JP2012103155A - Apparatus, method and program for estimating laser density distribution - Google Patents

Apparatus, method and program for estimating laser density distribution Download PDF

Info

Publication number
JP2012103155A
JP2012103155A JP2010252709A JP2010252709A JP2012103155A JP 2012103155 A JP2012103155 A JP 2012103155A JP 2010252709 A JP2010252709 A JP 2010252709A JP 2010252709 A JP2010252709 A JP 2010252709A JP 2012103155 A JP2012103155 A JP 2012103155A
Authority
JP
Japan
Prior art keywords
laser
tree
density
forest
attribute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010252709A
Other languages
Japanese (ja)
Other versions
JP5520786B2 (en
Inventor
Hideki Shimamura
秀樹 島村
Toshio Kogure
利雄 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2010252709A priority Critical patent/JP5520786B2/en
Publication of JP2012103155A publication Critical patent/JP2012103155A/en
Application granted granted Critical
Publication of JP5520786B2 publication Critical patent/JP5520786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To assess an impact of a laser density arriving at a ground surface according to density of trees and an inclination of ground surface in an airborne laser measurement of a forest region and geography.SOLUTION: A distance between trees is estimated based on a standard density according to attribute (a tree type and a tree age) of trees, indicated in a yield table for forest (S64). An arrival rate of the laser to the ground surface is simulated to find an arrival rate function according to a distance from a tree according to an attribute. A laser arrival rate in a cell per tree in a vegetation area of each attribute is found from the distance between trees and the arrival rate function (S66). The attribute of a compartment or the like is acquired from a schematic drawing of forest, and an arrival laser density in the compartment or the like is defined based on the laser arrival rate in the cell of the corresponding attribute (S68). An inclination classification drawing 50 is made based on altitude data 48 (S72), and the inclination correction is performed on the arrival laser density (S70).

Description

本発明は、森林の航空レーザ計測での地表面に到達するレーザの密度分布を推定するレーザ密度分布推定装置、レーザ密度分布推定方法、及びプログラムに関する。   The present invention relates to a laser density distribution estimation apparatus, a laser density distribution estimation method, and a program for estimating the density distribution of a laser that reaches the ground surface in an aerial laser measurement of a forest.

航空レーザ計測は、現地調査を必要とせずに地表や地物の三次元的な形状を得ることができ、災害地域、環境保全地域、山奥での地形計測に威力を発揮する。また、航空レーザ計測は、航空写真による計測と異なり、森林域にて樹冠下の地表面標高を測定可能とする特徴を有する。この点で航空レーザ計測は微地形の形状を適確に取得するのに有利である。   Aviation laser measurement can obtain the three-dimensional shape of the ground surface and features without the need for on-site surveys, and is very useful for topographic measurements in disaster areas, environmental conservation areas, and mountains. In addition, aerial laser measurement is different from measurement by aerial photography, and has a feature that enables measurement of ground surface elevation under a tree crown in a forest area. In this respect, the aviation laser measurement is advantageous for accurately acquiring the shape of the microtopography.

航空レーザ計測による地形形状の計測解像度・精度は、地表面に得られる計測点(レーザ反射点)の密度に依存し、具体的にはレーザの照射数やスキャン角度、航空機の飛行速度、対地高度、地形条件などに依存する。航空レーザ計測を実施するに際しては、これらの要素を考慮して、所望の計測密度が得られるように計測計画が立てられる。   The resolution and accuracy of topographic shape measurement by aerial laser measurement depends on the density of measurement points (laser reflection points) obtained on the ground surface. Specifically, the number of laser irradiations, the scan angle, the flight speed of the aircraft, and the altitude of the ground Depends on topographic conditions. When carrying out aviation laser measurement, a measurement plan is made so as to obtain a desired measurement density in consideration of these factors.

特開2006−3332号公報JP 2006-3332 A

森林域では、航空機等から地上へ掃射されるレーザパルスは、樹木間の領域にて地表面に到達すると共に、樹冠においても一部が枝葉の隙間を通過してその下の地表面に到達し得る。その一方で、樹木の密集度が高くなると樹木間の距離が狭まり、樹冠で遮られるレーザパルスの割合が増える。また、急傾斜地では、樹木間の水平距離が平地と同じであっても地表面に沿った距離が大きくなって計測点の実効的な密度が低下したり、樹木が密集している場合、樹木同士の高低差から樹冠が重なり合い易くなって樹冠を通過するレーザパルスの割合が減ったりし得る。   In forest areas, laser pulses that are swept to the ground from aircraft, etc. reach the ground surface in the area between trees, and part of the crown also passes through the gaps between the branches and leaves and reaches the ground surface below it. obtain. On the other hand, when the density of trees increases, the distance between the trees decreases, and the ratio of laser pulses blocked by the crown increases. In steep slopes, even if the horizontal distance between trees is the same as that on flat ground, if the distance along the ground surface increases and the effective density of measurement points decreases, or if the trees are dense, The crown can easily overlap due to the height difference between them, and the ratio of laser pulses passing through the crown can be reduced.

このような要素を含む森林域に対する従来の計測計画の策定は、過去の経験に頼るところもあり、必ずしも適切な計画ではないという問題があった。そのため例えば、十分な計測密度が得られなかった領域に対しては、再度、航空レーザ計測を行ったり、地上での測量が行う必要があった。   The conventional measurement plan for forest areas including such elements has a problem that it depends on past experience and is not necessarily an appropriate plan. Therefore, for example, it was necessary to perform aviation laser measurement again or survey on the ground for a region where a sufficient measurement density was not obtained.

本発明は上記問題点を解決するためになされたものであり、航空レーザ計測にて地表面に到達するレーザパルスの森林内での密度分布を好適に推定できるようにし、森林域での地形計測等における適切な計測計画の策定に資することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and enables the density distribution in the forest of the laser pulses reaching the ground surface to be suitably estimated by the aerial laser measurement, thereby measuring the topography in the forest area. The purpose is to contribute to the formulation of an appropriate measurement plan.

本発明に係るレーザ密度分布推定装置は、航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定する装置であって、樹種又は樹齢を含む属性が相違する樹木毎に、地表面へのレーザ到達率を当該樹木からの距離の関数で表した到達率関数を記憶する到達率関数記憶手段と、森林における立木本数に関して前記属性別に予め取得されている標準密度に基づいて樹間距離を推定する樹間距離推定手段と、前記属性別に前記樹間距離及び前記到達率関数に基づいて、個々の樹木への割当領域内での割当領域レーザ到達率を求める割当領域レーザ到達率算出手段と、森林内での前記属性の分布を含む予め取得された森林情報に基づいて、注目領域での前記属性を取得し、当該属性に対応する前記割当領域レーザ到達率に基づき当該注目領域での前記到達レーザ密度を定める到達レーザ密度算出手段と、を有する。   The laser density distribution estimation apparatus according to the present invention is an apparatus for estimating the distribution of the laser density reaching the ground surface in the aerial laser measurement in the forest, and for each tree having different attributes including tree species or tree age. An arrival rate function storage means for storing an arrival rate function representing the laser arrival rate to the surface as a function of the distance from the tree, and a tree spacing based on the standard density previously acquired for each attribute regarding the number of standing trees in the forest Inter-tree distance estimation means for estimating a distance, and allocation area laser arrival rate calculation for determining an allocation area laser arrival rate in an allocation area for each tree based on the inter-tree distance and the arrival rate function for each attribute And acquiring the attribute in the attention area based on the forest information acquired in advance including the distribution of the attribute in the forest and the distribution based on the allocation area laser arrival rate corresponding to the attribute. Having a reach laser density calculating means for determining the arrival laser density in the region of interest.

他の本発明に係るレーザ密度分布推定装置は、さらに、予め取得されている地表面の標高データに基づいて、森林内の前記注目領域毎に傾斜を算出する傾斜算出手段を有し、前記到達レーザ密度算出手段は、前記到達レーザ密度の算出に際し前記傾斜に応じた補正を行う。   The laser density distribution estimation apparatus according to another aspect of the present invention further includes an inclination calculating unit that calculates an inclination for each region of interest in a forest based on altitude data obtained on the ground surface in advance. The laser density calculating means performs correction according to the inclination when calculating the reached laser density.

本発明のレーザ密度分布推定装置は、前記到達率関数として、前記属性毎の三次元の樹木モデルを用いて、単体の樹木についての航空レーザ計測をシミュレーションして取得されたものを用いることができる。   The laser density distribution estimation apparatus of the present invention can use a device obtained by simulating aviation laser measurement on a single tree using the three-dimensional tree model for each attribute as the arrival rate function. .

本発明に係るレーザ密度分布推定方法は、航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定する方法であって、森林における立木本数に関して樹種又は樹齢を含む属性別に予め取得されている標準密度に基づいて、樹間距離を推定する樹間距離推定ステップと、前記属性別に前記樹間距離と、前記属性が相違する樹木毎に地表面へのレーザ到達率を当該樹木からの距離の関数で表した到達率関数とに基づいて、個々の樹木への割当領域内での割当領域レーザ到達率を求める割当領域レーザ到達率算出ステップと、予め取得されている地表面の標高データに基づいて、森林内の注目領域毎に傾斜を算出する傾斜算出ステップと、森林内での前記属性の分布を含む予め取得された森林情報に基づいて、前記注目領域での前記属性を取得し、当該属性に対応する前記割当領域レーザ到達率と前記傾斜とから当該注目領域での前記到達レーザ密度を定める到達レーザ密度算出ステップと、を有する。   The laser density distribution estimation method according to the present invention is a method for estimating the distribution of the laser density reaching the ground surface in an aerial laser measurement in a forest, and is acquired in advance by attributes including tree species or tree age regarding the number of standing trees in the forest. Based on the standard density, the inter-tree distance estimation step for estimating the inter-tree distance, the inter-tree distance for each attribute, and the laser arrival rate to the ground surface for each tree having the different attribute from the tree An allocation area laser arrival rate calculating step for obtaining an allocation area laser arrival rate within an allocation area to each tree based on an arrival rate function expressed as a function of the distance, and an altitude of the ground surface acquired in advance An inclination calculation step for calculating an inclination for each region of interest in the forest based on the data, and based on forest information acquired in advance including the distribution of the attribute in the forest, Get the serial attribute has a reach laser density calculation step of determining the arrival laser density in the region of interest from said inclined and the assigned area laser arrival rate corresponding to the attribute.

本発明に係るプログラムは、コンピュータに、航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定する処理を行わせるためのプログラムであって、当該コンピュータを、森林における立木本数に関して樹種又は樹齢を含む属性別に予め取得されている標準密度に基づいて、樹間距離を推定する樹間距離推定手段、前記属性別に前記樹間距離と、前記属性が相違する樹木毎に地表面へのレーザ到達率を当該樹木からの距離の関数で表した到達率関数とに基づいて、個々の樹木への割当領域内での割当領域レーザ到達率を求める割当領域レーザ到達率算出手段、予め取得されている地表面の標高データに基づいて、森林内の注目領域毎に傾斜を算出する傾斜算出手段、及び、森林内での前記属性の分布を含む予め取得された森林情報に基づいて、前記注目領域での前記属性を取得し、当該属性に対応する前記割当領域レーザ到達率と前記傾斜とから当該注目領域での前記到達レーザ密度を定める到達レーザ密度算出手段、として機能させる。   A program according to the present invention is a program for causing a computer to perform a process of estimating a distribution of a laser density reaching a ground surface in an aerial laser measurement in a forest, the computer relating to the number of standing trees in the forest. Based on a standard density acquired in advance for each attribute including tree species or tree age, an inter-tree distance estimating means for estimating an inter-tree distance, to the ground surface for each tree having the above-mentioned attribute and the inter-tree distance and the attribute different Allocation area laser arrival rate calculating means for obtaining an allocation area laser arrival rate in an allocation area to each tree based on an arrival rate function that represents the laser arrival rate of the tree as a function of the distance from the tree, acquired in advance Inclination calculating means for calculating the inclination for each region of interest in the forest based on the altitude data of the ground surface, and the attribute distribution in the forest is acquired in advance. Based on forest information, the attribute in the attention area is acquired, and the reaching laser density calculating means for determining the reaching laser density in the attention area from the allocation area laser arrival rate and the slope corresponding to the attribute, To function as.

本発明によれば、航空レーザ計測にて地表面に到達するレーザパルスの森林内での密度分布が好適に推定できるようになり、森林域での地形計測等における適切な計測計画の策定が容易となる。   According to the present invention, it is possible to suitably estimate the density distribution in the forest of laser pulses that reach the ground surface by aerial laser measurement, and it is easy to develop an appropriate measurement plan for topographic measurement in a forest area. It becomes.

本発明の実施形態に係るレーザ密度分布推定装置の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the laser density distribution estimation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るレーザ密度分布推定装置による処理の概略のフロー図である。It is a general | schematic flowchart of the process by the laser density distribution estimation apparatus which concerns on embodiment of this invention. 樹木モデルを用いたシミュレーション結果の一例の模式図である。It is a schematic diagram of an example of the simulation result using a tree model. 樹木中心からの距離に応じたレーザ到達率の一例を示すグラフである。It is a graph which shows an example of the laser arrival rate according to the distance from a tree center.

以下、本発明の実施の形態(以下実施形態という)であるレーザ密度分布推定装置2について、図面に基づいて説明する。本装置は、航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定する。   Hereinafter, a laser density distribution estimation apparatus 2 according to an embodiment of the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. This device estimates the distribution of the laser density reaching the ground surface in the forest in aerial laser measurement.

図1は、レーザ密度分布推定装置2の概略の構成を示すブロック図である。本システムは、演算処理装置4、記憶装置6、入力装置8及び出力装置10を含んで構成される。演算処理装置4として、本システムの各種演算処理を行う専用のハードウェアを作ることも可能であるが、本実施形態では演算処理装置4は、コンピュータ及び、当該コンピュータ上で実行されるプログラムを用いて構築される。   FIG. 1 is a block diagram showing a schematic configuration of the laser density distribution estimation apparatus 2. The system includes an arithmetic processing device 4, a storage device 6, an input device 8, and an output device 10. As the arithmetic processing device 4, it is possible to make dedicated hardware for performing various arithmetic processing of this system, but in this embodiment, the arithmetic processing device 4 uses a computer and a program executed on the computer. Built.

当該コンピュータのCPU(Central Processing Unit)が演算処理装置4を構成し、後述するレーザシミュレーション手段20、樹間距離推定手段22、セル内レーザ到達率算出手段24、傾斜算出手段26、到達レーザ密度算出手段28及び計測計画策定支援手段30として機能する。   A CPU (Central Processing Unit) of the computer constitutes an arithmetic processing unit 4, which will be described later, laser simulation means 20, intertree distance estimation means 22, in-cell laser arrival rate calculation means 24, inclination calculation means 26, and arrival laser density calculation. It functions as means 28 and measurement plan formulation support means 30.

記憶装置6はコンピュータに内蔵されるハードディスクなどで構成される。記憶装置6は演算処理装置4をレーザシミュレーション手段20、樹間距離推定手段22、セル内レーザ到達率算出手段24、傾斜算出手段26、到達レーザ密度算出手段28及び計測計画策定支援手段30として機能させるためのプログラム及びその他のプログラムを記憶する。   The storage device 6 is composed of a hard disk or the like built in the computer. The storage device 6 functions the arithmetic processing unit 4 as a laser simulation unit 20, an inter-tree distance estimation unit 22, an in-cell laser arrival rate calculation unit 24, an inclination calculation unit 26, an arrival laser density calculation unit 28, and a measurement plan formulation support unit 30. Programs and other programs are stored.

また、記憶装置6は本システムの処理に必要な各種データを記憶する。例えば、記憶装置6は本装置2のレーザシミュレーション手段20又は他の装置にて三次元の樹木モデルを用いて行われた単体の樹木についての航空レーザ計測のシミュレーション結果を格納する。   The storage device 6 stores various data necessary for the processing of the system. For example, the storage device 6 stores the simulation results of the aviation laser measurement for a single tree performed using the three-dimensional tree model in the laser simulation means 20 of the present apparatus 2 or another apparatus.

シミュレーションは樹種及び樹齢を含む樹木の属性別に行われ、基本的にはレーザ反射点の水平面内での二次元分布及び当該反射点が地表面への到達点か否かの別に関する情報が求められる。記憶装置6に格納するシミュレーション結果は、二次元的に分布した反射点の位置で表される情報であってもよいが、レーザ密度分布推定装置2での利用に便利な形式に表現されたものとするのが好適である。例えば、二次元分布を樹木からの距離に応じて集計して、レーザ反射点に占める地表への到達点の割合である到達率を樹木からの距離に対応付けた到達率関数を求め、これを記憶装置6に格納することができる。   The simulation is performed for each tree attribute including tree species and tree age. Basically, information on the two-dimensional distribution of laser reflection points in the horizontal plane and whether the reflection point is the arrival point on the ground surface is required. . The simulation result stored in the storage device 6 may be information represented by the positions of reflection points distributed two-dimensionally, but is expressed in a format convenient for use in the laser density distribution estimation device 2 Is preferable. For example, the two-dimensional distribution is aggregated according to the distance from the tree, and an arrival rate function that associates the arrival rate that is the ratio of the arrival point to the ground surface with respect to the laser reflection point with the distance from the tree is obtained. It can be stored in the storage device 6.

到達率関数の一例では水平面内に、樹木を中心とし半径が異なる同心円で区切られる複数のドーナツ型の領域を設定する。そして、各ドーナツ型領域での到達率を到達率関数の値と定義する。また、もう一つの例では、樹木を中心とする円内での到達率を到達率関数の値として円の半径に対応付ける。本装置2の記憶装置6はシミュレーション結果として、樹木を中心とする円の半径に、当該円内での到達率を対応付けた関数を到達率関数40として記憶する。   In an example of the reachability function, a plurality of donut-shaped regions that are separated by concentric circles with different radii centered on a tree are set in a horizontal plane. Then, the arrival rate in each donut-shaped region is defined as the value of the arrival rate function. In another example, the arrival rate in a circle centered on a tree is associated with the radius of the circle as the value of the arrival rate function. The storage device 6 of the present apparatus 2 stores, as a simulation result, a function in which the arrival rate in the circle is associated with the radius of the circle centered on the tree as the arrival rate function 40.

記憶装置6に格納されるデータにはこの他、セル内レーザ到達率情報42、樹木標準密度情報44、森林情報46、標高データ48、傾斜区分図50、到達レーザ密度情報52が含まれる。   In addition to this, the data stored in the storage device 6 includes in-cell laser arrival rate information 42, tree standard density information 44, forest information 46, altitude data 48, slope division map 50, and reaching laser density information 52.

樹木標準密度情報44は、森林における樹種又は樹齢別の立木本数の標準密度を表す情報である。標準密度は、単位面積当たりの立木の標準的な本数として予め測定等により取得されている。我が国においては、森林のうち原生林はわずかで、ほとんどが天然林及び人工林である。間伐などの人手が加わる天然林や人工林に関しては調査データを集計して、例えば、我が国では国や都道府県などが林班や林小班、枝番等を単位とする林分収穫表を作成しており、その調査データは樹種別に集計され、樹齢の区分毎に例えば1ヘクタール(ha)当たりの本数を含んでいる。本装置2における樹木標準密度情報44はこのような調査データを利用して構成される。   The tree standard density information 44 is information representing the standard density of the number of standing trees by tree type or tree age in the forest. The standard density is acquired in advance as a standard number of standing trees per unit area by measurement or the like. In Japan, there are few virgin forests, and most of them are natural forests and artificial forests. For natural forests and planted forests where thinning and other manpower are added, survey data is compiled. The survey data is totaled by tree type, and includes, for example, the number of trees per hectare (ha) for each age group. The tree standard density information 44 in the present apparatus 2 is configured using such survey data.

セル内レーザ到達率情報42は、樹木標準密度情報44が表す標準密度にて、個々の樹木に割り当てられる領域(割当領域)をセルと定義し、当該セル内での到達率からなる情報である。   The in-cell laser arrival rate information 42 is information including an arrival rate in the cell, where an area (allocation area) allocated to each tree is defined as a cell at the standard density represented by the tree standard density information 44. .

森林情報46は、航空レーザ計測を行おうとする計測対象森林における樹種及び樹齢の空間分布の情報を含む。この情報は天然林、人工林について森林管理のために調査により取得されていることが期待できる。例えば、我が国では、森林計画図、植生図など、国や都道府県などが整備する森林情報が存在し、本装置2で用いる森林情報46もそのような予め取得されている情報を利用して構成できる。   The forest information 46 includes information on the spatial distribution of tree species and tree ages in the forest to be measured for which aviation laser measurement is to be performed. This information can be expected to be obtained through surveys for forest management of natural and planted forests. For example, in Japan, there are forest information such as forest plan maps and vegetation maps prepared by the country and prefectures, and the forest information 46 used in the apparatus 2 is also configured using such previously acquired information. it can.

標高データ48は、概略の地形を表す数値データである。例えば、我が国では、国土地理院が提供する数値地図50mメッシュ(標高)や数値地図250mメッシュ(標高)等のデータを利用できる。なお、標高データ48として既存のより詳細なデータを用いることもできるが、標高データ48はレーザ密度分布推定装置2にて計測対象森林の部分領域(注目領域)毎の傾斜を補正するために用いられ、当該部分領域が比較的広いことに対応して、標高データ48も同程度の水平分解能があれば足りる。   The altitude data 48 is numerical data representing a rough terrain. For example, in Japan, data such as a numerical map 50 m mesh (elevation) and a numerical map 250 m mesh (elevation) provided by the Geographical Survey Institute can be used. Although existing more detailed data can be used as the altitude data 48, the altitude data 48 is used by the laser density distribution estimation apparatus 2 to correct the inclination for each partial area (attention area) of the forest to be measured. Corresponding to the fact that the partial area is relatively wide, the altitude data 48 only needs to have the same horizontal resolution.

傾斜区分図50は、森林内の各所の傾斜角度を情報として含む。   The inclination division diagram 50 includes the inclination angle of each place in the forest as information.

到達レーザ密度情報52は、計測対象森林内の各所におけるレーザ密度分布推定装置2により推定された到達レーザ密度からなる。レーザ密度分布推定装置2では、計測計画策定支援手段30での利用に供するために、到達レーザ密度算出手段28から出力される到達レーザ密度を到達レーザ密度情報52として記憶装置6に保持する。   The reaching laser density information 52 includes the reaching laser density estimated by the laser density distribution estimation device 2 at various locations in the measurement target forest. In the laser density distribution estimation device 2, the reached laser density output from the reached laser density calculation unit 28 is held in the storage device 6 as the reached laser density information 52 for use in the measurement plan formulation support unit 30.

入力装置8は、キーボード、マウスなどであり、ユーザが本システムへの操作を行うために用いる。   The input device 8 is a keyboard, a mouse, or the like, and is used for a user to operate the system.

出力装置10は、ディスプレイ、プリンタなどであり、到達レーザ密度算出手段28により算出された到達レーザ密度を例えば地図に重ねて画面表示、印刷等によりユーザに示す等に用いられる。   The output device 10 is a display, a printer, or the like, and is used for, for example, displaying the reaching laser density calculated by the reaching laser density calculating unit 28 on the map and displaying it to the user by screen display, printing, or the like.

図2は、レーザ密度分布推定装置2による処理の概略のフロー図である。この図2を参照しながら、演算処理装置4の各手段を説明する。   FIG. 2 is a schematic flowchart of processing by the laser density distribution estimation apparatus 2. Each means of the arithmetic processing unit 4 will be described with reference to FIG.

レーザシミュレーション手段20は、樹木の属性毎の三次元の樹木モデルを用いて、単体の樹木についての航空レーザ計測をシミュレーションし、地表へのレーザ到達分布を求める(S60)。また、本装置2では、レーザシミュレーション手段20はさらにレーザ到達分布に基づいて到達率関数40を生成する(S62)。   The laser simulation means 20 simulates aerial laser measurement of a single tree using a three-dimensional tree model for each tree attribute, and obtains a laser arrival distribution on the ground surface (S60). In the present apparatus 2, the laser simulation means 20 further generates the arrival rate function 40 based on the laser arrival distribution (S62).

樹木モデルは、既存の植物生長モデルソフトウェアを用いて生成される。樹木モデルとして三次元のポリゴンモデルが生成される。樹木の属性は、樹種及び樹齢の他、葉の茂り方に影響を与える季節を含み得る。この属性毎に樹木モデルが生成される。樹木モデルは予め各種の属性に対するものを生成して記憶装置6に格納しておくこともできるし、計測対象森林の植生や計測時期に応じて必要とされるものだけをその都度生成してもよい。ちなみに、樹種は、スギなどの針葉樹、クスノキなどの常緑広葉樹、トチノキなどの落葉広葉樹に大別される。   The tree model is generated using existing plant growth model software. A three-dimensional polygon model is generated as a tree model. Tree attributes can include seasons that affect leaf thickening as well as tree species and age. A tree model is generated for each attribute. Tree models can be generated in advance for various attributes and stored in the storage device 6, or only necessary ones can be generated each time depending on the vegetation of the measurement target forest and the measurement time. Good. By the way, tree types are broadly divided into conifers such as cedar, evergreen broadleaf trees such as camphor trees, and deciduous broadleaf trees such as cypress trees.

シミュレーションは、上方から角度を変えて掃射されるレーザパルスを表す直線が樹木モデル又は地表面のどこで交差するかを演算する。図3は、シミュレーション結果の一例の模式図であり、レーザの反射点を水平面に投影した図である。同図には、樹木の位置(樹幹)を中心とし半径を一定値ずつ変えた同心円を示し、また樹木での反射点を“×”印、地表面への到達点を“○”印で示している。図3から、シミュレーション結果のレーザ到達分布が定性的には樹冠の中心部ではレーザは地表へ到達しにくく、樹冠の端に近くなると枝葉を通過して地表へ到達する確率が高くなる傾向を有することが理解される。この傾向はシミュレーション結果にて地表への到達点の数を樹木からの距離毎に集計し到達率を算出することで、樹木の属性別に定量的に把握される。図4は、樹木中心からの距離に応じたレーザ到達率の一例を示すグラフであり、樹齢25年のヒノキについてのシミュレーション結果を示している。図4において、横軸は中心からの距離、縦軸はレーザ到達率である。   The simulation calculates where a straight line representing a laser pulse swept from above at different angles intersects the tree model or the ground surface. FIG. 3 is a schematic diagram of an example of a simulation result, and is a diagram in which a laser reflection point is projected onto a horizontal plane. This figure shows concentric circles with the radius of the tree centered on the tree position (tree trunk), and the reflection point on the tree is indicated by “x” and the arrival point to the ground is indicated by “○”. ing. From FIG. 3, the laser arrival distribution of the simulation result qualitatively has a tendency that the laser is difficult to reach the ground surface at the center of the canopy, and the probability of passing through the branches and leaves to reach the ground surface becomes higher near the end of the crown. It is understood. This tendency is quantitatively grasped for each attribute of the tree by calculating the arrival rate by counting the number of arrival points to the ground surface for each distance from the tree in the simulation result. FIG. 4 is a graph showing an example of the laser arrival rate according to the distance from the center of the tree, and shows a simulation result for a hinoki tree of 25 years old. In FIG. 4, the horizontal axis represents the distance from the center, and the vertical axis represents the laser arrival rate.

図4に示すレーザ到達率は、横軸の距離を半径とするドーナツ型の領域での反射点の総数に対する地表への到達点の割合に相当する。これに対し処理S62で生成される到達率関数40の値は、樹木からの距離を半径とする円の内側全体での反射点の総数に対する地表への到達点の割合を表す。   The laser arrival rate shown in FIG. 4 corresponds to the ratio of the arrival point to the ground surface with respect to the total number of reflection points in a donut-shaped region having a radius on the horizontal axis. On the other hand, the value of the arrival rate function 40 generated in the process S62 represents the ratio of the arrival point to the ground surface with respect to the total number of reflection points in the entire inside of the circle whose radius is the distance from the tree.

樹間距離推定手段22は、記憶装置6に記憶されている樹木標準密度情報44に基づいて、樹間距離を推定する(S64)。具体的には、樹間距離推定手段22は、樹木標準密度情報44から属性別に1ha当たりの立木本数nを取得し、例えば、次式に基づいて、隣接する樹木の中心(樹幹)間の平均的な距離を樹間距離dとしてメートル単位で算出する。
d=(10000/n)1/2 ・・・(1)
The distance between trees estimation means 22 estimates the distance between trees based on the tree standard density information 44 stored in the storage device 6 (S64). Specifically, the inter-tree distance estimation means 22 acquires the number of standing trees per ha for each attribute from the tree standard density information 44 and, for example, based on the following formula, the average between the centers (trunks) of adjacent trees The average distance is calculated in meters as the distance between trees d.
d = (10000 / n) 1/2 (1)

セル内レーザ到達率算出手段24は、属性別に樹間距離d及び到達率関数40に基づいて、個々の樹木のセル内レーザ到達率Rcを求める(S66)。セルは例えば、樹木を中心とし、かつ樹間距離dを直径とする円形の領域に設定する。この場合、セル内レーザ到達率は、距離がd/2での到達率関数40の値で与えられる。得られたセル内レーザ到達率Rcは記憶装置6にセル内レーザ到達率情報42として格納される。   The in-cell laser arrival rate calculating means 24 calculates the in-cell laser arrival rate Rc of each tree based on the inter-tree distance d and the arrival rate function 40 for each attribute (S66). For example, the cell is set in a circular area centered on a tree and having a distance d between trees as a diameter. In this case, the intra-cell laser arrival rate is given by the value of the arrival rate function 40 when the distance is d / 2. The obtained in-cell laser arrival rate Rc is stored in the storage device 6 as in-cell laser arrival rate information 42.

到達レーザ密度算出手段28は、森林内の各所を注目領域として設定し、記憶装置6の森林情報46から注目領域での樹木の属性を取得する。そして、当該属性に対応するセル内レーザ到達率Rcを、記憶装置6に保持されたセル内レーザ到達率情報42から取得する。例えば、注目領域は森林計画図等の記載に使用される林班や林小班、枝番等を単位として設定することができる。   The reaching laser density calculation means 28 sets each place in the forest as an attention area, and acquires the attribute of the tree in the attention area from the forest information 46 of the storage device 6. Then, the in-cell laser arrival rate Rc corresponding to the attribute is acquired from the in-cell laser arrival rate information 42 held in the storage device 6. For example, the region of interest can be set in units of forest groups, forest subgroups, branch numbers, etc., used for describing forest plan maps.

森林内が比較的平坦であれば、当該セル内レーザ到達率Rcを注目領域での到達レーザ密度Dを表す指標とすることができる。つまり、セル内レーザ到達率Rcを用いて、森林内の各領域での到達レーザ密度Dの相対的な大きさを比較することができ、森林内での到達レーザ密度Dの推定分布図を作成することができる(S68)。   If the forest is relatively flat, the in-cell laser arrival rate Rc can be used as an index representing the arrival laser density D in the region of interest. In other words, using the in-cell laser arrival rate Rc, the relative size of the arrival laser density D in each region in the forest can be compared, and an estimated distribution map of the arrival laser density D in the forest is created. (S68).

一方、領域の傾斜が大きくなると上述したように、実効的な到達レーザ密度が低下する影響が大きくなるので、その補正をすることが望ましい。そこで、本装置2の到達レーザ密度算出手段28は、傾斜区分図50から注目領域の傾斜角度の情報を取得して傾斜補正を行う(S70)。   On the other hand, as the slope of the region increases, as described above, the effect of decreasing the effective laser density increases, so it is desirable to correct it. Therefore, the reaching laser density calculation means 28 of the present apparatus 2 acquires information on the inclination angle of the region of interest from the inclination division diagram 50 and performs inclination correction (S70).

当該傾斜補正に用いられる傾斜区分図50は傾斜算出手段26により生成される(S72)。傾斜算出手段26は、記憶装置6に格納された標高データ48から森林の各所を注目領域として設定して各注目領域での地表面の傾斜を算出し、傾斜区分図50を作成する。傾斜区分図50は上述のように到達レーザ密度算出手段28での注目領域毎の傾斜補正に用いられるので、傾斜算出手段26が傾斜を算出する注目領域は、到達レーザ密度算出手段28での注目領域と対応するように定めることが好適である。よって、傾斜算出手段26でも到達レーザ密度算出手段28と同様、注目領域を林班等の単位で設定することができる。   The inclination division diagram 50 used for the inclination correction is generated by the inclination calculating means 26 (S72). The inclination calculation means 26 sets each part of the forest as an attention area from the altitude data 48 stored in the storage device 6, calculates the inclination of the ground surface in each attention area, and creates an inclination division diagram 50. As described above, the gradient division diagram 50 is used for the inclination correction for each region of interest in the reaching laser density calculation unit 28 as described above. Therefore, the region of interest for which the inclination calculation unit 26 calculates the inclination is the region of interest in the reaching laser density calculation unit 28. It is preferable to determine so as to correspond to the region. Therefore, similarly to the arrival laser density calculation means 28, the inclination calculation means 26 can set the attention area in units such as forest groups.

傾斜角度Θは例えば、注目領域における地表面を代表する平面と水平面とのなす角度により定義される。傾斜角度Θを有する地表面の面積Sが、水平面に投影した面積S0に対する比の値をκとすると、
κ≡S/S0=1/cosΘ ・・・(2)
である。また、傾斜補正した到達レーザ密度Dは、
D≡Rc/κ=Rc・cosΘ ・・・(3)
で与えられる。傾斜区分図50には傾斜角度Θをそのまま傾斜情報として記録してもよいし、Θに代えてcosΘ又はκを記録してもよい。
The inclination angle Θ is defined by, for example, an angle formed by a plane representing the ground surface in a region of interest and a horizontal plane. If the ratio S of the area S of the ground surface having the inclination angle Θ to the area S0 projected on the horizontal plane is κ,
κ≡S / S0 = 1 / cosΘ (2)
It is. Further, the reached laser density D corrected for tilt is
D≡Rc / κ = Rc · cosΘ (3)
Given in. In the tilt section diagram 50, the tilt angle Θ may be recorded as tilt information as it is, or cos Θ or κ may be recorded instead of Θ.

到達レーザ密度算出手段28は、記憶装置6に記録される傾斜区分図50から傾斜情報を取得して、(3)式に基づいて傾斜補正された到達レーザ密度Dを算出し、その分布図を作成する(S70)。作成された到達レーザ密度の分布図は記憶装置6に到達レーザ密度情報52として記録される。   The reaching laser density calculating means 28 acquires the tilt information from the tilt section diagram 50 recorded in the storage device 6, calculates the tilt-corrected reaching laser density D based on the equation (3), and displays the distribution map. Create (S70). The created distribution map of the reaching laser density is recorded as reaching laser density information 52 in the storage device 6.

レーザ密度分布推定装置2は航空レーザによる地形計測の計画策定の支援に利用される。地形計測では基本的には、位置が取得されるサンプリング点が所望の計測解像度・精度に応じた密度で一様に分布することが好適である。ここで、到達レーザ密度情報52は、計測対象森林にレーザを一様に掃射した場合に、各点にて地表に到達するレーザの割合を示しており、植生や地形に起因した粗密が生じ得る。計測計画の策定では、例えば、地表へのレーザ到達点が森林の各所にて必要十分で、かつ一様な密度で得られるといった観点や、撮影コースが短くなるといった観点を考慮して、撮影コース図を作成する。その際、到達レーザ密度情報52を参照して、例えば、レーザの地表への到達率が低い領域では、1)撮影コースのサイドラップ率を上げる、2)同一地点を交差するコース設定で複数回撮影する、3)計測器のプラットフォームを高速な飛行機に代えて比較的低速でも飛行できる回転翼航空機としてレーザ掃射密度を高める、といった対策が行われる。また、落葉広葉樹が分布する領域が存在する場合には、計測時期を地表へレーザが到達し易い落葉期とした到達レーザ密度情報52を生成して、コストが増加し得る上述の対策を採らない計測計画を検討することもできる。   The laser density distribution estimation device 2 is used to support the planning of terrain measurement using an aviation laser. Basically, in topographic measurement, it is preferable that sampling points from which positions are acquired are uniformly distributed at a density corresponding to a desired measurement resolution and accuracy. Here, the reaching laser density information 52 indicates the ratio of the laser that reaches the ground surface at each point when the laser is uniformly swept over the forest to be measured, and the density due to vegetation and topography may occur. . In formulating a measurement plan, for example, taking into account that the laser arrival point to the ground surface is necessary and sufficient at various locations in the forest and is obtained with a uniform density, and that the shooting course is shortened, Create a diagram. At that time, referring to the arrival laser density information 52, for example, in an area where the arrival rate of the laser to the ground surface is low, 1) increase the side wrap rate of the shooting course, and 2) multiple times with the course setting crossing the same point. 3) Take measures such as increasing the laser sweep density as a rotary wing aircraft that can fly at a relatively low speed instead of a high-speed airplane as the platform of the measuring instrument. In addition, when there is a region where deciduous broad-leaved trees are distributed, the arrival laser density information 52 is generated in which the measurement period is the deciduous period in which the laser can easily reach the ground surface, and the above-described measures that can increase the cost are not taken. A measurement plan can also be considered.

計測計画策定支援手段30は、計測計画の策定に際しユーザを支援するための処理S74を行う。計測計画策定支援手段30は例えば、出力装置10であるディスプレイに計測対象森林の地図を表示する。また、ユーザが撮影コース、飛行高度、飛行速度、サイドラップ率、スキャン角度、スキャン回数、パルスレートなどの計測計画の条件を入力装置8から入力すると、計測計画策定支援手段30は、これら計測条件と到達レーザ密度情報52が表す到達レーザ密度の相対的な強度の情報とに基づいて、撮影コースに当たる地表領域への実際の到達レーザ密度を算出する。計測計画策定支援手段30は、サイドラップ等で同一領域が複数回撮影される場合には、撮影毎に求めた実際の到達レーザ密度を加算して当該領域の到達レーザ密度とする。このようにして算出された計測対象森林の各所の到達レーザ密度は、例えば、ディスプレイの計測対象森林の地図上に数値や色相・濃淡などで表示することができ、ユーザはその表示から計測計画が適切かどうかを判断することができる。   The measurement plan formulation support means 30 performs a process S74 for assisting the user in formulating the measurement plan. For example, the measurement plan development support means 30 displays a map of the forest to be measured on the display that is the output device 10. When the user inputs measurement plan conditions such as a shooting course, flight altitude, flight speed, side lap rate, scan angle, number of scans, and pulse rate from the input device 8, the measurement plan formulation support means 30 Based on the information on the relative intensity of the reaching laser density represented by the reaching laser density information 52, the actual reaching laser density to the ground area corresponding to the imaging course is calculated. When the same region is imaged a plurality of times by side wrap or the like, the measurement plan formulation support means 30 adds the actual reached laser density obtained for each image to obtain the reached laser density of the region. The arrival laser density at each location of the measurement target forest calculated in this way can be displayed, for example, on a map of the measurement target forest on the display as a numerical value, hue, shading, etc. It can be judged whether it is appropriate.

なお、本実施形態では樹木モデルを用いた計算機シミュレーションにより地表へのレーザ到達分布を求めたが、このレーザ到達分布は実測により取得してもよい。   In this embodiment, the laser arrival distribution to the ground surface is obtained by computer simulation using a tree model, but this laser arrival distribution may be obtained by actual measurement.

2 レーザ密度分布推定装置、4 演算処理装置、6 記憶装置、8 入力装置、10 出力装置、20 レーザシミュレーション手段、22 樹間距離推定手段、24 セル内レーザ到達率算出手段、26 傾斜算出手段、28 到達レーザ密度算出手段、30 計測計画策定支援手段、40 到達率関数、42 セル内レーザ到達率情報、44 樹木標準密度情報、46 森林情報、48 標高データ、50 傾斜区分図、52 到達レーザ密度情報。   2 laser density distribution estimation device, 4 arithmetic processing device, 6 storage device, 8 input device, 10 output device, 20 laser simulation means, 22 tree distance estimation means, 24 intra-cell laser arrival rate calculation means, 26 tilt calculation means, 28 Achieving laser density calculation means, 30 Measurement plan formulation support means, 40 Reachability function, 42 In-cell laser reachability information, 44 Tree standard density information, 46 Forest information, 48 Elevation data, 50 Inclination division map, 52 Achieving laser density information.

Claims (5)

航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定するレーザ密度分布推定装置であって、
樹種又は樹齢を含む属性が相違する樹木毎に、地表面へのレーザ到達率を当該樹木からの距離の関数で表した到達率関数を記憶する到達率関数記憶手段と、
森林における立木本数に関して前記属性別に予め取得されている標準密度に基づいて樹間距離を推定する樹間距離推定手段と、
前記属性別に前記樹間距離及び前記到達率関数に基づいて、個々の樹木への割当領域内での割当領域レーザ到達率を求める割当領域レーザ到達率算出手段と、
森林内での前記属性の分布を含む予め取得された森林情報に基づいて、注目領域での前記属性を取得し、当該属性に対応する前記割当領域レーザ到達率に基づき当該注目領域での前記到達レーザ密度を定める到達レーザ密度算出手段と、
を有することを特徴とするレーザ密度分布推定装置。
A laser density distribution estimation device that estimates the distribution of the laser density reaching the ground surface in an aerial laser measurement in a forest,
Reachability function storage means for storing a reachability function that represents a laser reachability to the ground surface as a function of the distance from the tree for each tree having different attributes including tree species or tree age,
An inter-tree distance estimation means for estimating an inter-tree distance based on a standard density acquired in advance for each of the attributes regarding the number of standing trees in the forest;
Based on the distance between trees and the arrival rate function for each attribute, an allocation region laser arrival rate calculating means for determining an allocation region laser arrival rate in an allocation region to each tree,
Based on the forest information acquired in advance including the distribution of the attribute in the forest, the attribute in the attention area is acquired, and the arrival in the attention area is based on the allocation area laser arrival rate corresponding to the attribute. A reaching laser density calculating means for determining a laser density;
A laser density distribution estimation apparatus comprising:
請求項1に記載のレーザ密度分布推定装置において、
予め取得されている地表面の標高データに基づいて、森林内の前記注目領域毎に傾斜を算出する傾斜算出手段を有し、
前記到達レーザ密度算出手段は、前記到達レーザ密度の算出に際し前記傾斜に応じた補正を行うこと、
を特徴とするレーザ密度分布推定装置。
In the laser density distribution estimation apparatus according to claim 1,
Based on the altitude data of the ground surface acquired in advance, it has an inclination calculating means for calculating an inclination for each region of interest in the forest,
The reaching laser density calculating means performs correction according to the inclination in calculating the reaching laser density;
An apparatus for estimating a laser density distribution.
請求項1又は請求項2に記載のレーザ密度分布推定装置において、
前記到達率関数は、前記属性毎の三次元の樹木モデルを用いて、単体の樹木についての航空レーザ計測をシミュレーションして取得されたものであること、を特徴とするレーザ密度分布推定装置。
In the laser density distribution estimation apparatus according to claim 1 or 2,
2. The laser density distribution estimation apparatus according to claim 1, wherein the reachability function is obtained by simulating aviation laser measurement of a single tree using a three-dimensional tree model for each attribute.
航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定するレーザ密度分布推定方法であって、
森林における立木本数に関して樹種又は樹齢を含む属性別に予め取得されている標準密度に基づいて、樹間距離を推定する樹間距離推定ステップと、
前記属性別に前記樹間距離と、前記属性が相違する樹木毎に地表面へのレーザ到達率を当該樹木からの距離の関数で表した到達率関数とに基づいて、個々の樹木への割当領域内での割当領域レーザ到達率を求める割当領域レーザ到達率算出ステップと、
予め取得されている地表面の標高データに基づいて、森林内の注目領域毎に傾斜を算出する傾斜算出ステップと、
森林内での前記属性の分布を含む予め取得された森林情報に基づいて、前記注目領域での前記属性を取得し、当該属性に対応する前記割当領域レーザ到達率と前記傾斜とから当該注目領域での前記到達レーザ密度を定める到達レーザ密度算出ステップと、
を有することを特徴とするレーザ密度分布推定方法。
A laser density distribution estimation method for estimating a distribution of laser density reaching a ground surface in an aerial laser measurement in a forest,
An inter-tree distance estimation step for estimating an inter-tree distance based on a standard density acquired in advance for each attribute including tree species or tree age with respect to the number of standing trees in the forest;
Based on the distance between the trees for each attribute and the arrival rate function that represents the laser arrival rate to the ground surface for each tree having different attributes as a function of the distance from the tree, an allocation area to each tree An allocation area laser arrival rate calculating step for obtaining an allocation area laser arrival ratio in
An inclination calculation step for calculating an inclination for each region of interest in the forest based on altitude data of the ground surface acquired in advance;
Based on the forest information acquired in advance including the distribution of the attribute in the forest, the attribute in the attention area is acquired, and the attention area is obtained from the allocation area laser arrival rate and the slope corresponding to the attribute. A reaching laser density calculating step for determining the reaching laser density at
A laser density distribution estimation method characterized by comprising:
コンピュータに、航空レーザ計測における地表面への到達レーザ密度の森林内での分布を推定する処理を行わせるためのプログラムであって、当該コンピュータを、
森林における立木本数に関して樹種又は樹齢を含む属性別に予め取得されている標準密度に基づいて、樹間距離を推定する樹間距離推定手段、
前記属性別に前記樹間距離と、前記属性が相違する樹木毎に地表面へのレーザ到達率を当該樹木からの距離の関数で表した到達率関数とに基づいて、個々の樹木への割当領域内での割当領域レーザ到達率を求める割当領域レーザ到達率算出手段、
予め取得されている地表面の標高データに基づいて、森林内の注目領域毎に傾斜を算出する傾斜算出手段、及び、
森林内での前記属性の分布を含む予め取得された森林情報に基づいて、前記注目領域での前記属性を取得し、当該属性に対応する前記割当領域レーザ到達率と前記傾斜とから当該注目領域での前記到達レーザ密度を定める到達レーザ密度算出手段、
として機能させることを特徴とするプログラム。
A program for causing a computer to perform processing for estimating the distribution of the laser density reaching the ground surface in an aerial laser measurement in a forest,
An inter-tree distance estimation means for estimating an inter-tree distance based on a standard density acquired in advance for each attribute including the tree species or tree age with respect to the number of standing trees in the forest,
Based on the distance between the trees for each attribute and the arrival rate function that represents the laser arrival rate to the ground surface for each tree having different attributes as a function of the distance from the tree, an allocation area to each tree Allocation region laser arrival rate calculating means for determining the allocation region laser arrival rate in
An inclination calculation means for calculating an inclination for each region of interest in the forest based on altitude data of the ground surface acquired in advance, and
Based on the forest information acquired in advance including the distribution of the attribute in the forest, the attribute in the attention area is acquired, and the attention area is obtained from the allocation area laser arrival rate and the slope corresponding to the attribute. Reaching laser density calculating means for determining the reaching laser density at
A program characterized by functioning as
JP2010252709A 2010-11-11 2010-11-11 Laser density distribution estimation apparatus, laser density distribution estimation method, and program Active JP5520786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010252709A JP5520786B2 (en) 2010-11-11 2010-11-11 Laser density distribution estimation apparatus, laser density distribution estimation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010252709A JP5520786B2 (en) 2010-11-11 2010-11-11 Laser density distribution estimation apparatus, laser density distribution estimation method, and program

Publications (2)

Publication Number Publication Date
JP2012103155A true JP2012103155A (en) 2012-05-31
JP5520786B2 JP5520786B2 (en) 2014-06-11

Family

ID=46393723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252709A Active JP5520786B2 (en) 2010-11-11 2010-11-11 Laser density distribution estimation apparatus, laser density distribution estimation method, and program

Country Status (1)

Country Link
JP (1) JP5520786B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486928A (en) * 2013-10-08 2014-01-01 北京林业大学 Method for measuring canopy density, density and living vegetation volume under condition of troublesome vegetation
JP2020098442A (en) * 2018-12-18 2020-06-25 株式会社パスコ Tree width setting device and program
CN115825920A (en) * 2023-02-10 2023-03-21 中国科学院精密测量科学与技术创新研究院 ICESat-2 photon denoising method considering glacier morphology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344048A (en) * 2002-05-22 2003-12-03 Pasuko:Kk System for processing forest information
JP2004361094A (en) * 2003-06-02 2004-12-24 Pasuko:Kk Method for modeling tree
JP2006003332A (en) * 2004-06-16 2006-01-05 Kokusai Kogyo Co Ltd Estimating method of ground level
JP2010096752A (en) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344048A (en) * 2002-05-22 2003-12-03 Pasuko:Kk System for processing forest information
JP2004361094A (en) * 2003-06-02 2004-12-24 Pasuko:Kk Method for modeling tree
JP2006003332A (en) * 2004-06-16 2006-01-05 Kokusai Kogyo Co Ltd Estimating method of ground level
JP2010096752A (en) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小暮利雄,他3名: "航空レーザ計測のためのレーザ照射シミュレーションの基礎研究", 日本写真測量学会平成22年度年次学術講演会発表論文集, JPN6014011386, 17 May 2010 (2010-05-17), pages 73 - 74, ISSN: 0002773385 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486928A (en) * 2013-10-08 2014-01-01 北京林业大学 Method for measuring canopy density, density and living vegetation volume under condition of troublesome vegetation
JP2020098442A (en) * 2018-12-18 2020-06-25 株式会社パスコ Tree width setting device and program
JP7248419B2 (en) 2018-12-18 2023-03-29 株式会社パスコ Tree width setting device and program
CN115825920A (en) * 2023-02-10 2023-03-21 中国科学院精密测量科学与技术创新研究院 ICESat-2 photon denoising method considering glacier morphology

Also Published As

Publication number Publication date
JP5520786B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
Caroti et al. Accuracy assessment in structure from motion 3D reconstruction from UAV-born images: The influence of the data processing methods
CN106597416B (en) A kind of error correcting method of the LiDAR data depth displacement of ground GPS auxiliary
Parker et al. A portable LIDAR system for rapid determination of forest canopy structure
Fernández-Sarría et al. Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements
JP5507418B2 (en) Tree position detection device, tree position detection method, and program
JP3865764B1 (en) Forest resource survey method and forest resource survey apparatus
Weiser et al. Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
CN110111414A (en) A kind of orthography generation method based on three-dimensional laser point cloud
Omasa et al. Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing
CN104867180A (en) UAV and LiDAR integrated forest stand characteristic inversion method
CN105761310B (en) A kind of sunykatuib analysis and image display method of sky visible range numerical map
CN104331927B (en) A kind of reservoir numeral appear top layer simulation method and system
Lin et al. Multiecho-recording mobile laser scanning for enhancing individual tree crown reconstruction
CN102298793A (en) Method for obtaining three-dimensional figure data of cultural relic
USRE42439E1 (en) Canopy modification using computer modelling
CN109059865A (en) A kind of cubic meter of measurement method, system and device
WO2022249507A1 (en) Individual tree modeling system and individual tree modeling method
CN102865814B (en) Plant population three-dimensional reconstruction error measurement method
JP5520786B2 (en) Laser density distribution estimation apparatus, laser density distribution estimation method, and program
Putman et al. Automated estimation of standing dead tree volume using voxelized terrestrial lidar data
CN110321826B (en) Unmanned aerial vehicle side slope vegetation classification method based on plant height
McGaughey et al. Direct measurement of individual tree characteristics from LIDAR data
CN112687000A (en) Correction method, system and computer readable storage medium for three-dimensional model coordinates
Xie et al. Modified gap fraction model of individual trees for estimating leaf area using terrestrial laser scanner
Zimmermann et al. Accuracy assessment of normalized digital surface models from aerial images regarding tree height determination in Saxony, Germany

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5520786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250