JP6484771B2 - Substrate-silica sol dry matter composite and method for producing the same - Google Patents

Substrate-silica sol dry matter composite and method for producing the same Download PDF

Info

Publication number
JP6484771B2
JP6484771B2 JP2017225768A JP2017225768A JP6484771B2 JP 6484771 B2 JP6484771 B2 JP 6484771B2 JP 2017225768 A JP2017225768 A JP 2017225768A JP 2017225768 A JP2017225768 A JP 2017225768A JP 6484771 B2 JP6484771 B2 JP 6484771B2
Authority
JP
Japan
Prior art keywords
silica sol
substrate
silica
dry matter
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017225768A
Other languages
Japanese (ja)
Other versions
JP2018183767A (en
Inventor
入江 敏夫
敏夫 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2018183767A publication Critical patent/JP2018183767A/en
Application granted granted Critical
Publication of JP6484771B2 publication Critical patent/JP6484771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、無光下でもOHラジカル前駆体を保有し、大気中の有害物質を分解する機能を有する基材−シリカゾル乾燥物複合体に関する。また本発明は、上記基材−シリカゾル乾燥物複合体の応用物品及びその製造方法に関する。なお、OHラジカル前駆体とは水と接触した時OHラジカルを生成する機能を有することを指す。半導体の場合は価電子帯に生成する正孔が水との接触によりOHラジカルを発生するのと同じく本発明のシリカ乾燥物に生成したプラス帯電が水との接触によりOHラジカルを発生するのであるが絶縁体に存在する正孔には名称が無いのでOHラジカル前駆体と称することした。   The present invention relates to a substrate-silica sol dry matter composite that retains an OH radical precursor even in the absence of light and has the function of decomposing harmful substances in the air. The present invention also relates to an applied article of the above-mentioned substrate-silica sol dry matter composite and a method for producing the same. In addition, OH radical precursor points out having a function which produces | generates OH radical, when it contacts with water. In the case of semiconductors, positive charges generated in the dried silica of the present invention generate OH radicals upon contact with water as well as holes generated in the valence band generate OH radicals upon contact with water. Since the holes present in the insulator have no name, they were referred to as OH radical precursors.

大気中に含まれる有害ガス、例えば、悪臭の原因物質として挙げられるアンモニア、トルエンやホルムアルデヒドなどのシックハウス症候群をもたらすVOC(volatile organic compound)、花粉や青果物の老廃、熟成を促進する植物ホルモンであるエチレンを積
極的に除去し大気を浄化する手段が求められている。
Hazardous gases contained in the atmosphere, for example, ammonia which is mentioned as a causative agent of malodor, VOC (volatile organic compound) which causes sick house syndrome such as toluene and formaldehyde, ethylene which is a plant hormone which promotes aging and aging of pollen and fruits and vegetables There is a need for means of actively removing the air and purifying the atmosphere.

これらの有害気体を除去する手段として多くの提案がなされている。然しながら実用化されているのは、主として活性炭を用いて有害ガスを吸着・除去するという手段である。   Many proposals have been made as means for removing these harmful gases. However, what has been put to practical use is a means of adsorbing and removing harmful gases mainly using activated carbon.

これに対し、例えば特許文献1には廃却・交換の必要がない酸化チタンの有する光触媒作用を利用して、上記有害ガスを除去しようという提案がなされている。
特許文献2には造花に酸化チタン粉末をスプレー塗布し200℃以下で乾燥することが提案されている。特許文献3には、保存中や輸送中の青果物の追熟,老化を防止する目的で活性炭の表面に光触媒と紫外線ランプを備えた青果物鮮度保持装置が提案されている。
On the other hand, for example, Patent Document 1 proposes that the harmful gas should be removed by utilizing the photocatalytic activity of titanium oxide which does not need to be discarded or replaced.
Patent Document 2 proposes that a titanium oxide powder is spray-coated on an artificial flower and dried at 200 ° C. or less. Patent Document 3 proposes a fruit and vegetable freshness holding device provided with a photocatalyst and an ultraviolet lamp on the surface of activated carbon for the purpose of preventing ripening and aging of fruits and vegetables during storage and transportation.

これらの方法がエネルギーの高い紫外線の照射を必要とするのに対し、特許文献4には波長470nmの可視光でスーパーオキサイドアニオンを生成する光触媒の製造方法が提案されている。
特許文献5には、基材上にシリカゾルを塗布後乾燥しただけで光の照射がない状態でも正孔を保有することを特徴とする基材―シリカゾル乾燥物複合体が示されており、これにより無光下でもインフルエンザウイルスが不活化されることが示されている。
While these methods require high energy irradiation of ultraviolet light, Patent Document 4 proposes a method for producing a photocatalyst that generates superoxide anion with visible light of wavelength 470 nm.
Patent Document 5 shows a substrate-silica sol dry matter composite characterized in that holes are held even in a state where there is no light irradiation, and only after coating and drying silica sol on a substrate, It has been shown that influenza virus is inactivated even in the absence of light.

さらに特許文献6にはシリカ1モルに対するNaOHの含有量を1.9ミリモル未満の割合に制限したシリカゾルを基材に塗布後乾燥した基材―シリカゾル乾燥物複合体をクマリンの水溶液に浸漬するとOHラジカルの存在を示す7OHクマリンの生成を示すことが知られている波長460nmの蛍光が認められ、無光下で大気中の有害なウイルスを不活化する作用を呈することが示されている。   Further, in Patent Document 6, a base material-silica sol dry matter complex obtained by applying a silica sol having a content of NaOH to 1 mol of silica limited to a ratio of less than 1.9 mmol on a base material and drying is immersed in an aqueous solution of coumarin A fluorescence at a wavelength of 460 nm, which is known to show the formation of 7OH coumarin indicating the presence of a radical, has been observed, and has been shown to exhibit the effect of inactivating harmful viruses in the air under no light.

特開平2−280818号公報Unexamined-Japanese-Patent No. 2-280818 特開2006−37305号公報JP, 2006-37305, A 特開平5−103588号公報Unexamined-Japanese-Patent No. 5-103588 特開2005−272259号公報JP 2005-272259 A 特開2016−68543号公報JP, 2016-68543, A 特開2017−172068号公報JP, 2017-172068, A G. Louit et al.:The reaction of coumarin with the OH radicalrevisited: hydroxylation product analysis determined by fluorescence and chromatography Radiation Physics and Chemistry72(2005)119-124 )G. Louit et al .: The reaction of coumarin with the OH radically revisited: hydroxylation product analysis determined by fluorescence and chromatography Radiation Physics and Chemistry 72 (2005) 119-124) 張傑、野坂芳雄 可視光応答型光触媒懸濁液のOHラジカル生成とH2O2の効果 2011.12.12 光機能材料研究会Zhang Jie, Nosaka Yoshio OH radical formation of H2O2 and visible light responsive photocatalyst suspension 2011.12.12 Optical functional materials research meeting 菅谷和寿 不正軽油製造に伴う廃棄物中のクマリンの定量 BUNSEKIKAGAKU vol.59、No.5.2010、405-409Kasuya Kazutoshi Determination of coumarins in wastes associated with illegal gas oil production BUNSEKIKAGAKU vol. 59, No. 5.2010, 405-409 Ralph K.Iler, THECHEMISTRY OF SILICA Solubility,Polymerization,Colloid and Surface Properties, and Biochemistry JOHN & WILEYS 1978, p116Ralph K. Iler, THECHEMISTRY OF SILICA Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry JOHN & WILEYS 1978, p116 堀切 智 メチレンブルーの多孔質光触媒による分解と分解生成物の高速液体クロマトグラフィ―及び質量分析 BUNSEKIKAGAKU vol.52 No.10,pp881-885 (2003)Satoshi Horikiri High-performance liquid chromatography and mass spectrometric analysis of methylene blue's porous photocatalytic decomposition and decomposition products BUNSEKIKAGAKU vol. 52 No. 10, pp 881-885 (2003)

活性炭は吸着が飽和し機能を失なうと廃却・交換されるため例えば冷蔵庫内の脱臭や、トイレの便器の脱臭など比較的限られた狭い空間でしか効果的に実施できない、という問題がある。特許文献1および特許文献2には廃却・交換する必要が無いTiOを光触媒として機能させる提案がなされている。しかし、夜間や室内で酸化チタンを光触媒として機能させるためには別途紫外線の光源を準備する必要があり、室内光源としては紫外線が含まれている蛍光灯が利用されて来たがより寿命が長く、しかもより消費電力の小さいLEDに取って代わられて来たので可視光で機能する空気浄化触媒が要望されている。 Activated carbon is eliminated and replaced when its adsorption is saturated and loses its function. For example, there is a problem that it can be effectively implemented only in a relatively narrow space such as deodorizing in a refrigerator or deodorizing a toilet bowl in a toilet . Patent Document 1 and Patent Document 2 propose that TiO 2 which does not need to be discarded or replaced function as a photocatalyst. However, to make titanium oxide function as a photocatalyst at night or indoors, it is necessary to prepare a separate ultraviolet light source, and fluorescent lamps containing ultraviolet light have been used as indoor light sources, but the life is longer In addition, since it has been replaced by LEDs with lower power consumption, an air purification catalyst that functions with visible light is desired.

特許文献3提案されている青果物鮮度保存方法は保存の基本として冷蔵すべき容器内に発熱する光源を設置するという相反する機能物の設置は好ましくない。特許文献4に提案された可視光光触媒から発生するスーパーオキサイドアニオンは活性酸素ではあるが最も活性が強いといわれているOHラジカルが含まれていない。この改良を含む高性能の可視光光触媒を開発するために多大な努力が注がれてきたが、可視光であっても照明は必要であり、消灯後の夜間、すなわち無光下でも機能する空気浄化触媒に対する要望は増大している。 Freshness preservation method of vegetables and fruits that have been proposed in Patent Document 3 installed undesirable conflicting function object that installing a light source that generates heat to be within the container refrigerated as the basic storage. Although the superoxide anion generated from the visible light photocatalyst proposed in Patent Document 4 is active oxygen, it does not contain the OH radical which is said to be the most active. Although much effort has been devoted to develop high-performance visible light photocatalysts including this modification, even visible light requires illumination and it works even at night after extinguishing, ie under no light The demand for air purification catalysts is increasing.

特許文献5に記載の手段は、その効果として、無光下で空気中の有害物質の分解・無害化・浄化についてその可能性を挙げているが、具体的な組成範囲や脱臭効果について言及していない。また、繊維の中でも生産量も圧倒的に多く、しわになり難さ、速乾性、強度、寸法安定性などの点でも優れているポリエステル繊維を基材とするシリカゾル乾燥物複合体としての利用が要望されている。   Although the means described in Patent Document 5 mentions the possibility of decomposition, detoxification and purification of harmful substances in the air under no light as its effect, it mentions a specific composition range and a deodorizing effect. Not. Among the fibers, the production amount is overwhelmingly large, and utilization as a silica sol dry matter composite based on polyester fibers is also excellent in terms of wrinkling, quick drying, strength, dimensional stability, etc. It is requested.

特許文献6に記載の手段はNaOHの含有量がシリカ1モルに対して1.9ミリモル以下の場合にOHラジカルをもたらすシリカゾルを基材に塗布・乾燥した複合体をクマリン水溶液に浸漬するとOHラジカルの存在を証明する7OHクマリンの波長の蛍光が認められ無光下でウイルスを不活化するとされているが、脱臭機能に及ぼすNaOHの影響は明白ではない。本発明の目的は、空気を浄化する手段として光の照射が不要でOHラジカルを生成できる価電子帯正孔と等価のOHラジカル前駆体を保有する基材―シリカゾル乾燥物複合体を提供することにある。   The means described in Patent Document 6 is a composite obtained by applying and drying a silica sol that brings OH radicals when the content of NaOH is 1.9 mmol or less with respect to 1 mol of silica, when the compound is dipped in an aqueous solution of coumarin and OH radicals Although the fluorescence of the wavelength of 7OH coumarin which proves the presence of is observed to inactivate the virus under no light, the influence of NaOH on the deodorizing function is not clear. An object of the present invention is to provide a substrate-silica sol dry matter composite which holds an OH radical precursor equivalent to a valence band hole capable of generating an OH radical without requiring light irradiation as a means for purifying air. It is in.

本発明者は基材−シリカゾル乾燥物複合体において、特に、基材上に塗布されるシリカゾルのアルカリ含有量を特定の範囲に調整するときは、該基材−シリカゾル乾燥物複合体が、無光下でも後述するクマリンテストによって同定されるOHラジカル前駆体の生成に
及ぼすNaOHの影響を解明し、大気中において悪臭、シックハウス症候群をもたらすVOCなどの有害有機物を分解,その作用により、顕著な脱臭作用等を呈する水溶性のアル
カリ金属塩の含有量との定量的な知見を得、本発明を完成した。
In the present invention, when the alkali content of the silica sol applied to the substrate is adjusted to a specific range in the substrate-silica sol dried product complex, particularly, the substrate-silica sol dried material composite is not present. Elucidating the effect of NaOH on the formation of OH radical precursor identified by the coumarin test described later even under light, and decomposing harmful organic substances such as VOC that cause sick odor and sick house syndrome in the atmosphere Obtained quantitative knowledge with the content of a water-soluble alkali metal salt exhibiting an action and the like, and completed the present invention.

すなわち、本発明は、シリカ1モルに対して2.5〜7.1ミリモルのNa,K,またはLiから選ばれた水溶性アルカリ金属を保有するシリカゾルを基材に塗布乾燥することにより光照射を必要とせず無光下でも効率的にOHラジカル前駆体を保有し、安価な基材―シリカゾル乾燥物複合体を提供するものである。   That is, according to the present invention, light irradiation is carried out by applying and drying a silica sol having a water-soluble alkali metal selected from 2.5 to 7.1 mmol of Na, K, or Li with respect to 1 mol of silica. The present invention is to provide an inexpensive substrate-silica sol dry matter composite which efficiently retains an OH radical precursor even in the absence of light without the need for

この複合体が空気中の有害物質の分解・無害化・浄化をもたらすOHラジカル前駆体が正孔と等価であることはクマリン液中でOHラジカルがNaOHと共存する場合に発生する蛍光分光によりNaOHのみが存在するときに認められるケイヒ酸と同じ波長であるがそのピーク光度が略10分の1以下になるスペクトルを発生することを新規に見出し、NaOH共存下のOHラジカルの存在の証明になり得ることを明らかにした。   The OH radical precursor which brings about the decomposition, detoxification and purification of harmful substances in the air is equivalent to the holes. This is due to the fluorescence spectroscopy that occurs when OH radicals coexist with NaOH in coumarin liquid Newly found that it generates a spectrum with the same wavelength as that of cinnamic acid, which is observed when only C is present, but its peak light intensity is less than about one-tenth, indicating the presence of OH radical in the presence of NaOH. I clarified that I would get it.

即ち本発明は基材とシリカゾル乾燥物とから成る複合体であって、該基材上にシリカ1
モルに対しNa,KおよびLiから選ばれた1種又は2種以上の水溶性アルカリ金属塩をアルカリ金属の水酸化物に換算して2.5〜7.1ミリモルの割合で含有するシリカゾルを塗布後乾燥させたことを特徴とする空気浄化機能のすぐれた基材−シリカゾル乾燥物複合体を提供する。またこの複合体は固体の有機物の基材を分解しない。
That is, the present invention is a composite comprising a substrate and a dried silica sol, which comprises the silica 1 on the substrate.
Silica sol containing 2.5 to 7.1 millimoles of one or more water-soluble alkali metal salts selected from Na, K and Li per mole in terms of alkali metal hydroxides Provided is a substrate-silica sol dried composite excellent in air purification function characterized by being dried after application. Also, this complex does not degrade the solid organic substrate.

無光下でもOHラジカル前駆体を保有することを特徴とする基材−シリカゾル乾燥物複合体であって、基材に対するシリカゾルの塗布量が、乾燥状態で、前記基材の単位表面積当たりの質量(g/m2)当たり1mg〜1.5gの範囲に調整する。本発明に係る基材−シリカゾル乾燥物複合体を、モル濃度0.1〜0.2mMのクマリン水溶液に浸漬すると330〜370nmの光線で励起した場合に500〜510nmのピークを有する蛍光を発するとこの複合体がOHラジカル前駆体を保有することを証明できる。 A base material-silica sol dry matter composite characterized by retaining OH radical precursor even in absence of light, wherein the coating amount of silica sol to the base material is the mass per unit surface area of the base material in the dry state. It adjusts to the range of 1 mg-1.5 g per (g / m < 2 >). When the base material-silica sol dry matter complex according to the present invention is immersed in a coumarin aqueous solution with a molar concentration of 0.1 to 0.2 mM, it emits fluorescence having a peak of 500 to 510 nm when excited by light of 330 to 370 nm It can be proved that this complex possesses an OH radical precursor.

本発明に係る基材−シリカゾル乾燥物複合体は無光下においても水と接触した際にはOHラジカルを発生するものであり、大気中においてはVOCや悪臭を分解する。青果物の保存中や輸送中の青果物の追熟,老化をもたらすエチレンを分解するのでTiOおよび照射用の紫外線光源を設置する必要がなく保存容器の内面に本発明のシリカゾルを塗布乾燥しておくだけでよい。また、建造物の内壁、天井、カーテン、造花、人造観葉植物にスプレー塗布すれば自然乾燥によりシリカゾル乾燥物複合体が生成し夜間でも空気の浄化を続ける。 The base material-silica sol dry matter complex according to the present invention generates OH radicals when in contact with water even in the absence of light, and decomposes VOC and malodor in the atmosphere. The silica sol of the present invention is applied and dried on the inner surface of a storage container without the need to install a TiO 2 and an ultraviolet light source for irradiation because ethylene decomposes to bring about ripening and aging of fruits and vegetables during storage and transportation of fruits and vegetables. Just do it. In addition, if the spray is applied to the inner wall, ceiling, curtain, artificial flower, and artificial foliage plant of the building, the silica sol dry matter complex is formed by natural drying, and the air purification is continued even at night.

本発明の基材としては、天然繊維、再生繊維、化学繊維の織布または不織布、木材、紙、壁紙から選んだ単体若しくはこれらの複合体が使用でき、上記の不織布基材をエアフィルタとして用いた場合の通気性の点でメッシュ加工されたものとするのが圧力損失が小さくなることから一層好ましい。   As the substrate of the present invention, natural fibers, regenerated fibers, woven or non-woven fabrics of chemical fibers, single materials selected from wood, paper, wallpaper, or composites thereof can be used, and the above non-woven substrates are used as air filters It is more preferable that meshing is performed from the viewpoint of air permeability in the case where the pressure loss is small.

本発明に係る基材−シリカゾル乾燥物複合体は、障子紙、脱臭器・空気清浄器・エアコンのフィルタとして、間仕切り、衣服、医師・看護師の白衣・帽子のほかに、衛生マスクや防臭マスクの呼気通過部に組み込んで利用することができる。   The base material-silica sol dry matter composite according to the present invention is a filter for shoji paper, deodorizer, air purifier, air conditioner, in addition to partitions, clothes, white coats / hats of doctors / nurses, hygiene masks and deodorant masks. Can be incorporated into the exhalation passage of the

本発明の基材―シリカゾル乾燥物複合体が無光下でも正孔と等価のOHラジカル前駆体を保有し、VOC,悪臭等の有害気体を分解するが、加えて紙、天然繊維、再生繊維または化学繊維の織布・不織布から成る固体の有機物基材を分解しない、という画期的な特徴を持つ理由は次のように推定される。
まずシリカゾルの液中ではシリカ粒子が水中でお互いに衝突すると結合、粗大化して沈降するのを防止するためにシリカ粒子同志が反発しあうようにマイナスに帯電しており、どのようにしてマイナスに帯電しているかの機構としては非特許文献4によればシリカゾル液中のシリカ粒子は(OH)2SiO2−のような形を取っているという提案がなされて
いる。
The base material-silica sol dry matter complex of the present invention retains OH radical precursors equivalent to holes even in the absence of light, and decomposes harmful gases such as VOC and malodor, but additionally paper, natural fiber, regenerated fiber The reason for having the ground-breaking feature of not decomposing a solid organic substance base consisting of woven and non-woven fabrics of chemical fibers is presumed as follows.
First, in the solution of silica sol, when the silica particles collide with each other in water, they are negatively charged so that the silica particles repel each other in order to prevent them from bonding, coarsening and settling, and how to be negative According to Non-Patent Document 4, it is proposed that the silica particles in the silica sol liquid have a form such as (OH) 2 SiO 2 2- as a mechanism for determining whether or not they are charged.

シリカゾルをそのまま乾燥するとシリカ粒子のOH基同士が結合して帯電が失われた乾燥シリカが得られるが基材の上で乾燥するとOH基同士の結合が妨げられこの化学式のままに乾燥後もマイナス帯電が維持されて、そのマイナス帯電量に等しいプラスの帯電物が発生するはずである。クマリン液に基材−シリカゾル乾燥物複合体を浸漬するとOHラジカルの存在が無ければ発生しないようなスペクトルの挙動が観察されたことから、この基材−シリカゾル乾燥物複合体はOHラジカルをもたらすことは立証されているのでこのプラスの帯電物は半導体の価電子正孔と等価のOHラジカル前駆体と呼ぶことにした。   If the silica sol is directly dried, OH groups of the silica particles bond to each other to obtain a dried silica in which the charge is lost. However, if it is dried on the substrate, the bonding of the OH groups is prevented, and the chemical formula remains negative even after drying. The charge should be maintained to generate a positive charge equal to the negative charge. Since the behavior of the spectrum that would not be generated if the substrate-silica sol dry matter complex was immersed in the coumarin solution was observed without the presence of OH radicals, this base material-silica sol dry matter complex provides OH radicals Since this has been proved, this positive charge is called an OH radical precursor equivalent to the valence electron hole of the semiconductor.

このような(OH)基を持つ《(OH)2SiO2 2−》がOHラジカル前駆体の源であれば脱
臭などの脱電子反応により一度OHラジカル前駆体が失われてもマイナス帯電のOH基が存在する限りそれに対応するプラス帯電のOHラジカル前駆体は何度でも再生する。しかし、水に接触して濡れている時間中はOHラジカル前駆体は失われているが、乾燥した時点で再生する。
光触媒のTiO2は半導体であって紫外線の照射により荷電子帯の電子が励起され移動
した跡に発生する正孔は有機物基材から電子を奪って分解すると考えられる。一方、このプラス帯電のOHラジカル前駆体は絶縁体であるシリカに付着しているため自身は動けないので、相手が気体や液体のような流体なら衝突して来て電子を奪われ分解する、即ち悪臭などの気体は分解する、が固体の有機物基材に塗布したシリカゾル乾燥物中に生成している正孔と等価のプラス帯電OHラジカル前駆体とは微視的には接触していないので分解しない、と考えられる。
If such (OH) group-containing << (OH) 2 SiO 2 2- >> is a source of OH radical precursor, OH of negatively charged OH even if the OH radical precursor is once lost by deelectron reaction such as deodorization As long as a group is present, the corresponding positively charged OH radical precursor regenerates many times. However, the OH radical precursor is lost during the time of being wet in contact with water, but it regenerates when it is dry.
The photocatalyst TiO 2 is a semiconductor, and it is considered that the holes generated in the trace where the electrons in the charge band are excited and moved by the irradiation of the ultraviolet light are deprived of the electrons from the organic base material to be decomposed. On the other hand, since this positively charged OH radical precursor is attached to silica, which is an insulator, and can not move itself, if it is a fluid such as a gas or a liquid, it will collide and it will deprive the electrons and decompose it, That is, gases such as malodor are not in microscopic contact with positively charged OH radical precursors equivalent to the holes generated in the dried silica sol applied to a solid organic substance, although they decompose. It is thought that it does not disassemble.

図1はサンプル1の蛍光分光試験のスペクトルである。FIG. 1 is the spectrum of the fluorescence spectroscopy test of sample 1. 図2はサンプル2の蛍光分光試験のスペクトルである。FIG. 2 is the spectrum of the fluorescence spectroscopy test of sample 2. 図3はサンプル3の蛍光分光試験のスペクトルである。FIG. 3 is the spectrum of the fluorescence spectroscopy test of sample 3. 図4はサンプル8の蛍光分光試験のスペクトルである。FIG. 4 is the spectrum of the fluorescence spectroscopy test of sample 8.

基材とシリカゾル乾燥物とから成る複合体であって、該基材上にシリカ1モルにNa、KおよびLiから選ばれた1種又は2種以上の水溶性アルカリ金属塩をアルカリ金属の水酸化物に換算して2.5〜7.1ミリモルの割合で含有するシリカゾルを塗布後乾燥させると空気浄化機能のすぐれた基材−シリカゾル乾燥物複合体が生成する。
基材には天然繊維、再生繊維または合成繊維およびそれらの織布または不織布のほかに木材、紙も利用できる。基材の天然繊維がコットン、絹、麻であり、再生繊維がレーヨン、リヨセルであり、合成繊維がポリエステル、ナイロンが好ましい。これらの基材に空気浄化機能を発揮するOHラジカル前駆体を保有するシリカゾルを塗布した場合の乾燥温度は常温から230℃の雰囲気も可能なのでカーテン、壁材、床材、天井材、障子紙、造花、人工観葉植物にスプレー塗布しそのまま放置すれば乾燥できる。
A complex comprising a substrate and a dried silica sol, comprising one or more water-soluble alkali metal salts selected from Na, K and Li per mole of silica on the substrate and an alkali metal water When a silica sol containing 2.5 to 7.1 millimoles in terms of oxides is coated and then dried, a substrate-silica sol dry matter composite having excellent air purification function is formed.
Besides natural fibers, regenerated fibers or synthetic fibers and their woven or non-woven fabrics, wood and paper can also be used as the substrate. Natural fibers of the substrate are cotton, silk and hemp, regenerated fibers are rayon and lyocell, and synthetic fibers are preferably polyester and nylon. If a silica sol containing an OH radical precursor that exerts an air purification function is applied to these substrates, the drying temperature can be an atmosphere from normal temperature to 230 ° C. Curtains, wall materials, flooring materials, ceiling materials, Shoji paper, It can be dried by spray application to artificial flowers and artificial foliage plants and left as it is.

塗布するシリカゾルはNa,KおよびLiから選ばれた1種又は2種以上の水溶性アルカリ金属塩をシリカ1モルに対してアルカリ金属の水酸化物に換算して2.5〜7.1ミリ
モルが好ましく、4.3〜7.1ミリモルの割合で含有するのが特に好ましい。
The silica sol to be applied is 2.5 to 7.1 millimoles of one or more water-soluble alkali metal salts selected from Na, K and Li in terms of alkali metal hydroxide per mole of silica. Is preferable, and the ratio of 4.3 to 7.1 mmol is particularly preferable.

上記シリカゾルは、シリカゾル中のシリカ粒子の粒径が4nm〜0.7μmであるもの
とするのがよい。具体的には通常の粒子径が4〜25nmの球形シリカ粒子のゾルまたは、細孔が2〜50nmのメソ孔を有する多孔質球状の粒子径が0.3〜0.7μmのシリカ粒子のゾル、が使用できる。 基材に対する付着力は主としてその粒径に依存し小さい方が優れるが0.7μm以下であれば、実用的に十分な密着性が得られるからである。この範囲であれば基材―シリカゾル乾燥物複合体を取扱中にシリカ粒子が基材から剥離することが無く十分な密着性が得られる。なお、上記シリカ粒子の粒径とは、BET法(窒素吸着法)およびシアーズ法により測定される粒径をいう。
通常シリカゾルの粒子径を測定するのに、BET法が用いられる。これは乾燥粉を作成し、その乾燥粉の表面に窒素を吸着させることで、その吸着量から表面積を測定し、それを計算上球形前提で、粒子径を算出する。
The silica sol preferably has a particle size of 4 nm to 0.7 μm of silica particles in the silica sol. Specifically, a sol of spherical silica particles having a normal particle diameter of 4 to 25 nm or a sol of silica particles having a particle diameter of 0.3 to 0.7 μm of porous spherical particles having mesopores of 2 to 50 nm in diameter , Can be used. The adhesion to the substrate depends mainly on the particle size, and the smaller one is excellent, but if it is 0.7 μm or less, practically sufficient adhesion can be obtained. Within this range, sufficient adhesion can be obtained without peeling of the silica particles from the substrate during handling of the substrate-silica sol dry product complex. In addition, the particle size of the said silica particle means the particle size measured by BET method (nitrogen adsorption method) and the Sears method.
Usually, the BET method is used to measure the particle size of the silica sol. In this method, a dry powder is prepared, nitrogen is adsorbed on the surface of the dry powder, and the surface area is measured from the amount of adsorption, and the particle diameter is calculated on the basis of the spherical shape on the basis of calculation.

本発明において、基材に対するシリカゾルの付着量は用途によって異なり、通過させる空気を浄化する目的のエアフィルタの場合は乾燥状態で、基材の単位表面積当たり0.3
〜1.5g/m,壁、天井、造花、間仕切りなどごとく人に触れない用途の場合は0.1〜0.8g/m、衣料、カーテンなど人に触れる用途の場合は0.001〜0.3g/mが目安になる。
In the present invention, the adhesion amount of silica sol to the substrate varies depending on the application, and in the case of an air filter for the purpose of purifying the air to be passed, it is dry and 0.3 per unit surface area of the substrate.
~1.5g / m 2, wall, ceiling, artificial flowers, 0.1~0.8g / m 2 in the case of applications that do not touch the people as such as a partition, clothing, in the case of applications that touch the person, such as curtain 0.001 ~ 0.3 g / m 2 is a standard.

シリカゾルの濃度は上記付着量を達成するために基材の厚さ、質量に応じて必要かつ処理し易い濃度を選ぶことになるので0.001〜20質量%とし、乾燥は求められる生産性に応じて室温〜230℃、好ましくは10〜200℃を選べばよい。すなわちエアフィルタごとく通過する空気の浄化速度を大きく、かつその生産性を大きくする場合にはシリカゾルの濃度を3〜20%と大きく、100℃以上の高温の雰囲気を選べばよく、逆に内装建材やカーテンのごとく塗布面積が広く浄化時間が長い場合や手触りで感じないことが求められる用途には0.03〜1%と低濃度を選べばよい。


The concentration of silica sol is selected to be 0.001 to 20% by mass because it is necessary and easy to select depending on the thickness and mass of the substrate in order to achieve the above-mentioned adhesion amount, and drying is required for productivity Depending on temperature, room temperature to 230 ° C., preferably 10 to 200 ° C. may be selected. That increases the cleaning rate of the air passing through as the air filter, and as large as 3-20% of the concentration of the silica sol in the case of increasing the productivity may be selected to a high temperature atmosphere more than 100 ° C., interior conversely The low concentration of 0.03 to 1% may be selected for applications such as building materials and curtains where application area is wide and purification time is long and feeling is not felt by touch.


大気中での有害物質を分解する触媒性能を評価するには検知管やガスクロマトグラフを用いて直接その濃度を測定すればよいが、簡便な方法としてメチレンブルー染料(化学式C16183S・Cl,略号:MB)の退色性を利用して光触媒製品の分解する能力を評価する方法がJISR1703−2として制定されている。しかし、水が染み込むような透水性のある基材には適用しないことが規定されているため本発明のごとく基材が繊維製品を含む多様な材料を評価するMB耐色性試験方法を開発した。 In order to evaluate the catalytic performance of decomposing harmful substances in the air, the concentration may be measured directly using a detector tube or a gas chromatograph, but as a simple method, methylene blue dye (chemical formula C 16 H 18 N 3 S · · A method of evaluating the decomposing ability of a photocatalyst product using Cl, abbreviation: MB) is established as JIS R 1703-2. However, as it is stipulated that it does not apply to water-permeable substrates that can penetrate water, we have developed the MB color resistance test method to evaluate various materials including substrates for textiles as in the present invention. .

メチレンブルーの退色性の根拠が記載されている参考文献5によれば、メチレンブルー液に浸漬されているTiOに波長369nmのブラックライトを1−4時間照射し、0h,2h、4h後に発生するメチレンブルー派生物アズールAおよびBを液体クロマトグラフで測定すると、メチレンブルー分子は2か所にN(CH)を持っているが、アズールAはその1か所がNHCHに、アズールBはNHにとCH基が失われている、つまりN−CH結合が切断されて行く、ことが明らかになった。これは光触媒から発生した正孔によりOHラジカルが発生しそれによりこの結合が切断されたと考えられ、無光下で退色することは本基材―シリカゾル乾燥物複合体が正孔と同等の機能を持つOHラジカル前駆体を保有していることを示している。
OHラジカルの検出に用いたスピントラップ法にはESR設備、クマリンの蛍光分光光度計はいずれも存在する台数が少ないために利用し辛いのに対しメチレンブルーの濃度測定に用いる吸光光度計は多くの研究所が保有しているので本発明においては主にメチレンブルー退色性により触媒活性度を評価した。
具体的な試験方法は
1.0.1mM〜3mMと高濃度のMB液を用意する。(以降「mM」はミリモル/リットルを表す。)
2.3x3cmのサンプルを、50mmΦのシャーレに入れ、サンプル全面に染みる水の量を決める。
3.次に測定するサンプルが適度に変色する濃度のMB液を選定し、本番のサンプルに滴下する。
4.ppフィルムを被せて2分後に剥がし、2mLの精製水を滴下してシャーレをゆすり、この洗浄液をmicrotubeに収納、肉眼で色を比較後、波長664nmの濃度を分光光度計(アズワン社製SP-300)で測定する。
According to reference 5 in which the ground of the fading of methylene blue is described, TiO 2 immersed in methylene blue solution is irradiated with black light of wavelength 369 nm for 1 to 4 hours, and methylene blue is generated after 0 h, 2 h, 4 h When the derivatives Azul A and B are determined by liquid chromatography, the methylene blue molecule has N (CH 3 ) at two locations, but Azole A at one location is NHCH 3 and Azole B at NH 2 And the CH 3 group are lost, that is, the N-CH 3 bond is broken. It is believed that the holes generated from the photocatalyst generate OH radicals and thereby this bond is broken, and that the base material-silica sol dry matter complex has the same function as the holes when it fades under no light. It shows that it possesses the OH radical precursor.
The spin trap method used to detect OH radicals is difficult to use because ESR equipment and coumarin fluorescence spectrophotometers are both difficult to use because of the small number of units present, while the spectrophotometer used to measure the concentration of methylene blue has many studies In the present invention, the catalyst activity was evaluated mainly by methylene blue color fading.
The specific test method prepares MB solution with high concentration of 1.0.1 mM to 3 mM. (Hereinafter, “mM” represents millimoles / liter.)
Place a 2.3 x 3 cm sample into a 50 mm シ ャ ー petri dish and determine the amount of water that will stain the entire surface of the sample.
3. Next, select the MB solution at a concentration at which the sample to be measured changes its color appropriately, and drop it on the actual sample.
4. The film was covered with a pp film and peeled off after 2 minutes, 2 mL of purified water was added dropwise to shake the petri dish, the washing solution was stored in a microtube, the color was compared with the naked eye, and the concentration at a wavelength of 664 nm was measured with a spectrophotometer (SP-1 manufactured by As One Corporation) Measure at 300).

シリカゾル中のアルカリ濃度の触媒活性への影響を調べる目的で濃アルカリ液を添加してアルカリ濃度を変えたシリカゾルを塗布乾燥したシートの脱臭性能を評価した。
基材:40mass%(以下の%はすべてmass%とする)ポリエステル混紡コットン不織布メッシュ加工 エスコット40(商標) ユニチカ(株)製 目付40g/m2(目付とは1m2あたりの質量g数) 10x15cm
シリカゾル:A 粒径:4−6nm (SiO2:20.5% 3.42M NaOH :0.58
%=14.5mM、NaOH/SiO2:4.2/M) を濃度10 %(NaOH:4.68mM)に希釈(NaOH/SiO2のmM/M比:2.81)、その10mLに1.9Mのリチウムシリケート(日産化学工業(株)Li2O:SiO2のモル比3.50、Li2O=2.89%)の0.01mLを,0.25MのNaOH,0.20MのKOH、の水溶液の各0.02mLを添加、それらの3mlを10x15cm基材に塗布、強制対流方式定温乾燥器OF-450B(アズワン(株)製で90℃10分間 乾燥した。
脱臭性:10x15cmの基材を10x7.5cmの2枚重ねになるように折り、市販のプリーツ型マスク(Amway社製・鼻パッド付)に挟んで1 %アンモニア水の臭いを嗅ぎ、2枚のサンプルの臭いを相対的に比較・評価した。試験はサンプルNo.1〜4、と5〜8,9〜11は別に作製したのち、脱臭試験をまとめて実施した結果を表1に示す。
なお、リチウムシリケートのシリカはすべて溶解しているため、アルカリ/シリカ比には算定しなかった。
In order to investigate the influence of the alkali concentration in the silica sol on the catalytic activity, the deodorizing performance of the sheet coated with the silica sol to which the alkali concentration was changed by adding a concentrated alkali solution was evaluated.
Base material: 40 mass% (The following% are all mass%) Polyester blended cotton non-woven fabric mesh processing Escott 40 (trade name) Unitika Co., Ltd. product basis 40 g / m 2 (A mass is the number of mass g per 1 m 2 ) 10 × 15 cm
Silica sol: A Particle size: 4 to 6 nm (SiO 2 : 20.5% 3.42 M NaOH: 0.58
% = 14.5mM, NaOH / SiO 2 : 4.2 / M) concentration 10% (NaOH: 4.68 mM) dilution (NaOH / SiO 2 of mM / M ratio: 2.81), 1 to the 10mL 0.01 mL of .9 M lithium silicate (Nissan Chemical Industries, Ltd. Li 2 O: SiO 2 molar ratio 3.50, Li 2 O = 2.89%), 0.25 M NaOH, 0.20 M 0.02 mL each of an aqueous solution of KOH was added, and 3 ml of them was applied to a 10 × 15 cm substrate, and dried at 90 ° C. for 10 minutes in a forced convection constant temperature drying oven OF-450B (manufactured by As One Co., Ltd.).
Deodorizing property: 10x15cm base material is folded into two 10x7.5cm sheets and sandwiched between a commercially available pleated mask (made by Amway with nose pad) to smell the smell of 1% ammonia water, 2 sheets The smells of the samples were relatively compared and evaluated. The test is for sample no. 1 to 4 and 5 to 8, 9 to 11 were separately prepared, and the deodorizing test was collectively performed and the results are shown in Table 1.
In addition, since all the silicas of lithium silicate were melt | dissolved, it did not calculate to an alkali / silica ratio.


*:リチウムシリケートのLi2O含有量2.89%から換算

*: Converted from the lithium silicate Li2O content of 2.89%

アルカリの種類によらず、また2種および3種混合添加した場合、アルカリ/シリカ比が5.06で脱臭性能は極大値に達しNa、Kをそれ以上添加しても脱臭性能は向上しない。サンプルNo.13以上にアルカリを添加した場合は短時間でゲル化(固化)することからシリカ10%のシリカゾル中のアルカリ濃度の限界となる。
Regardless of the type of alkali, when two or three types are mixed and added, the deodorizing performance reaches its maximum value at an alkali / silica ratio of 5.06, and the deodorizing performance does not improve even if Na or K is further added. Sample No. When an alkali is added to 13 or more, gelation (solidification) occurs in a short time, and thus the alkali concentration in the silica sol of 10% silica is limited.

高濃度のアルカリが存在する場合に生成するOHラジカル前駆体の触媒活性度を評価する方法として脱臭性能とメチレンブルー水溶液の退色性との関係を調べた。:NaOH濃度の異なる4種のシリカゾルE,B,M、A,M、をシリカ濃度8%に調整し、その2mLを100cm2を塗布、90℃x10分間乾燥した。脱臭試験の方法は実施例1と同じとした。 As a method of evaluating the catalytic activity of the OH radical precursor generated when a high concentration of alkali is present, the relationship between the deodorizing performance and the fading of the methylene blue aqueous solution was investigated. : Four kinds of silica sols E, B, M, A, M having different NaOH concentrations were adjusted to a silica concentration of 8%, and 2 mL of the sol was coated with 100 cm 2 and dried at 90 ° C. for 10 minutes. The deodorizing test method was the same as in Example 1.

メチレンブルー退色試験:各条件ごとに3x3cmのサンプルを3枚用意した。サンプルを50mmΦのシャーレに入れ、濃度3mMのMB水容液0.25mLで測定し、3枚の平均値を採用した。これらの試験結果を表2に示した   Methylene blue fading test: Three samples of 3 × 3 cm were prepared for each condition. The sample was placed in a 50 mm シ ャ ー petri dish, measured with 0.25 mL of a 3 mM aqueous MB solution, and an average value of 3 sheets was adopted. The results of these tests are shown in Table 2.


シリカゾルのNaOH濃度が高いほどMBの濃度の低下が大きく、高い分解能力があることが分かる。脱臭性能の順位もMB染料の退色性能の順位と一致していることから、MB退色性能が脱臭性能、すなわちOHラジカル前駆体の触媒活性度の指標にできることが認められた。   It can be seen that the higher the NaOH concentration of the silica sol, the greater the decrease in the concentration of MB, and the higher the decomposing ability. Since the rank of deodorizing performance is also in line with the rank of the fading performance of the MB dye, it was recognized that the MB fading performance can be an index of the deodorizing performance, that is, the catalyst activity of the OH radical precursor.

衣料など人間が触れても感じない程度のシリカゾル付着量でどの程度脱臭性が期待できるかを調べてみた。予備試験では目付140g/m2 のポリエステル織物の場合、3x3cmのサンプルにはシリカゾル濃度は0.3%を0.12mL,0.4g/m2が限界でこれ以上の場合には手触りで感じられることがわかった。
実施例1によればシリカ濃度が10%と高濃度のシリカゾルの場合SiOのモル濃度に対し4.2mMからアルカリ金属の水酸化物を添加して5.1mMに達すると脱臭性能が極大に達することが知られているが、上記のごとき手触りの限界である0.3%の低濃度の場合でもアルカリ添加による脱臭性能の向上が認められるか、逆に同じ脱臭性能をより低いシリカ付着量で達成できるか、についてメチレンブルー退色性で試験した。
シリカゾル種 M:粒度4〜6nm NaOH/SiO mM/M比 5.2
A:粒度4〜6nm NaOH/SiO mM/M比 4.2
液塗布量 0.12mL/3x3cm0.3%の場合0.003g/120g/m2
NaOHの添加は、10%=2.5MのNaOH水溶液0.02mLを0.31%のシリカゾル液10mLに添加すると、NaOH/SiO2のmM/M比は5.17から6.11に、0
.04mL添加は7.05に夫々増加する乾燥 70℃x20分
MB試験 濃度0.3mM 液量0.3mL
メチレンブルー試験結果を表3に示す。
We examined how much deodorization can be expected with the amount of silica sol adhesion that is not felt even by human touch such as clothing. In preliminary tests, in the case of polyester fabric with a basis weight of 140 g / m 2 , for a sample of 3 × 3 cm, the silica sol concentration is 0.3% at 0.12 mL, 0.4 g / m 2 is the limit and feels more than this I understood it.
According to Example 1, in the case of silica sol having a high silica concentration of 10%, the deodorizing performance is maximized when the alkali metal hydroxide is added from 4.2 mM to 5.1 mM with respect to the molar concentration of SiO 2 Although it is known to reach, improvement in deodorizing performance by addition of alkali is observed even in the case of the low concentration of 0.3% which is the limit of the hand feeling as described above, or conversely, the same deodorizing performance is lower than silica adhesion The methylene blue fading test was performed to see if it can be achieved.
Silica sol type M: particle size 4 to 6 nm NaOH / SiO 2 mM / M ratio 5.2
A: Particle size 4 to 6 nm NaOH / SiO 2 mM / M ratio 4.2
0.003 g / 120 g / m 2 in the case of 0.12 mL / 3 x 3 cm 0.3% of liquid coating amount
NaOH was added by adding 0.02 mL of 10% = 2.5 M aqueous NaOH solution to 10 mL of 0.31% silica sol solution, and the mM / M ratio of NaOH / SiO 2 changed from 5.17 to 6.11
. The addition of 04 mL increases to 7.05 each and drying 70 ° C x 20 min
MB test concentration 0.3mM solution volume 0.3mL
The methylene blue test results are shown in Table 3.



10%のNaOHを0.02mLの添加効果はシリカゾルMの場合はMB退色性を2.5%とに僅かに改善、シリカゾルAの場合は37%と大きく改善するのに対し0.04mLの
添加はMB退色性を大きく劣化させるか、改善率が低下することがわかる。10%の高濃度の実施例1と同様に活性度に最適のアルカリ濃度が存在することが実証された。特にシリカゾルAの場合の最適値5.01がシリカ10%の高濃度のシリカゾル液での最適値5.06と一致している。
この実験結果によりシリカゾル中のNaOHを含むアルカリ金属水酸化物のmM/M濃度
の上限はシリカ濃度が10%の場合はシリカゾルがゲル化する限界が6.90であったが低濃度ではゲル化が起こらないことから7.05、すなわち7.1を上限とする。


The addition effect of 0.02 mL of 10% NaOH slightly improves the MB color fading to 2.5% in the case of silica sol M, while it significantly improves to 37% in the case of silica sol A, whereas the addition of 0.04 mL It is found that the MB fadeability is significantly degraded or the improvement rate is lowered. Similar to Example 1 with a high concentration of 10%, it was demonstrated that the optimum alkali concentration was present in the activity. In particular, the optimum value of 5.01 in the case of silica sol A agrees with the optimum value of 5.06 in the silica sol solution with a high concentration of 10% silica.
According to the experimental results, the upper limit of the mM / M concentration of the alkali metal hydroxide containing NaOH in the silica sol is 6.10 when the silica concentration is 10%, but the gelation limit is 6.90, but the gelation occurs when the concentration is low. The upper limit is 7.05, that is 7.1.

基材にシリカゾルを塗布して乾燥する場合の雰囲気温度の触媒活性への影響をメチレンブルーの退色性を調べて評価した。
基材としてはポリエステル40%混紡コットン、目付40g/m2の不織布と目付140g/m2のポリエステル織布を用い、シリカゾルはNaOH/SiO2mM/M比5.2のシリカゾルMを1.0%に調整し基材3x3cmに0.2mL/塗布してステンレス金網に載置、所定の温度に調整した乾燥器に挿入して乾燥した。
MB試験は1mMのMB液を0.25mLを3x3cmのサンプルに滴下して試験を行
った。結果を表4に示す。
The influence of the ambient temperature on the catalyst activity when applying a silica sol to a substrate and drying was evaluated by examining the fading of methylene blue.
As the substrate 40% polyester blend cotton, using polyester woven fabric having a mass per unit area of 40 g / m 2 of non-woven fabric and basis weight 140 g / m 2, the silica sol and silica sol M of NaOH / SiO 2 mM / M ratio of 5.2 1.0 It adjusted to%, applied 0.2 mL / application to base material 3x3 cm, mounted on a stainless steel wire mesh, and inserted into a drier adjusted to predetermined temperature, and dried.
The MB test was performed by dropping 0.25 mL of 1 mM MB solution onto a 3 × 3 cm sample. The results are shown in Table 4.

メチレンブルー試験結果

滞留時間の影響もあるが70℃以上では乾燥温度のMB退色性に対する影響は認められない。特許文献3の実施例に用いられたシリカゾルはNa/SiO2 mM/M比が1.4以下と本実施例発明の5.2よりかなり低く、その場合には乾燥温度が150℃下、好ましくは50℃以下、と比較すると微量のNaOHの含有により耐熱性が大きく改善され、ポリエステル繊維が分解する230℃まで触媒活性度が維持されることが明らかになった。
Methylene blue test results

There is also an influence of the residence time, but at 70 ° C. or higher, no influence of the drying temperature on the MB fading is observed. The silica sol used in the example of Patent Document 3 has a Na / SiO 2 mM / M ratio of 1.4 or less, which is considerably lower than 5.2 of the present invention, in which case the drying temperature is preferably 150 ° C. It was revealed that the heat resistance is greatly improved by the inclusion of a trace amount of NaOH as compared with that of 50 ° C. or less, and the catalyst activity is maintained up to 230 ° C. where the polyester fiber decomposes.

基材としてポリエステル不織布に塗布したシリカゾル中のアルカリ含有量の触媒活性度に及ぼす影響をメチレンブルー退色性により調べた。
基材:100%ポリエステル(スパンポンド不織布)70450WTO(商標)
目付:45g/m2 ユニチカ(株)製
シリカゾル:H,D,B,A,Mの5種 シリカ10%
塗布量:0.1mL/基材3x3cm
乾燥条件:70℃x10分
MB試験:3mMのMB液0.2mlとしたほかは実施例2と同じ方法で測定した。結果を表5に示す
The effect of the alkali content in the silica sol applied to a polyester non-woven fabric as a substrate on the catalyst activity was examined by methylene blue fading.
Base material: 100% polyester (spunbond nonwoven fabric) 70450 WTO (trademark)
Weight: 45 g / m 2 manufactured by Unitika Co., Ltd.
Silica sol: 5 types of H, D, B, A, M 10% silica
Coating amount: 0.1 mL / base 3 x 3 cm
Drying conditions: 70 ° C. × 10 minutes MB test: Measurement was performed in the same manner as in Example 2 except that 0.2 ml of 3 mM MB solution was used. The results are shown in Table 5


シリカゾルのNa/SiOmM/M比が2.5より低い比較例のシリカゾルH及びDの
MB濃度が高くのに対し、Na/SiOmM/M比が2.5より高い発明例のシリカゾル
B,A及びMは粒子径が小さい影響もあるがメチレンブルー退色性が優れている、すなわち触媒活性度が高いことが認められた。

The silica sols H and D of the comparative example in which the Na / SiO 2 mM / M ratio of the silica sol is lower than 2.5 have high MB concentrations, whereas the Na / SiO 2 mM / M ratio is higher than 2.5 in the inventive example B, A, and M were found to be excellent in methylene blue color fading, that is, having high catalytic activity, although the particle size was also affected.

絹、紙、レーヨン、リヨセル、木板を基材としてアルカリ濃度の異なるシリカゾルを処理した場合の脱臭性などの触媒活性を評価するためメチレンブルー退色性を調べた。いずれも3x3cmに切断したサンプルにシリカ濃度8%のシリカゾルを0.1mL、レーヨンは0.3mL、リヨセルは0.2mLを基材に塗布し70℃x10分間乾燥してサンプルとした。
紙は天然木材パルプの乾式エアレイド不織布KS40(商標)王子キノクロス(株)製
と 5%レーヨン95%パルプの障子紙をサンプルとした。レーヨン不織布は浪速絹綿(株)から入手したサンプルを用いた。木板は厚さ5.4mmの合板の表(おもて)面の約0.05mmの板に処理した。
基材の目付に応じて1mMのMB液を0.2〜0.5ml、木板は0.1mlとした以外は実施例2と同じ方法で試験した。結果を表6に示す。
In order to evaluate catalytic activity such as deodorizing property when treated with silica sol of different alkali concentration using silk, paper, rayon, lyocell, and wood board as a substrate, methylene blue color fading was examined. Each sample was cut into 3 × 3 cm, 0.1 mL of silica sol with 8% silica concentration, 0.3 mL of rayon, and 0.2 mL of lyocell were coated on a substrate and dried at 70 ° C. for 10 minutes to obtain a sample.
The paper was a sample of natural wood pulp, dry air-laid non-woven fabric KS40 (trade name) manufactured by Oji Kinocross Co., Ltd. and 5% rayon 95% pulp shoji paper. The rayon non-woven fabric used a sample obtained from Naniwa Silk Cotton Co., Ltd. The wood board was processed to a board of about 0.05 mm on a front surface of a 5.4 mm thick plywood.
The test was conducted in the same manner as in Example 2 except that depending on the basis weight of the substrate, 0.2 to 0.5 ml of 1 mM MB solution and 0.1 ml of wood plate were used. The results are shown in Table 6.

メチレンブルー退色性(相対濃度)
Methylene blue fading (relative concentration)

基材によりシリカゾル塗布液量及びメチレンブルー液量が異なるので基材の相互間の比較は妥当ではないが、使用したシリカゾルのNa/SiO2 mM/M比が2.5以下の比較例1.4のシリカゾルを用いた場合は発明例の mM/M比が4.2および5.2と2.5以上のシリカゾルを用いた場合は同じ基材間で比較すると必ず比較例より優れた活性度を示すことが確認された。
基材としては木板および2種の紙の退色性が優れており、紙は木材のパルプから製造されたセルロースが原料なのでコットンと同じと評価してよい。麻についても絹と同等の結果が得られている。
Since the amount of silica sol coating liquid and the amount of methylene blue liquid differ depending on the base material, comparison between the base materials is not appropriate, but the comparative example 1.4 of Na / SiO 2 mM / M ratio of the used silica sol is 2.5 or less In the case of using a silica sol of It was confirmed that when silica sols having a mM / M ratio of 4.2 or 5.2 and 2.5 or more were used, the activity was better than that of the comparative example when compared between the same substrates.
As a base material, the color fading of wood board and two kinds of paper is excellent, and the paper may be evaluated as the same as cotton since cellulose produced from wood pulp is a raw material. The same results were obtained for hemp as for silk.

人造観葉植物によるVOCの除去
基材としてもみじ葉を18枚付けた鑑賞用人造枝にシリカ14 mass%、NaOH/SiO2mM/M比5.2のシリカゾルをスプレー塗布、70℃10分乾燥した。容積10Lのコック付きテドラーバッグの一部を10cmカットして処理した枝を挿入し切り口をテープで封じた。
VOCとしてトルエン濃度15ppmの空気10Lを注入し、検知管No.124SBで濃度を測定したところ20分後6ppm、2時間後1ppm以下であった。なお、未処理の枝を同様に測定したところ、2時間後14ppmであった。未処理のもみじ葉と比較してシリカゾル処理による変色は認められなかった。
このようにNaOH/SiO2mM/M比が2.5より高い5.2のシリカゾルはスプレー塗装でもすぐれたVOC分解性能を発揮することが確認された。
Removal of VOC by artificial foliage plant A 14-mass% silica and a silica sol of NaOH / SiO 2 mM / M ratio were spray-applied to an ornamental artificial branch attached with 18 Momiji leaves as a substrate, and dried at 70 ° C. for 10 minutes. A portion of a 10 L volume of the cocked Tedlar bag was cut by 10 cm, a treated branch was inserted, and the cut end was sealed with a tape.
As a VOC, 10 L of air having a toluene concentration of 15 ppm was injected. The concentration was measured by 124SB and found to be 6 ppm after 20 minutes and 1 ppm or less after 2 hours. The untreated branch was similarly measured and found to be 14 ppm after 2 hours. No discoloration due to silica sol treatment was observed compared to untreated maple leaves.
Thus, it was confirmed that the 5.2 silica sol having a NaOH / SiO 2 mM / M ratio higher than 2.5 exhibited excellent VOC decomposition performance even by spray coating.

青果物の鮮度維持に寄与するエチレン除去実験
基材として40mass%ポリエステル混紡コットンの不織布,目付:40g/m2の35x40cmに、予備試験でエチレン除去性能はアルカリ/シリカ比に依存することから2種のシリカゾル
1.シリカ14.3%、Na2O:0.38%、NaOH/SiO2mM/M比 5.2のシリカゾル
2.シリカ30.3% Na2O:0.30%、NaOH/SiO2mM/M比 1.9のシリカゾル
を精製水でシリカを10%に希釈、その28mLを塗布、90℃の循環空気で10分間乾燥した。この基材―シリカゾル乾燥物複合体3枚を折り曲げて、コック付き5Lのテドラーバッグ(250x400mm)の端部を約20cm切り開いて収納し、後で透明粘着テープで切り口を封じてから50ppmのエチレンガスを500mL封入し、3℃の冷蔵庫で1,2,3時間測定用のサンプル/バッグを保存し、検知管でエチレン濃度を測定した。
検知管:No.127L 0.2〜50ppm 1回100mL 4回引き (株)ガステック
結果を表7に示す。
Ethylene removal experiment contributing to maintaining freshness of fruits and vegetables
Non-woven fabric of 40 mass% polyester blended cotton as a base material, fabric weight: 35 x 40 cm of 40 g / m 2 , ethylene removal performance depends on alkali / silica ratio in preliminary test; Silica sol with 14.3% silica, 0.38% Na 2 O, 5.2 mM NaOH / SiO 2 mM / M ratio 2. Silica 30.3% Na 2 O: 0.30% NaOH / SiO 2 mM / M ratio silica with purified water Diluted to 10%, coated with 28 mL and dried with circulating air at 90 ° C. for 10 minutes. This base material-three pieces of silica sol dry matter complex is folded, and the end of the 5 L Tedlar bag (250 x 400 mm) with a cock is cut open about 20 cm and stored, and after sealing the cut with a transparent adhesive tape, 50 ppm ethylene gas The sample / bag was stored in 500 mL and stored in a refrigerator at 3 ° C. for 1, 2, 3 hours, and the ethylene concentration was measured with a detection tube.
Detector tube: No. 127 L 0.2 to 50 ppm 100 mL 4 times) Gastec Co., Ltd. The results are shown in Table 7.


Na/SiO2のmM/M比が2.5より低い比較例の1.9のシリカゾルを塗布したサンプルNo.2はエチレンガス封入後3時間後も45ppmと僅か5ppmしか減少しなかったのに対し, mM/M比が5.2の発明例のサンプルNo.1は10分の1の5ppmにまで減少し、エチレンの分解能力が大きいことが分かった。

Sample No. 1 coated with 1.9 silica sol of Comparative Example in which the mM / M ratio of Na / SiO 2 is lower than 2.5. Sample No. 1 of the Inventive Example with a mM / M ratio of 5.2 decreased to only 10 ppm, 5 ppm, while 2 decreased only 45 ppm and only 5 ppm 3 hours after ethylene gas filling. It turned out that the decomposition ability of is great.

光触媒の空気浄化機能は主として価電子帯正孔によるといわれているが、寿命が短くその検出には脱気した77Kの低温で高度の技術を要する。水中で正孔により発生する強い活性酸素であるOHラジカルを検出できれば水に浸漬する前には正孔すなわちOHラジカル前駆体が存在していたことが証明できるので特許文献6においては、アルカリ金属水酸化物の濃度がシリカ1モルに対して1.9ミリモル以下の場合についてクマリンとの反応生成物を蛍光分光する方法を応用して水に浸漬する前の正孔の存在を証明した。
既に多くの実施例によりアルカリ金属水酸化物の濃度がシリカ1モルに対して2.4ミリモル以上のアルカリ濃度が高い方が脱臭性やVOCなどの有機物を分解能力が大きいことを示してきたが基材―シリカゾル乾燥物複合体におけるOHラジカル前駆体の生成に及ぼすNaOH濃度の影響をクマリンの蛍光分光により検討した結果を以下に示す。
The air purification function of the photocatalyst is said to be mainly due to valence band holes, but its short life and its detection require advanced technology at a low temperature of 77 K deaerated. If OH radicals, which are strong active oxygen generated by holes in water, can be detected, it can be proved that holes, ie OH radical precursors, were present before being immersed in water. The method of fluorescence spectroscopy of the reaction product with coumarin was applied to prove the presence of holes before immersion in water for the case where the concentration of oxide is 1.9 mmol or less per mole of silica.
It has already been shown by many examples that the higher the concentration of the alkali metal hydroxide is 2.4 millimoles or more per 1 mol of silica, the greater the deodorizing property and the ability to decompose organic substances such as VOCs. The effects of NaOH concentration on the formation of OH radical precursor in the base material-silica sol dry matter complex are shown below as the result of investigation by coumarin fluorescence spectroscopy.

非特許文献1には水溶液中のクマリン(下記化学式1)はOHラジカルに遭遇するとその3〜8の位置にOH基が付加するが、7の位置にOH基が付加した7OHクマリン(別名ウンベリフェロン(下記化学式2)だけは455nmにピークを持つ蛍光を発生し蛍光分光試験による特定波長の蛍光の検出によりOHラジカルの存在を実証できることが示されている。
非特許文献2にはクマリン水溶液中に懸濁したTiO2粉末に紫外線を照射すると7OHクマリンが認められ、価電子帯正孔の存在を立証できることが記載されており、非特許文献3にはクマリン液にNaOHが共存する場合には波長が510nmのケイヒ酸(下記化学式3)の蛍光スペクトルが発生することが示されている。
According to Non-Patent Document 1, when coumarin (the following chemical formula 1) in an aqueous solution encounters an OH radical, an OH group is added at the 3 to 8 positions, but a 7 OH coumarin (alias umbellii) having an OH group added at the 7 position. It has been shown that only feron (chemical formula 2 below) generates fluorescence having a peak at 455 nm, and detection of fluorescence of a specific wavelength by a fluorescence spectroscopy test can demonstrate the presence of OH radicals.
Non-Patent Document 2 describes that when irradiated with ultraviolet light, TiO 2 powder suspended in a coumarin aqueous solution is recognized as 7OH coumarin, and the existence of valence band holes can be proved, and Non-Patent Document 3 coumarin It is shown that when NaOH coexists in the liquid, a fluorescence spectrum of cinnamic acid (chemical formula 3 below) having a wavelength of 510 nm is generated.

つまり、化学式1のクマリンはOHラジカルと反応して化学式2の7OHクマリンを生成すること、及び、クマリンはNaOHと反応して化学式3のケイヒ酸を生成することは知られていたが、クマリンがNaOHとOHラジカルとが共存する場合のスペクトルについては、知られていなかった。   That is, it has been known that coumarin of formula 1 reacts with OH radical to form 7OH coumarin of formula 2 and coumarin reacts with NaOH to form cinnamic acid of formula 3, but coumarin It was unknown about the spectrum when NaOH and OH radical coexist.












本発明者はTiO2粉末を分散したクマリン水溶液に紫外線を照射した表1に示す実験サンプル1からは図1に示すように非特許文献1と同じ波長の455nmのピークを持つ蛍光スペクトルが得られたので価電子帯正孔が発生していたことが証明できる。 The inventors of the present invention have obtained a fluorescence spectrum having a peak of 455 nm having the same wavelength as that of Non-Patent Document 1 from experimental sample 1 shown in Table 1 in which ultraviolet light is irradiated to coumarin aqueous solution in which TiO 2 powder is dispersed. Therefore, it can be proved that valence band holes are generated.

次に、作製した25mMのNaOH水溶液サンプル2(図2)、と25mMのアルカリ性水溶液に図1と同じ量の酸化チタンの粉末を分散させて作ったサンプル3の液を紫外線で励起すると、図3に示すように図2と同じ波長の510nmにピーク高さが42とサンプル2の約10分の1の高さのピークが現れ、図1の波長455nmのピークは発生しない。
つまり、25mMのNaOHが存在し、酸化チタンもあって紫外線を照射したのでOHラジカルが共存する場合には7OHクマリンのピークは現れず、代わりにNaOHのみのピーク高さが約10分の1のケイヒ酸のピークが発生する、という新規な知見が得られた。
Next, when the solution of sample 3 prepared by dispersing the same amount of titanium oxide powder as that of FIG. 1 in the 25 mM aqueous solution of sodium hydroxide sample 2 (FIG. 2) and 25 mM alkaline solution was excited with ultraviolet light, As shown in FIG. 2, a peak height of 42 and a peak about one tenth the height of Sample 2 appear at 510 nm of the same wavelength as FIG. 2, and a peak of wavelength 455 nm in FIG.
In other words, the peak of 7OH coumarin does not appear in the presence of OH radical because 25 mM NaOH is present and titanium oxide is also irradiated with ultraviolet light, and instead the peak height of NaOH alone is about 1/10 A new finding was obtained that a peak of cinnamic acid occurs.

NaOHを2.8mM、シリカを20質量%含有するシリカゾルをコットン基材に塗布乾燥した複合体のシートを同じ0.1mMのクマリン液に浸漬したサンプル液8の蛍光分光試験のスペクトルを図4に示した。
このスペクトルは図3と同じく波長510nmに強度がサンプル3の1/2の低いピークが認められることから、高濃度のNaOHとOHラジカルとが共存することを示しており、この基材―シリカゾル乾燥物複合体が正孔と等価のOHラジカル前駆体を保有していると言える。
Fig. 4 shows the spectrum of the fluorescence spectroscopy test of sample liquid 8 in which a sheet of the composite obtained by applying and drying a silica sol containing 2.8 mM NaOH and 20% by mass of silica to a cotton substrate is immersed in the same 0.1 mM coumarin liquid. Indicated.
This spectrum shows that a low peak having a half intensity of Sample 3 at a wavelength of 510 nm as in FIG. 3 indicates that a high concentration of NaOH and OH radicals coexist, this substrate-silica sol drying It can be said that the compound complex possesses an OH radical precursor equivalent to holes.

以上の実験結果を整理してまとめた表8によれば、
1.NaOH濃度が0mMおよび0.25mMと低濃度で、TiOを含みOHラジカルが共存するサンプル1およびサンプル5には7OHクマリンのスペクトルが現れ、正孔が発生したことが証明される。
2.NaOH濃度が2.5mMと高濃度で、TiOを含み正孔によりOHラジカルを発生したサンプル3には低ピークのケイヒ酸のスペクトルが現れ、同じ低ピークのケイヒ酸のスペクトルが現れた基材―シリカゾル乾燥物複合体8には正孔と等価のOHラジカル前駆体を保有することが証明された。
According to Table 8 that summarizes the above experimental results,
1. A spectrum of 7OH coumarin appears in samples 1 and 5 in which the NaOH concentration is as low as 0 mM and 0.25 mM, and contains TiO 2 and OH radicals coexist, which proves that holes are generated.
2. A low peak cinnamic acid spectrum appeared in sample 3 in which the NaOH concentration was as high as 2.5 mM and TiO 2 was contained and OH radicals were generated by holes, and a substrate in which the same low peak cinnamic acid spectrum appeared It has been proved that the silica sol dry matter composite 8 has an OH radical precursor equivalent to a hole.


なお、これらの蛍光分光の測定には日立分光蛍光光度計F-7000を用いた。

In addition, Hitachi spectrofluorimeter F-7000 was used for the measurement of these fluorescence spectroscopy.

Claims (10)

無光下でもOHラジカル前駆体を保有し、基材上にシリカ1モルに対し Na、KおよびLiから選ばれた1種又2種以上の水溶性アルカリ金属塩をアルカリ金属の水酸化物に換算して2.5〜7.1ミリモルの割合で含有するシリカゾル乾燥物を保有することを特徴とする空気浄化機能のすぐれた基材−シリカゾル乾燥物複合体。 The OH radical precursor is retained even in the absence of light , and one or two or more water-soluble alkali metal salts selected from Na, K and Li are used as hydroxides of alkali metals per one mole of silica on a substrate. What is claimed is: 1. A base material-silica sol dry matter composite having an excellent air purification function characterized by retaining a silica sol dry matter containing 2.5 to 7.1 millimoles in terms of conversion. 基材にシリカゾルを塗布する段階とその後乾燥する段階とを順次行い、基材に対するシリカゾルの塗布量が、乾燥状態で、前記基材の単位面積当たりの質量(g/m2)当たり1mg〜1.5gの範囲にることを特徴とする請求項に記載の基材−シリカゾル乾燥物複合体の製造方法The step of applying the silica sol to the substrate and the subsequent step of drying are sequentially carried out , and the amount of the silica sol applied to the substrate is 1 mg to 1 mg per unit area of the substrate (g / m 2 ) in the dry state. the substrate according to claim 1, characterized in Rukoto such a range of .5G - method for producing silica sol dry matrix composite. 揮発性の有機化合物VOC、悪臭及びエチレンを分解することを特徴とする請求項に記載の基材ーシリカゾル乾燥物複合体。 The substrate-silica sol dry matter composite according to claim 1 , wherein volatile organic compound VOC, malodor and ethylene are decomposed. クマリンの水溶液に浸漬して励起した場合に発生する波長が500〜520nmの蛍光の強度がシリカゾルを含ずアルカリ金属塩のみを含有するクマリン液が発する蛍光の強度の10分の1以下であることを特徴とする請求項1または3のいずれかに記載の基材―シリカゾル乾燥物複合体。 Is less than one tenth of the intensity of the fluorescence coumarin liquid emitted containing a wavelength to be generated only the intensity of the fluorescence is an alkali metal salt not a free or a silica sol of 500~520nm when excited by immersion in an aqueous solution of coumarin The base material-silica sol dry matter composite according to any one of claims 1 to 3 , characterized in that. シリカゾル中のシリカ粒子の粒子径が4nm〜0.7μmであることを特徴とする請求項1,3または4のいずれかに記載の基材−シリカゾル乾燥物複合体。 The particle diameter of the silica particle in a silica sol is 4 nm-0.7 micrometer, The base material-silica sol dry matter complex in any one of Claim 1 , 3 or 4 characterized by the above-mentioned. 基材が、天然繊維、再生繊維または合成繊維およびそれらの織布または不織布、木材、紙、壁紙であることを特徴とする請求項1または3〜5のいずれかに記載の基材−シリカゾル乾燥物複合体。 The substrate according to any one of claims 1 or 3 , wherein the substrate is a natural fiber, a regenerated fiber or a synthetic fiber and their woven or non-woven fabric, wood, paper or wallpaper. Complex. 基材の天然繊維がコットン、絹、麻であり、再生繊維がレーヨン、リヨセルであり、合成繊維がポリエステル、ナイロンであることを特徴とする請求項に記載の基材−シリカゾル乾燥物複合体。 The base material-silica sol dry matter composite according to claim 6 , wherein natural fibers of the base material are cotton, silk, hemp, regenerated fibers are rayon, lyocell, and synthetic fibers are polyester, nylon. . 請求項2に記載した方法で製造した基材−シリカゾル乾燥物複合体をエアフィルタとして空気通過部に組み込こと特徴とする衛生マスク、空気清浄器、脱臭器またはエアコンの製造方法Substrates were prepared by the method described in claim 2 - sol dried product hygiene mask the complex and set the air passage section write No This and characterized as an air filter, air cleaner, deodorizer, or air conditioning of the manufacturing method. 基材が繊維およびその織布または不織布から成るカーテン、壁材、床材、天井材、造花、人工観葉植物であることを特徴とする請求項1または3〜7のいずれかに記載の基材−シリカゾル乾燥物複合体。 The substrate according to any one of claims 1 to 3 , wherein the substrate is a curtain comprising a fiber and its woven or non-woven fabric, wall material, floor material, ceiling material, artificial flower, artificial foliage plant. Silica sol dry matter complex. 基材にシリカゾル塗布後雰囲気温度0〜230℃で乾燥ることを特徴とする請求項に記載の基材―シリカゾル乾燥物複合体の製造方法The substrate according to claim 2 ambient temperature after application of the sol to a substrate is characterized that you dried at 0 to 230 ° C. - method for producing silica sol dry matrix composite.
JP2017225768A 2017-04-27 2017-11-24 Substrate-silica sol dry matter composite and method for producing the same Expired - Fee Related JP6484771B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088705 2017-04-27
JP2017088705 2017-04-27

Publications (2)

Publication Number Publication Date
JP2018183767A JP2018183767A (en) 2018-11-22
JP6484771B2 true JP6484771B2 (en) 2019-03-13

Family

ID=64356616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225768A Expired - Fee Related JP6484771B2 (en) 2017-04-27 2017-11-24 Substrate-silica sol dry matter composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP6484771B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926915B2 (en) * 1990-07-05 1999-07-28 日産化学工業株式会社 Elongated silica sol and method for producing the same
AU2573700A (en) * 1999-02-18 2000-09-04 Nikki-Universal Co., Ltd. Deodorization catalyst for air-conditioner
JP2002172363A (en) * 2000-12-06 2002-06-18 Sumitomo Metal Ind Ltd Organic coating-bearing surface treated steel plate
US7488520B2 (en) * 2003-10-16 2009-02-10 Kimberly-Clark Worldwide, Inc. High surface area material blends for odor reduction, articles utilizing such blends and methods of using same
JP2009247546A (en) * 2008-04-04 2009-10-29 Sharp Corp Air cleaning filter and air cleaner
JP5411516B2 (en) * 2009-01-27 2014-02-12 日華化学株式会社 Interior materials for vehicles
JP5673957B2 (en) * 2011-10-27 2015-02-18 日産化学工業株式会社 Porous secondary agglomerated silica sol and method for producing the same
JP6342778B2 (en) * 2014-09-24 2018-06-13 入江 敏夫 Hole-bearing substrate-silica sol dried product composite and method for producing the same

Also Published As

Publication number Publication date
JP2018183767A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
EP3302796B1 (en) Use of a photocatalytic composition in the removal of trimethylamine
US10898879B2 (en) Visible light-activated photocatalytic coating composition and air purification filter
CN106794988B (en) Purified hydrogen peroxide gas method for generation and device
JP5850902B2 (en) Air treatment method and apparatus using ultraviolet light
JP5845385B2 (en) Air purifier
KR100357765B1 (en) Process of preparation of photo-semiconductive filter for deodorization and antibacterial activity and photo-semiconductive filter for deodorization and antibacterial activity used this process
JP2017533086A (en) Improved air cleaning system and method
JPWO2006046443A1 (en) Fiber cloth with VOC removal function
US20170266650A1 (en) Visible light activated photocatalytic tile
JP6342778B2 (en) Hole-bearing substrate-silica sol dried product composite and method for producing the same
JP2004350935A (en) Filter
JP6484771B2 (en) Substrate-silica sol dry matter composite and method for producing the same
CN103230812A (en) Photocatalytic air filtering material and preparation method thereof
CN114599444A (en) Solid material for purifying air and preparation method and application thereof
JP3990951B2 (en) Photocatalyst-containing substrate
RU2482912C1 (en) Method of producing filtering-sorbing material with photo catalytic properties
JP2013126623A (en) Catalyst body holding positive hole in light irradiation non-receiving state, method for producing the same, and antiviral/antibacterial cloth
JP4840615B2 (en) Photocatalyst deodorization sterilization method
KR100562476B1 (en) Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof
JP2017172068A (en) Substrate-silica sol dry matter composite, application article thereof and manufacturing method thereof
KR102454332B1 (en) Air purifier
US20240009658A1 (en) Deodorizing catalyst and uses thereof
WO2022230343A1 (en) Decomposer for odorous substance, article including decomposer for odorous substance, and method for decomposing odorous substance using same
JP2024074737A (en) Method for producing mixed powder of photocatalyst and porous material, mixed powder of photocatalyst and porous material, method for producing porous material bulk material carrying and fixing photocatalyst, and porous material bulk material carrying and fixing photocatalyst
JP5088654B2 (en) Transparent liquid photocatalyst

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181012

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6484771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees