WO2022249507A1 - Individual tree modeling system and individual tree modeling method - Google Patents

Individual tree modeling system and individual tree modeling method Download PDF

Info

Publication number
WO2022249507A1
WO2022249507A1 PCT/JP2021/037558 JP2021037558W WO2022249507A1 WO 2022249507 A1 WO2022249507 A1 WO 2022249507A1 JP 2021037558 W JP2021037558 W JP 2021037558W WO 2022249507 A1 WO2022249507 A1 WO 2022249507A1
Authority
WO
WIPO (PCT)
Prior art keywords
single tree
data
tree
dimensional
control unit
Prior art date
Application number
PCT/JP2021/037558
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 山口
Original Assignee
株式会社マプリィ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マプリィ filed Critical 株式会社マプリィ
Publication of WO2022249507A1 publication Critical patent/WO2022249507A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Definitions

  • the present invention relates to a single tree modeling system and a single tree modeling method.
  • Forests with dense single trees have multifaceted functions such as water and soil conservation, global environment conservation, and biological protection. It is In the most primitive method, for example, a measurer enters a forest and obtains information on one single tree among a plurality of single trees, for example, tree information such as tree position, breast height diameter, and tree height. There is a method of measuring each. However, such a method has the problem that it takes a lot of work time, and accurate tree information cannot be obtained depending on the skill of the measurer.
  • Patent Document 1 describes a tree information measurement method having distance data acquisition means, feature data extraction means, matching means, single tree extraction means, and tree information detection means.
  • An apparatus and method for measuring tree information are disclosed.
  • the distance data acquisition means measures distance data to an arbitrary portion of the object to be measured at a plurality of points
  • the feature data extraction means extracts a set of feature data corresponding to the tree trunk from the distance data.
  • the matching means matches the distance data of a plurality of points by scan matching and specifies a three-dimensional coordinate system
  • the single tree extracting means extracts a single tree from the coordinate point data specified in the three-dimensional coordinate system.
  • the tree information detection means detects tree information including one or more of tree height, trunk diameter, crown length, and crown diameter for each single tree. As a result, highly accurate tree information can be acquired with little effort.
  • a tree position detection device for detecting the positions of trees includes normalization means, branch lower layer setting means, plane projection means, and position detection means.
  • the normalization means converts the height represented by the point cloud data to the actual height from the ground surface to generate normalized point cloud data
  • the branch lower layer setting means converts the tree crown area and the lower branch area of the forest. Based on the difference in the distribution of normalized point cloud data between and, a constant height range in the forest is set as the branch lower layer.
  • the plane projection means extracts the normalized point cloud data belonging to the sublayer and projects it onto a plane along the ground surface to obtain a two-dimensional frequency distribution, and the position detection means calculates the two-dimensional frequency distribution based on a predetermined standard. , the location where the normalized point cloud data gather is detected and set as the tree location. As a result, it is possible to detect the position of trees with improved accuracy using data from aerial laser measurements without relying on field surveys.
  • Patent Document 3 discloses a feature detection device that detects a target feature rising from the ground based on three-dimensional coordinate data of a point group extracted from the surface of the feature in a target space. is disclosed.
  • Patent No. 6828211 discloses a forest resource analysis device that evaluates forest resources based on point cloud data including coordinate values in the vertical, horizontal, and height directions of a forest.
  • Patent Application Publication No. 110274549 discloses a method and apparatus for measuring harvested and cultured targets.
  • Patent Document 6 discloses a self-positioning system for mobile robots based on rod-like object recognition.
  • Patent Document 7 discloses a mapping method for mapping an object and an object representative point corresponding to the type of object from a surveying instrument.
  • Chinese Patent Application Publication No. 106408608 discloses a method for extracting stem diameter from terrestrial laser radar point cloud data.
  • Patent Document 1 has the problem that it requires distance data of multiple points in order to match the distance data of multiple points, and it takes time and effort to acquire the distance data.
  • the distance data of a plurality of points has an extremely large amount of information and takes time to process.
  • the technique described in Patent Literature 2 has a problem that normalization processing is required and data of airborne laser measurement is required.
  • Patent Documents 3 to 8 use point cloud data, there is a problem that processing takes time.
  • the present invention has been made to solve the above-mentioned problems. It is an object of the present invention to provide a modeling system and a single tree modeling method.
  • a single tree modeling system includes an acquisition control unit, a generation control unit, an estimation control unit, and a formation control unit.
  • the acquisition control unit acquires three-dimensional point cloud data of a single tree by irradiating a single tree in the forest from a predetermined measurement point with a laser of a three-dimensional laser scanner.
  • the generation control unit converts the acquired three-dimensional point cloud data into mesh data composed of polygons, thereby generating single tree mesh data representing the bark of the single tree.
  • the estimation control unit regards a plurality of points located on the same plane in the horizontal direction with respect to the generated single tree mesh data as part of a circle formed by the bark of the single tree, and calculates the points at the plurality of points.
  • a circle is extrapolated, and the extrapolated circle radius is used to estimate bark data of a single tree for which the single tree mesh data does not exist as virtual data of the bark of the single tree.
  • the formation control unit converts the three-dimensional cylindrical model into the single tree based on the single tree mesh data, the estimated virtual data, the circle radius of the virtual data, and the tree height information of the single tree. form a three-dimensional model of the trunk of
  • a single tree modeling method comprises an acquisition control process, a generation control process, an estimation control process, and a formation control process.
  • Each step of the single tree modeling method corresponds to each controller of the single tree modeling system.
  • FIG. 1 is a schematic diagram illustrating an example of a single tree modeling system according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing the execution procedure of the single tree modeling method according to the embodiment of the present invention
  • FIG. 3A shows an example of scanning by a measurer with a three-dimensional laser scanner
  • FIG. 3B shows an example of three-dimensional point cloud data scanned by a measurer with a three-dimensional laser scanner.
  • FIG. 4A shows an example of three-dimensional point-group data
  • FIG. 4B shows an example of three-dimensional point-group data actually obtained.
  • FIG. 5A shows an example of mesh data
  • FIG. 5B shows an example of actually obtained mesh data.
  • FIG. 6A shows an example of extrapolating a circle to a plurality of points of single tree mesh data, and a diagram showing an example of stepwise extrapolation of a circle to single tree mesh data in the vertical direction.
  • FIG. 6B shows an example of combining single tree mesh data and virtual data
  • FIG. 10 is a diagram showing an example of forming a three-dimensional model of a trunk of a single tree
  • FIG. 9A is a diagram showing an example of mesh data of a plurality of single trees
  • FIG. 9B is a diagram showing an example of a three-dimensional model of trunks of a plurality of single trees.
  • FIG. 10 is a diagram showing an example of combining single tree mesh data and virtual data
  • FIG. 10 is a diagram showing an example of forming a three-dimensional model of a trunk of a single tree
  • FIG. 9A is a diagram showing an example of mesh data of a plurality of single trees
  • FIG. 9B is a diagram showing an example of a three-dimensional
  • FIG. 10 is a diagram showing an example of a case in which an observer scans while moving around in a forest
  • FIG. 11A is a diagram showing an example of a three-dimensional data platform for forests
  • FIG. 11B is a diagram showing an example of a tree-cutting simulation.
  • a diagram (FIG. 12A) showing an example when tree crown data is combined with a three-dimensional model of the trunk of a single tree
  • a diagram (FIG. 12B) showing an example of a database corresponding to the three-dimensional model of the trunk of a single tree.
  • FIG. 4 is a schematic diagram showing an example of correction of position information by closing processing
  • a single tree modeling system 1 is basically composed of a three-dimensional laser scanner 10 and a terminal device 11, as shown in FIG.
  • the 3D laser scanner 10 can acquire 3D point cloud data of a single tree in the forest.
  • the three-dimensional laser scanner 10 includes a laser irradiation section, a scattered light detection section, and a point cloud calculation section.
  • the laser irradiation unit emits a pulsed laser to the object.
  • the scattered light detection unit detects scattered light from the laser irradiated to the object.
  • the point cloud calculator calculates three-dimensional data of the point cloud of the distance from the three-dimensional laser scanner 10 to the object and the position where the scattered light is scattered on the surface of the object.
  • the type of the three-dimensional laser scanner 10 is not particularly limited, but examples thereof include Lidar (Light Detection and Ranging, Laser Imaging Detection and Ranging) sensors.
  • the terminal device 11 also includes a display unit, a reception unit (input unit), a storage unit, a control unit, an output unit, and a communication unit.
  • the display unit displays a screen.
  • the reception unit receives input of a predetermined instruction by a user's operation.
  • the storage unit stores data.
  • the control section controls each section.
  • the output unit outputs data.
  • the communication unit acquires position information of the terminal device 11 (for example, GPS position information, position information obtained by a dual-frequency multi-GNSS receiver).
  • Examples of the terminal device 11 include a desktop terminal device, a tablet terminal device, a portable notebook computer, a mobile terminal device (smartphone) with a touch panel, and the like.
  • the terminal device 11 is not particularly limited as long as it is a device capable of analyzing the three-dimensional point group data of a single tree acquired by a three-dimensional laser scanner.
  • the terminal device 11 may also serve as the three-dimensional laser scanner 10.
  • the terminal device 11 incorporates a CPU, ROM, RAM, HDD, SSD, etc. (not shown). to run. Further, each control unit, which will be described later, is implemented by the CPU executing a program.
  • FIG. 1 a measurer who collects tree information of single trees in the forest visits the forest carrying the three-dimensional laser scanner 10 and the terminal device 11 of the single tree modeling system 1, and 11 is activated. Then, the measurer goes to a predetermined measurement point near the single tree to be measured, points the three-dimensional laser scanner 10 at the single tree, and inputs a measurement key into the terminal device 11 . Then, the acquisition control unit 101 of the terminal device 11 acquires the three-dimensional point cloud data of the single tree by irradiating the laser of the three-dimensional laser scanner 10 ( FIG. 2 : S101).
  • the acquisition method of the acquisition control unit 101 is not particularly limited.
  • the measurer directs the laser irradiation unit of the three-dimensional laser scanner 10 toward a single tree and inputs a measurement key into the terminal device 11 .
  • the acquisition control unit 101 receives the input of the measurement key and starts laser irradiation of the three-dimensional laser scanner 10 .
  • the laser irradiated to the single tree in the forest is reflected by the front portion of the single tree facing the three-dimensional laser scanner 10 (for example, the front portion of the surface of the bark) and scattered as scattered light.
  • the three-dimensional laser scanner 10 acquires three-dimensional point cloud data of the positions where the scattered light is scattered.
  • the three-dimensional point cloud data includes data indicating the front portion of the single tree as shown in FIG. 3B. Other data may also be included that indicate the ground near the base of a single tree.
  • the acquisition control unit 101 may acquire position information at a measurement point when acquiring three-dimensional point cloud data. For example, when acquiring the three-dimensional point cloud data, the acquisition control unit 101 acquires the position information of the terminal device 11 using the communication unit of the terminal device 11, and converts the position information of the terminal device 11 into the three-dimensional point cloud data. be stored in association with This makes it possible to associate the three-dimensional point cloud data with the positional information of the measurement points.
  • This position information may be used, for example, when obtaining tree height information of a single tree (described later). Further, this position information may be used when obtaining latitude, longitude, altitude, etc. indicating the installation position of the three-dimensional model of the trunk of a single tree formed later.
  • the generation control unit 102 of the terminal device 11 converts the acquired three-dimensional point cloud data into mesh data made up of polygons, so that simple A single tree mesh data representing the bark of a tree is generated (Fig. 2: S102).
  • the generation method of the generation control unit 102 is not particularly limited.
  • the obtained three-dimensional point cloud data expresses a plurality of single trees in the forest and the ground at the base of the single trees.
  • FIG. 4B shows three-dimensional point cloud data obtained by actually scanning a single tree in the forest with the three-dimensional laser scanner 10 .
  • the three-dimensional point cloud data is a collection of points, and the shape of a single tree cannot be recognized.
  • the generation control unit 102 converts the three-dimensional point cloud data into mesh data in which all faces are composed of triangles with three vertices, for example, as shown in FIG. 5A.
  • the mesh data is data expressing three-dimensional point cloud data in a geographical coordinate system as a mesh (network), and is composed of items such as a mesh ID, a mesh vertex, and a normal vector.
  • the mesh vertex stores a predetermined number (1 or more) of vertices of the three-dimensional position information in the geographic coordinate system.
  • the normal vector is a vector perpendicular to the mesh surface, meaning a vector perpendicular to all straight lines on the mesh surface, and stores a three-dimensional representation of the normal vector of the mesh surface.
  • the mesh data consists of the vertices of the polygons forming the mesh and the outward normal vectors of the polygons, the amount of data is compressed compared to individual geographical coordinate system three-dimensional point cloud data.
  • triangles were used as the mesh shape, but there is no particular limitation on the type of mesh shape, and other than triangles, for example, quadrilaterals, pentagons, etc. can be mentioned.
  • the generation control unit 102 before meshing the 3D point cloud data, performs noise processing to remove variations in points, thereby removing points unrelated to single trees or the ground from the 3D point cloud data. , and the shape of a single tree or the shape of the ground may be converted into highly accurate mesh data.
  • noise processing for example, a processing of calculating a boxplot for three-dimensional point cloud data and removing points with large variations can be mentioned.
  • the mesh data includes single tree mesh data that indicates the bark of the front part of a single tree and ground mesh data that indicates the shape of the ground. Therefore, the generation control unit 102 selects, among the mesh data, mesh data having a shape similar to a cylindrical shape corresponding to the bark of the front part of a single tree, or having a height equal to or greater than a predetermined height (for example, several meters).
  • Mesh data is extracted as single tree mesh data. Examples of the shape similar to the cylindrical shape include a shape having a circular arc, a semi-cylindrical shape, a semicylindrical shape, and the like.
  • the predetermined height is set, for example, to a height higher than the ground, so that mesh data with a height corresponding to a single tree can be extracted.
  • an extraction method for extracting mesh data having a shape similar to a cylinder may be adopted, or an extraction method for extracting mesh data having a height equal to or higher than a predetermined height may be adopted. may be used, any extraction method may be used, or both may be combined. As a result, only single tree mesh data corresponding to single trees can be extracted from the mesh data.
  • the estimation control unit 103 of the terminal device 11 selects a plurality of points located on the same plane in the horizontal direction with respect to the generated single tree mesh data. Assuming that it is part of the circle composed of the bark of the tree, extrapolate the circle to the plurality of points, and use the radius of the extrapolated circle to convert the bark data of a single tree that does not have single tree mesh data into a single tree It is estimated as virtual data of tree bark (Fig. 2: S103).
  • the estimation method of the estimation control unit 103 is not particularly limited.
  • the obtained single tree mesh data basically corresponds only to the bark of the front part of the single tree irradiated with the laser of the three-dimensional laser scanner 10. There are no bark data on the dorsal part of
  • the single tree mesh data corresponds to the portion where the three-dimensional point cloud data could be acquired by the three-dimensional laser scanner 10, and the single tree mesh data does not exist. corresponds to the portion where the 3D point group data could not be acquired by the 3D laser scanner 10 .
  • the measurer holds the three-dimensional laser scanner 10 and goes around the back side of the single tree and irradiates the back side of the single tree with the three-dimensional laser scanner 10, the single tree Single tree mesh data corresponding to the bark on the back of the tree can be obtained, but in that case, the operator must go around the back side of the single tree, which takes time and effort. Moreover, it is necessary to match the single tree mesh data of the bark of the front part of the single tree with the single tree mesh data of the bark of the back part of the single tree, which takes a long processing time.
  • the three-dimensional point cloud data obtained by one scan of the three-dimensional laser scanner 10 is used to estimate the bark data of a single tree for which there is no single tree mesh data. .
  • the estimation control unit 103 acquires a plurality of points located on the same horizontal plane at a predetermined height h from the ground from the single tree mesh data.
  • the estimation control unit 103 regards the obtained points as part of a circle formed by the bark of a single tree, and extrapolates the circle C to the points.
  • the extrapolation method of the circle is not particularly limited. For example, after assuming the formula of a circle with a predetermined radius, by applying the least squares method, the formula of the circle C extrapolated to a plurality of points can be obtained.
  • the estimation control unit 103 uses the radius R obtained by the extrapolated circle C formula to form data of a circle in which a plurality of points do not exist as virtual data.
  • the virtual data is a part of the circle C using the radius R and does not contain the single tree mesh data.
  • the bark of a single tree is substantially circular on the same plane in the horizontal direction, and a plurality of points in the horizontal direction of the single tree mesh data form part of the circle.
  • the predetermined height h for extrapolating the circle C can be arbitrarily set by the measurer, administrator, or the like. Further, for example, as shown in FIG. 6B, by stepwise repeating the extrapolation of a circle C for a plurality of points of the single tree mesh data at a predetermined interval i along the vertical direction from the ground, A stepped circle C corresponding to the stepped height and its radius R can be calculated. By calculating the stepwise circle C and its radius R in this way, it is possible to obtain virtual data according to height, and also to calculate the difference in the diameter of the single tree according to the height, the bending of the single tree, etc. It is possible to confirm.
  • FIG. 7 shows the case where the bark data of a single tree for which there is no single tree mesh data is estimated from the single tree mesh data shown in FIG. 5A.
  • the portion where the single tree mesh data does not exist is also estimated from the radius R of the circle C.
  • the formation control unit 104 of the terminal device 11 generates the single tree mesh data, the estimated virtual data, the radius R of the circle C of the virtual data, and the unit Based on the height information of the tree, a three-dimensional cylinder model is formed as a three-dimensional model of the trunk of a single tree (FIG. 2: S104).
  • the three-dimensional point cloud data can be obtained from all single trees taller than the measurer's height. Acquiring 3D point cloud data is difficult.
  • a three-dimensional model of the trunk of a single tree is created using the minimum necessary information, which is used to calculate the volume of standing trees and the accumulation of forests.
  • the formation method of the formation control unit 104 is not particularly limited.
  • the single tree mesh data corresponding to the trunk near the base of the single tree, the virtual data, and the radius R of the circle C have already been obtained.
  • the formation control unit 104 acquires the tree height information of a single tree.
  • the measurer acquires the tree height information of the single tree by visually confirming the height H of the single tree, by directly inputting the tree height information into the terminal device 11, the formation control unit 104 , the height information of a single tree can be obtained.
  • the single tree can be measured by measuring the height H of the single tree using the laser rangefinder. and directly inputting the tree height information to the terminal device 11 or inputting it to the terminal device 11 via wireless communication such as Bluetooth, the formation control unit 104 acquires the tree height information of the single tree. can be done.
  • the tree height information of a single tree may be obtained using DEM and DSM.
  • the DEM indicates the elevation of the ground surface at a given point
  • the DSM indicates the height of the earth's surface including buildings and trees at the given point.
  • DEM and DSM are obtained by, for example, airborne laser surveying, drone photogrammetry, drone laser surveying, surveying using artificial satellites, and the like.
  • the formation control unit 104 acquires the DEM and DSM of the point corresponding to the position information of the three-dimensional point cloud data of the single tree, and subtracts the DEM from the DSM to obtain the single tree at the measurement point of the position information.
  • the tree height information of a single tree can be obtained.
  • the tree height information of this single tree can be considered as the average value of the tree height information of a plurality of single trees spreading around the position information.
  • the formation control unit 104 acquires the tree height information of the single tree, as shown in FIG. is calculated, and the first height H1 is subtracted from the tree height information H of the single tree to calculate the second height H2 of the portion where no data exists.
  • the formation control unit 104 forms an upper three-dimensional cylindrical model using the radius R and the second height H2 from the upper end of the single tree mesh data and virtual data to the tree height information of the single tree ( A three-dimensional cylinder with a radius R and a second height H2 is extended from the upper end of the single tree mesh data and the virtual data), and the upper three-dimensional cylinder model, the single tree mesh data, and the virtual data are all combined into a single tree form a three-dimensional model of the trunk of
  • the radius R to be used may be, for example, the radius R of the circle C at the upper end of the virtual data.
  • the formation control unit 104 determines the number of points from the ground to the lower end of the single tree mesh data and virtual data where there is no data.
  • a third height H3 is calculated, and a lower three-dimensional cylinder model is formed using the radius R and the third height H3 from the lower end of the single tree mesh data and virtual data to the ground (radius R and third height H3
  • a three-dimensional cylinder with a height H3 is extended from the lower end of the single tree mesh data and the virtual data)
  • all of the lower three-dimensional cylinder model, the upper three-dimensional cylinder model, the single tree mesh data, and the virtual data can be used to form a three-dimensional model of a single tree trunk.
  • the 3D model of the trunk of a single tree includes information such as the diameter and height of a single tree, distortion within the scan range, etc.
  • the 3D model of the trunk of a single tree can be divided into , it becomes possible to use lumber from single trees before felling, construction materials, etc.
  • the three-dimensional model of the trunk of a single tree can be output as three-dimensional CAD data (DXF, OBJ, STL file, etc.), it can be utilized by sawmills, construction shops, architects, and the like.
  • the installation position of the three-dimensional model of the trunk of the formed single tree can be calculated, for example, by adding the center position information of the circle (diameter) of the single tree to the position information of the measurement point obtained in advance. I can.
  • the repetition control unit 105 of the terminal device 11 processes other single tree mesh data that does not form a three-dimensional model of the trunk of a single tree among the mesh data. , estimation of virtual data, and formation of a three-dimensional model of the trunk of a single tree are repeated (FIG. 2: S105).
  • the repetition method of the repetition control unit 105 is not particularly limited.
  • the repetition control unit 105 determines whether or not other single tree mesh data that does not form a three-dimensional model of the trunk of a single tree exists among the mesh data ( FIG. 2 : S105).
  • three single tree mesh data exist in the previous mesh data, and for one single tree mesh data, estimation of virtual data and three-dimensional model of the trunk of the single tree are performed. Forming and doing. Therefore, there are two single tree mesh data that do not form a three-dimensional model of the single tree trunk.
  • the repetition control unit 105 determines that other single tree mesh data exists (FIG. 2: S105 YES), returns to S103, and the repetition control unit 105 controls the other single tree mesh data via the estimation control unit 103.
  • Virtual data is estimated from the data (Fig. 2: S103).
  • the repetition control unit 105 forms a three-dimensional model of the trunk of a single tree from other single tree mesh data and virtual data via the formation control unit 104 (FIG. 2: S104).
  • the estimation of virtual data and the formation of the three-dimensional model of the trunk of the single tree are repeated.
  • the measurer can easily create a three-dimensional model of the trunk of a single tree in the scanning range obtained by one scanning.
  • the repetition control unit 105 determines that there is no other single tree mesh data (Fig. 2: S105 NO). This completes the repetition of the repetition control unit 105 .
  • the measurer determines whether or not to scan with the three-dimensional laser scanner 10 at another measurement point (Fig. 2: S106). For example, as shown in FIG. 10, if there are a plurality of other single trees spreading and it is necessary to scan at other measurement points, the measurer determines to scan (FIG. 2: S106 YES), and the three-dimensional Carrying the laser scanner 10 and the terminal device 11, the user moves to another measurement point. Then, when returning to S101 and scanning at another measurement point, the acquisition control unit 101 acquires three-dimensional point cloud data of a single tree ( FIG. 2 : S101). Subsequent processing is repeated from S102 to S105.
  • the measurer only needs to scan the bark of the front part (one side part) of a single tree in the forest, thus reducing the time and effort required for scanning and enabling the measurement. People can scan easily.
  • the measurer determines not to scan (Fig. 2: S106 NO), and completes all processing.
  • the three-dimensional model of the trunk of a single tree is formed entirely in the range scanned by the measurer.
  • Such a three-dimensional model of the trunk of a single tree can be utilized as a three-dimensional data platform for forests, for example, as shown in FIG. 11A.
  • the 3D data platform for forests makes it possible to create a 3D map showing the position of a single tree in a forest, and a 2D map obtained by converting a 3D model into 2D data.
  • the measurer periodically scans the single trees in the forest to update the three-dimensional model of the trunk of the single tree and accumulate changes over time in the three-dimensional model of the trunk of the single tree. can be done.
  • crown data M2 is added to the three-dimensional model M1 of the trunk of a single tree as shown in FIG. 12A. It is also possible to synthesize by The three-dimensional model M1 of the trunk of a single tree can be obtained by scanning by an operator, and the crown data M2 can be obtained from external data such as DEM and DSM. When the crown data M2 is obtained from external data, for example, the formation control unit 104 corresponds to the position information associated with the three-dimensional point cloud data and the position information of the three-dimensional model M1 of the single tree trunk from the external data.
  • the crown data M2 of the positional information is acquired, and the acquired tree crown data M2 is combined with the three-dimensional model M1 of the trunk of the single tree.
  • the crown data M2 is synthesizing the crown data M2 with the three-dimensional model M1 of the trunk of the single tree in this manner, a more realistic three-dimensional model of the single tree can be formed.
  • the database 1200 contains a number (No) 1201, a latitude 1202, a longitude 1203, an altitude 1204, a single tree species 1205, a diameter 1206, and a tree height (information) 1207. , and volume 1208 are stored in association with each other.
  • a number 1201 is assigned to the trunk of a single tree.
  • a latitude 1202, a longitude 1203, and an altitude 1204 indicate the installation position of the trunk of a single tree.
  • Diameter 1206 indicates the diameter of the circle of the three-dimensional model of the single tree trunk.
  • a wood volume 1208 is calculated from a trunk diameter 1206 and a tree height 1207 of a single tree. Note that the calculation method of the volume 1208 is not particularly limited.
  • the position information of the terminal device 11 may be position information obtained by an IMU (inertial measurement unit) built into the terminal device, in addition to GPS position information and position information obtained by a two-frequency multi-GNSS receiver.
  • IMU intial measurement unit
  • the location information of the terminal device any one of GPS location information, location information of the dual-frequency multi-GNSS receiver, and location information of the IMU may be selected by the measurement person.
  • the measurement person selects the position information of the IMU and obtains the position information of the terminal device 11 at a plurality of measurement points with the position information of the IMU, the position information of the IMU is characterized by the accumulation of errors. .
  • the operator sets a predetermined survey point as the starting survey point, goes around the forest, returns to the starting survey point, and uses the starting survey point as the final survey point. If set, the measurement person may correct the position information of the terminal device 11 as shown in FIG. 13 by performing closing processing from the start measurement point to the end measurement point. By correcting the position information of the terminal device 11, it is possible to correct the 3D point cloud data associated with the position information of the terminal device 11 and the 3D coordinate values of the 3D model.
  • the terminal device 11 is configured to include each control unit, but the program for realizing each control unit may be stored in a storage medium and the storage medium may be provided. do not have.
  • the program is read by the device, and the device implements each control unit. In that case, the program itself read from the recording medium exhibits the effects of the present invention.
  • the single tree modeling system and single tree modeling method according to the present invention are useful in fields ranging from upstream to downstream in the forestry industry in which three-dimensional models of entire single trees are acquired, shared, and utilized. It is effective as a single tree modeling system and a single tree modeling method that can easily and quickly form a single tree three-dimensional model by scanning a part of the tree with a three-dimensional laser scanner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Generation (AREA)

Abstract

An acquisition control unit 101 acquires three-dimensional point group data by irradiating an individual tree in a forest from a predetermined measurement point with a laser beam of a three-dimensional laser scanner. A generation control unit 102 generates individual tree mesh data representing the bark of the individual tree by converting the acquired three-dimensional point group data into mesh data composed of polygons. An estimation control unit 103 regards a plurality of points, located on the same plane in a horizontal direction with respect to the generated individual tree mesh data, as a portion of a circle formed by the bark of the individual tree, and extrapolates the circle from the plurality of points, and uses the radius of the extrapolated circle to estimate, as virtual data on the bark of the individual tree, data on the bark of the individual tree in which the individual tree mesh data is not present. A formation control unit 104 forms a three-dimensional cylinder model as a three-dimensional model of a stem of the individual tree on the basis of the individual tree mesh data, the estimated virtual data, the radius of the circle of the virtual data, and information on the height of the individual tree.

Description

単木モデリングシステム及び単木モデリング方法Single tree modeling system and single tree modeling method
 本発明は、単木モデリングシステム及び単木モデリング方法に関する。 The present invention relates to a single tree modeling system and a single tree modeling method.
 単木(樹木)が密集した森林には、水土保全機能、地球環境保全機能、生物保護機能等の多面的な機能があるため、森林を構成する単木の情報を正確に把握する取り組みが行われている。最も原始的な方法は、例えば、測定者が、森林の中に入って、複数の単木のうち、一つの単木の情報、例えば、樹木位置、胸高直径、樹高等の樹木情報を1本ずつ測定する方法が挙げられる。しかしながら、このような方法では、多大な作業時間が掛かるとともに、測定者の技量によって、正確な樹木情報を取得することが出来ないという課題があった。 Forests with dense single trees (trees) have multifaceted functions such as water and soil conservation, global environment conservation, and biological protection. It is In the most primitive method, for example, a measurer enters a forest and obtains information on one single tree among a plurality of single trees, for example, tree information such as tree position, breast height diameter, and tree height. There is a method of measuring each. However, such a method has the problem that it takes a lot of work time, and accurate tree information cannot be obtained depending on the skill of the measurer.
 そこで、近年では、スキャナを用いた樹木情報の取得方法が開発されている。例えば、特開2010-96752号公報(特許文献1)には、距離データ取得手段と、特徴データ抽出手段と、マッチング手段と、単木抽出手段と、樹木情報検出手段と、を有する樹木情報計測装置及び樹木情報計測方法が開示されている。距離データ取得手段は、複数の地点で被計測物の任意の部位までの距離データを計測し、特徴データ抽出手段は、距離データから、樹木の幹に相当するひとまとまりの特徴データを抽出する。マッチング手段は、複数地点の距離データをスキャンマッチングにより対応させ、三次元の座標系に特定し、単木抽出手段は、三次元の座標系に特定された座標点データから単木を抽出する。樹木情報検出手段は、樹高、幹の直径、樹冠長又は樹冠直径の1以上を含む樹木情報を単木毎に検出する。これにより、高精度な樹木情報を少ない労力で取得出来るとしている。 Therefore, in recent years, methods for acquiring tree information using scanners have been developed. For example, Japanese Patent Laying-Open No. 2010-96752 (Patent Document 1) describes a tree information measurement method having distance data acquisition means, feature data extraction means, matching means, single tree extraction means, and tree information detection means. An apparatus and method for measuring tree information are disclosed. The distance data acquisition means measures distance data to an arbitrary portion of the object to be measured at a plurality of points, and the feature data extraction means extracts a set of feature data corresponding to the tree trunk from the distance data. The matching means matches the distance data of a plurality of points by scan matching and specifies a three-dimensional coordinate system, and the single tree extracting means extracts a single tree from the coordinate point data specified in the three-dimensional coordinate system. The tree information detection means detects tree information including one or more of tree height, trunk diameter, crown length, and crown diameter for each single tree. As a result, highly accurate tree information can be acquired with little effort.
 又、特開2012-98247号公報(特許文献2)には、上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザー計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する樹木位置検出装置が開示されている。この樹木位置検出装置には、正規化手段と、枝下層設定手段と、平面投影手段と、位置検出手段と、を備える。正規化手段は、点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成し、枝下層設定手段は、当該森林の樹冠領域とその下の枝下領域とでの正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する。平面投影手段は、枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求め、位置検出手段は、所定基準に基づいて、二次元頻度分布にて正規化点群データが集まる箇所を検出して樹木位置とする。これにより、航空レーザー計測のデータを用いて現地調査に頼らずに、かつ、精度が向上した樹木位置の検出が可能となるとしている。 In addition, in Japanese Patent Application Laid-Open No. 2012-98247 (Patent Document 2), a laser pulse is swept from the sky, and the three-dimensional point cloud data of the forest obtained by airborne laser measurement that measures the reflected signal waveform is used. A tree position detection device for detecting the positions of trees is disclosed. This tree position detection device includes normalization means, branch lower layer setting means, plane projection means, and position detection means. The normalization means converts the height represented by the point cloud data to the actual height from the ground surface to generate normalized point cloud data, and the branch lower layer setting means converts the tree crown area and the lower branch area of the forest. Based on the difference in the distribution of normalized point cloud data between and, a constant height range in the forest is set as the branch lower layer. The plane projection means extracts the normalized point cloud data belonging to the sublayer and projects it onto a plane along the ground surface to obtain a two-dimensional frequency distribution, and the position detection means calculates the two-dimensional frequency distribution based on a predetermined standard. , the location where the normalized point cloud data gather is detected and set as the tree location. As a result, it is possible to detect the position of trees with improved accuracy using data from aerial laser measurements without relying on field surveys.
 特開2017-167092号公報(特許文献3)には、対象空間における地物表面から抽出された点群の三次元座標データに基づいて、地表から立ち上がった目的地物を検出する地物検出装置が開示されている。特許第6828211号公報(特許文献4)には、森林の縦、横、高さ方向の座標値を含む点群データに基づいて森林資源を評価する森林資源解析装置が開示されている。中国特許出願公開第110274549号(特許文献5)には、採取および培養された標的を測定するための方法および装置が開示されている。中国特許出願公開第109270544号(特許文献6)には、棒状の物体認識に基づく移動ロボットのための自己位置決めシステムが開示されている。中国特許出願公開第102834691号(特許文献7)には、測量機から、対象と、この対象のタイプが対応した対象代表点をマッピングするマッピング方法が開示されている。中国特許出願公開第106408608号(特許文献8)には、地上レーザーレーダー点群データから幹直径を抽出する方法が開示されている。 Japanese Patent Application Laid-Open No. 2017-167092 (Patent Document 3) discloses a feature detection device that detects a target feature rising from the ground based on three-dimensional coordinate data of a point group extracted from the surface of the feature in a target space. is disclosed. Japanese Patent No. 6828211 (Patent Document 4) discloses a forest resource analysis device that evaluates forest resources based on point cloud data including coordinate values in the vertical, horizontal, and height directions of a forest. Chinese Patent Application Publication No. 110274549 (Patent Document 5) discloses a method and apparatus for measuring harvested and cultured targets. Chinese Patent Application Publication No. 109270544 (Patent Document 6) discloses a self-positioning system for mobile robots based on rod-like object recognition. Chinese Patent Application Publication No. 102834691 (Patent Document 7) discloses a mapping method for mapping an object and an object representative point corresponding to the type of object from a surveying instrument. Chinese Patent Application Publication No. 106408608 discloses a method for extracting stem diameter from terrestrial laser radar point cloud data.
特開2010-96752号公報JP 2010-96752 A 特開2012-98247号公報JP 2012-98247 A 特開2017-167092号公報JP 2017-167092 A 特許第6828211号公報Japanese Patent No. 6828211 中国特許出願公開第110274549号Chinese Patent Application Publication No. 110274549 中国特許出願公開第109270544号Chinese Patent Application Publication No. 109270544 中国特許出願公開第102834691号Chinese Patent Application Publication No. 102834691 中国特許出願公開第106408608号Chinese Patent Application Publication No. 106408608
 しかしながら、特許文献1に記載の技術では、複数地点の距離データをマッチングするため、複数地点の距離データを必要とし、距離データの取得に時間や手間を要するという課題がある。又、複数地点の距離データは情報量が極めて多く、処理に時間が掛かるという課題がある。更に、特許文献2に記載の技術では、正規化処理が必要で、航空レーザー計測のデータが必要であるという課題がある。特許文献3-8に記載の技術では、点群データを使用するものの、処理に時間が掛かるという課題がある。 However, the technology described in Patent Document 1 has the problem that it requires distance data of multiple points in order to match the distance data of multiple points, and it takes time and effort to acquire the distance data. In addition, there is a problem that the distance data of a plurality of points has an extremely large amount of information and takes time to process. Furthermore, the technique described in Patent Literature 2 has a problem that normalization processing is required and data of airborne laser measurement is required. Although the techniques described in Patent Documents 3 to 8 use point cloud data, there is a problem that processing takes time.
 一方、立木の材積(体積)や森林の蓄積の算出には、森林を構成する単木の三次元モデルがあると便利であるが、単木の三次元モデルの作成には、少なくとも単木の前面部分と背面部分の二方向から三次元点群データを取得する必要があり、三次元点群データの取得に時間や手間が掛かるという課題がある。上述の特許文献1-8に記載の技術では、このような課題を解決することが出来ない。 On the other hand, it is convenient to have a 3D model of the single trees that make up the forest for calculating the timber volume (volume) of standing trees and the accumulation of forests. It is necessary to acquire 3D point cloud data from two directions of the front part and the back part, and there is a problem that it takes time and effort to acquire the 3D point cloud data. The techniques described in Patent Documents 1 to 8 above cannot solve such problems.
 そこで、本発明は、前記課題を解決するためになされたものであり、単木の一部分に対する三次元レーザースキャナのスキャンにより、単木の三次元モデルを簡単に素早く形成することが可能な単木モデリングシステム及び単木モデリング方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems. It is an object of the present invention to provide a modeling system and a single tree modeling method.
 本発明に係る単木モデリングシステムは、取得制御部と、生成制御部と、推定制御部と、形成制御部と、を備える。取得制御部は、所定の測定地点から森林内の単木に向けて三次元レーザースキャナのレーザーを照射することで、当該単木の三次元点群データを取得する。生成制御部は、前記取得された三次元点群データを、多角形から構成されるメッシュデータに変換することで、前記単木の樹皮を示す単木メッシュデータを生成する。推定制御部は、前記生成された単木メッシュデータに対して水平方向の同一面に位置する複数の点を、前記単木の樹皮が構成する円の一部とみなして、当該複数の点に円を外挿し、当該外挿した円の半径を用いて、前記単木メッシュデータが存在しない単木の樹皮のデータを、単木の樹皮の仮想データとして推定する。形成制御部は、前記単木メッシュデータと、前記推定された仮想データと、当該仮想データの円の半径と、前記単木の樹高情報と、に基づいて、三次元円柱モデルを、前記単木の幹の三次元モデルとして形成する。 A single tree modeling system according to the present invention includes an acquisition control unit, a generation control unit, an estimation control unit, and a formation control unit. The acquisition control unit acquires three-dimensional point cloud data of a single tree by irradiating a single tree in the forest from a predetermined measurement point with a laser of a three-dimensional laser scanner. The generation control unit converts the acquired three-dimensional point cloud data into mesh data composed of polygons, thereby generating single tree mesh data representing the bark of the single tree. The estimation control unit regards a plurality of points located on the same plane in the horizontal direction with respect to the generated single tree mesh data as part of a circle formed by the bark of the single tree, and calculates the points at the plurality of points. A circle is extrapolated, and the extrapolated circle radius is used to estimate bark data of a single tree for which the single tree mesh data does not exist as virtual data of the bark of the single tree. The formation control unit converts the three-dimensional cylindrical model into the single tree based on the single tree mesh data, the estimated virtual data, the circle radius of the virtual data, and the tree height information of the single tree. form a three-dimensional model of the trunk of
 本発明に係る単木モデリング方法は、取得制御工程と、生成制御工程と、推定制御工程と、形成制御工程と、を備える。単木モデリング方法の各工程は、単木モデリングシステムの各制御部に対応する。 A single tree modeling method according to the present invention comprises an acquisition control process, a generation control process, an estimation control process, and a formation control process. Each step of the single tree modeling method corresponds to each controller of the single tree modeling system.
 本発明によれば、単木の一部分に対する三次元レーザースキャナのスキャンにより、単木の三次元モデルを簡単に素早く形成することが可能となる。 According to the present invention, it is possible to easily and quickly form a 3D model of a single tree by scanning a portion of the single tree with a 3D laser scanner.
本発明の実施形態に係る単木モデリングシステムの一例を示す概略図である。1 is a schematic diagram illustrating an example of a single tree modeling system according to an embodiment of the present invention; FIG. 本発明の実施形態に係る単木モデリング方法の実行手順を示すためのフローチャートである。4 is a flow chart showing the execution procedure of the single tree modeling method according to the embodiment of the present invention; 測定者が三次元レーザースキャナでスキャンする場合の一例を示す図(図3A)と、測定者が三次元レーザースキャナでスキャンした三次元点群データの一例を示す図(図3B)と、である。FIG. 3A shows an example of scanning by a measurer with a three-dimensional laser scanner, and FIG. 3B shows an example of three-dimensional point cloud data scanned by a measurer with a three-dimensional laser scanner. . 三次元点群データの一例を示す図(図4A)と、実際に得られた三次元点群データの一例を示す図(図4B)と、である。It is a figure (FIG. 4A) which shows an example of three-dimensional point-group data, and a figure (FIG. 4B) which shows an example of three-dimensional point-group data actually obtained. メッシュデータの一例を示す図(図5A)と、実際に得られたメッシュデータの一例を示す図(図5B)と、である。FIG. 5A shows an example of mesh data, and FIG. 5B shows an example of actually obtained mesh data. 単木メッシュデータの複数の点に円を外挿する場合の一例を示す図(図6A)と、単木メッシュデータに対して鉛直方向に段階的に円を外挿する場合の一例を示す図(図6B)と、である。FIG. 6A shows an example of extrapolating a circle to a plurality of points of single tree mesh data, and a diagram showing an example of stepwise extrapolation of a circle to single tree mesh data in the vertical direction. (FIG. 6B). 単木メッシュデータと仮想データとを組み合わせた場合の一例を示す図である。FIG. 10 is a diagram showing an example of combining single tree mesh data and virtual data; 単木の幹の三次元モデルを形成する場合の一例を示す図である。FIG. 10 is a diagram showing an example of forming a three-dimensional model of a trunk of a single tree; 複数の単木メッシュデータの一例を示す図(図9A)と、複数の単木の幹の三次元モデルの一例を示す図(図9B)と、である。FIG. 9A is a diagram showing an example of mesh data of a plurality of single trees, and FIG. 9B is a diagram showing an example of a three-dimensional model of trunks of a plurality of single trees. 測定者が森林で動き周ってスキャンする場合の一例を示す図である。FIG. 10 is a diagram showing an example of a case in which an observer scans while moving around in a forest; 森林の三次元データプラットフォームの一例を示す図(図11A)と、木取りシミュレーションの一例を示す図(図11B)と、である。FIG. 11A is a diagram showing an example of a three-dimensional data platform for forests, and FIG. 11B is a diagram showing an example of a tree-cutting simulation. 単木の幹の三次元モデルに樹冠データを合成した場合の一例を示す図(図12A)と、単木の幹の三次元モデルに対応するデータベースの一例を示す図(図12B)と、である。A diagram (FIG. 12A) showing an example when tree crown data is combined with a three-dimensional model of the trunk of a single tree, and a diagram (FIG. 12B) showing an example of a database corresponding to the three-dimensional model of the trunk of a single tree. be. 閉合処理による位置情報の修正の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of correction of position information by closing processing;
 以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiment is an example that embodies the present invention, and is not intended to limit the technical scope of the present invention.
 本発明に係る単木モデリングシステム1は、図1に示すように、三次元レーザースキャナ10と、端末装置11とから基本的に構成される。三次元レーザースキャナ10は、森林内の単木の三次元点群データを取得することが出来る。 A single tree modeling system 1 according to the present invention is basically composed of a three-dimensional laser scanner 10 and a terminal device 11, as shown in FIG. The 3D laser scanner 10 can acquire 3D point cloud data of a single tree in the forest.
 ここで、三次元レーザースキャナ10の構成に特に問題ないが、例えば、三次元レーザースキャナ10は、レーザー照射部と、散乱光検出部と、点群算出部と、を備える。レーザー照射部は、対象物にパルス状のレーザーを発光する。散乱光検出部は、対象物に照射したレーザーに対する散乱光を検出する。点群算出部は、検出された散乱光に基づいて、三次元レーザースキャナ10から対象物までの距離や対象物の表面における散乱光が散乱した位置の点群の三次元データを算出する。三次元レーザースキャナ10の種類に特に限定は無いが、例えば、Lidar(Light Detection and Ranging、Laser Imaging Detection and Ranging)センサーを挙げることが出来る。 Here, although there is no particular problem with the configuration of the three-dimensional laser scanner 10, for example, the three-dimensional laser scanner 10 includes a laser irradiation section, a scattered light detection section, and a point cloud calculation section. The laser irradiation unit emits a pulsed laser to the object. The scattered light detection unit detects scattered light from the laser irradiated to the object. Based on the detected scattered light, the point cloud calculator calculates three-dimensional data of the point cloud of the distance from the three-dimensional laser scanner 10 to the object and the position where the scattered light is scattered on the surface of the object. The type of the three-dimensional laser scanner 10 is not particularly limited, but examples thereof include Lidar (Light Detection and Ranging, Laser Imaging Detection and Ranging) sensors.
 又、端末装置11は、表示部と、受付部(入力部)と、記憶部と、制御部と、出力部と、通信部と、を備えている。表示部は、画面を表示する。受付部は、ユーザの操作により所定の指示の入力を受け付ける。記憶部は、データを記憶させる。制御部は、各部を制御する。出力部は、データを出力する。通信部は、端末装置11の位置情報(例えば、GPS位置情報、2周波マルチGNSS受信機で得られる位置情報)を取得する。 The terminal device 11 also includes a display unit, a reception unit (input unit), a storage unit, a control unit, an output unit, and a communication unit. The display unit displays a screen. The reception unit receives input of a predetermined instruction by a user's operation. The storage unit stores data. The control section controls each section. The output unit outputs data. The communication unit acquires position information of the terminal device 11 (for example, GPS position information, position information obtained by a dual-frequency multi-GNSS receiver).
 端末装置11は、例えば、ディスクトップ型の端末装置、タブレット型端末装置、携帯用のノートパソコン、タッチパネル付きの携帯端末装置(スマートフォン)等を挙げることが出来る。尚、端末装置11は、三次元レーザースキャナで取得した単木の三次元点群データを分析したり解析したりすることが出来る装置であれば、特に限定は無い。 Examples of the terminal device 11 include a desktop terminal device, a tablet terminal device, a portable notebook computer, a mobile terminal device (smartphone) with a touch panel, and the like. Note that the terminal device 11 is not particularly limited as long as it is a device capable of analyzing the three-dimensional point group data of a single tree acquired by a three-dimensional laser scanner.
 ここで、端末装置11に三次元レーザースキャナ10が内蔵されている場合もあるため、その場合は、端末装置11が三次元レーザースキャナ10を兼ねても構わない。 Here, since the three-dimensional laser scanner 10 may be built in the terminal device 11, in that case, the terminal device 11 may also serve as the three-dimensional laser scanner 10.
 さて、端末装置11は、図示しないCPU、ROM、RAM、HDD、SSD等を内蔵しており、CPUは、例えば、RAMを作業領域として利用し、ROM、HDD、SSD等に記憶されているプログラムを実行する。又、後述する各制御部についても、CPUがプログラムを実行することで当該各制御部を実現する。 The terminal device 11 incorporates a CPU, ROM, RAM, HDD, SSD, etc. (not shown). to run. Further, each control unit, which will be described later, is implemented by the CPU executing a program.
 次に、図1-図2を参照しながら、本発明の実施形態に係る構成及び実行手順について説明する。先ず、森林内の単木の樹木情報を収集する測定者が、単木モデリングシステム1の三次元レーザースキャナ10と端末装置11とを携帯して森林内に訪れ、三次元レーザースキャナ10と端末装置11を起動させる。そして、測定者が、測定を希望する単木の近くの所定の測定地点へ行き、三次元レーザースキャナ10を単木に向けて、端末装置11に測定キーを入力する。すると、端末装置11の取得制御部101は、三次元レーザースキャナ10のレーザーを照射することで、単木の三次元点群データを取得する(図2:S101)。 Next, the configuration and execution procedure according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. First, a measurer who collects tree information of single trees in the forest visits the forest carrying the three-dimensional laser scanner 10 and the terminal device 11 of the single tree modeling system 1, and 11 is activated. Then, the measurer goes to a predetermined measurement point near the single tree to be measured, points the three-dimensional laser scanner 10 at the single tree, and inputs a measurement key into the terminal device 11 . Then, the acquisition control unit 101 of the terminal device 11 acquires the three-dimensional point cloud data of the single tree by irradiating the laser of the three-dimensional laser scanner 10 ( FIG. 2 : S101).
 ここで、取得制御部101の取得方法に特に限定は無い。例えば、測定者は、図3Aに示すように、三次元レーザースキャナ10のレーザー照射部を単木に向けて、測定キーを端末装置11に入力する。すると、取得制御部101は、測定キーの入力を受けて、三次元レーザースキャナ10のレーザーの照射を開始する。森林内の単木に照射されたレーザーは、三次元レーザースキャナ10に対向する単木の前面部分(例えば、樹皮の表面の前面部分)で反射して散乱光として散乱する。そして、三次元レーザースキャナ10は、散乱光を検出することで、散乱光が散乱した位置の三次元点群データを取得する。 Here, the acquisition method of the acquisition control unit 101 is not particularly limited. For example, as shown in FIG. 3A, the measurer directs the laser irradiation unit of the three-dimensional laser scanner 10 toward a single tree and inputs a measurement key into the terminal device 11 . Then, the acquisition control unit 101 receives the input of the measurement key and starts laser irradiation of the three-dimensional laser scanner 10 . The laser irradiated to the single tree in the forest is reflected by the front portion of the single tree facing the three-dimensional laser scanner 10 (for example, the front portion of the surface of the bark) and scattered as scattered light. By detecting the scattered light, the three-dimensional laser scanner 10 acquires three-dimensional point cloud data of the positions where the scattered light is scattered.
 ここで、三次元レーザースキャナ10は、単木の前面部分以外から散乱した散乱光も検出するため、三次元点群データには、図3Bに示すように、単木の前面部分を示すデータの他に、単木の根本付近の地面を示すデータも含まれる場合がある。 Here, since the three-dimensional laser scanner 10 also detects scattered light scattered from other than the front portion of the single tree, the three-dimensional point cloud data includes data indicating the front portion of the single tree as shown in FIG. 3B. Other data may also be included that indicate the ground near the base of a single tree.
 さて、取得制御部101は、三次元点群データを取得する際に、測定地点における位置情報を取得してもよい。例えば、取得制御部101は、三次元点群データを取得すると、端末装置11の通信部を使って、端末装置11の位置情報を取得し、当該端末装置11の位置情報を三次元点群データに関連付けて記憶させる。これにより、三次元点群データを測定地点の位置情報に関連付けておくことが出来る。この位置情報は、例えば、単木の樹高情報を取得する際に利用してもよい(後述する)。又、この位置情報は、後述で形成される単木の幹の三次元モデルの設置位置を示す緯度や経度、標高等を求める際に利用しても良い。 Now, the acquisition control unit 101 may acquire position information at a measurement point when acquiring three-dimensional point cloud data. For example, when acquiring the three-dimensional point cloud data, the acquisition control unit 101 acquires the position information of the terminal device 11 using the communication unit of the terminal device 11, and converts the position information of the terminal device 11 into the three-dimensional point cloud data. be stored in association with This makes it possible to associate the three-dimensional point cloud data with the positional information of the measurement points. This position information may be used, for example, when obtaining tree height information of a single tree (described later). Further, this position information may be used when obtaining latitude, longitude, altitude, etc. indicating the installation position of the three-dimensional model of the trunk of a single tree formed later.
 さて、取得制御部101の取得が完了すると、次に、端末装置11の生成制御部102は、取得された三次元点群データを、多角形から構成されるメッシュデータに変換することで、単木の樹皮を示す単木メッシュデータを生成する(図2:S102)。 Now, when the acquisition by the acquisition control unit 101 is completed, next, the generation control unit 102 of the terminal device 11 converts the acquired three-dimensional point cloud data into mesh data made up of polygons, so that simple A single tree mesh data representing the bark of a tree is generated (Fig. 2: S102).
 ここで、生成制御部102の生成方法に特に限定は無い。例えば、得られた三次元点群データは、図4Aに示すように、森林内の複数の単木と、単木の根元の地面とが表現される。図4Bには、実際に森林内の単木を三次元レーザースキャナ10でスキャンすることで得られた三次元点群データを示す。このように、三次元点群データのままでは、点の集合体となり、単木の形状を認識することが出来ない。 Here, the generation method of the generation control unit 102 is not particularly limited. For example, as shown in FIG. 4A, the obtained three-dimensional point cloud data expresses a plurality of single trees in the forest and the ground at the base of the single trees. FIG. 4B shows three-dimensional point cloud data obtained by actually scanning a single tree in the forest with the three-dimensional laser scanner 10 . As described above, the three-dimensional point cloud data is a collection of points, and the shape of a single tree cannot be recognized.
 そこで、生成制御部102は、三次元点群データを、例えば、図5Aに示すように、全ての面が三つの頂点の三角形から構成されるメッシュデータに変換する。メッシュ化のアルゴリズムに特に限定は無いが、例えば、三角形分割法等を挙げることが出来る。メッシュデータは、地理座標系三次元点群データをメッシュ(網目)として表現するデータであり、メッシュIDと、メッシュ頂点と、法線ベクトルとの各項目から構成される。メッシュ頂点には、地理座標系三次元位置情報の頂点が所定数(1以上の数)格納される。法線ベクトルは、メッシュ面に対して垂直なベクトルであり、メッシュ面上の全ての直線と垂直であるベクトルと意味し、メッシュ面の法線ベクトルを三次元で表現したものが格納される。ここで、メッシュデータでは、メッシュを構成する多角形の頂点と多角形の外向きの法線ベクトルであるため、個々の地理座標系三次元点群データと比較すると、データ量が圧縮される。このように、三次元点群データをメッシュ化することで、大量の点群データを単純なメッシュデータに変換し、簡単に取り扱えるようにすることが可能となる。 Therefore, the generation control unit 102 converts the three-dimensional point cloud data into mesh data in which all faces are composed of triangles with three vertices, for example, as shown in FIG. 5A. Although there is no particular limitation on the meshing algorithm, for example, a triangulation method can be used. The mesh data is data expressing three-dimensional point cloud data in a geographical coordinate system as a mesh (network), and is composed of items such as a mesh ID, a mesh vertex, and a normal vector. The mesh vertex stores a predetermined number (1 or more) of vertices of the three-dimensional position information in the geographic coordinate system. The normal vector is a vector perpendicular to the mesh surface, meaning a vector perpendicular to all straight lines on the mesh surface, and stores a three-dimensional representation of the normal vector of the mesh surface. Here, since the mesh data consists of the vertices of the polygons forming the mesh and the outward normal vectors of the polygons, the amount of data is compressed compared to individual geographical coordinate system three-dimensional point cloud data. By meshing the three-dimensional point cloud data in this way, it is possible to convert a large amount of point cloud data into simple mesh data, which can be easily handled.
 尚、上述では、メッシュ形状として三角形を採用したが、このメッシュ形状の種類に特に限定は無く、三角形の他に、例えば、四角形、五角形等を挙げることが出来る。 In the above description, triangles were used as the mesh shape, but there is no particular limitation on the type of mesh shape, and other than triangles, for example, quadrilaterals, pentagons, etc. can be mentioned.
 ここで、生成制御部102は、三次元点群データをメッシュ化する前に、点のバラつきを除去するためのノイズ処理を行うことで、単木や地面と無関係な点を三次元点群データから除去し、単木の形状や地面の形状を精度高くメッシュデータにしても良い。ノイズ処理として、例えば、三次元点群データに対して箱ひげ図を算出し、バラつきが大きい点を除去する処理を挙げることが出来る。 Here, before meshing the 3D point cloud data, the generation control unit 102 performs noise processing to remove variations in points, thereby removing points unrelated to single trees or the ground from the 3D point cloud data. , and the shape of a single tree or the shape of the ground may be converted into highly accurate mesh data. As noise processing, for example, a processing of calculating a boxplot for three-dimensional point cloud data and removing points with large variations can be mentioned.
 さて、メッシュデータには、単木の前面部分の樹皮を示す単木メッシュデータや地面の形状を示す地面メッシュデータなどが含まれる。そこで、生成制御部102は、メッシュデータのうち、単木の前面部分の樹皮に対応した円柱形に類似する形状のメッシュデータ、又は所定の高さ(例えば、数m)以上の高さを有するメッシュデータを、単木メッシュデータとして抽出する。円柱形に類似する形状は、例えば、円弧を有する形状や半円柱の形状、かまぼこ形状等を挙げることが出来る。所定の高さは、例えば、地面よりも高い高さに設定され、これにより、単木に相当する高さのメッシュデータを抽出することが出来る。単木メッシュデータの抽出方法は、円柱形に類似する形状のメッシュデータを抽出する抽出方法を採用しても良いし、所定の高さ以上の高さを有するメッシュデータを抽出する抽出方法を採用しても良いし、いずれの抽出方法でも良いし、両方を組み合わせても良い。これにより、メッシュデータのうち、単木に相当する単木メッシュデータだけを抽出することが出来る。 The mesh data includes single tree mesh data that indicates the bark of the front part of a single tree and ground mesh data that indicates the shape of the ground. Therefore, the generation control unit 102 selects, among the mesh data, mesh data having a shape similar to a cylindrical shape corresponding to the bark of the front part of a single tree, or having a height equal to or greater than a predetermined height (for example, several meters). Mesh data is extracted as single tree mesh data. Examples of the shape similar to the cylindrical shape include a shape having a circular arc, a semi-cylindrical shape, a semicylindrical shape, and the like. The predetermined height is set, for example, to a height higher than the ground, so that mesh data with a height corresponding to a single tree can be extracted. For the extraction method of single tree mesh data, an extraction method for extracting mesh data having a shape similar to a cylinder may be adopted, or an extraction method for extracting mesh data having a height equal to or higher than a predetermined height may be adopted. may be used, any extraction method may be used, or both may be combined. As a result, only single tree mesh data corresponding to single trees can be extracted from the mesh data.
 さて、生成制御部102の生成が完了すると、次に、端末装置11の推定制御部103は、生成された単木メッシュデータに対して水平方向の同一面に位置する複数の点を、単木の樹皮が構成する円の一部とみなして、当該複数の点に円を外挿し、当該外挿した円の半径を用いて、単木メッシュデータが存在しない単木の樹皮のデータを、単木の樹皮の仮想データとして推定する(図2:S103)。 Now, when the generation control unit 102 completes the generation, next, the estimation control unit 103 of the terminal device 11 selects a plurality of points located on the same plane in the horizontal direction with respect to the generated single tree mesh data. Assuming that it is part of the circle composed of the bark of the tree, extrapolate the circle to the plurality of points, and use the radius of the extrapolated circle to convert the bark data of a single tree that does not have single tree mesh data into a single tree It is estimated as virtual data of tree bark (Fig. 2: S103).
 ここで、推定制御部103の推定方法に特に限定は無い。例えば、得られた単木メッシュデータは、基本的に、三次元レーザースキャナ10のレーザーが照射された単木の前面部分の樹皮しか対応しておらず、例えば、レーザーが照射されていない単木の背面部分の樹皮のデータは存在しない。又、測定者のスキャン範囲やスキャン形態によっては、単木メッシュデータは、三次元レーザースキャナ10により三次元点群データを取得することが出来た部分に対応し、単木メッシュデータが存在しない部分は、三次元レーザースキャナ10により三次元点群データを取得することが出来なかった部分に対応する。 Here, the estimation method of the estimation control unit 103 is not particularly limited. For example, the obtained single tree mesh data basically corresponds only to the bark of the front part of the single tree irradiated with the laser of the three-dimensional laser scanner 10. There are no bark data on the dorsal part of In addition, depending on the scan range and scan mode of the measurer, the single tree mesh data corresponds to the portion where the three-dimensional point cloud data could be acquired by the three-dimensional laser scanner 10, and the single tree mesh data does not exist. corresponds to the portion where the 3D point group data could not be acquired by the 3D laser scanner 10 .
 そのため、原理的には、測定者が、三次元レーザースキャナ10を持って、単木の背面側に周って、三次元レーザースキャナ10でレーザーを単木の背面側に照射すれば、単木の背面部分の樹皮に対応する単木メッシュデータを得ることが出来るが、その場合は、測定者が単木の背面側に周る必要があり、手間や時間が掛かる。又、単木の前面部分の樹皮の単木メッシュデータと、単木の背面部分の樹皮の単木メッシュデータとをマッチングする必要があり、処理時間が掛かる。 Therefore, in principle, if the measurer holds the three-dimensional laser scanner 10 and goes around the back side of the single tree and irradiates the back side of the single tree with the three-dimensional laser scanner 10, the single tree Single tree mesh data corresponding to the bark on the back of the tree can be obtained, but in that case, the operator must go around the back side of the single tree, which takes time and effort. Moreover, it is necessary to match the single tree mesh data of the bark of the front part of the single tree with the single tree mesh data of the bark of the back part of the single tree, which takes a long processing time.
 そこで、本発明では、基本的に、1回の三次元レーザースキャナ10のスキャンにより得られた三次元点群データを活用して、単木メッシュデータが存在しない単木の樹皮のデータを推定する。具体的には、図6Aに示すように、先ず、推定制御部103が、単木メッシュデータのうち、地面から所定の高さhの水平方向の同一面に位置する複数の点を取得する。次に、推定制御部103は、取得した複数の点を、単木の樹皮が構成する円の一部とみなして、当該複数の点に円Cを外挿する。ここで、円の外挿方法に特に限定は無く、例えば、所定の半径の円の式を想定した上で、最小二乗法を適用することで、複数の点に外挿された円Cの式を得ることが出来る。 Therefore, in the present invention, basically, the three-dimensional point cloud data obtained by one scan of the three-dimensional laser scanner 10 is used to estimate the bark data of a single tree for which there is no single tree mesh data. . Specifically, as shown in FIG. 6A, first, the estimation control unit 103 acquires a plurality of points located on the same horizontal plane at a predetermined height h from the ground from the single tree mesh data. Next, the estimation control unit 103 regards the obtained points as part of a circle formed by the bark of a single tree, and extrapolates the circle C to the points. Here, the extrapolation method of the circle is not particularly limited. For example, after assuming the formula of a circle with a predetermined radius, by applying the least squares method, the formula of the circle C extrapolated to a plurality of points can be obtained.
 そして、推定制御部103は、図6Aに示すように、外挿された円Cの式で求められる半径Rを用いて、複数の点が存在しない円のデータを仮想データとして形成して、仮想データを推定する。ここでは、半径Rを用いた円Cの一部であって、単木メッシュデータが存在しない一部のデータが仮想データとなる。 Then, as shown in FIG. 6A, the estimation control unit 103 uses the radius R obtained by the extrapolated circle C formula to form data of a circle in which a plurality of points do not exist as virtual data. Estimate data. Here, the virtual data is a part of the circle C using the radius R and does not contain the single tree mesh data.
 このように、本発明では、単木の樹皮が、水平方向の同一面でほぼ円形であることと、単木メッシュデータの水平方向の複数の点が、円の一部を構成することとを利用することで、1回の三次元点群データから、単木メッシュデータが存在しない単木の樹皮のデータを得ることが可能となる。そのため、測定者が、単木の前面部分の樹皮をスキャンした後に、更に、単木の背面部分に周って、再度、単木の背面部分の樹皮をスキャンする必要は無く、測定者の手間や時間を削減することが可能となる。 Thus, in the present invention, the bark of a single tree is substantially circular on the same plane in the horizontal direction, and a plurality of points in the horizontal direction of the single tree mesh data form part of the circle. By using it, it is possible to obtain bark data of a single tree for which there is no single tree mesh data, from a single set of three-dimensional point cloud data. Therefore, after scanning the bark of the front part of the single tree, the measurer does not need to go around the back part of the single tree and scan the bark of the back part of the single tree again. and time can be reduced.
 ここで、円Cを外挿する際の所定の高さhは、測定者や管理者等によって任意に設定することが出来る。又、例えば、図6Bに示すように、地面から鉛直方向に沿って所定の間隔iで、単木メッシュデータの複数の点に対する円Cの外挿を段階的に繰り返すことで、鉛直方向に沿った段階的な高さに対応した段階的な円Cやその半径Rを算出することが出来る。このように段階的な円Cやその半径Rを算出することで、高さに応じた仮想データを求めることが出来るとともに、高さに応じた単木の直径の違いや単木の曲がり等を確認することが可能となる。 Here, the predetermined height h for extrapolating the circle C can be arbitrarily set by the measurer, administrator, or the like. Further, for example, as shown in FIG. 6B, by stepwise repeating the extrapolation of a circle C for a plurality of points of the single tree mesh data at a predetermined interval i along the vertical direction from the ground, A stepped circle C corresponding to the stepped height and its radius R can be calculated. By calculating the stepwise circle C and its radius R in this way, it is possible to obtain virtual data according to height, and also to calculate the difference in the diameter of the single tree according to the height, the bending of the single tree, etc. It is possible to confirm.
 図7には、図5Aで示した単木メッシュデータから、単木メッシュデータが存在しない単木の樹皮のデータを推定した場合を示す。このように、単木メッシュデータが存在しない場合であっても、円Cを外挿して、円Cの半径Rを算出することで、単木メッシュデータに加えて、仮想データを補充し、一本の単木を作り出すことが可能となる。尚、図7では、単木メッシュデータが存在しない部分も、円Cの半径Rから推定している。 FIG. 7 shows the case where the bark data of a single tree for which there is no single tree mesh data is estimated from the single tree mesh data shown in FIG. 5A. In this way, even if there is no single tree mesh data, by extrapolating the circle C and calculating the radius R of the circle C, virtual data is supplemented in addition to the single tree mesh data, It is possible to create single trees of books. In addition, in FIG. 7, the portion where the single tree mesh data does not exist is also estimated from the radius R of the circle C. As shown in FIG.
 さて、推定制御部103の推定が完了すると、次に、端末装置11の形成制御部104は、単木メッシュデータと、推定された仮想データと、当該仮想データの円Cの半径Rと、単木の樹高情報と、に基づいて、三次元円柱モデルを、単木の幹の三次元モデルとして形成する(図2:S104)。 Now, when the estimation by the estimation control unit 103 is completed, next, the formation control unit 104 of the terminal device 11 generates the single tree mesh data, the estimated virtual data, the radius R of the circle C of the virtual data, and the unit Based on the height information of the tree, a three-dimensional cylinder model is formed as a three-dimensional model of the trunk of a single tree (FIG. 2: S104).
 ここで、測定者が三次元レーザースキャナ10を森林内の単木に向けるスキャン範囲は、通常、限定されることから、三次元点群データは、測定者の背丈よりも高い単木の全ての三次元点群データを取得することは困難である。 Here, since the scanning range in which the measurer directs the three-dimensional laser scanner 10 to the single tree in the forest is usually limited, the three-dimensional point cloud data can be obtained from all single trees taller than the measurer's height. Acquiring 3D point cloud data is difficult.
 一方、森林の多面的な機能に関係する立木の材積や森林の蓄積の算出には、単木の幹の情報があれば、概算することは可能である。つまり、これらの概算には、単木の樹冠情報は必要なく、単木の幹の情報があれば十分である。 On the other hand, if there is information on the trunk of a single tree, it is possible to make an approximate calculation of the volume of standing trees and the accumulation of forests, which are related to the multifaceted functions of forests. That is, these approximations do not require single tree canopy information, and single tree trunk information is sufficient.
 そこで、本発明では、必要最低限の情報を用いて、単木の幹の三次元モデルを形成することで、立木の材積や森林の蓄積の算出に活用する。 Therefore, in the present invention, a three-dimensional model of the trunk of a single tree is created using the minimum necessary information, which is used to calculate the volume of standing trees and the accumulation of forests.
 ここで、形成制御部104の形成方法に特に限定は無い。例えば、図8に示すように、既に、単木の根元付近の幹に対応する単木メッシュデータと、仮想データと、円Cの半径Rは取得されているため、単木の樹高情報があれば、高さと半径で構成される三次元円柱モデルを形成することは可能であり、この三次元円柱モデルを単木の幹の三次元モデルとして形成することが出来る。 Here, the formation method of the formation control unit 104 is not particularly limited. For example, as shown in FIG. 8, the single tree mesh data corresponding to the trunk near the base of the single tree, the virtual data, and the radius R of the circle C have already been obtained. , it is possible to form a three-dimensional cylinder model consisting of height and radius, and this three-dimensional cylinder model can be formed as a three-dimensional model of the trunk of a single tree.
 ここで、形成制御部104の単木の樹高情報の取得方法に特に限定は無い。例えば、測定者が、単木の高さHを目視で確認することで、当該単木の樹高情報を取得した場合、その樹高情報を端末装置11に直接入力することで、形成制御部104は、単木の樹高情報を取得することが出来る。 Here, there is no particular limitation on the method by which the formation control unit 104 acquires the tree height information of a single tree. For example, when the measurer acquires the tree height information of the single tree by visually confirming the height H of the single tree, by directly inputting the tree height information into the terminal device 11, the formation control unit 104 , the height information of a single tree can be obtained.
 又、測定者が、三次元レーザースキャナ10の他に、レーザー測距機器を保有している場合は、レーザー測距機器を用いて、単木の高さHを測定することで、当該単木の樹高情報を取得し、その樹高情報を端末装置11に直接入力するか、Bluetooth等の無線通信によって端末装置11に入力することで、形成制御部104は、単木の樹高情報を取得することが出来る。 In addition, if the measurer has a laser rangefinder in addition to the three-dimensional laser scanner 10, the single tree can be measured by measuring the height H of the single tree using the laser rangefinder. and directly inputting the tree height information to the terminal device 11 or inputting it to the terminal device 11 via wireless communication such as Bluetooth, the formation control unit 104 acquires the tree height information of the single tree. can be done.
 更に、三次元点群データの取得の際に、測定地点の位置情報が取得された場合であって、当該測定地点の位置情報に対応するDEM(Digital Elevation Model、数値標高モデル)とDSM(Digital Surface Model、数値表層モデル)が存在する場合は、DEMとDSMを用いて単木の樹高情報を取得しても良い。DEMは、所定の地点における地表面の標高を示し、DSMは、所定の地点における建物や樹木を含む地球表面の高さを示す。DEMとDSMは、例えば、航空レーザー測量、ドローン写真測量、ドローンレーザー測量、人工衛星を用いた測量等で得られる。そこで、形成制御部104は、単木の三次元点群データの位置情報に対応する地点のDEMとDSMとを取得し、DSMからDEMを減算した値を、当該位置情報の測定地点における単木の樹高情報として算出することで、単木の樹高情報を取得することが出来る。この単木の樹高情報は、位置情報の周辺に広がる複数の単木の樹高情報の平均値と考えることが出来る。 Furthermore, when the position information of the measurement point is acquired when acquiring the three-dimensional point cloud data, a DEM (Digital Elevation Model) and a DSM (Digital Elevation Model) corresponding to the position information of the measurement point Surface Model, Numerical Surface Model) exists, the tree height information of a single tree may be obtained using DEM and DSM. The DEM indicates the elevation of the ground surface at a given point, and the DSM indicates the height of the earth's surface including buildings and trees at the given point. DEM and DSM are obtained by, for example, airborne laser surveying, drone photogrammetry, drone laser surveying, surveying using artificial satellites, and the like. Therefore, the formation control unit 104 acquires the DEM and DSM of the point corresponding to the position information of the three-dimensional point cloud data of the single tree, and subtracts the DEM from the DSM to obtain the single tree at the measurement point of the position information. By calculating as the tree height information of , the tree height information of a single tree can be obtained. The tree height information of this single tree can be considered as the average value of the tree height information of a plurality of single trees spreading around the position information.
 そして、形成制御部104が、単木の樹高情報を取得すると、図8に示すように、地面から、単木メッシュデータ及び仮想データの上端までのデータが存在する部分の第一の高さH1を算出し、単木の樹高情報Hから第一の高さH1を減算して、データが存在しない部分の第二の高さH2を算出する。次に、形成制御部104は、単木メッシュデータ及び仮想データの上端から、単木の樹高情報まで、半径Rと第二の高さH2とを用いた上方三次元円柱モデルを形成して(半径Rと第二の高さH2の三次元円柱を単木メッシュデータ及び仮想データの上端から伸ばして)、上方三次元円柱モデルと、単木メッシュデータと、仮想データとの全部を、単木の幹の三次元モデルとして形成する。 Then, when the formation control unit 104 acquires the tree height information of the single tree, as shown in FIG. is calculated, and the first height H1 is subtracted from the tree height information H of the single tree to calculate the second height H2 of the portion where no data exists. Next, the formation control unit 104 forms an upper three-dimensional cylindrical model using the radius R and the second height H2 from the upper end of the single tree mesh data and virtual data to the tree height information of the single tree ( A three-dimensional cylinder with a radius R and a second height H2 is extended from the upper end of the single tree mesh data and the virtual data), and the upper three-dimensional cylinder model, the single tree mesh data, and the virtual data are all combined into a single tree form a three-dimensional model of the trunk of
 ここで、使用する半径Rは、例えば、仮想データの上端の円Cの半径Rでも良いし、段階的に複数の円Cの半径Rが存在する場合は、これらの半径Rの平均値を用いても良い。これにより、簡単に単木の幹の三次元モデルを形成することが出来る。 Here, the radius R to be used may be, for example, the radius R of the circle C at the upper end of the virtual data. can be This makes it possible to easily form a three-dimensional model of the trunk of a single tree.
 尚、地面から、単木メッシュデータ及び仮想データの下端までにデータが存在しない場合は、形成制御部104は、地面から、単木メッシュデータ及び仮想データの下端までのデータが存在しない部分の第三の高さH3を算出し、単木メッシュデータ及び仮想データの下端から、地面まで、半径Rと第三の高さH3とを用いた下方三次元円柱モデルを形成して(半径Rと第三の高さH3の三次元円柱を単木メッシュデータ及び仮想データの下端から伸ばして)、下方三次元円柱モデルと、上方三次元円柱モデルと、単木メッシュデータと、仮想データとの全部を用いて、単木の幹の三次元モデルを形成すれば良い。 If there is no data from the ground to the lower end of the single tree mesh data and virtual data, the formation control unit 104 determines the number of points from the ground to the lower end of the single tree mesh data and virtual data where there is no data. A third height H3 is calculated, and a lower three-dimensional cylinder model is formed using the radius R and the third height H3 from the lower end of the single tree mesh data and virtual data to the ground (radius R and third height H3 A three-dimensional cylinder with a height H3 is extended from the lower end of the single tree mesh data and the virtual data), and all of the lower three-dimensional cylinder model, the upper three-dimensional cylinder model, the single tree mesh data, and the virtual data can be used to form a three-dimensional model of a single tree trunk.
 このような単木の幹の三次元モデルは、単木の直径や樹高情報、スキャン範囲内の歪み等が含まれるため、所定の設定により、単木の幹の三次元モデルを分割することで、伐採前の単木の製材や建築用材等の利用が可能となる。又、単木の幹の三次元モデルは、三次元CADのデータ(DXF、OBJ、STLファイル等)で出力することが出来るため、製材所や工務店、建築士等で活用することが出来る。尚、形成した単木の幹の三次元モデルの設置位置は、例えば、予め取得された測定地点の位置情報に、単木の円(直径)の中心位置情報を加算することで算出することが出来る。 Since such a 3D model of the trunk of a single tree includes information such as the diameter and height of a single tree, distortion within the scan range, etc., the 3D model of the trunk of a single tree can be divided into , it becomes possible to use lumber from single trees before felling, construction materials, etc. In addition, since the three-dimensional model of the trunk of a single tree can be output as three-dimensional CAD data (DXF, OBJ, STL file, etc.), it can be utilized by sawmills, construction shops, architects, and the like. The installation position of the three-dimensional model of the trunk of the formed single tree can be calculated, for example, by adding the center position information of the circle (diameter) of the single tree to the position information of the measurement point obtained in advance. I can.
 さて、形成制御部104の形成が完了すると、次に、端末装置11の繰り返し制御部105は、メッシュデータのうち、単木の幹の三次元モデルを形成していない他の単木メッシュデータについて、仮想データの推定と、単木の幹の三次元モデルの形成と、を繰り返す(図2:S105)。 Now, when formation of the formation control unit 104 is completed, next, the repetition control unit 105 of the terminal device 11 processes other single tree mesh data that does not form a three-dimensional model of the trunk of a single tree among the mesh data. , estimation of virtual data, and formation of a three-dimensional model of the trunk of a single tree are repeated (FIG. 2: S105).
 ここで、繰り返し制御部105の繰り返し方法に特に限定は無い。例えば、繰り返し制御部105は、メッシュデータのうち、単木の幹の三次元モデルを形成していない他の単木メッシュデータが存在するか否かを判定する(図2:S105)。 Here, the repetition method of the repetition control unit 105 is not particularly limited. For example, the repetition control unit 105 determines whether or not other single tree mesh data that does not form a three-dimensional model of the trunk of a single tree exists among the mesh data ( FIG. 2 : S105).
 ここで、図9Aに示すように、先ほどのメッシュデータには、3つの単木メッシュデータが存在し、一つの単木メッシュデータについては仮想データの推定と、単木の幹の三次元モデルの形成とを行っている。そのため、単木の幹の三次元モデルを形成していない2つの単木メッシュデータが存在する。 Here, as shown in FIG. 9A, three single tree mesh data exist in the previous mesh data, and for one single tree mesh data, estimation of virtual data and three-dimensional model of the trunk of the single tree are performed. Forming and doing. Therefore, there are two single tree mesh data that do not form a three-dimensional model of the single tree trunk.
 そこで、繰り返し制御部105は、他の単木メッシュデータが存在すると判定し(図2:S105YES)、S103に戻って、繰り返し制御部105は、推定制御部103を介して、他の単木メッシュデータから仮想データを推定する(図2:S103)。次に、S104において、繰り返し制御部105は、形成制御部104を介して、他の単木メッシュデータと仮想データから、単木の幹の三次元モデルを形成する(図2:S104)。尚、残りの他の単木メッシュデータについても、同様に、仮想データの推定と、単木の幹の三次元モデルの形成とを繰り返す。このように、メッシュデータに存在する単木メッシュデータの全てを、単木の幹の三次元モデルに形成することで、図9Bに示すように、複数の単木の幹の三次元モデルを蓄積することが出来る。又、測定者が1回のスキャンで得られたスキャン範囲の単木の幹の三次元モデルを簡単に作ることが出来る。 Therefore, the repetition control unit 105 determines that other single tree mesh data exists (FIG. 2: S105 YES), returns to S103, and the repetition control unit 105 controls the other single tree mesh data via the estimation control unit 103. Virtual data is estimated from the data (Fig. 2: S103). Next, in S104, the repetition control unit 105 forms a three-dimensional model of the trunk of a single tree from other single tree mesh data and virtual data via the formation control unit 104 (FIG. 2: S104). For the remaining single tree mesh data, similarly, the estimation of virtual data and the formation of the three-dimensional model of the trunk of the single tree are repeated. In this way, by forming all of the single tree mesh data existing in the mesh data into a three-dimensional model of the trunk of a single tree, as shown in FIG. 9B, three-dimensional models of multiple single tree trunks are accumulated. can do In addition, the measurer can easily create a three-dimensional model of the trunk of a single tree in the scanning range obtained by one scanning.
 さて、全ての単木メッシュデータが処理された場合、S105において、繰り返し制御部105は、他の単木メッシュデータが存在しないと判定する(図2:S105NO)。これにより、繰り返し制御部105の繰り返しが完了する。 Now, when all the single tree mesh data have been processed, in S105 the repetition control unit 105 determines that there is no other single tree mesh data (Fig. 2: S105 NO). This completes the repetition of the repetition control unit 105 .
 ここで、測定者が、他の測定地点において三次元レーザースキャナ10でスキャンするか否かを判断する(図2:S106)。例えば、図10に示すように、他にも複数の単木が広がっており、他の測定地点においてスキャンする必要があれば、測定者が、スキャンすると判断し(図2:S106YES)、三次元レーザースキャナ10と端末装置11とを携帯して、他の測定地点へ移動する。そして、S101に戻って、他の測定地点でのスキャンを行うと、取得制御部101は、単木の三次元点群データを取得する(図2:S101)。後の処理は、S102からS105まで繰り返すことになる。 Here, the measurer determines whether or not to scan with the three-dimensional laser scanner 10 at another measurement point (Fig. 2: S106). For example, as shown in FIG. 10, if there are a plurality of other single trees spreading and it is necessary to scan at other measurement points, the measurer determines to scan (FIG. 2: S106 YES), and the three-dimensional Carrying the laser scanner 10 and the terminal device 11, the user moves to another measurement point. Then, when returning to S101 and scanning at another measurement point, the acquisition control unit 101 acquires three-dimensional point cloud data of a single tree ( FIG. 2 : S101). Subsequent processing is repeated from S102 to S105.
 ここで、本発明では、図10に示すように、測定者は、森林内の単木の前面部分(片面部分)の樹皮だけをスキャンしていけば良いため、スキャンの手間が削減され、測定者は、容易にスキャンしていくことが可能となる。 Here, in the present invention, as shown in FIG. 10, the measurer only needs to scan the bark of the front part (one side part) of a single tree in the forest, thus reducing the time and effort required for scanning and enabling the measurement. People can scan easily.
 一方、他の測定地点でスキャンする必要がなく、測定者が、スキャンしないと判断し(図2:S106NO)、全ての処理を完了する。ここで、測定者がスキャンした範囲では、単木の幹の三次元モデルが全て形成していることになる。このような単木の幹の三次元モデルは、例えば、図11Aに示すように、森林の三次元データプラットフォームとして活用することが出来る。森林の三次元データプラットフォームでは、森林内の単木の位置を示す三次元マップの作成や、三次元モデルを二次元データに変換することで得られる二次元マップの作成が可能になる。又、測定者が、定期的に、森林内の単木をスキャンすることで、単木の幹の三次元モデルを更新し、単木の幹の三次元モデルの経時的な変化を蓄積することが出来る。 On the other hand, there is no need to scan at other measurement points, and the measurer determines not to scan (Fig. 2: S106 NO), and completes all processing. Here, the three-dimensional model of the trunk of a single tree is formed entirely in the range scanned by the measurer. Such a three-dimensional model of the trunk of a single tree can be utilized as a three-dimensional data platform for forests, for example, as shown in FIG. 11A. The 3D data platform for forests makes it possible to create a 3D map showing the position of a single tree in a forest, and a 2D map obtained by converting a 3D model into 2D data. In addition, the measurer periodically scans the single trees in the forest to update the three-dimensional model of the trunk of the single tree and accumulate changes over time in the three-dimensional model of the trunk of the single tree. can be done.
 又、単木の幹の三次元モデルがあれば、図11Bに示すように、単木を切断した際の木取りのシミュレーションを行うことが出来る。木取りシミュレーションでは、形成した単木の幹の三次元モデルを所定の設定範囲で分割することで、取得可能な単木の材積(体積)を算出し、木取りの価値を算出することが出来る。又、木取り後の森林の変化などもシミュレーションすることが出来るため、木取り後における、水土保全機能、地球環境保全機能、生物保護機能の低下など、予測することも可能となる。 Also, if there is a three-dimensional model of the trunk of a single tree, as shown in FIG. 11B, it is possible to simulate cutting the tree when cutting the single tree. In the tree trimming simulation, by dividing the three-dimensional model of the trunk of the formed single tree into a predetermined setting range, it is possible to calculate the lumber volume (volume) of the single tree that can be obtained, and calculate the value of the tree trimming. In addition, since it is possible to simulate changes in the forest after tree removal, it is also possible to predict the deterioration of water and soil conservation function, global environment conservation function, and biological protection function after tree removal.
 又、単木の幹の三次元モデルについて、単木の樹冠に相当する樹冠データが存在する場合は、図12Aに示すように、単木の幹の三次元モデルM1に、樹冠データM2を追加して合成しても良い。単木の幹の三次元モデルM1は、測定者のスキャンにより得ることが出来て、樹冠データM2は、例えば、DEM、DSM等の外部データにより得ることが出来る。樹冠データM2を外部データから得る場合は、例えば、形成制御部104は、外部データから、三次元点群データに関連付けられた位置情報や単木の幹の三次元モデルM1の位置情報に対応する位置情報の樹冠データM2を取得し、取得した樹冠データM2を単木の幹の三次元モデルM1に合成すれば良い。このように、単木の幹の三次元モデルM1に樹冠データM2を合成することで、より現実味のある単木の三次元モデルを形成することが出来る。 If tree crown data corresponding to the crown of a single tree exists for the three-dimensional model of the trunk of a single tree, crown data M2 is added to the three-dimensional model M1 of the trunk of a single tree as shown in FIG. 12A. It is also possible to synthesize by The three-dimensional model M1 of the trunk of a single tree can be obtained by scanning by an operator, and the crown data M2 can be obtained from external data such as DEM and DSM. When the crown data M2 is obtained from external data, for example, the formation control unit 104 corresponds to the position information associated with the three-dimensional point cloud data and the position information of the three-dimensional model M1 of the single tree trunk from the external data. The crown data M2 of the positional information is acquired, and the acquired tree crown data M2 is combined with the three-dimensional model M1 of the trunk of the single tree. By synthesizing the crown data M2 with the three-dimensional model M1 of the trunk of the single tree in this manner, a more realistic three-dimensional model of the single tree can be formed.
 又、単木の幹の三次元モデルがあれば、その出力形態として、視覚的に分かり易い三次元モデルの他に、三次元モデルを構成する要素の数値をデータベース化して出力することも可能となる。例えば、図12Bに示すように、データベース1200には、番号(No)1201と、緯度1202と、経度1203と、標高1204と、単木の樹種1205と、直径1206と、樹高(情報)1207と、材積量1208とが関連付けて記憶されている。番号1201は、単木の幹に付与されている。緯度1202と、経度1203と、標高1204とは、単木の幹の設置位置を示す。直径1206は、単木の幹の三次元モデルの円の直径を示す。材積量1208は、単木の幹の直径1206と樹高1207から算出される。尚、材積量1208の算出方法に特に限定は無い。そして、単木モデリングシステム1がこのデータベース1200を出力することで、測定者等は、森林内の単木の樹木情報を一見して確認することが出来る。 Also, if there is a three-dimensional model of the trunk of a single tree, it is also possible to output a database of the numerical values of the elements that make up the three-dimensional model, in addition to the three-dimensional model that is easy to understand visually. Become. For example, as shown in FIG. 12B, the database 1200 contains a number (No) 1201, a latitude 1202, a longitude 1203, an altitude 1204, a single tree species 1205, a diameter 1206, and a tree height (information) 1207. , and volume 1208 are stored in association with each other. A number 1201 is assigned to the trunk of a single tree. A latitude 1202, a longitude 1203, and an altitude 1204 indicate the installation position of the trunk of a single tree. Diameter 1206 indicates the diameter of the circle of the three-dimensional model of the single tree trunk. A wood volume 1208 is calculated from a trunk diameter 1206 and a tree height 1207 of a single tree. Note that the calculation method of the volume 1208 is not particularly limited. By outputting this database 1200 from the single tree modeling system 1, the measurer or the like can confirm the tree information of the single tree in the forest at a glance.
 又、端末装置11の位置情報は、GPS位置情報や2周波マルチGNSS受信機で得られる位置情報の他に、端末装置に内蔵されたIMU(慣性計測装置)で得られる位置情報でも良い。端末装置の位置情報は、測定者の選択によって、GPS位置情報、2周波マルチGNSS受信機の位置情報、IMUの位置情報のいずれかを選択しても良い。ここで、測定者がIMUの位置情報を選択して、複数の測点における端末装置11の位置情報をIMUの位置情報で取得した場合、IMUの位置情報は、誤差が累積するという特徴がある。そこで、誤差の累積を防止するために、測定者が、所定の測点を開始測点として設定し、森林内を回って、開始測点に戻ってきて、その開始測点を終了測点として設定した場合、測定者が、開始測点から終了測点までを閉合処理させることで、図13に示すように、端末装置11の位置情報を補正しても良い。端末装置11の位置情報を補正することで、端末装置11の位置情報に関連付けられる三次元点群データや三次元モデルの三次元座標値も補正することが可能となる。 In addition, the position information of the terminal device 11 may be position information obtained by an IMU (inertial measurement unit) built into the terminal device, in addition to GPS position information and position information obtained by a two-frequency multi-GNSS receiver. As for the location information of the terminal device, any one of GPS location information, location information of the dual-frequency multi-GNSS receiver, and location information of the IMU may be selected by the measurement person. Here, when the measurement person selects the position information of the IMU and obtains the position information of the terminal device 11 at a plurality of measurement points with the position information of the IMU, the position information of the IMU is characterized by the accumulation of errors. . Therefore, in order to prevent the accumulation of errors, the operator sets a predetermined survey point as the starting survey point, goes around the forest, returns to the starting survey point, and uses the starting survey point as the final survey point. If set, the measurement person may correct the position information of the terminal device 11 as shown in FIG. 13 by performing closing processing from the start measurement point to the end measurement point. By correcting the position information of the terminal device 11, it is possible to correct the 3D point cloud data associated with the position information of the terminal device 11 and the 3D coordinate values of the 3D model.
 このように、本発明では、単木の一部分に対する三次元レーザースキャナのスキャンにより、単木の三次元モデルを簡単に素早く形成することが可能となる。 Thus, in the present invention, it is possible to easily and quickly form a three-dimensional model of a single tree by scanning a portion of the single tree with a three-dimensional laser scanner.
 尚、本発明の実施形態では、端末装置11が各制御部を備えるよう構成したが、当該各制御部を実現するプログラムを記憶媒体に記憶させ、当該記憶媒体を提供するよう構成しても構わない。当該構成では、プログラムを装置に読み出させ、当該装置が各制御部を実現する。その場合、記録媒体から読み出されたプログラム自体が本発明の作用効果を奏する。さらに、各制御部が実行する工程をハードディスクに記憶させる方法として提供することも可能である。 In the embodiment of the present invention, the terminal device 11 is configured to include each control unit, but the program for realizing each control unit may be stored in a storage medium and the storage medium may be provided. do not have. In this configuration, the program is read by the device, and the device implements each control unit. In that case, the program itself read from the recording medium exhibits the effects of the present invention. Furthermore, it is also possible to provide a method of storing the steps executed by each control unit in a hard disk.
 以上のように、本発明に係る単木モデリングシステム及び単木モデリング方法は、単木全体の三次元モデルを取得し、共有し、活用する林業における川上から川下までの分野に有用であり、単木の一部分に対する三次元レーザースキャナのスキャンにより、単木の三次元モデルを簡単に素早く形成することが可能な単木モデリングシステム及び単木モデリング方法として有効である。 INDUSTRIAL APPLICABILITY As described above, the single tree modeling system and single tree modeling method according to the present invention are useful in fields ranging from upstream to downstream in the forestry industry in which three-dimensional models of entire single trees are acquired, shared, and utilized. It is effective as a single tree modeling system and a single tree modeling method that can easily and quickly form a single tree three-dimensional model by scanning a part of the tree with a three-dimensional laser scanner.
  1  単木モデリングシステム
  10 三次元レーザースキャナ
  11 端末装置
  101 取得制御部
  102 生成制御部
  103 推定制御部
  104 形成制御部
  105 繰り返し制御部
1 single tree modeling system 10 three-dimensional laser scanner 11 terminal device 101 acquisition control unit 102 generation control unit 103 estimation control unit 104 formation control unit 105 repetition control unit

Claims (10)

  1.  所定の測定地点から森林内の単木に向けて三次元レーザースキャナのレーザーを照射することで、当該単木の三次元点群データを取得する取得制御部と、
     前記取得された三次元点群データを、多角形から構成されるメッシュデータに変換することで、前記単木の樹皮を示す単木メッシュデータを生成する生成制御部と、
     前記生成された単木メッシュデータに対して水平方向の同一面に位置する複数の点を、前記単木の樹皮が構成する円の一部とみなして、当該複数の点に円を外挿し、当該外挿した円の半径を用いて、前記単木メッシュデータが存在しない単木の樹皮のデータを、単木の樹皮の仮想データとして推定する推定制御部と、
     前記単木メッシュデータと、前記推定された仮想データと、当該仮想データの円の半径と、前記単木の樹高情報と、に基づいて、三次元円柱モデルを、前記単木の幹の三次元モデルとして形成する形成制御部と、
     を備える単木モデリングシステム。
    an acquisition control unit that acquires three-dimensional point cloud data of a single tree by irradiating a single tree in the forest from a predetermined measurement point with a laser from a three-dimensional laser scanner;
    a generation control unit that generates single tree mesh data representing the bark of the single tree by converting the acquired three-dimensional point cloud data into mesh data composed of polygons;
    Considering a plurality of points located on the same plane in the horizontal direction with respect to the generated single tree mesh data as part of a circle formed by the bark of the single tree, extrapolating a circle to the plurality of points, an estimation control unit for estimating bark data of a single tree for which the single tree mesh data does not exist as virtual data of the bark of a single tree, using the extrapolated circle radius;
    Based on the single tree mesh data, the estimated virtual data, the radius of the circle of the virtual data, and the tree height information of the single tree, a three-dimensional cylindrical model is generated from the three-dimensional tree trunk of the single tree. a formation control unit formed as a model;
    A single tree modeling system with
  2.  前記生成制御部は、前記三次元点群データをメッシュ化する前に、点のバラつきを除去するためのノイズ処理を行う、
     請求項1に記載の単木モデリングシステム。
    The generation control unit performs noise processing to remove variations in points before meshing the three-dimensional point cloud data.
    A single tree modeling system according to claim 1.
  3.  前記生成制御部は、前記メッシュデータのうち、単木の前面部分の樹皮に対応した円柱形に類似する形状のメッシュデータ、又は所定の高さを有するメッシュデータを、前記単木メッシュデータとして抽出して取得する、
     請求項1又は2に記載の単木モデリングシステム。
    The generation control unit extracts, from the mesh data, mesh data having a shape similar to a cylindrical shape corresponding to the bark of the front part of a single tree, or mesh data having a predetermined height, as the single tree mesh data. to get,
    A single tree modeling system according to claim 1 or 2.
  4.  前記推定制御部は、前記単木メッシュデータのうち、地面から所定の高さの水平方向の同一面に位置する複数の点を取得し、当該取得した複数の点を、単木の樹皮が構成する円の一部とみなして、当該複数の点に円を外挿し、当該外挿された円の式で求められる半径を用いて、前記複数の点が存在しない円のデータを仮想データとして形成して、仮想データを推定する、
     請求項1-3のいずれか一項に記載の単木モデリングシステム。
    The estimation control unit obtains, from the single tree mesh data, a plurality of points located on the same plane in the horizontal direction at a predetermined height from the ground, and the bark of the single tree constitutes the obtained plurality of points. extrapolate the circle to the points, and form the data of the circle where the points do not exist as virtual data using the radius obtained by the formula of the extrapolated circle to estimate the hypothetical data,
    A single tree modeling system according to any one of claims 1-3.
  5.  前記取得制御部は、単木モデリングシステムを構成する端末装置の通信部を使って、当該端末装置の位置情報を取得し、当該端末装置の位置情報を前記三次元点群データに関連付けて記憶させ、
     前記形成制御部は、前記三次元点群データの位置情報に対応する地点のDEMとDSMとを取得し、DSMからDEMを減算した値を、当該位置情報の測定地点における前記単木の樹高情報として算出することで、前記単木の樹高情報を取得する、
     請求項1-4のいずれか一項に記載の単木モデリングシステム。
    The acquisition control unit acquires the position information of the terminal device using the communication unit of the terminal device constituting the single tree modeling system, and stores the position information of the terminal device in association with the three-dimensional point cloud data. ,
    The formation control unit acquires the DEM and DSM of the point corresponding to the position information of the three-dimensional point cloud data, and subtracts the DEM from the DSM to obtain the tree height information of the single tree at the measurement point of the position information. Obtain the tree height information of the single tree by calculating as
    A single tree modeling system according to any one of claims 1-4.
  6.  前記形成制御部は、地面から、前記単木メッシュデータ及び前記仮想データの上端までのデータが存在する部分の第一の高さを算出し、前記単木の樹高情報から前記第一の高さを減算して、データが存在しない部分の第二の高さを算出し、前記単木メッシュデータ及び前記仮想データの上端から、前記単木の樹高情報まで、前記半径と前記第二の高さとを用いた上方三次元円柱モデルを形成して、当該上方三次元円柱モデルと、前記単木メッシュデータと、前記仮想データとの全部を、前記単木の幹の三次元モデルとして形成する、
     請求項1-5のいずれか一項に記載の単木モデリングシステム。
    The formation control unit calculates a first height of a portion where data from the ground to the upper end of the single tree mesh data and the virtual data exists, and calculates the first height from the tree height information of the single tree. is subtracted to calculate the second height of the part where data does not exist, and from the upper end of the single tree mesh data and the virtual data to the single tree height information, the radius and the second height forming an upper three-dimensional cylindrical model using the above, and forming all of the upper three-dimensional cylindrical model, the single tree mesh data, and the virtual data as a three-dimensional model of the single tree trunk;
    A single tree modeling system according to any one of claims 1-5.
  7.  前記地面から、前記単木メッシュデータ及び前記仮想データの下端までにデータが存在しない場合、前記形成制御部は、前記地面から、前記単木メッシュデータ及び前記仮想データの下端までのデータが存在しない部分の第三の高さを算出し、前記単木メッシュデータ及び前記仮想データの下端から、前記地面まで、前記半径と前記第三の高さとを用いた下方三次元円柱モデルを形成して、前記上方三次元円柱モデルと、前記下方三次元円柱モデルと、前記単木メッシュデータと、前記仮想データとの全部を、前記単木の幹の三次元モデルとして形成する、
     請求項6に記載の単木モデリングシステム。
    If there is no data from the ground to the lower end of the single tree mesh data and the virtual data, the formation control unit determines that there is no data from the ground to the lower end of the single tree mesh data and the virtual data. calculating a third height of the portion and forming a lower three-dimensional cylindrical model from the lower end of the single tree mesh data and the virtual data to the ground using the radius and the third height; Forming all of the upper three-dimensional cylinder model, the lower three-dimensional cylinder model, the single tree mesh data, and the virtual data as a three-dimensional model of the trunk of the single tree;
    A single tree modeling system according to claim 6.
  8.  前記繰り返し制御部は、前記メッシュデータのうち、前記単木の幹の三次元モデルを形成していない他の単木メッシュデータについて、前記仮想データの推定と、前記単木の幹の三次元モデルの形成と、を繰り返す、
     請求項1-7のいずれか一項に記載の単木モデリングシステム。
    The repetition control unit performs the estimation of the virtual data and the three-dimensional model of the trunk of the single tree for other single tree mesh data that does not form the three-dimensional model of the trunk of the single tree among the mesh data. repeating the formation of
    A single tree modeling system according to any one of claims 1-7.
  9.  前記取得制御部は、単木モデリングシステムを構成する端末装置の通信部を使って、当該端末装置の位置情報を取得し、当該端末装置の位置情報を前記三次元点群データに関連付けて記憶させ、
     前記形成制御部は、外部データから、前記三次元点群データに関連付けられた位置情報に対応する位置情報の樹冠データを取得し、当該取得した樹冠データを前記単木の幹の三次元モデルに合成する、
     請求項1-8のいずれか一項に記載の単木モデリングシステム。
    The acquisition control unit acquires the position information of the terminal device using the communication unit of the terminal device constituting the single tree modeling system, and stores the position information of the terminal device in association with the three-dimensional point cloud data. ,
    The formation control unit acquires crown data of position information corresponding to position information associated with the three-dimensional point cloud data from external data, and converts the acquired crown data into a three-dimensional model of the trunk of the single tree. to synthesize,
    A single tree modeling system according to any one of claims 1-8.
  10.  所定の測定地点から森林内の単木に向けて三次元レーザースキャナのレーザーを照射することで、当該単木の三次元点群データを取得する取得制御工程と、
     前記取得された三次元点群データを、多角形から構成されるメッシュデータに変換することで、前記単木の樹皮を示す単木メッシュデータを生成する生成制御工程と、
     前記生成された単木メッシュデータに対して水平方向の同一面に位置する複数の点を、前記単木の樹皮が構成する円の一部とみなして、当該複数の点に円を外挿し、当該外挿した円の半径を用いて、前記単木メッシュデータが存在しない単木の樹皮のデータを、単木の樹皮の仮想データとして推定する推定制御工程と、
     前記単木メッシュデータと、前記推定された仮想データと、当該仮想データの円の半径と、前記単木の樹高情報と、に基づいて、三次元円柱モデルを、前記単木の幹の三次元モデルとして形成する形成制御工程と、
     を備える単木モデリング方法。
    an acquisition control step of acquiring three-dimensional point cloud data of a single tree by irradiating a single tree in the forest from a predetermined measurement point with a laser of a three-dimensional laser scanner;
    a generation control step of generating single tree mesh data representing the bark of the single tree by converting the acquired three-dimensional point cloud data into mesh data composed of polygons;
    Considering a plurality of points located on the same plane in the horizontal direction with respect to the generated single tree mesh data as part of a circle formed by the bark of the single tree, extrapolating a circle to the plurality of points, an estimation control step of estimating the bark data of the single tree for which the single tree mesh data does not exist as virtual data of the bark of the single tree, using the extrapolated circle radius;
    Based on the single tree mesh data, the estimated virtual data, the radius of the circle of the virtual data, and the tree height information of the single tree, a three-dimensional cylindrical model is generated from the three-dimensional tree trunk of the single tree. A formation control process to form as a model;
    A monotree modeling method comprising
PCT/JP2021/037558 2021-05-24 2021-10-11 Individual tree modeling system and individual tree modeling method WO2022249507A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-086599 2021-05-24
JP2021086599A JP6931501B1 (en) 2021-05-24 2021-05-24 Single tree modeling system and single tree modeling method

Publications (1)

Publication Number Publication Date
WO2022249507A1 true WO2022249507A1 (en) 2022-12-01

Family

ID=77549887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037558 WO2022249507A1 (en) 2021-05-24 2021-10-11 Individual tree modeling system and individual tree modeling method

Country Status (2)

Country Link
JP (1) JP6931501B1 (en)
WO (1) WO2022249507A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374977B2 (en) 2021-12-17 2023-11-07 ヤマハ発動機株式会社 Tree information estimation system, tree information estimation method, and computer program
CN115512244B (en) * 2022-08-19 2024-01-05 中国林业科学研究院资源信息研究所 Method and system for determining carbon reserves of single tree
JP7287620B1 (en) * 2023-02-27 2023-06-06 株式会社大和田測量設計 Forest resource measurement system and forest resource calculation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834691A (en) * 2010-05-10 2012-12-19 莱卡地球系统公开股份有限公司 Surveying method
CN106408608A (en) * 2016-09-30 2017-02-15 信阳师范学院 Method for extracting trunk diameter from ground laser radar point cloud data
JP2017167092A (en) * 2016-03-18 2017-09-21 株式会社パスコ Feature detection device, feature detection method and program
CN109270544A (en) * 2018-09-20 2019-01-25 同济大学 Mobile robot self-localization system based on shaft identification
CN110274549A (en) * 2019-06-24 2019-09-24 北京林业大学 A kind of measurement method and measuring device of Caiyu target
JP6828211B1 (en) * 2020-07-20 2021-02-10 九電ビジネスソリューションズ株式会社 Forest resource analysis equipment, forest resource analysis method and forest resource analysis program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2547296B1 (en) * 1983-06-09 1986-06-13 Solvay STABILIZED COMPOSITIONS OF 1,1,1-TRICHLOROETHANE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834691A (en) * 2010-05-10 2012-12-19 莱卡地球系统公开股份有限公司 Surveying method
JP2017167092A (en) * 2016-03-18 2017-09-21 株式会社パスコ Feature detection device, feature detection method and program
CN106408608A (en) * 2016-09-30 2017-02-15 信阳师范学院 Method for extracting trunk diameter from ground laser radar point cloud data
CN109270544A (en) * 2018-09-20 2019-01-25 同济大学 Mobile robot self-localization system based on shaft identification
CN110274549A (en) * 2019-06-24 2019-09-24 北京林业大学 A kind of measurement method and measuring device of Caiyu target
JP6828211B1 (en) * 2020-07-20 2021-02-10 九電ビジネスソリューションズ株式会社 Forest resource analysis equipment, forest resource analysis method and forest resource analysis program

Also Published As

Publication number Publication date
JP2022179840A (en) 2022-12-06
JP6931501B1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2022249507A1 (en) Individual tree modeling system and individual tree modeling method
Chen et al. Applicability of personal laser scanning in forestry inventory
Fernández-Sarría et al. Different methodologies for calculating crown volumes of Platanus hispanica trees using terrestrial laser scanner and a comparison with classical dendrometric measurements
Patenaude et al. Quantifying forest above ground carbon content using LiDAR remote sensing
JP4773973B2 (en) System, computer program and method for measurement, modeling and mapping of 3D objects from a single image
Avian et al. LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008
Wells et al. Quantifying uncertainty in high-resolution remotely sensed topographic surveys for ephemeral gully channel monitoring
Čerňava et al. Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopy.
Tilly et al. Terrestrial laser scanning for plant height measurement and biomass estimation of maize
US11580696B2 (en) Surveying data processing device, surveying data processing method, and surveying data processing program
Di Pietra et al. Multi-source 3D models supporting ultrasonic test to investigate an egyptian sculpture of the archaeological museum in Bologna
Park et al. 3D surface reconstruction of terrestrial laser scanner data for forestry
CN115825067A (en) Geological information acquisition method and system based on unmanned aerial vehicle and electronic equipment
Błaszczak-Bąk et al. Optimization of point clouds for 3D bas-relief modeling
JP4217251B2 (en) Three-dimensional structure shape automatic generation device, automatic generation method, program thereof, and recording medium recording the program
KR20100109216A (en) Boundary extraction apparatus and method of structure
Leslar et al. Error analysis of a mobile terrestrial LiDAR system
Liu et al. The evaluation of parametric and non-parametric models for total forest biomass estimation using UAS-LiDAR
Soycan et al. Three dimensional modeling of a forested area using an airborne light detection and ranging method
Asal Evaluating the effects of reductions in lidar data on the visual and statistical characteristics of the created digital elevation models
O'Beirne Measuring the urban forest: comparing LiDAR derived tree heights to field measurements
Guidi et al. TOF laser scanner characterization for low-range applications
Kaartinen Benchmarking of airborne laser scanning based feature extraction methods and mobile laser scanning system performance based on high-quality test fields
Chasie et al. Application of GNSS-supported static terrestrial lidar in mapping landslide processes in the Himalaya
Cristea et al. Applications of terrestrial laser scanning and GIS in forest inventory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943141

Country of ref document: EP

Kind code of ref document: A1