JP2012101988A - Fluorine-containing magnesium oxide illuminant and method for manufacturing the same - Google Patents

Fluorine-containing magnesium oxide illuminant and method for manufacturing the same Download PDF

Info

Publication number
JP2012101988A
JP2012101988A JP2010253466A JP2010253466A JP2012101988A JP 2012101988 A JP2012101988 A JP 2012101988A JP 2010253466 A JP2010253466 A JP 2010253466A JP 2010253466 A JP2010253466 A JP 2010253466A JP 2012101988 A JP2012101988 A JP 2012101988A
Authority
JP
Japan
Prior art keywords
magnesium oxide
fluorine
magnesium
ppm
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010253466A
Other languages
Japanese (ja)
Other versions
JP5745821B2 (en
Inventor
Yoshihisa Osaki
善久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP2010253466A priority Critical patent/JP5745821B2/en
Priority to KR1020137011464A priority patent/KR101706661B1/en
Priority to CN201180046359.7A priority patent/CN103108843B/en
Priority to PCT/JP2011/006170 priority patent/WO2012063444A1/en
Priority to TW100140862A priority patent/TWI541326B/en
Publication of JP2012101988A publication Critical patent/JP2012101988A/en
Application granted granted Critical
Publication of JP5745821B2 publication Critical patent/JP5745821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorine-containing magnesium oxide illuminant having ultraviolet light emitting intensity more than magnesium oxide containing 100 ppm or more of fluorine even though fluorine content is less than 100 ppm.SOLUTION: In the magnesium oxide illuminant having a light emitting peak in an ultraviolet range of 200 to 300 nm based on the excitation by an electron beam or an ultraviolet beam, the fluorine content to the magnesium is less than 100 ppm and the intensity ratio the above light emitting peak to a reflected peak (near the wavelength of 980 nm) of an exciting light lamp is 20 or more. The illuminant can be obtained by adding fluorine compound to a magnesium oxide precursor at such a quantity that the fluorine content to the magnesium becomes 0.06 to 1.25 mol%, firing the same, cooling the same, and then firing the same again.

Description

本発明は、フッ素含有酸化マグネシウム発光体及びその製造方法に関する。   The present invention relates to a fluorine-containing magnesium oxide phosphor and a method for producing the same.

プラズマディスプレイパネル(PDP)は放電を利用した自発光型の表示デバイスであり、鮮やかで動画解像度の高い画像を表示でき、大画面化も比較的容易なことから、大型フラットディスプレイとして広く利用されている。   A plasma display panel (PDP) is a self-luminous display device that uses electric discharge, can display images with high resolution and high resolution, and is relatively easy to enlarge, so it is widely used as a large flat display. Yes.

交流型プラズマディスプレイパネル(AC型PDP)における放電空間内では、誘電体層の表面に保護層を設けることによって、作動電圧を低減させ、かつ、放電空間に生成するプラズマから誘電体層を保護することが行なわれている。従来、当該保護層を形成するための材料としては、二次電子放出係数が高く、耐スパッタ性に優れる酸化マグネシウムが広く利用されている。   In the discharge space of the AC type plasma display panel (AC type PDP), by providing a protective layer on the surface of the dielectric layer, the operating voltage is reduced and the dielectric layer is protected from plasma generated in the discharge space. Has been done. Conventionally, magnesium oxide having a high secondary electron emission coefficient and excellent sputter resistance has been widely used as a material for forming the protective layer.

さらに、AC型PDPの放電特性や発光特性の向上を目的として、前記保護層の放電空間側の表面に、Xeガスのガス放電により生成する紫外光(真空紫外光)で励起され、紫外光を放出する材料を配置することが提案されている。このような材料として、特許文献1では、波長250nm付近に紫外光の発光ピークを有するフッ素含有酸化マグネシウム粉末が開示されている。この波長250nm付近の紫外光の放出が、AC型PDPの発光効率の向上に寄与するとされている。   Further, for the purpose of improving the discharge characteristics and light emission characteristics of the AC type PDP, the surface of the protective layer on the discharge space side is excited by ultraviolet light (vacuum ultraviolet light) generated by gas discharge of Xe gas, It has been proposed to arrange the material to be released. As such a material, Patent Document 1 discloses a fluorine-containing magnesium oxide powder having an emission peak of ultraviolet light in the vicinity of a wavelength of 250 nm. It is said that the emission of ultraviolet light in the vicinity of the wavelength of 250 nm contributes to the improvement of the luminous efficiency of the AC type PDP.

しかしながら特許文献1では、フッ素含有酸化マグネシウム粉末におけるフッ素含量は0.01重量%、すなわち100ppm以上に限定され(請求項1)、実施例では、フッ素含量が100ppm未満の酸化マグネシウムが示す紫外光発光強度は、フッ素含量が100ppm以上の酸化マグネシウムと比較して10分の1以下であることが記載されている(表2及び段落[0032])。また、当該フッ素含有酸化マグネシウムの製法としては、酸化マグネシウム粉末を、フッ素源の存在下で焼成することが記載されているにすぎない(段落[0019])。   However, in Patent Document 1, the fluorine content in the fluorine-containing magnesium oxide powder is limited to 0.01% by weight, that is, 100 ppm or more (Claim 1), and in the examples, ultraviolet light emission exhibited by magnesium oxide having a fluorine content of less than 100 ppm. It is described that the strength is 1/10 or less compared with magnesium oxide having a fluorine content of 100 ppm or more (Table 2 and paragraph [0032]). In addition, as a method for producing the fluorine-containing magnesium oxide, it is only described that the magnesium oxide powder is fired in the presence of a fluorine source (paragraph [0019]).

また、特許文献2では、同じくPDPの誘導体層及び保護層表面に、フッ素等のハロゲン元素が24ppm以上100ppm未満添加された酸化マグネシウム結晶体からなるプライミング粒子放出層を設けることが記載されている(請求項1及び2)。当該プライミング粒子放出層がプライミング粒子を放電空間に放出することで放電遅れが改善されると記載され、酸化マグネシウム結晶体に対するフッ素の添加と放電遅れの関係が記載されている。しかし、当該プライミング粒子放出層による紫外光の発光については記載されていない。また、当該文献でも、フッ素含有酸化マグネシウムの製法としては、酸化マグネシウム結晶体とハロゲン含有物質を混合して焼成することが記載されているにすぎない(段落[0024])。   Patent Document 2 also describes that a priming particle emitting layer made of a magnesium oxide crystal to which a halogen element such as fluorine is added in an amount of 24 ppm or more and less than 100 ppm is provided on the surface of the PDP derivative layer and the protective layer ( Claims 1 and 2). It is described that the discharge delay is improved by releasing the priming particles into the discharge space by the priming particle emission layer, and the relationship between the addition of fluorine to the magnesium oxide crystal and the discharge delay is described. However, there is no description of ultraviolet light emission by the priming particle emitting layer. Also, in this document, as a method for producing fluorine-containing magnesium oxide, it is only described that a magnesium oxide crystal and a halogen-containing substance are mixed and fired (paragraph [0024]).

フッ素含有酸化マグネシウムに関するものではないが、特許文献3では、PDPの蛍光体粒子の表面にフッ素含有コーティングを形成することが記載されている(請求項1)。前記コーティングにおけるフッ素含有率が高すぎると、PDPの放電空間内に多くのフッ素が放出され、PDPの放電開始電圧が上昇し得ると記載されている(段落[0059])。   Although not related to fluorine-containing magnesium oxide, Patent Document 3 describes that a fluorine-containing coating is formed on the surface of phosphor particles of PDP (Claim 1). It is described that if the fluorine content in the coating is too high, a large amount of fluorine is released into the discharge space of the PDP and the discharge start voltage of the PDP can be increased (paragraph [0059]).

特開2007−254269号公報JP 2007-254269 A 特許第4492638号明細書Japanese Patent No. 4492638 特開2005−100954号公報JP 2005-100754 A

特許文献3の記載から、放電空間内に放出されるフッ素量を低減すると、PDPの放電開始電圧の低減につながると考えられる。従って、PDPの放電空間内に配置される紫外光放出層の材料ではフッ素含量を低減することが望ましい。しかしながら、特許文献1の記載によると、フッ素含有酸化マグネシウム粉末におけるフッ素含量を100ppm未満とすると、紫外光放出量が低減するため、紫外光放出材料としての効果を期待できない。   From the description of Patent Document 3, it is considered that reducing the amount of fluorine released into the discharge space leads to a reduction in the discharge start voltage of the PDP. Therefore, it is desirable to reduce the fluorine content in the material of the ultraviolet light emitting layer disposed in the discharge space of the PDP. However, according to the description of Patent Document 1, if the fluorine content in the fluorine-containing magnesium oxide powder is less than 100 ppm, the amount of ultraviolet light emission is reduced, so that an effect as an ultraviolet light emitting material cannot be expected.

本発明は、上記現状に鑑み、フッ素含量が100ppmより少ないにも関わらず、フッ素を100ppmより多く含む酸化マグネシウムと同程度以上の紫外光発光強度を持つフッ素含有酸化マグネシウム発光体を提供することを課題とする。   In view of the above situation, the present invention provides a fluorine-containing magnesium oxide phosphor having an ultraviolet light emission intensity equal to or higher than that of magnesium oxide containing more than 100 ppm of fluorine even though the fluorine content is less than 100 ppm. Let it be an issue.

本発明者らは、上記課題を解決すべく種々検討を重ねた結果、特定の方法によりフッ素含有酸化マグネシウム発光体を製造することで、フッ素含量が100ppmより少ないにも関わらず、十分な強度で紫外光を発光する酸化マグネシウム発光体が得られることを見出し、本発明を完成するに至った。   As a result of various studies to solve the above problems, the present inventors have produced a fluorine-containing magnesium oxide phosphor by a specific method, so that the fluorine content is less than 100 ppm, but with sufficient strength. The inventors have found that a magnesium oxide phosphor that emits ultraviolet light can be obtained, and have completed the present invention.

すなわち本発明は、電子線又は紫外線による励起に基づいて紫外線領域200〜300nmに発光ピークを有する酸化マグネシウム発光体であって、
酸化マグネシウムに対するフッ素含量が100ppm未満であり、かつ
波長980nm近傍の、励起光ランプの反射ピークに対する、前記発光ピークの強度比が、20以上である、フッ素含有酸化マグネシウム発光体に関する。
That is, the present invention is a magnesium oxide phosphor that has an emission peak in an ultraviolet region of 200 to 300 nm based on excitation by an electron beam or ultraviolet rays,
The present invention relates to a fluorine-containing magnesium oxide illuminant having a fluorine content with respect to magnesium oxide of less than 100 ppm and an intensity ratio of the emission peak to a reflection peak of an excitation light lamp in the vicinity of a wavelength of 980 nm being 20 or more.

前記発光体において、酸化マグネシウムに対して、1価、2価、3価、又は4価の金属元素(ただし、マグネシウムを除く)が、50ppm以上300ppm未満含まれていることが望ましい。   In the phosphor, it is preferable that a monovalent, divalent, trivalent, or tetravalent metal element (excluding magnesium) is contained in an amount of 50 ppm or more and less than 300 ppm with respect to magnesium oxide.

前記発光体において、前記金属元素が、Li、Be、Na、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sb、Sn、Cs、Ba、Hf、Ta、Ir、Au、Tl、Pb、Bi、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群より選ばれる一種類又は二種類以上であることが望ましい。   In the luminous body, the metal element is Li, Be, Na, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sb, Sn, Cs, Ba, Hf, Ta, Ir, Au, Tl, Pb, Bi, La, Ce, Pr, Nd, Desirably, one or more types selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

前記発光体において、フッ素を除外して算出した酸化マグネシウムの純度、又は、前記金属元素を含む場合にはフッ素及び前記金属元素を除外して算出した酸化マグネシウムの純度が99.9質量%以上であることが好ましい。   In the phosphor, the purity of magnesium oxide calculated by excluding fluorine, or the purity of magnesium oxide calculated by excluding fluorine and the metal element when the metal element is included is 99.9% by mass or more. Preferably there is.

前記発光体は、レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.8μm以上4.0μm以下のフッ素含有酸化マグネシウム粉末からなることが好ましい。 The phosphor is preferably made of a fluorine-containing magnesium oxide powder having a volume-based cumulative 50% particle diameter (D 50 ) of 0.8 μm or more and 4.0 μm or less as measured by laser diffraction scattering particle size distribution measurement.

前記発光体は、好適に、プラズマディスプレイパネルの放電空間内に配置するために用いられる。   The light emitter is preferably used for disposing in the discharge space of the plasma display panel.

また本発明は、前記発光体を製造する方法であって、
酸化マグネシウム前駆体に、マグネシウムに対しフッ素が0.06〜1.25mol%となる量でフッ素化合物を添加して焼成することで、フッ素含有酸化マグネシウムを得る工程、
前記フッ素含有酸化マグネシウムを一旦冷却した後、再度焼成することで、前記発光体を得る工程、を含む、方法にも関する。
The present invention also provides a method for producing the light emitter,
A step of obtaining a fluorine-containing magnesium oxide by adding a fluorine compound to the magnesium oxide precursor in an amount such that fluorine is 0.06 to 1.25 mol% with respect to magnesium and firing the magnesium compound;
The present invention also relates to a method including a step of obtaining the luminous body by once cooling the fluorine-containing magnesium oxide and then baking it again.

前記酸化マグネシウム前駆体は、水酸化マグネシウム、塩基性炭酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硝酸マグネシウム、及び、シュウ酸マグネシウムからなる群より選択されることが好ましい。   The magnesium oxide precursor is preferably selected from the group consisting of magnesium hydroxide, basic magnesium carbonate, magnesium carbonate, magnesium acetate, magnesium nitrate, and magnesium oxalate.

本発明の酸化マグネシウム発光体は、フッ素含量が100ppmより少ないにも関わらず、フッ素を100ppmより多く含む酸化マグネシウムと同程度以上の紫外光発光強度を持つ。本発明の酸化マグネシウム発光体をPDPの放電空間内に配置することによって、放電空間内の紫外光の放出量が増加し、ガス放電発光装置から放出される可視光の光量を増加させることが可能となる。また、一般的に、紫外光の放出が多くなると、プライミング粒子の放出も多くなるので、本発明の酸化マグネシウム発光体は、PDPにおける放電遅れを改善することができる。従って、本発明の酸化マグネシウム発光体は、AC型のPDPの誘電体保護層の放電空間側の表面に形成される紫外光放出層として好適に使用することができる。   The magnesium oxide phosphor of the present invention has an ultraviolet light emission intensity equal to or higher than that of magnesium oxide containing more than 100 ppm of fluorine although the fluorine content is less than 100 ppm. By disposing the magnesium oxide phosphor of the present invention in the discharge space of the PDP, the amount of ultraviolet light emitted in the discharge space can be increased, and the amount of visible light emitted from the gas discharge light emitting device can be increased. It becomes. In general, when the emission of ultraviolet light increases, the emission of priming particles also increases, so the magnesium oxide phosphor of the present invention can improve the discharge delay in the PDP. Therefore, the magnesium oxide phosphor of the present invention can be suitably used as an ultraviolet light emitting layer formed on the discharge space side surface of the dielectric protective layer of the AC type PDP.

さらに、本発明の酸化マグネシウム発光体はフッ素含量が100ppmより少ないので、放電空間内に放出されるフッ素量が低減され、PDPの放電開始電圧の上昇を抑制することができる。   Furthermore, since the magnesium oxide phosphor of the present invention has a fluorine content of less than 100 ppm, the amount of fluorine released into the discharge space is reduced, and an increase in the discharge start voltage of the PDP can be suppressed.

まず本発明の発光体について説明する。   First, the light emitter of the present invention will be described.

本発明の発光体はフッ素含有酸化マグネシウムからなる。本発明の発光体は高純度の酸化マグネシウムを主体としてなるものであり、酸化マグネシウムの純度(含有フッ素量を含めずに算出した純度)としては99.9質量%以上であることが好ましい。   The phosphor of the present invention is made of fluorine-containing magnesium oxide. The phosphor of the present invention is mainly composed of high-purity magnesium oxide, and the purity of magnesium oxide (purity calculated without including the amount of fluorine contained) is preferably 99.9% by mass or more.

本発明の発光体では、酸化マグネシウムに対し添加物としてフッ素が含まれている。そのフッ素含量としては酸化マグネシウムに対して100ppm未満である。フッ素含量が100ppmを超えると、PDPの放電開始電圧が上昇する可能性がある。また、フッ素含量が5ppm以上となるように焼成を行うと、焼成工程での粒成長を回避することができるため、5ppm以上100ppm未満がより好ましい。   In the light emitter of the present invention, fluorine is contained as an additive to magnesium oxide. The fluorine content is less than 100 ppm with respect to magnesium oxide. If the fluorine content exceeds 100 ppm, the discharge starting voltage of the PDP may increase. Moreover, when baking is performed so that the fluorine content is 5 ppm or more, grain growth in the baking step can be avoided, and therefore, 5 ppm or more and less than 100 ppm is more preferable.

本発明の発光体は、電子線又は紫外線が照射されると、これらによる励起に基づいて波長200〜300nmの紫外線領域にピークを持つ発光をするものである。さらに、その発光の程度は、波長980nm近傍の、励起光ランプの反射ピークに対する、前記発光ピークの強度比(発光ピーク/反射ピーク)が、20以上となるものである。当該ピーク強度比が20以上であると、フッ素を100ppmより多く含む酸化マグネシウムと同程度以上の紫外光発光強度を持つことになるため、PDPの発光効率の向上に効果がある。これにより、本発明の発光体を、AC型のPDPの誘電体保護層の放電空間側の表面に形成される紫外光放出層として好適に使用することが可能となる。前記発光ピークの強度比は30以上が好ましい。   The illuminant of the present invention emits light having a peak in the ultraviolet region having a wavelength of 200 to 300 nm based on excitation by an electron beam or ultraviolet ray when irradiated. Furthermore, the intensity of the light emission is such that the intensity ratio of the light emission peak (light emission peak / reflection peak) to the reflection peak of the excitation light lamp near the wavelength of 980 nm is 20 or more. When the peak intensity ratio is 20 or more, it has an ultraviolet light emission intensity equal to or higher than that of magnesium oxide containing more than 100 ppm of fluorine, which is effective in improving the light emission efficiency of the PDP. As a result, the light emitter of the present invention can be suitably used as an ultraviolet light emitting layer formed on the surface on the discharge space side of the dielectric protective layer of the AC type PDP. The intensity ratio of the emission peak is preferably 30 or more.

本発明の発光体は粉末状のものであり、粒径としては、レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.8μm以上4.0μm以下であることが好ましい。前記粒子径が0.8μm未満の酸化マグネシウム粉末は、誘電体保護層の表面に塗布して紫外光放出層を形成しようとする際に、凝集しやすいため、良好な紫外光放出層を得ることが困難である。また、前記粒子径が4.0μmを超えると、誘電体保護層の表面に配置した際に、光の透過率が低下する傾向が生じる。前記粒子径が0.8μm以上4.0μm以下であると、塗布により誘電体保護層表面に配置する際に分散性が良く、また、光の透過率を損なうこともない。好ましくは1.0μm以上4.0μm以下、より好ましくは1.5μm以上4.0μm以下である。 The phosphor of the present invention is in a powder form, and the particle size is such that the volume-based cumulative 50% particle size (D 50 ) measured by laser diffraction scattering type particle size distribution is 0.8 μm or more and 4.0 μm or less. Is preferred. Magnesium oxide powder having a particle diameter of less than 0.8 μm is likely to aggregate when applied to the surface of the dielectric protective layer to form an ultraviolet light emitting layer, so that a good ultraviolet light emitting layer can be obtained. Is difficult. On the other hand, when the particle diameter exceeds 4.0 μm, the light transmittance tends to decrease when the particle diameter is disposed on the surface of the dielectric protective layer. When the particle diameter is 0.8 μm or more and 4.0 μm or less, the dispersibility is good when disposed on the surface of the dielectric protective layer by coating, and light transmittance is not impaired. Preferably they are 1.0 micrometer or more and 4.0 micrometers or less, More preferably, they are 1.5 micrometers or more and 4.0 micrometers or less.

次に本発明の発光体の製造方法について説明する。   Next, the manufacturing method of the light-emitting body of the present invention will be described.

まず、(1)酸化マグネシウム前駆体に、フッ素化合物を添加する。フッ化化合物の添加量は、後の焼成時間の温度及び時間を考慮して適宜決定することができるが、例えば、マグネシウムに対してフッ素が0.06〜1.25mol%、好ましくは0.1〜1mo1%となる量である。この段階ではフッ化化合物を過剰に添加して、後の焼成工程でフッ素含量を低減する。   First, (1) a fluorine compound is added to a magnesium oxide precursor. The addition amount of the fluorinated compound can be appropriately determined in consideration of the temperature and time of the subsequent calcination time. For example, fluorine is 0.06 to 1.25 mol%, preferably 0.1 It is the amount that is ˜1 mo 1%. At this stage, an excessive amount of a fluorinated compound is added, and the fluorine content is reduced in a later baking step.

前記酸化マグネシウム前駆体とは、焼成することにより酸化マグネシウムに変化する化合物のことをいう。前記酸化マグネシウム前駆体の具体的な種類としては、例えば、水酸化マグネシウム、塩基性炭酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硝酸マグネシウム、シュウ酸マグネシウム等が挙げられる。なかでも、得られる酸化マグネシウム発光体の発光強度が良いので、水酸化マグネシウムが好ましい。   The said magnesium oxide precursor means the compound which changes to magnesium oxide by baking. Specific examples of the magnesium oxide precursor include magnesium hydroxide, basic magnesium carbonate, magnesium carbonate, magnesium acetate, magnesium nitrate, and magnesium oxalate. Among these, magnesium hydroxide is preferable because the emission intensity of the obtained magnesium oxide phosphor is good.

酸化マグネシウム前駆体は純度の高いものが好ましく、具体的な純度としては、99.9質量%以上が好ましく、99.95質量%以上がより好ましい。   The magnesium oxide precursor preferably has a high purity, and the specific purity is preferably 99.9% by mass or more, and more preferably 99.95% by mass or more.

前記酸化マグネシウム前駆体の調製方法は特に限定されないが、液相合成法が好ましい。水酸化マグネシウムを液相合成法で調製するには、例えば、塩化マグネシウム水溶液と水酸化ナトリウム水溶液を混合して、水酸化マグネシウムスラリーを得、当該スラリーを濾過する。濾過して得られたケーキを、イオン交換水で水洗し、当該ケーキを乾燥機にて乾燥し、水酸化マグネシウムを得る。   The method for preparing the magnesium oxide precursor is not particularly limited, but a liquid phase synthesis method is preferred. To prepare magnesium hydroxide by a liquid phase synthesis method, for example, a magnesium chloride aqueous solution and a sodium hydroxide aqueous solution are mixed to obtain a magnesium hydroxide slurry, and the slurry is filtered. The cake obtained by filtration is washed with ion-exchanged water, and the cake is dried with a dryer to obtain magnesium hydroxide.

前記フッ素化合物としては特に限定されないが、フッ化塩が好ましい。具体的には、フッ化カリウム、フッ化ナトリウム、フッ化マグネシウムが挙げられる。得られる酸化マグネシウムの純度を低下させないため、フッ化マグネシウムが好ましい。フッ化マグネシウムは、純度が99.9質量%以上のものを使用することが好ましい。このような高純度品としては市販の試薬を使用することができ、例えば、(株)高純度化学研究所製の試薬(純度99.9質量%)などを使用することができる。   The fluorine compound is not particularly limited, but a fluoride salt is preferable. Specific examples include potassium fluoride, sodium fluoride, and magnesium fluoride. Magnesium fluoride is preferred because it does not reduce the purity of the resulting magnesium oxide. It is preferable to use magnesium fluoride having a purity of 99.9% by mass or more. A commercially available reagent can be used as such a high purity product, for example, a reagent (purity: 99.9% by mass) manufactured by Kojundo Chemical Laboratory Co., Ltd. can be used.

フッ素化合物の添加方法は特に限定されないが、酸化マグネシウム前駆体を作製する際に添加してもよく、酸化マグネシウム前駆体を焼成する際に添加してもよい。   Although the addition method of a fluorine compound is not specifically limited, You may add when producing a magnesium oxide precursor, and may add when baking a magnesium oxide precursor.

発光強度を向上させるため、フッ素以外に、1価、2価、3価、又は4価の金属元素(ただし、マグネシウムを除く)を、酸化マグネシウムに対して50〜300ppmの量でさらに添加してもよい。このような金属元素としては、具体的には、Li、Be、Na、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sb、Sn、Cs、Ba、Hf、Ta、Ir、Au、Tl、Pb、Bi、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどが挙げられる。金属元素の添加方法は、特に限定されないが、酸化マグネシウム前駆体を作製する際に添加してもよく、酸化マグネシウム前駆体を焼成する際に添加してもよい。例えば、金属元素としてアルミニウムを添加する場合、酸化マグネシウム前駆体を作製する際に、最終生成物である酸化マグネシウムに対し、50〜300ppmの量でアルミニウムが含まれるよう、適量の塩化アルミニウム六水塩(試薬:高純度化学研究所製)を、水酸化ナトリウム水溶液に溶解させてもよい。金属元素の含有量は、50ppm以上であると、当該金属元素添加による発光強度改善効果が十分に達成され、300ppm以下であると、酸化マグネシウム発光体の純度が高いために結晶性が良好であり、十分な発光強度を確保できるため、50〜300ppmの量が好ましい。   In order to improve the emission intensity, in addition to fluorine, a monovalent, divalent, trivalent, or tetravalent metal element (excluding magnesium) is further added in an amount of 50 to 300 ppm based on magnesium oxide. Also good. Specific examples of such metal elements include Li, Be, Na, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, and Rb. , Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sb, Sn, Cs, Ba, Hf, Ta, Ir, Au, Tl, Pb, Bi, La, Ce, Pr , Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like. The method for adding the metal element is not particularly limited, but may be added when the magnesium oxide precursor is produced, or may be added when the magnesium oxide precursor is fired. For example, when aluminum is added as a metal element, an appropriate amount of aluminum chloride hexahydrate is used so that when the magnesium oxide precursor is produced, aluminum is contained in an amount of 50 to 300 ppm with respect to magnesium oxide as a final product. (Reagent: manufactured by High Purity Chemical Research Laboratory) may be dissolved in an aqueous sodium hydroxide solution. If the content of the metal element is 50 ppm or more, the effect of improving the light emission intensity by the addition of the metal element is sufficiently achieved, and if it is 300 ppm or less, the crystallinity is good because the purity of the magnesium oxide phosphor is high. An amount of 50 to 300 ppm is preferable because sufficient light emission intensity can be secured.

次に、(2)フッ素化合物が添加された前記酸化マグネシウム前駆体を焼成してフッ素含有酸化マグネシウムを作製する(一次焼成)。焼成方法は、閉鎖系又は開放系のいずれでもよい。例えば、酸化マグネシウム前駆体を坩堝に入れ、蓋をして焼成する。焼成時の温度としては、酸化マグネシウム前駆体が完全に酸化マグネシウムに変わる350℃以上であればよく、600〜1500℃が好ましい。焼成時間は焼成温度によるが、上記と同様の理由から、0.5〜5時間が好ましい。昇温速度は特に限定されないが、1〜10℃/min程度である。この一次焼成により、粉末状のフッ素含有酸化マグネシウムが形成されるが、フッ素含量はまだ十分に低減されていない。   Next, (2) the magnesium oxide precursor to which the fluorine compound is added is fired to produce fluorine-containing magnesium oxide (primary firing). The firing method may be either a closed system or an open system. For example, a magnesium oxide precursor is placed in a crucible, covered and fired. As temperature at the time of baking, what is necessary is just 350 degreeC or more which a magnesium oxide precursor completely changes to magnesium oxide, and 600-1500 degreeC is preferable. Although the firing time depends on the firing temperature, 0.5 to 5 hours are preferable for the same reason as described above. The rate of temperature increase is not particularly limited, but is about 1 to 10 ° C./min. This primary firing forms a powdery fluorine-containing magnesium oxide, but the fluorine content has not been sufficiently reduced yet.

酸化マグネシウム前駆体の焼成後、(3)得られたフッ素含有酸化マグネシウムを一旦、常温まで冷却する。冷却方法は、温度プロファイルに従って、降温速度を1〜10℃/minに設定した段階的な冷却でもよいし、自然冷却でもよい。   After firing the magnesium oxide precursor, (3) the obtained fluorine-containing magnesium oxide is once cooled to room temperature. The cooling method may be stepwise cooling with the temperature decreasing rate set to 1 to 10 ° C./min according to the temperature profile, or may be natural cooling.

最後に、(4)自然冷却されたフッ素含有酸化マグネシウムを再度焼成することで、本発明の酸化マグネシウム発光体を製造する(二次焼成)。この2回目の焼成により、十分にフッ素含量が低減され、かつ十分な発光強度を持つフッ素含有酸化マグネシウム粉末が得られる。2回の焼成を行なわず、1回の焼成を長時間行なうことで発光体に含まれるフッ素含量を100ppm未満に低減しようとすると、発光強度が低下してしまい、さらに、粒成長がおこってしまう。よって、紫外光放出層として好適に使用できる小粒径のフッ素含有酸化マグネシウム粉末を得ることができない。本発明の製造方法では、冷却を挟んで2回の焼成を行なうことにより、フッ素含量を100ppm未満に低減しながらも十分な発光強度を持ち、かつ、粒成長を回避した酸化マグネシウムを得ることができる。   Finally, (4) the naturally cooled fluorine-containing magnesium oxide is fired again to produce the magnesium oxide phosphor of the present invention (secondary firing). By this second firing, a fluorine-containing magnesium oxide powder having a sufficiently reduced fluorine content and sufficient emission intensity can be obtained. If it is attempted to reduce the fluorine content contained in the light emitter to less than 100 ppm by performing one firing for a long time without performing the firing twice, the light emission intensity is lowered and further grain growth occurs. . Therefore, it is not possible to obtain a fluorine-containing magnesium oxide powder having a small particle size that can be suitably used as an ultraviolet light emitting layer. In the production method of the present invention, it is possible to obtain magnesium oxide having sufficient light emission intensity and avoiding grain growth while reducing the fluorine content to less than 100 ppm by performing baking twice with cooling interposed therebetween. it can.

二次焼成での焼成炉は閉鎖系又は開放系のいずれでもよい。しかし、フッ素含量を効果的に低減するために、炉内の雰囲気が流通する開放系が好ましい。具体的には、(3)で得られたフッ素含有酸化マグネシウムを坩堝に入れ、焼成する。焼成時の温度としては、フッ素含量を十分に低減するため、800〜1700℃が好ましく、1000℃〜1600℃がより好ましい。焼成時間は焼成温度によるが、フッ素含量を十分に低減するため、0.5〜5時間が好ましい。昇温速度は特に限定されないが、1〜10℃/min程度である。更に、紫外光の発光強度を向上させること、及びフッ素含量を低減することを目的として、焼成時の雰囲気ガス又は大気の流通量を調整し、炉内に流通する空気量の割合を調節してもよい。   The firing furnace in the secondary firing may be either a closed system or an open system. However, in order to effectively reduce the fluorine content, an open system in which the atmosphere in the furnace flows is preferable. Specifically, the fluorine-containing magnesium oxide obtained in (3) is placed in a crucible and fired. As temperature at the time of baking, in order to fully reduce a fluorine content, 800-1700 degreeC is preferable and 1000-1600 degreeC is more preferable. Although the firing time depends on the firing temperature, 0.5 to 5 hours is preferable in order to sufficiently reduce the fluorine content. The rate of temperature increase is not particularly limited, but is about 1 to 10 ° C./min. Furthermore, for the purpose of improving the emission intensity of ultraviolet light and reducing the fluorine content, the amount of atmospheric gas or air during firing is adjusted, and the proportion of the amount of air flowing in the furnace is adjusted. Also good.

以上の工程により、本発明のフッ素含有酸化マグネシウム発光体を得ることができる。   Through the above steps, the fluorine-containing magnesium oxide phosphor of the present invention can be obtained.

本発明の発光体は、紫外線領域の波長200〜300nmで強力に発光をするので、プラズマディスプレイパネルを始め各種光学デバイスに応用することができる。   Since the illuminant of the present invention emits light strongly at a wavelength of 200 to 300 nm in the ultraviolet region, it can be applied to various optical devices including a plasma display panel.

特に本発明の発光体は、PDPにおいて誘電体保護膜上に設けられる紫外光放出層を構成する発光体として好適に利用することができる。当該紫外光放出層を形成するには、本発明の発光体であるフッ素含有酸化マグネシウム粉末を、スプレー法や静電塗布法などによって直接、前記保護膜表面に付着させるようにしてもよいし、当該粉末を含有するペーストを作製して、当該ペーストを前記保護膜に塗布、乾燥させるようにしてもよい。   In particular, the light emitter of the present invention can be suitably used as a light emitter constituting an ultraviolet light emitting layer provided on a dielectric protective film in a PDP. In order to form the ultraviolet light emitting layer, the fluorine-containing magnesium oxide powder that is the light emitter of the present invention may be directly attached to the surface of the protective film by a spray method or an electrostatic coating method, A paste containing the powder may be prepared, and the paste may be applied to the protective film and dried.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

以下の実施例及び比較例では、以下に示す手順に沿って各種物性等を測定した。   In the following examples and comparative examples, various physical properties and the like were measured according to the following procedure.

(1)酸化マグネシウム中のフッ素含量
試料を塩酸で溶解して調製した溶液中のフッ素量をイオン電極法(装置名:イオン計D−53S、HORIBA製)により測定した。
(1) Fluorine content in magnesium oxide The amount of fluorine in a solution prepared by dissolving a sample with hydrochloric acid was measured by an ion electrode method (device name: ion meter D-53S, manufactured by HORIBA).

(2)体積基準の累積50%粒子径(D50
レーザ回折散乱式粒度分布測定装置(装置名:MT3300、日機装社製)により、体積基準の累積50%粒子径(D50)を測定した。
(2) Volume-based cumulative 50% particle size (D 50 )
The volume-based cumulative 50% particle diameter (D 50 ) was measured with a laser diffraction / scattering particle size distribution measuring device (device name: MT3300, manufactured by Nikkiso Co., Ltd.).

(3)フォトルミネッセンスの測定法
真空チャンバーに、146nmの励起光を発するXeエキシマランプと、計測波長範囲が200〜1000nmの分光検出器を具備するフォトルミネッセンス測定装置を使用した。試料を充填した試料セルを、真空チャンバー内の所定位置に設置した後、真空チャンバー内の圧力が1.0×10−1Pa以下になるまで減圧した。次いで、試料セルを計測位置に移動させ、励起光を1000ms照射することで、試料から放射された発光の発光スペクトルを測定した。
(3) Photoluminescence measurement method A photoluminescence measurement device comprising a Xe excimer lamp emitting excitation light of 146 nm and a spectroscopic detector having a measurement wavelength range of 200 to 1000 nm was used in a vacuum chamber. After setting the sample cell filled with the sample at a predetermined position in the vacuum chamber, the pressure in the vacuum chamber was reduced to 1.0 × 10 −1 Pa or less. Next, the emission spectrum of the luminescence emitted from the sample was measured by moving the sample cell to the measurement position and irradiating with excitation light for 1000 ms.

測定された発光スペクトルから、紫外線領域200〜300nmにあるピークトップの強度を読み取った。ピークトップの強度を、波長980nm近傍にある励起光ランプの反射ピークが示す強度で除し、強度比を求めた。   From the measured emission spectrum, the intensity of the peak top in the ultraviolet region of 200 to 300 nm was read. The intensity of the peak top was divided by the intensity indicated by the reflection peak of the excitation light lamp in the vicinity of the wavelength of 980 nm to obtain the intensity ratio.

(4)酸化マグネシウム前駆体及び酸化マグネシウムの純度測定法
酸化マグネシウム前駆体及び酸化マグネシウムの純度は、添加したフッ素を除き、以下の方法により測定した不純物量の合計を100質量%から差し引いた値として算出した。
(4) Magnesium oxide precursor and magnesium oxide purity measurement method The purity of the magnesium oxide precursor and magnesium oxide is the value obtained by subtracting the total amount of impurities measured by the following method from 100% by mass, excluding the added fluorine. Calculated.

(5)不純物元素の質量測定法
測定対象となる不純物元素(Ag、Al、B、Ba、Bi、Ca、Cd、Co、Cr、Cu、Fe、Ga、In、K、Li、Mn、Mo、Na、Ni、P、Pb、S、Si、Sr、Tl、V、Zn、Ti及びZr)について、試料を酸に溶解した後、ICP発光分析装置(装置名:SPS−5100、セイコーインスツルメンツ製)を使用して、質量を測定した。Cl量は、試料を酸に溶解した後、分光光度計(装置名:UV−2550、島津製作所製)を使用して、質量を測定した。
(5) Impurity element mass measurement method Impurity elements to be measured (Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Tl, V, Zn, Ti and Zr), after dissolving the sample in acid, ICP emission analyzer (device name: SPS-5100, manufactured by Seiko Instruments Inc.) Was used to measure the mass. After the sample was dissolved in acid, the amount of Cl was measured using a spectrophotometer (device name: UV-2550, manufactured by Shimadzu Corporation).

以下に各実施例及び比較例での焼成品の製造手順について説明する。   Below, the manufacturing procedure of the baked goods in each Example and a comparative example is demonstrated.

(実施例1)
純度99.95質量%の水酸化マグネシウムに、マグネシウムに対してフッ素が0.105mol%となるように純度99.9質量%のフッ化マグネシウム(試薬:高純度化学研究所製)を添加し、これを坩堝に入れて蓋をした。
Example 1
Magnesium fluoride having a purity of 99.9% by mass (reagent: manufactured by High Purity Chemical Laboratory) was added to magnesium hydroxide having a purity of 99.95% by mass so that the fluorine was 0.105 mol% with respect to magnesium. This was put in a crucible and covered.

次いで、電気炉において、大気雰囲気中、昇温速度3℃/minで昇温し、焼成温度1100℃で5時間、一次焼成を行った。   Subsequently, in an electric furnace, the temperature was increased at a rate of temperature increase of 3 ° C./min in an air atmosphere, and primary baking was performed at a baking temperature of 1100 ° C. for 5 hours.

次いで、自然冷却で常温まで冷却した。   Subsequently, it cooled to normal temperature by natural cooling.

さらに、電気炉において、大気雰囲気中、昇温速度3℃/minで昇温し、焼成温度1400℃で1時間、二次焼成を行った。   Furthermore, in an electric furnace, the temperature was increased at a rate of temperature increase of 3 ° C./min in an air atmosphere, and secondary baking was performed at a baking temperature of 1400 ° C. for 1 hour.

(実施例2)
二次焼成をガス炉において行い、二次焼成の焼成温度を1200℃、焼成時間を3時間とした以外は、実施例1と同様に行った。
(Example 2)
The second firing was performed in the same manner as in Example 1 except that the firing temperature of the second firing was 1200 ° C. and the firing time was 3 hours.

(実施例3)
一次焼成の焼成温度を1200℃、焼成時間を1時間とし、また、二次焼成をガス炉において行い、二次焼成の焼成温度を1200℃とした以外は、実施例1と同様に行った。
(Example 3)
The firing was performed in the same manner as in Example 1 except that the firing temperature of the primary firing was 1200 ° C., the firing time was 1 hour, the secondary firing was performed in a gas furnace, and the firing temperature of the secondary firing was 1200 ° C.

(実施例4)
一次焼成の焼成温度を1200℃、焼成時間を1時間とし、また、二次焼成をガス炉において実施した以外は、実施例1と同様に行った。
Example 4
The firing was performed in the same manner as in Example 1 except that the firing temperature of the primary firing was 1200 ° C., the firing time was 1 hour, and the secondary firing was performed in a gas furnace.

(実施例5)
一次焼成をガス炉において行い、一次焼成の焼成温度を1200℃、焼成時間を1時間とし、また、二次焼成をガス炉において実施した以外は、実施例1と同様に行った。
(Example 5)
The primary firing was performed in a gas furnace, the firing temperature of the primary firing was 1200 ° C., the firing time was 1 hour, and the secondary firing was performed in the same manner as in Example 1 except that the firing was performed in a gas furnace.

(実施例6)
フッ素の添加量を、マグネシウムに対して1.052mol%とし、また、二次焼成の焼成温度を1200℃とした以外は、実施例5と同様に行った。
(Example 6)
The same procedure as in Example 5 was performed except that the amount of fluorine added was 1.052 mol% with respect to magnesium and the firing temperature of the secondary firing was 1200 ° C.

(実施例7)
フッ素の添加量を、マグネシウムに対して1.052mol%とした以外は、実施例5と同様に行った。
(Example 7)
The same operation as in Example 5 was performed except that the amount of fluorine added was 1.052 mol% with respect to magnesium.

(実施例8)
添加したフッ素源を、純度99質量%のフッ化ナトリウム(試薬:高純度化学研究所製)とした以外は、実施例5と同様に行った。
(Example 8)
The same procedure as in Example 5 was performed except that the added fluorine source was sodium fluoride having a purity of 99% by mass (reagent: manufactured by High Purity Chemical Laboratory).

(実施例9)
添加したフッ素源を、純度99質量%のフッ化カリウム(試薬:高純度化学研究所製)とした以外は、実施例5と同様に行った。
Example 9
The same procedure as in Example 5 was performed except that the added fluorine source was potassium fluoride having a purity of 99% by mass (reagent: manufactured by High Purity Chemical Laboratory).

(実施例10)
酸化マグネシウム前駆体を、純度99.9質量%の塩基性炭酸マグネシウム(試薬:高純度化学研究所製)とした以外は、実施例5と同様に行った。
(Example 10)
The same procedure as in Example 5 was conducted except that the magnesium oxide precursor was basic magnesium carbonate having a purity of 99.9% by mass (reagent: manufactured by High Purity Chemical Laboratory).

(実施例11)
酸化マグネシウム前駆体を、純度99.9質量%の酢酸マグネシウム(試薬:高純度化学研究所製)とした以外は、実施例5と同様に行った。
(Example 11)
The same procedure as in Example 5 was performed except that the magnesium oxide precursor was magnesium acetate having a purity of 99.9% by mass (reagent: manufactured by High Purity Chemical Laboratory).

(実施例12)
最終生成物であるフッ素含有酸化マグネシウム粉末に、マグネシウムに対してアルミニウムが100ppm程度含まれるように、純度99.9質量%の塩化アルミニウム六水塩(試薬:高純度化学研究所製)を水酸化ナトリウム(NaOH)水溶液に溶解させたものを使用し、水酸化マグネシウムを作製した。この水酸化マグネシウムを用いた以外は、実施例5と同様に行った。
(Example 12)
Hydroxidize 99.9 mass% aluminum chloride hexahydrate (reagent: manufactured by High Purity Chemical Research Laboratory) so that the final product fluorine-containing magnesium oxide powder contains about 100 ppm of aluminum with respect to magnesium. Magnesium hydroxide was prepared using a solution in a sodium (NaOH) aqueous solution. The same operation as in Example 5 was carried out except that this magnesium hydroxide was used.

(実施例13)
最終生成物であるフッ素含有酸化マグネシウム粉末に、マグネシウムに対してカルシウムが60ppm程度含まれるように、純度99質量%の塩化カルシウム二水塩(試薬:高純度化学研究所製)を塩化マグネシウム(MgCl2)水溶液に溶解させたものを使用し、水酸化マグネシウムを作製した。この水酸化マグネシウムを用いた以外は、実施例5と同様に行った。
(Example 13)
The final product fluorine-containing magnesium oxide powder contains calcium chloride dihydrate (reagent: manufactured by High Purity Chemical Research Laboratories) with a purity of 99% by mass so as to contain about 60 ppm of calcium with respect to magnesium. ) Magnesium hydroxide was prepared using a solution dissolved in an aqueous solution. The same operation as in Example 5 was carried out except that this magnesium hydroxide was used.

(比較例1)
純度99.95質量%の水酸化マグネシウムに、マグネシウムに対してフッ素が0.031mol%となるように純度99.9質量%のフッ化マグネシウム(試薬:高純度化学研究所製)を添加し、これを坩堝に入れて蓋をした。
(Comparative Example 1)
Magnesium fluoride having a purity of 99.9% by mass (reagent: manufactured by High Purity Chemical Laboratory) was added to magnesium hydroxide having a purity of 99.95% by mass so that fluorine was 0.031 mol% with respect to magnesium. This was put in a crucible and covered.

電気炉において、大気雰囲気中、昇温速度3℃/minで昇温し、焼成温度1200℃で1時間焼成した。   In an electric furnace, the temperature was increased at a rate of temperature increase of 3 ° C./min in an air atmosphere, and calcination was performed at a calcination temperature of 1200 ° C. for 1 hour.

(比較例2)
フッ素の添加量を、マグネシウムに対して0.063mol%とし、また、焼成時間を5時間とした以外は、比較例1と同様に行った。
(Comparative Example 2)
The same procedure as in Comparative Example 1 was performed except that the amount of fluorine added was 0.063 mol% with respect to magnesium and the firing time was 5 hours.

(比較例3)
焼成温度を1500℃とした以外は、比較例1と同様に行った。
(Comparative Example 3)
It carried out similarly to the comparative example 1 except having made the calcination temperature into 1500 degreeC.

(比較例4)
フッ素の添加量を、マグネシウムに対して0.105mol%とし、また、焼成をガス炉において実施した以外は、比較例1と同様に行った。
(Comparative Example 4)
The amount of fluorine added was 0.105 mol% with respect to magnesium, and the same procedure as in Comparative Example 1 was performed except that firing was performed in a gas furnace.

(比較例5)
焼成時間を3時間とした以外は、比較例4と同様に行った。
(Comparative Example 5)
It carried out similarly to the comparative example 4 except having made baking time into 3 hours.

(比較例6)
焼成温度を1400℃とした以外は、比較例4と同様に行った。
(Comparative Example 6)
It carried out similarly to the comparative example 4 except having made the calcination temperature into 1400 degreeC.

(比較例7)
フッ素の添加量を、マグネシウムに対して1.052mol%とし、また、焼成温度を1500℃とした以外は、比較例4と同様に行った。
(Comparative Example 7)
The same procedure as in Comparative Example 4 was performed except that the amount of fluorine added was 1.052 mol% with respect to magnesium and the firing temperature was 1500 ° C.

(比較例8)
酸化マグネシウム前駆体である水酸化マグネシウムの代わりに、純度99.95質量%の酸化マグネシウムを使用した以外は、比較例1と同様に行った。
(Comparative Example 8)
It carried out similarly to the comparative example 1 except having used magnesium oxide with a purity of 99.95 mass% instead of magnesium hydroxide which is a magnesium oxide precursor.

(比較例9)
酸化マグネシウム前駆体である水酸化マグネシウムの代わりに、純度99.95質量%の酸化マグネシウムを使用し、フッ素の添加量をマグネシウムに対して0.316mol%とした以外は、比較例1と同様に行った。
(Comparative Example 9)
In the same manner as in Comparative Example 1, except that magnesium oxide having a purity of 99.95% by mass was used instead of magnesium hydroxide as a magnesium oxide precursor, and the amount of fluorine added was 0.316 mol% with respect to magnesium. went.

以上で得られたフッ素含有酸化マグネシウムの各分析結果を以下の表1に示す。   Each analysis result of the fluorine-containing magnesium oxide obtained above is shown in Table 1 below.

Figure 2012101988

表1より、2段階の焼成により得られたフッ素含有酸化マグネシウム(実施例1〜13)は、フッ素含量が100ppm未満と低いものでありながら、発光ピーク強度比が20以上と、極めて強く紫外光を放出することが分かる。一方、1段階の焼成により得られたフッ素含有酸化マグネシウム(比較例1〜9)は、フッ素含量を100ppm未満と低くした場合には、発光ピーク強度比が20未満と紫外光の放出が十分でなく、また、逆に発光ピーク強度比が20以上の場合には、フッ素含量が100ppm以上であるため、PDPの放電開始電圧の上昇を抑制することができないと考えられる。
Figure 2012101988

As shown in Table 1, the fluorine-containing magnesium oxide (Examples 1 to 13) obtained by the two-step firing has a low emission peak intensity ratio of 20 or more, while the fluorine content is as low as less than 100 ppm. It turns out that it releases. On the other hand, the fluorine-containing magnesium oxide (Comparative Examples 1 to 9) obtained by one-step firing has a sufficient emission peak intensity ratio of less than 20 and a sufficient emission of ultraviolet light when the fluorine content is reduced to less than 100 ppm. In contrast, when the emission peak intensity ratio is 20 or more, the fluorine content is 100 ppm or more, so it is considered that the increase in the discharge start voltage of the PDP cannot be suppressed.

Claims (9)

電子線又は紫外線による励起に基づいて紫外線領域200〜300nmに発光ピークを有する酸化マグネシウム発光体であって、
酸化マグネシウムに対するフッ素含量が100ppm未満であり、かつ
波長980nm近傍の、励起光ランプの反射ピークに対する、前記発光ピークの強度比が、20以上である、フッ素含有酸化マグネシウム発光体。
A magnesium oxide phosphor having an emission peak in an ultraviolet region of 200 to 300 nm based on excitation by an electron beam or ultraviolet rays,
A fluorine-containing magnesium oxide phosphor, wherein the fluorine content relative to magnesium oxide is less than 100 ppm, and the intensity ratio of the emission peak to the reflection peak of the excitation light lamp in the vicinity of a wavelength of 980 nm is 20 or more.
酸化マグネシウムに対して、1価、2価、3価、又は4価の金属元素(ただし、マグネシウムを除く)が、50ppm以上300ppm未満含まれてなる、請求項1に記載の発光体。   The light-emitting body according to claim 1, wherein a monovalent, divalent, trivalent, or tetravalent metal element (excluding magnesium) is contained in an amount of 50 ppm or more and less than 300 ppm with respect to magnesium oxide. 前記金属元素が、Li、Be、Na、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sb、Sn、Cs、Ba、Hf、Ta、Ir、Au、Tl、Pb、Bi、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群より選ばれる一種類又は二種類以上である、請求項2に記載の発光体。   The metal element is Li, Be, Na, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb. , Mo, Ru, Rh, Pd, Ag, Cd, In, Sb, Sn, Cs, Ba, Hf, Ta, Ir, Au, Tl, Pb, Bi, La, Ce, Pr, Nd, Sm, Eu, Gd The light-emitting body according to claim 2, which is one type or two or more types selected from the group consisting of Tb, Dy, Ho, Er, Tm, Yb, and Lu. フッ素を除外して算出した酸化マグネシウムの純度が99.9質量%以上である、請求項1に記載の発光体。   The phosphor according to claim 1, wherein the purity of magnesium oxide calculated by excluding fluorine is 99.9% by mass or more. フッ素及び前記金属元素を除外して算出した酸化マグネシウムの純度が99.9質量%以上である、請求項2又は3に記載の発光体。   The phosphor according to claim 2 or 3, wherein the purity of magnesium oxide calculated by excluding fluorine and the metal element is 99.9% by mass or more. レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.8μm以上4.0μm以下のフッ素含有酸化マグネシウム粉末からなる、請求項1〜5のいずれかに記載の発光体。 Cumulative 50% particle diameter on a volume basis by the laser diffraction scattering particle size distribution measurement (D 50) consists of 4.0μm or less of a fluorine-containing magnesium oxide powder or 0.8 [mu] m, light emission of any one of claims 1 to 5 body. プラズマディスプレイパネルの放電空間内に配置するために用いられる、請求項1〜6のいずれかに記載の発光体。   The light-emitting body according to claim 1, which is used for disposing in a discharge space of a plasma display panel. 請求項1〜7のいずれかに記載の発光体を製造する方法であって、
酸化マグネシウム前駆体に、マグネシウムに対しフッ素が0.06〜1.25mol%となる量でフッ素化合物を添加して焼成することで、フッ素含有酸化マグネシウムを得る工程、
前記フッ素含有酸化マグネシウムを一旦冷却した後、再度焼成することで、前記発光体を得る工程、を含む、方法。
A method for producing the light emitter according to claim 1,
A step of obtaining a fluorine-containing magnesium oxide by adding a fluorine compound to the magnesium oxide precursor in an amount such that fluorine is 0.06 to 1.25 mol% with respect to magnesium and firing the magnesium compound;
A step of once cooling the fluorine-containing magnesium oxide and then firing again to obtain the luminous body.
前記酸化マグネシウム前駆体は、水酸化マグネシウム、塩基性炭酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、硝酸マグネシウム、及び、シュウ酸マグネシウムからなる群より選択される、請求項8記載の方法。
9. The method of claim 8, wherein the magnesium oxide precursor is selected from the group consisting of magnesium hydroxide, basic magnesium carbonate, magnesium carbonate, magnesium acetate, magnesium nitrate, and magnesium oxalate.
JP2010253466A 2010-11-12 2010-11-12 Fluorine-containing magnesium oxide phosphor and method for producing the same Active JP5745821B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010253466A JP5745821B2 (en) 2010-11-12 2010-11-12 Fluorine-containing magnesium oxide phosphor and method for producing the same
KR1020137011464A KR101706661B1 (en) 2010-11-12 2011-11-04 Fluorine-containing magnesium oxide light-emitting body and method for producing same
CN201180046359.7A CN103108843B (en) 2010-11-12 2011-11-04 Fluorine-containing magnesium oxide light-emitting body and method for producing same
PCT/JP2011/006170 WO2012063444A1 (en) 2010-11-12 2011-11-04 Fluorine-containing magnesium oxide light-emitting body and method for producing same
TW100140862A TWI541326B (en) 2010-11-12 2011-11-09 Magnesium oxide containing phosphor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253466A JP5745821B2 (en) 2010-11-12 2010-11-12 Fluorine-containing magnesium oxide phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012101988A true JP2012101988A (en) 2012-05-31
JP5745821B2 JP5745821B2 (en) 2015-07-08

Family

ID=46050613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253466A Active JP5745821B2 (en) 2010-11-12 2010-11-12 Fluorine-containing magnesium oxide phosphor and method for producing the same

Country Status (5)

Country Link
JP (1) JP5745821B2 (en)
KR (1) KR101706661B1 (en)
CN (1) CN103108843B (en)
TW (1) TWI541326B (en)
WO (1) WO2012063444A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236948A (en) * 2011-05-13 2012-12-06 Ube Material Industries Ltd Ultraviolet light-emitting phosphor
JP2013193910A (en) * 2012-03-19 2013-09-30 Ube Material Industries Ltd Magnesium oxide powder
JP2016027115A (en) * 2014-06-25 2016-02-18 パナソニックIpマネジメント株式会社 Phosphor, deep ultraviolet light-emitting device, and production method of phosphor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311072A (en) * 2013-06-21 2013-09-18 四川虹欧显示器件有限公司 Novel PDP (plasma display panel) functional layer slurry formula and mass production application process
CN111792671B (en) * 2020-07-20 2022-09-09 西部超导材料科技股份有限公司 Method for treating Bi-2212 precursor powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254269A (en) * 2006-02-21 2007-10-04 Ube Material Industries Ltd Fluorine-containing magnesium oxide powder and method for producing the same
WO2008129775A1 (en) * 2007-03-19 2008-10-30 Panasonic Corporation Plasma display panel and its manufacturing method
WO2008132776A1 (en) * 2007-04-25 2008-11-06 Tateho Chemical Industries Co., Ltd. Oxide luminophor
JP2008282623A (en) * 2007-05-09 2008-11-20 Hitachi Ltd Plasma display panel and base board structure of plasma display panel
JP2009062267A (en) * 2007-08-10 2009-03-26 Ube Material Industries Ltd Magnesium oxide fired product powder
JP2010126413A (en) * 2008-11-28 2010-06-10 Tateho Chem Ind Co Ltd Magnesium oxide solid solution particle and method for producing the same
JP2010138067A (en) * 2006-02-21 2010-06-24 Ube Material Industries Ltd Method for producing fluorine-containing magnesium oxide powder
JP2010163357A (en) * 2008-12-19 2010-07-29 Ube Material Industries Ltd Magnesium oxide fine powder and production method thereof
JP2010537943A (en) * 2007-09-21 2010-12-09 デジュー・エレクトロニック・マテリアルズ・カンパニー・リミテッド Fluorine-containing magnesium oxide powder using vapor phase synthesis and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516793B2 (en) 2003-08-22 2010-08-04 パナソニック株式会社 Plasma display panel
CN1279140C (en) * 2005-02-21 2006-10-11 东南大学 Prepn process of blue aluminate phosphor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254269A (en) * 2006-02-21 2007-10-04 Ube Material Industries Ltd Fluorine-containing magnesium oxide powder and method for producing the same
JP2010138067A (en) * 2006-02-21 2010-06-24 Ube Material Industries Ltd Method for producing fluorine-containing magnesium oxide powder
WO2008129775A1 (en) * 2007-03-19 2008-10-30 Panasonic Corporation Plasma display panel and its manufacturing method
WO2008132776A1 (en) * 2007-04-25 2008-11-06 Tateho Chemical Industries Co., Ltd. Oxide luminophor
JP2008282623A (en) * 2007-05-09 2008-11-20 Hitachi Ltd Plasma display panel and base board structure of plasma display panel
JP2009062267A (en) * 2007-08-10 2009-03-26 Ube Material Industries Ltd Magnesium oxide fired product powder
JP2010537943A (en) * 2007-09-21 2010-12-09 デジュー・エレクトロニック・マテリアルズ・カンパニー・リミテッド Fluorine-containing magnesium oxide powder using vapor phase synthesis and method for producing the same
JP2010126413A (en) * 2008-11-28 2010-06-10 Tateho Chem Ind Co Ltd Magnesium oxide solid solution particle and method for producing the same
JP2010163357A (en) * 2008-12-19 2010-07-29 Ube Material Industries Ltd Magnesium oxide fine powder and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236948A (en) * 2011-05-13 2012-12-06 Ube Material Industries Ltd Ultraviolet light-emitting phosphor
JP2013193910A (en) * 2012-03-19 2013-09-30 Ube Material Industries Ltd Magnesium oxide powder
JP2016027115A (en) * 2014-06-25 2016-02-18 パナソニックIpマネジメント株式会社 Phosphor, deep ultraviolet light-emitting device, and production method of phosphor

Also Published As

Publication number Publication date
KR101706661B1 (en) 2017-02-14
KR20130094829A (en) 2013-08-26
CN103108843B (en) 2015-07-01
TWI541326B (en) 2016-07-11
TW201229208A (en) 2012-07-16
WO2012063444A1 (en) 2012-05-18
JP5745821B2 (en) 2015-07-08
CN103108843A (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5698762B2 (en) Light emitting diode device comprising a luminescent material
TWI515286B (en) Silicate phosphors and light-emitting devices having high light-emitting characteristics and moisture resistance
JP5282132B2 (en) Nitride phosphor, method for manufacturing the same, and light emitting device using the same
JP5745821B2 (en) Fluorine-containing magnesium oxide phosphor and method for producing the same
JP5236893B2 (en) Oxide emitter
JP5034033B2 (en) Plate-like phosphor and display using it
WO2006109694A1 (en) Luminescent device
JP4969529B2 (en) Production material and light emitting material of ultraviolet light emitting layer
JP6129649B2 (en) Upconversion phosphor and method for producing the same
JP5230143B2 (en) Method for producing fluorinated magnesium oxide fired powder
JP5174634B2 (en) Magnesium oxide solid solution particles and production method thereof
JP2009062267A5 (en) Production material and light emitting material of ultraviolet light emitting layer
WO2010137247A1 (en) Fluorescent substance, process for producing same, and luminescent device
JP5602811B2 (en) Chlorine-containing magnesium oxide powder
Liu et al. Optical properties of Si–N doped BaMgAl10O17: Eu2+, Mn2+ phosphors for plasma display panels
JP2012096951A (en) Method of manufacturing magnesium oxide thin film
JP5844185B2 (en) Magnesium oxide powder
KR100956964B1 (en) Metal-contained magnesium oxide powders and preparation method for plasma display panel
JP2023049445A (en) Phosphor, production method of the same, and light emitting device
JPWO2015111626A1 (en) Phosphor and light emitting device
JP4850107B2 (en) Baked magnesium oxide powder containing aluminum oxide
JP4833899B2 (en) Zinc-containing magnesium oxide fired powder
JP2017128731A (en) Up-conversion phosphor and manufacturing method therefor
KR20100021397A (en) Metal-contained magnesium oxide powders and preparation method for plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150507

R150 Certificate of patent or registration of utility model

Ref document number: 5745821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250