particle surface can be greatly increased by 90% or more, resulting in high photocatalytic activity. The effect can be obtained. Further, extremely fine fibrous titanium oxide can be dispersed throughout the fiber of the clothes, and the hot air in the hot air drying means can be dried at an extremely low temperature of 30 to 120 ° C. which does not affect the fiber. If it is outside the above range, the reaction diffusion of the fibrous titanium oxide is not sufficiently performed, and a high photocatalytic activity cannot be obtained. Preferably, the average fiber width and thickness are 10 to 30 nm, the average fiber length is 20 to 100 nm, the average aspect ratio is 3 to 50, and the specific surface area is 50 m 2 / g or more.

繊維状酸化チタン超微粒子の生成は、酸化チタン系複合酸化物が水に分散してなる水分散ゾルを、少なくともSiO、AgO、ZnOのアルカリ金属水酸化物の存在下で水熱処理することにより得られる。これら繊維状酸化チタンの粒子径は、繊維幅及び厚さが1〜50nm、繊維長さが10〜1000nm、アスペクト比が2〜100以上が好ましく使用され、酸化チタン系複合酸化物粒子の水分散ゾルを用いる。上記粒子径であれば安定な水分散ゾルが得られ、非常に高いレベルで単独の粒子分散性に優れた繊維状酸化チタン超微粒子が得られる。The production of fibrous titanium oxide ultrafine particles is achieved by hydrothermally treating an aqueous dispersion sol in which a titanium oxide composite oxide is dispersed in water in the presence of at least an alkali metal hydroxide of SiO 2 , AgO, and ZnO. can get. These fibrous titanium oxides preferably have a fiber width and thickness of 1 to 50 nm, a fiber length of 10 to 1000 nm, and an aspect ratio of 2 to 100 or more, and water dispersion of titanium oxide composite oxide particles. Use sol. With the above particle size, a stable water-dispersed sol can be obtained, and fibrous titanium oxide ultrafine particles having excellent particle dispersibility at a very high level can be obtained.

前記酸化チタン粒子、酸化チタンと酸化チタン以外の酸化物からなる酸化チタン系複合酸化物粒子の水分散ゾルの濃度としては、酸化物として2〜50重量%の範囲にあることが好ましい。このような濃度範囲であれば、ゾルは安定であり、アルカリ処理時に粒子が凝集することもなく、効率的に繊維状酸化チタン超微粒子を生成させることができる。  The concentration of the water-dispersed sol of the titanium oxide particles and the titanium oxide-based composite oxide particles composed of oxides other than titanium oxide and titanium oxide is preferably in the range of 2 to 50% by weight as oxides. In such a concentration range, the sol is stable and the fibrous titanium oxide ultrafine particles can be efficiently generated without aggregation of the particles during the alkali treatment.

上記のように、特にSiO、AgO、ZnOのアルカリ金属水酸化物が含まれると、繊維状酸化チタン超微粒子が生成しやすく、繊維状酸化チタン超微粒子の紫外線吸収領域や光触媒活性を調整することができ、さらに熱的安定性や化学的安定性を得ることができる。上記酸化チタン以外の酸化物の含有量は1〜25重量%、好ましくは3〜8重量%である。このような範囲において繊維状酸化チタン超微粒子は高いレベルで生成する。As described above, particularly when an alkali metal hydroxide of SiO 2 , AgO, or ZnO is contained, fibrous titanium oxide ultrafine particles are easily generated, and the ultraviolet absorption region and photocatalytic activity of the fibrous titanium oxide ultrafine particles are adjusted. Furthermore, thermal stability and chemical stability can be obtained. Content of oxides other than the said titanium oxide is 1-25 weight%, Preferably it is 3-8 weight%. In such a range, fibrous titanium oxide ultrafine particles are generated at a high level.

本実施例では、複合酸化チタン超微粒子に対してチタン過酸化物または複合チタン過酸化物と、有機高分子化合物とからなるバインダーを使用する。このようなチタン過酸化物または複合チタン過酸化物は通常溶液状態(透明液状光触媒)となる。このようなチタン過酸化物または複合チタン過酸化物は、前記複合酸化チタン微粒子と同程度の屈折率を有しているので、被膜構成成分による光の散乱がなく、透明性に優れた液状光触媒とすることができる。  In this embodiment, a binder made of titanium peroxide or composite titanium peroxide and an organic polymer compound is used for the composite titanium oxide ultrafine particles. Such titanium peroxide or composite titanium peroxide is usually in a solution state (transparent liquid photocatalyst). Such a titanium peroxide or composite titanium peroxide has a refractive index comparable to that of the composite titanium oxide fine particles, so that it does not scatter light due to coating components and has excellent transparency. It can be.

塩化チタン水溶液を純水で希釈してTiOとして濃度5重量%の塩化チタン水溶液を調整した。この水溶液を、温度を5℃に調整した濃度15%のアンモニア水に添加して中和・加水分解した。ついで生成したゲルを濾過洗浄し、TiOとして濃度9重量%のオルソチタン酸のゲルを得た。A titanium chloride aqueous solution was diluted with pure water to prepare a titanium chloride aqueous solution having a concentration of 5% by weight as TiO 2 . This aqueous solution was neutralized and hydrolyzed by adding it to 15% aqueous ammonia adjusted to a temperature of 5 ° C. Subsequently, the produced gel was washed by filtration to obtain an orthotitanic acid gel having a concentration of 9% by weight as TiO 2 .

このオルソチタン酸のゲル100gを純水2900gに分散させた後、濃度35重量%の過酸化水素水800gを加え、攪拌しながら85℃で3時間加熱し、ペルオキソチタン酸水溶液を調整した。得られたペルオキソチタン酸水溶液のTiOとして濃度は0.5重量%であった。ついで95℃で10時間加熱して酸化チタン粒子分散液とし、この酸化チタン粒子分散液に分散液中のTiOに対するモル比が0.016となるようにテトラメチルアンモニウムハイドロオキサドを添加した。ついで、SiO、AgO、ZnOを若干量添加して、230℃で5時間水熱処理して複合酸化チタン粒子分散液、即ち本発明で使用する透明液状光触媒を調整した。この時の酸化チタンは、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100の繊維状酸化チタン超微粒子であった。After 100 g of this orthotitanic acid gel was dispersed in 2900 g of pure water, 800 g of hydrogen peroxide having a concentration of 35% by weight was added and heated at 85 ° C. for 3 hours with stirring to prepare a peroxotitanic acid aqueous solution. The concentration of the obtained peroxotitanic acid aqueous solution as TiO 2 was 0.5% by weight. Then heated for 10 hours at 95 ° C. and a titanium oxide particle dispersion liquid, the molar ratio of TiO 2 dispersion in the titanium oxide particle dispersion liquid was added tetramethylammonium hydroxide oxa de so that 0.016. Next, a slight amount of SiO 2 , AgO and ZnO was added and hydrothermally treated at 230 ° C. for 5 hours to prepare a composite titanium oxide particle dispersion, that is, a transparent liquid photocatalyst used in the present invention. The titanium oxide at this time was fibrous titanium oxide ultrafine particles having an average fiber width and thickness of 1 to 50 nm, an average fiber length of 10 to 1000 nm, and an average aspect ratio of 2 to 100.

上記透明液状光触媒の無機元素及び有機元素の組成比の測定結果を以下に示す。尚、透明液状光触媒の組成を把握するために、この透明液状光触媒から水を蒸発させて、溶解成分のみを濃縮採取し、それに含まれる無機元素及び有機元素の量を調べた。試料溶液をビーカーに入れ、120℃のホットプレートを用いて水を蒸発させ、触媒成分を濃縮採取した。有機物の存在が予想されるのでCHN分析も追加した。  The measurement result of the composition ratio of the inorganic element and the organic element of the transparent liquid photocatalyst is shown below. In order to grasp the composition of the transparent liquid photocatalyst, water was evaporated from the transparent liquid photocatalyst, and only the dissolved components were concentrated and collected, and the amounts of inorganic elements and organic elements contained therein were examined. The sample solution was put into a beaker, water was evaporated using a 120 ° C. hot plate, and the catalyst component was concentrated and collected. CHN analysis was also added because of the expected presence of organics.

無機元素の定性・半定量(蛍光X線法);
以下の装置・条件で測定し、含有元素の定性・半定量を行った。
装置;理学電気(株)製 全自動蛍光X線分析装置、RIX−3000
管球;Rh管球 測定径;25mmφ
Qualitative and semi-quantitative determination of inorganic elements (fluorescence X-ray method);
Measured with the following equipment and conditions, qualitative and semi-quantitative analysis of the contained elements.
Apparatus: Rigaku Electric Co., Ltd. fully automatic X-ray fluorescence analyzer, RIX-3000
Tube; Rh tube Measurement diameter: 25mmφ

無機元素(Naより重い元素)の判定量結果

Figure 2010069469
Judgment amount result of inorganic element (element heavier than Na)
Figure 2010069469

CHNの定量(燃焼熱伝導度法);
装置;ヤナコ製 MT−700CN
Determination of CHN (combustion thermal conductivity method);
Equipment: MT-700CN made by Yanaco

CHNの測定結果

Figure 2010069469
CHN measurement results
Figure 2010069469

測定結果の解析
前記測定結果より、液状光触媒に含まれる元素量は、以下のように計算される。

Figure 2010069469
Analysis of measurement results From the measurement results, the amount of elements contained in the liquid photocatalyst is calculated as follows.
Figure 2010069469

上記無機元素の含有量は、下記式で測定値から算出した。
無機元素含有量=無機元素測定値×(100−CHN含有量)/100
すなわち、有機物由来と考えられるCHNの含有量(約70%)を全量から除き、その残りの(約30%)を無機元素含有量で割り振った。ただし、本測定では、必ず含まれている0(酸素)の含有量を把握できないため、無機元素の含有量には“<”を付した。Tiの形態をTiOと仮定すると、含まれるTiとOとの重量比は100:67となり、上表の推算値は次表のように換算される。
Content of the said inorganic element was computed from the measured value by the following formula.
Inorganic element content = measured value of inorganic element x (100-CHN content) / 100
That is, the content (about 70%) of CHN considered to be derived from organic substances was excluded from the total amount, and the remaining (about 30%) was allocated by the inorganic element content. However, in this measurement, since the content of 0 (oxygen) that is necessarily contained cannot be grasped, “<” is added to the content of inorganic elements. Assuming that the form of Ti is TiO 2 , the weight ratio of Ti and O contained is 100: 67, and the estimated values in the above table are converted as shown in the following table.

含有量推算値(酸素O含有量を考慮)

Figure 2010069469
Content estimate (considering oxygen O content)
Figure 2010069469

CNは有機バインダーに由来する元素と判断され、含有物の約70%以上(その他、酸素Oが存在している可能性も高い)を占めている。Ti(TiO)は光触媒の主成分である。CN is judged to be an element derived from an organic binder, and occupies about 70% or more of the content (in addition, there is a high possibility that oxygen O is present). Ti (TiO 2 ) is the main component of the photocatalyst.

Agは、主に抗菌作用物質として添加された成分であるが、その含有量はTiOに比べて遥かに少ないものと判断される。また、Agの添加により暗い密閉室内であっても高い光触媒活性作用を得ることができるAg is a component added mainly as an antibacterial substance, but its content is judged to be far less than that of TiO 2 . Moreover, high photocatalytic activity can be obtained even in a dark sealed room by adding Ag.

Znは光触媒の吸着性向上のために添加されたものである。酸性のTiOに塩基性のZnOを添加する場合もある。Zn is added for improving the adsorptivity of the photocatalyst. In some cases, basic ZnO is added to acidic TiO 2 .

Siはバインダー成分(シリカゾル)であり、粘度を低くすることができ、流動性も高めることができる。尚、K,Clは本質的成分ではない。  Si is a binder component (silica sol), which can lower the viscosity and increase the fluidity. K and Cl are not essential components.

滅菌試験
試験方法;光照射フィルム密着法
対 照;ポリエステルフィルム
照射条件;約1000〜2000 Lx
室 温;20〜25℃

Figure 2010069469
Sterilization test Test method; light irradiation film adhesion method reference; polyester film irradiation condition; about 1000 to 2000 Lx
Room temperature: 20-25 ° C
Figure 2010069469

上記試験結果から考証すると、高い滅菌効果が確認できる。また、遮光の場合でも高い滅菌効果があるが、これは添加された銀(AgO)の銀イオンの効果も発揮されているものと思われる。  A high sterilization effect can be confirmed from the above test results. In addition, even in the case of light shielding, there is a high sterilization effect, which seems to be exerting the effect of silver ions of added silver (AgO).

滅菌評価
1.綿タオル1kgを30分間本発明の光触媒脱臭殺菌方法を利用した装置に投入し、100℃で熱風を送風して乾燥し試料タオルを得た。また、前記処理した試料タオルの一部は洗剤(花王石鹸(株)製 ハイトップ)を使用して、10分間洗濯した後、水道水で5分間水洗いすることを50回繰り返し、最後に100℃で乾燥して他の試料タオルを得た。
2.前記綿タオルの代わりに、1kgのポリエステル繊維布を使用した。それ以外は上記と同様の操作を行った。
3.抗菌試験大腸菌と黄色葡萄状球菌をリン酸バッファーに懸濁させ、200mlの三角フラスコにこの溶液75mlと上記本発明で使用する透明液状光触媒0.75gを入れ、25℃±5℃に保持して、回転数330rpmで1時間振動処理した。この処理液の生菌数を測定して下記滅菌率を算出した。
Sterilization evaluation 1 kg of cotton towel was put into an apparatus using the photocatalyst deodorizing and sterilizing method of the present invention for 30 minutes, and hot air was blown at 100 ° C. to dry to obtain a sample towel. In addition, a part of the treated sample towel was washed for 10 minutes using a detergent (High Top manufactured by Kao Soap Co., Ltd.) and then washed with tap water for 5 minutes 50 times, and finally at 100 ° C. And dried to obtain another sample towel.
2. Instead of the cotton towel, 1 kg of polyester fiber cloth was used. Otherwise, the same operation as above was performed.
3. Antibacterial test E. coli and Staphylococcus aureus were suspended in phosphate buffer, 75 ml of this solution and 0.75 g of the transparent liquid photocatalyst used in the present invention were placed in a 200 ml Erlenmeyer flask, and kept at 25 ° C. ± 5 ° C. And vibration treatment at 330 rpm for 1 hour. The number of viable bacteria in this treatment solution was measured, and the following sterilization rate was calculated.

Figure 2010069469
*すべて無臭であった。
Figure 2010069469
* All were odorless.

以上の結果から、本発明の光触媒脱臭殺菌方法によると、綿布は勿論のこと、ポリエステル繊維に対しても優れた滅菌性を示し、また洗濯をしてもその滅菌性は殆ど低下しないことが理解される。これは本発明の光触媒脱臭殺菌方法及び透明液状光触媒によると酸化チタン超微粒子の繊維に対する付着力が極めて強固であるためと考えられる。  From the above results, it is understood that the photocatalyst deodorizing and sterilizing method of the present invention shows excellent sterilization not only for cotton cloth but also for polyester fiber, and the sterility is hardly lowered even after washing. Is done. This is presumably because the adhesion of the titanium oxide ultrafine particles to the fibers is extremely strong according to the photocatalyst deodorizing and sterilizing method of the present invention and the transparent liquid photocatalyst.

本発明で使用される紫外線照射手段はブラックライトであり、以下の300〜400nmの波長領域である。また、暗い密閉室内であっても高い光触媒活性作用を得ることができる。  The ultraviolet irradiation means used in the present invention is black light and has the following wavelength range of 300 to 400 nm. Moreover, a high photocatalytic activity can be obtained even in a dark sealed room.

Figure 2010069469
Figure 2010069469

本発明の方法を利用する前記滅菌評価に使用した装置としては、例えば、密閉室内で透明液状光触媒を衣服の周囲方向に向かって1つ若しくは複数のノズルから噴出させると共に、密閉室内に充満する霧状の透明液状光触媒を1つ若しくは複数の送風口より熱風を吹き出させて、透明液状光触媒の酸化チタン超微粒子を衣服の繊維内へ進入させ、酸化チタン超微粒子を衣服の繊維に付着させて固着乾燥するようにする。密閉室は四角や円形箱体であってもよい。また、ブラックライトは衣服の繊維に付着した酸化チタン超微粒子を均一に照射するような箇所に1個若しくは複数個を密閉室内壁に設ける。さらに、上記熱風を最初に噴射し、処理後冷風を噴射して透明液状光触媒の硬化を促進させることもできる。  As an apparatus used for the sterilization evaluation using the method of the present invention, for example, a transparent liquid photocatalyst is ejected from one or a plurality of nozzles toward the peripheral direction of clothes in a sealed chamber, and a mist is filled in the sealed chamber. The transparent liquid photocatalyst in the form of hot air is blown out from one or a plurality of air outlets, the titanium oxide ultrafine particles of the transparent liquid photocatalyst enter the clothing fibers, and the titanium oxide ultrafine particles are adhered to the clothing fibers and fixed. Allow to dry. The sealed chamber may be a square or a circular box. In addition, one or more black lights are provided on the sealed indoor wall at locations where the titanium oxide ultrafine particles adhering to the clothes fibers are uniformly irradiated. Further, the hot air can be jetted first, and the cool air after the treatment can be jetted to accelerate the curing of the transparent liquid photocatalyst.

発明の効果The invention's effect

この発明においては、繊維状酸化チタン超微粒子を衣服の繊維内に単独分散して繊維へ強固に付着させて、粒子表面の露出度を90%以上と極めて大きくすることができると共に、前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で乾燥固着でき、繊維状酸化チタンを熱風により衣服の繊維全体へ強固に乾燥固着させて暗い密閉室内であっても高い光触媒活性作用を得ることができる。また、前記液状光触媒が透明であるから処理後繊維物を変色させない。そして、長期に渡り防臭、殺菌、防カビ効果を持続させることのできる光触媒脱臭殺菌方法を提供することができる。また、衣服の繊維は、原料となる出発糸と、この糸を縫い合わせた中間原料糸と、この中間原料糸を縫い合わせた最終の織り込み繊維とから構成されているが、本発明の繊維状酸化チタン超微粒子は、原料となる出発糸の繊維にまで進入させて固着することができるので、強固に固着させて長期に渡り上記効果を持続させることができる光触媒脱臭殺菌方法を提供することができる。  In the present invention, the fibrous titanium oxide ultrafine particles are dispersed in the fibers of the clothes alone and firmly adhered to the fibers, and the degree of exposure of the particle surface can be extremely increased to 90% or more, and the hot air drying is performed. The temperature of the hot air in the means can be dried and fixed at an extremely low temperature of 30 to 120 ° C., which does not interfere with the fiber, and the fibrous titanium oxide is firmly dried and fixed to the entire fiber of the clothes by the hot air, even in a dark sealed room. A photocatalytic activity can be obtained. Further, since the liquid photocatalyst is transparent, the treated fiber is not discolored. And the photocatalyst deodorizing sterilization method which can maintain a deodorizing, disinfection, and antifungal effect over a long period of time can be provided. In addition, the fiber of the garment is composed of a starting yarn as a raw material, an intermediate raw material thread obtained by stitching this yarn, and a final woven fiber obtained by stitching this intermediate raw material yarn. The fibrous titanium oxide of the present invention Since the ultrafine particles can enter and fix the fibers of the starting yarn as a raw material, it is possible to provide a photocatalyst deodorizing and sterilizing method that can be firmly fixed and maintain the above effect for a long time.

また、上記の酸化物が残存することにより得られる酸化チタンの紫外線吸収領域、誘電率、光触媒活性、プロトン導電性、固体酸特性等を調整することができ、さらに熱的安定性や化学的安定性等を調節することもできる。また、Agを添加することにより、暗い密閉室内であっても高い光触媒活性作用を得ることができる。さらに、Siを含むことにより、粘度を低くすることができ流動性も高めることができる。  In addition, the ultraviolet absorption region, dielectric constant, photocatalytic activity, proton conductivity, solid acid characteristics, etc. of titanium oxide obtained by the above oxide remaining can be adjusted, and further, thermal stability and chemical stability can be adjusted. Sex etc. can also be adjusted. Further, by adding Ag, a high photocatalytic activity can be obtained even in a dark sealed room. Furthermore, by containing Si, the viscosity can be lowered and the fluidity can be increased.

また、CHNの有機元素が上記の範囲にあると、前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で繊維状酸化チタンを衣服の繊維に強固に固着させることができると共に、乾燥速度を極めて速くすることができる。  Further, when the organic element of CHN is in the above range, the temperature of the hot air in the hot air drying means is firmly fixed to the clothes fibers at a temperature as low as 30 to 120 ° C. which does not affect the fibers. And the drying rate can be very fast.

さらに、超微粒の繊維状酸化チタン粒子を衣服の繊維内に均一に分散させて衣服の繊維全体へ強固に付着させると共に、粒子表面の露出度を90%以上極めて大きくでき、高い光触媒活性作用を得ることができる。また、超微粒の繊維状酸化チタン粒子を衣服の繊維内にくまなく分散させて前記熱風乾燥手段における熱風の温度を繊維に支障のない30〜120℃と極めて低い温度で乾燥させることができる。また、光触媒が透明であるので、衣服が白色でも着色すれる恐れがない。  Furthermore, ultra-fine fibrous titanium oxide particles can be uniformly dispersed in the fibers of the garment and firmly adhered to the entire garment fibers, and the degree of exposure of the particle surface can be greatly increased by 90% or more, resulting in high photocatalytic activity. Obtainable. Also, the ultrafine fibrous titanium oxide particles can be dispersed throughout the fiber of the clothes, and the hot air in the hot air drying means can be dried at an extremely low temperature of 30 to 120 ° C., which does not interfere with the fiber. In addition, since the photocatalyst is transparent, there is no fear that the clothes will be colored even when it is white.

Claims (4)

密閉室内の衣服等の繊維物質に液状光触媒を噴出する光触媒噴出手段と、前記繊維物質に付着する光触媒に紫外線を照射する紫外線照射手段と、前記繊維物質に付着する液状光触媒に熱風を送風して乾燥させる熱風乾燥手段とからなり、前記光触媒噴出手段において光触媒が繊維状酸化チタン超微粒子であり、該繊維状酸化チタン超微粒子を適量分散させた透明液状光触媒を噴出するようにし、前記熱風乾燥手段における熱風の温度を30〜120℃とし、密閉室内に充満する繊維状酸化チタン超微粒子を熱風により前記繊維物質の繊維全体へ均一に固着乾燥させるようにした光触媒脱臭殺菌方法。A photocatalyst ejecting means for ejecting a liquid photocatalyst to a fiber material such as clothes in a sealed room, an ultraviolet irradiation means for irradiating the photocatalyst attached to the fiber material with ultraviolet light, and hot air is blown to the liquid photocatalyst attached to the fiber material. A hot air drying means for drying, wherein the photocatalyst in the photocatalyst ejecting means is a fibrous titanium oxide ultrafine particle, and a transparent liquid photocatalyst in which an appropriate amount of the fibrous titanium oxide ultrafine particle is dispersed is ejected, and the hot air drying means The photocatalyst deodorizing and sterilizing method in which the temperature of the hot air in is set to 30 to 120 ° C., and the fibrous titanium oxide ultrafine particles filled in the sealed chamber are uniformly fixed to the whole fiber of the fiber material by hot air and dried. 前記光触媒噴出手段における液状光触媒中の無機元素が半定量値において、少なくともTiが90〜97wt%、Siが2.3〜3.0wt%、Agが1.4〜2.2wt%、Znが0.2〜0.3wt%含む透明液状光触媒。When the inorganic element in the liquid photocatalyst in the photocatalyst ejecting means is a semi-quantitative value, at least Ti is 90 to 97 wt%, Si is 2.3 to 3.0 wt%, Ag is 1.4 to 2.2 wt%, and Zn is 0. A transparent liquid photocatalyst containing 2 to 0.3 wt%. 前記光触媒噴出手段における液状光触媒中の有機元素が定量値において、少なくともCが55〜65wt%、Hが8〜12wt%、Nが0.2〜0.4wt%含む透明液状光触媒。A transparent liquid photocatalyst containing at least C in an amount of 55 to 65 wt%, H in an amount of 8 to 12 wt%, and N in an amount of 0.2 to 0.4 wt% in a quantitative value of an organic element in the liquid photocatalyst in the photocatalyst ejecting means. 前記液状光触媒中における酸化チタンが繊維状の超微粒子であり、平均繊維幅及び厚さが1〜50nm、平均繊維長さが10〜1000nm、平均アスペクト比が2〜100、比表面積が30m/g以上である透明液状光触媒。The titanium oxide in the liquid photocatalyst is a fibrous ultrafine particle having an average fiber width and thickness of 1 to 50 nm, an average fiber length of 10 to 1000 nm, an average aspect ratio of 2 to 100, and a specific surface area of 30 m 2 / The transparent liquid photocatalyst which is more than g.
JP2008271407A 2008-09-22 2008-09-22 Photocatalyst deodorization sterilization method Expired - Fee Related JP4840615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271407A JP4840615B2 (en) 2008-09-22 2008-09-22 Photocatalyst deodorization sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271407A JP4840615B2 (en) 2008-09-22 2008-09-22 Photocatalyst deodorization sterilization method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011161307A Division JP5088654B2 (en) 2011-07-04 2011-07-04 Transparent liquid photocatalyst

Publications (2)

Publication Number Publication Date
JP2010069469A true JP2010069469A (en) 2010-04-02
JP4840615B2 JP4840615B2 (en) 2011-12-21

Family

ID=42201745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271407A Expired - Fee Related JP4840615B2 (en) 2008-09-22 2008-09-22 Photocatalyst deodorization sterilization method

Country Status (1)

Country Link
JP (1) JP4840615B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093685A (en) * 2010-10-22 2012-05-17 Nishinihon Ryokuka Co Ltd Transparent optical substrate and method for forming photocatalytic inorganic metal oxide film on the substrate surface
JP2012103653A (en) * 2010-11-09 2012-05-31 Nishinihon Ryokuka Co Ltd Spectacle frame and method for forming inorganic metal oxide photocatalytic film on spectacle frame
JP2014519401A (en) * 2011-05-04 2014-08-14 スチュワート・ベンソン・アベレット Titanium dioxide photocatalytic composition and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517628A (en) * 1998-06-10 2002-06-18 サン−ゴバン・ルシェルシュ Substrate with photocatalytic coating
JP2002284614A (en) * 2001-03-23 2002-10-03 Gaia:Kk Working fluid for antibacterial and deodorant treatment
JP2007262621A (en) * 2006-03-29 2007-10-11 Fujitsu Ltd Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517628A (en) * 1998-06-10 2002-06-18 サン−ゴバン・ルシェルシュ Substrate with photocatalytic coating
JP2002284614A (en) * 2001-03-23 2002-10-03 Gaia:Kk Working fluid for antibacterial and deodorant treatment
JP2007262621A (en) * 2006-03-29 2007-10-11 Fujitsu Ltd Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093685A (en) * 2010-10-22 2012-05-17 Nishinihon Ryokuka Co Ltd Transparent optical substrate and method for forming photocatalytic inorganic metal oxide film on the substrate surface
JP2012103653A (en) * 2010-11-09 2012-05-31 Nishinihon Ryokuka Co Ltd Spectacle frame and method for forming inorganic metal oxide photocatalytic film on spectacle frame
JP2014519401A (en) * 2011-05-04 2014-08-14 スチュワート・ベンソン・アベレット Titanium dioxide photocatalytic composition and use thereof

Also Published As

Publication number Publication date
JP4840615B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US8071081B2 (en) Reduction of airborne malodors using hydrogen peroxide and a catalyst-coated media
Tung et al. Self-cleaning fibers via nanotechnology: a virtual reality
JP5845385B2 (en) Air purifier
JPWO2006046443A1 (en) Fiber cloth with VOC removal function
US8741349B2 (en) Antiviral material , antiviral film, antiviral fiber, and antiviral product
WO2001055498A1 (en) Fiber structure having deodorizing or antibacterial property
WO2000046148A1 (en) Silica gel carrying titanium oxide photocatalyst in high concentration and method for preparation thereof
CN101272858A (en) Photocatalyst-containing organic material
JP4840615B2 (en) Photocatalyst deodorization sterilization method
JP4428510B2 (en) A fiber fabric carrying a photocatalyst and having a deodorizing function.
JP2002200148A (en) Deodorant for unsaturated hydrocarbon-based aldehyde gas
JP2004350935A (en) Filter
JP2006271636A (en) Deodorization equipment
JP5088654B2 (en) Transparent liquid photocatalyst
JPH09286615A (en) Fine zinc oxide particle stuck composite and its production
JP3705621B2 (en) Deodorant and antibacterial composition and fiber fabric using the same
JP2007111333A (en) Footwear provided with deodorization and antibacterial property
JP5894451B2 (en) Deodorant seat
WO2019058674A1 (en) Complex for decomposing and removing substance
JP2006116449A (en) Photocatalyst fiber and porous photocatalyst fiber derived from it
JPH10130619A (en) Composite with fine zinc oxide particle attached thereto and its production
KR100507902B1 (en) Somking material package of wormwood including nano material and smoke having germicidal and cleansing efficacy
JP2004195416A (en) Photocatalyst-containing fiber
JP6484771B2 (en) Substrate-silica sol dry matter composite and method for producing the same
CN102362705A (en) Photocatalyst protective garment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees