JP2012099263A - High-frequency induction heating method and device of heated object - Google Patents

High-frequency induction heating method and device of heated object Download PDF

Info

Publication number
JP2012099263A
JP2012099263A JP2010244099A JP2010244099A JP2012099263A JP 2012099263 A JP2012099263 A JP 2012099263A JP 2010244099 A JP2010244099 A JP 2010244099A JP 2010244099 A JP2010244099 A JP 2010244099A JP 2012099263 A JP2012099263 A JP 2012099263A
Authority
JP
Japan
Prior art keywords
electrode
heating
heated
partial
heating electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010244099A
Other languages
Japanese (ja)
Other versions
JP5614536B2 (en
Inventor
Shinji Yamada
真司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2010244099A priority Critical patent/JP5614536B2/en
Publication of JP2012099263A publication Critical patent/JP2012099263A/en
Application granted granted Critical
Publication of JP5614536B2 publication Critical patent/JP5614536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the uniform and rapid thawing of a heated object such as a frozen food while suppressing partial electric field concentration on the surface of the heated object such as the frozen food.SOLUTION: In a high-frequency induction heating method in which the heated object is heated by electrodes disposed opposite to each other, at least one side heating electrode is constituted of an overall heating electrode and a partial heating electrode, and the overall heating and partial heating are simultaneously performed while controlling the electric field strength to the surface of the heated object and an inner surface part by controlling the amount of air gap in both electrodes.

Description

本発明は、被加熱物の高周波誘電加熱方法および高周波誘電加熱装置、特に冷凍食品の急速解凍が可能な高周波誘電加熱による被加熱物の加熱方法および加熱装置に関する。   The present invention relates to a high-frequency dielectric heating method and a high-frequency dielectric heating apparatus for an object to be heated, and more particularly to a heating method and an apparatus for heating an object by high-frequency dielectric heating capable of rapidly thawing frozen food.

従来、高周波誘電加熱による冷凍食品の解凍方法は、高周波誘電加熱の電極構造上、加熱される冷凍食品表面の凹凸によってエアギャップが生じ一部分に電界が集中して解凍ムラが生じることがあり、食品表面への部分的な電界集中を抑制して均一に解凍することが技術的に求められている。その解決策として、解凍中解凍状態検知手段の検知出力を基に、部分加熱可能なスポット電極を上下左右に移動させながら全体加熱を行う方法が提案されている(特許文献1)。また、他の方法として冷凍被加熱物の被挟持面の形状より小さい板面形状の電極を局所的に用いることにより部分加熱を行った後、段階的に電極面積を大きくして全体加熱を行う方法が提案されている(特許文献2)。   Conventionally, a method for thawing frozen food by high frequency dielectric heating has a high frequency dielectric heating electrode structure, and an air gap may occur due to irregularities on the surface of the frozen food to be heated, and an electric field may be concentrated on a part, resulting in thawing unevenness. There is a technical demand for uniform thawing while suppressing partial electric field concentration on the surface. As a solution to this, a method has been proposed in which the entire heating is performed while moving a partially heated spot electrode vertically and horizontally based on the detection output of the thawing state detection means during thawing (Patent Document 1). As another method, partial heating is performed by locally using a plate-shaped electrode that is smaller than the sandwiched surface of the object to be frozen, and then the entire surface is heated by gradually increasing the electrode area. A method has been proposed (Patent Document 2).

特開2002−359064号公報JP 2002-359064 A 特開2007−166952号公報JP 2007-166952 A

上記提案されている方法のうち、スポット電極を上下左右に移動させながら全体加熱を行う方法は、部分解凍を行うスポット電極を冷凍食品の解凍度合を検出しながら上下左右に移動させることによって、局所的に集中加熱されることを防止できるが、部分的に解凍を行っていくので、解凍に長時間を要し、急速解凍が困難であるという問題点がある。また、部分的に長時間加熱するとドリップが生じ易いという問題点もある。一方、後者の方法でも、同様に部分加熱から全体加熱に段階的に広げていくので、急速加熱が特徴である高周波誘電加熱の特性が発揮されず、急速解凍ができないという問題点がある。
そこで、本発明は、食品表面への部分的な電界集中を抑制しながら食品を均一に且つ急速解凍を可能とする高周波誘電加熱方法及び装置を提供することを目的とする。
Among the methods proposed above, the method of performing the whole heating while moving the spot electrode up and down and left and right is to move the spot electrode for partial thawing up and down and left and right while detecting the degree of thawing of frozen food. However, there is a problem that it takes a long time for thawing and rapid thawing is difficult. There is also a problem that drip is likely to occur when partially heated for a long time. On the other hand, the latter method also has a problem in that the high frequency dielectric heating characteristic that is characterized by rapid heating is not exhibited and rapid thawing cannot be performed because the method gradually spreads from partial heating to overall heating.
Accordingly, an object of the present invention is to provide a high-frequency dielectric heating method and apparatus that enables uniform and rapid thawing of food while suppressing partial electric field concentration on the food surface.

上記課題を解決する本発明の高周波誘電加熱方法は、対向に配置された電極にて被加熱物を加熱する高周波誘電加熱方法であって、少なくとも片方の電極が全体加熱用電極と部分加熱用電極とからなり、被加熱物と前記全体加熱用電極と前記部分加熱用電極の少なくとも一方の電極との距離を調整しながら、全体加熱と部分加熱を同時に行うことを特徴とするものである。
本発明によれば、被加熱物と全体加熱用電極と部分加熱用電極の少なくとも一方の電極との距離を調整しながら、全体加熱と部分加熱を同時に行うことができるので、被加熱物表面への電界集中を避けることができ、食品の解凍の場合部分的な煮えや褐変を防いでムラなく均一に解凍でき、しかも全体加熱と部分加熱が同時に行われるので、従来と比べて急速解凍が可能となる。
The high-frequency dielectric heating method of the present invention that solves the above-mentioned problems is a high-frequency dielectric heating method in which an object to be heated is heated with electrodes arranged opposite to each other, and at least one of the electrodes is an entire heating electrode and a partial heating electrode The total heating and the partial heating are performed simultaneously while adjusting the distance between the object to be heated, the total heating electrode, and at least one of the partial heating electrodes.
According to the present invention, the total heating and the partial heating can be performed simultaneously while adjusting the distance between the heated object, the whole heating electrode, and at least one of the partial heating electrodes. In the case of thawing of foods, partial simmering and browning can be prevented and thawing can be performed evenly, and the whole and partial heating can be performed simultaneously. It becomes.

また、前記発明において前記被加熱物と電極との距離をエアギャップにより調整して行うことにより、効果的に被加熱物への高周波エネルギーを制御でき、例えば冷凍食品の解凍の場合、部分加熱を一箇所のみ長時間した場合に生じるドリップ発生や焼きや煮え等の過熱を効果的に防ぐことができる。また、被加熱物を誘電損失及び熱伝導率の小さい材料で形成された載置台に載置し加熱することができる。そして、本発明の方法を食品の加熱に適用することよって、従来の高周波誘電加熱よる解凍と比べて急速解凍による均一解凍が可能となる。   Further, in the invention, by adjusting the distance between the object to be heated and the electrode by an air gap, the high frequency energy to the object to be heated can be effectively controlled. For example, in the case of thawing frozen food, partial heating is performed. It is possible to effectively prevent the occurrence of drip generated when only one place is taken for a long time, and overheating such as baking and cooking. In addition, the object to be heated can be mounted on a mounting table made of a material having low dielectric loss and thermal conductivity and heated. Then, by applying the method of the present invention to heating of food, uniform thawing by rapid thawing is possible as compared with thawing by conventional high frequency dielectric heating.

そして、上記高周波誘電加熱方法を実施する本発明の高周波誘電加熱装置は、対向配置された電極で被加熱物を高周波誘電加熱する加熱装置であって、少なくとも一方の電極が、全体加熱電極と該全体加熱電極に設けられた貫通孔に上下に摺動可能である部分加熱電極からなり、前記全体加熱電極は被加熱物の投影面積よりも大きくかつ前記部分加熱電極は被加熱物の投影面積よりも小さく形成され、前記全体加熱電極と前記部分加熱電極の少なくとも一方の電極が被加熱物との距離の調整を行う手段を設けていることを特徴とするものである。
上記構成を有することによって、請求項1に記載の高周波誘電加熱方法を簡単な装置で確実に行うことができる。
The high-frequency dielectric heating apparatus of the present invention for carrying out the above-described high-frequency dielectric heating method is a heating apparatus that performs high-frequency dielectric heating of an object to be heated with electrodes opposed to each other, and at least one of the electrodes includes the whole heating electrode and the heating electrode. It consists of a partial heating electrode that can slide up and down in a through-hole provided in the whole heating electrode, the whole heating electrode being larger than the projected area of the object to be heated, and the partial heating electrode being larger than the projected area of the object to be heated And at least one of the overall heating electrode and the partial heating electrode is provided with means for adjusting the distance from the object to be heated.
By having the said structure, the high frequency dielectric heating method of Claim 1 can be reliably performed with a simple apparatus.

また、本発明は、前記全体加熱電極と前記部分加熱電極が電気的に導通していることによって、常に全体加熱と部分加熱を同時に行うことができ、部分加熱電極が全体加熱を妨げることがないので、急速解凍が可能となる。そして、前記全体加熱電極には、複数の部分加熱電極を設けることによって、被加熱物の複雑な形状に対応してより効果的に加熱ムラなく全体の均一加熱が可能となる。さらに、対向に配置された他方の電極が前記被加熱物の形状に追従可能な電極にすることによって、厚みが一様でない不定形の被加熱物でもより良好に均一加熱ができる。また、前記全体加熱電極に結合されたエアチャンバーを有することによって、簡単に部分加熱電極の被加熱物に対するエアギャップ量を調整することができる。前記被加熱物を載置台に配置させて、載置台側に前記被加熱物との距離の調整を行う手段を設けることが望ましい。   In the present invention, since the whole heating electrode and the partial heating electrode are electrically connected, the whole heating and the partial heating can always be performed simultaneously, and the partial heating electrode does not hinder the whole heating. So quick thawing is possible. Further, by providing a plurality of partial heating electrodes on the whole heating electrode, the whole uniform heating can be performed more effectively without uneven heating corresponding to the complicated shape of the object to be heated. Furthermore, by making the other electrode arranged opposite to be an electrode that can follow the shape of the object to be heated, even an irregularly shaped object to be heated whose thickness is not uniform can be more uniformly heated. Moreover, by having an air chamber coupled to the whole heating electrode, the amount of air gap with respect to the object to be heated of the partial heating electrode can be easily adjusted. It is desirable to provide means for arranging the object to be heated on the mounting table and adjusting the distance from the object to be heated on the mounting table side.

本発明の高周波誘電加熱方法及び高周波誘電加熱装置によれば、被加熱物の投影面積より小さい部分加熱電極または被加熱物の投影面積よりも大きい全体加熱電極の少なくとも一方の電極と、被加熱物とのエアギャップ量調整により、被加熱物表面と内部への電界強度をコントロールしながら全体加熱と部分加熱を同時に行うことが可能であり、被加熱表面への電界集中を抑制した急速加熱が可能である。従って、本発明を冷凍食品の解凍に適用することによって、従来と比べて不定形な冷凍食品であっても解凍ムラを生じないで急速解凍が可能となる。   According to the high frequency dielectric heating method and high frequency dielectric heating apparatus of the present invention, at least one of the partial heating electrode smaller than the projected area of the object to be heated or the entire heating electrode larger than the projected area of the object to be heated, and the object to be heated By adjusting the air gap amount, it is possible to perform total heating and partial heating simultaneously while controlling the electric field strength to the surface and inside of the object to be heated, and rapid heating with reduced electric field concentration on the surface to be heated is possible. It is. Therefore, by applying the present invention to the thawing of frozen foods, rapid thawing is possible without causing unevenness of thawing even if the frozen food is irregular in shape as compared with the conventional one.

本発明に係る高周波誘導加熱装置の実施形態の概略模式図であり、誘導加熱開始前の状態を示す。It is a schematic diagram of embodiment of the high frequency induction heating apparatus which concerns on this invention, and shows the state before the induction heating start. 図1に示す装置における部分加熱電極のエアギャップを小さくした加熱初期の状態を示す。The state of the heating initial stage which made the air gap of the partial heating electrode in the apparatus shown in FIG. 1 small is shown. 図1に示す装置における部分加熱電極のエアギャップを大きくした加熱終了前の状態を示す。The state before the heating which made the air gap of the partial heating electrode large in the apparatus shown in FIG. 1 is shown. 本発明に係る高周波誘導加熱装置の他の実施形態の概略模式図であり、誘電加熱開始前の状態を示す。It is a schematic diagram of other embodiment of the high frequency induction heating apparatus which concerns on this invention, and shows the state before a dielectric heating start. 本発明に係る高周波誘導加熱装置の上部電極の実施形態の要部断面図である。It is principal part sectional drawing of embodiment of the upper electrode of the high frequency induction heating apparatus which concerns on this invention. 本発明に係る高周波誘導加熱装置のさらに他の実施形態の概略模式図であり、誘電加熱時の状態を示す。It is a schematic diagram of other embodiment of the high frequency induction heating apparatus which concerns on this invention, and shows the state at the time of dielectric heating. 図6に示す実施形態における全体加熱電極における部分加熱電極の配置状態を示す平面図である。It is a top view which shows the arrangement | positioning state of the partial heating electrode in the whole heating electrode in embodiment shown in FIG. 実施例1及び比較例1の実験結果を示すグラフである。6 is a graph showing experimental results of Example 1 and Comparative Example 1.

以下、本発明の実施形態を図面を基に詳細に説明する。
図1は、本発明に係る高周波誘電加熱装置の一実施形態の概略説明図であり、被加熱物を載置台に載せた状態で上部電極がまだ下降してなくて、加熱前の状態を示している。
本発明の高周波誘電加熱装置は、対向配置された下部電極と上部電極のうち一方の電極は少なくとも片方が全体加熱用電極で、片方が全体加熱用電極と部分加熱電極との組合せから構成されている。本実施形態の高周波誘電加熱装置1では、被加熱物が載置される下方側に配置される下部電極2が全体加熱電極10と部分加熱電極11の組み合わせからなり、上部電極3が全体加熱ピン電極となっている。なお、図1において、4は高周波発信機であり、図示していないが、高周波電源及び高周波発振制御回路に接続され、且つ上部電極、及び下部電極を構成する全体加熱電極と部分加熱電極を駆動するそれぞれの駆動手段及びそれを制御する制御回路が設けられている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic explanatory view of an embodiment of a high-frequency dielectric heating device according to the present invention, and shows a state before heating, with the upper electrode still not lowered with the object to be heated placed on the mounting table. ing.
In the high-frequency dielectric heating device of the present invention, at least one of the lower electrode and the upper electrode arranged opposite each other is an overall heating electrode, and one of them is composed of a combination of an overall heating electrode and a partial heating electrode. Yes. In the high frequency dielectric heating apparatus 1 of the present embodiment, the lower electrode 2 disposed on the lower side on which the object to be heated is placed is a combination of the overall heating electrode 10 and the partial heating electrode 11, and the upper electrode 3 is the overall heating pin. It is an electrode. In FIG. 1, reference numeral 4 denotes a high-frequency transmitter, which is not shown, but is connected to a high-frequency power source and a high-frequency oscillation control circuit, and drives the entire heating electrode and the partial heating electrode constituting the upper electrode and the lower electrode. Each drive means and a control circuit for controlling it are provided.

下部電極2は、被加熱物Mが載置される載置台15を構成するチャンバー体12内に配置され、載置台と所定のエアギャプを有するように設定された全体加熱電極10と該全体加熱電極に対して上下動可能に配置された単一又は複数の部分加熱電極11とから構成されている。全体加熱電極10は、少なくとも被加熱物Mの投影面積よりも大きく、部分加熱電極11は被加熱物の投影面積よりも小さい面積を有し、本実施形態では全体加熱電極10は板状電極板からなり、部分加熱電極11はロッド状の電極ピンから構成されている。全体加熱電極10および部分加熱電極11とも導電率および熱伝導率に優れた導電性材料で形成され、載置台を含むチャンバー体12は非導電性材料で形成されている。   The lower electrode 2 is disposed in the chamber body 12 constituting the mounting table 15 on which the object to be heated M is mounted, and the entire heating electrode 10 and the entire heating electrode set so as to have a predetermined air gap with the mounting table. 1 or a plurality of partial heating electrodes 11 arranged so as to be movable up and down. The overall heating electrode 10 is at least larger than the projected area of the object to be heated M, and the partial heating electrode 11 has an area smaller than the projected area of the object to be heated. In this embodiment, the entire heating electrode 10 is a plate electrode plate. The partial heating electrode 11 is composed of rod-shaped electrode pins. The whole heating electrode 10 and the partial heating electrode 11 are both formed of a conductive material having excellent conductivity and thermal conductivity, and the chamber body 12 including the mounting table is formed of a non-conductive material.

部分加熱電極11は、全体加熱電極に形成された摺動穴13に対して電気的に全体加熱電極10と導通した状態で上下動調節可能に形成されている。部分加熱電極11の上下駆動手段として、チャンバー体12を板状の全体加熱電極10で上下に仕切って、上下に加圧チャンバー14a、14bを形成して、各チャンバーにエアを給排気口16a、16bを形成してチャンバー内の圧力を制御できるようにすることによって、全体加熱電極10の摺動穴13に貫通している部分加熱電極11の軸方向位置を制御することができる。例えば図1、図2に示す状態では加圧チャンバー14bの圧力Pbを加圧チャンバー14aの圧力Paよりも高くすることによって、部分加熱電極11が上昇し載置台に対するエアギャップ量L(図3参照)を小さくすることができ、一方加圧チャンバー14bを排気して圧力Pbを弱くすることによって、部分加熱電極11は自重及び圧力差によって下降し、エアギャップ量を大きくすることができる。このように、加圧チャンバー14a、14bの圧力差をコントロールすることによって、部分加熱電極11の軸方向位置を制御でき、載置台とのエアギャップ量を任意に調整することができる。   The partial heating electrode 11 is formed so that the vertical movement can be adjusted in a state where the partial heating electrode 11 is electrically connected to the whole heating electrode 10 with respect to the sliding hole 13 formed in the whole heating electrode. As a vertical drive means for the partial heating electrode 11, the chamber body 12 is divided vertically by the plate-like overall heating electrode 10, and the pressurized chambers 14a and 14b are formed in the vertical direction, and air is supplied to the air supply / exhaust ports 16a, By forming 16b so that the pressure in the chamber can be controlled, the axial position of the partial heating electrode 11 passing through the sliding hole 13 of the entire heating electrode 10 can be controlled. For example, in the state shown in FIG. 1 and FIG. 2, by setting the pressure Pb of the pressurizing chamber 14b higher than the pressure Pa of the pressurizing chamber 14a, the partial heating electrode 11 rises and the air gap amount L with respect to the mounting table (see FIG. 3). On the other hand, by evacuating the pressurizing chamber 14b and reducing the pressure Pb, the partial heating electrode 11 is lowered by its own weight and pressure difference, and the air gap amount can be increased. Thus, by controlling the pressure difference between the pressurizing chambers 14a and 14b, the position of the partial heating electrode 11 in the axial direction can be controlled, and the amount of air gap with the mounting table can be arbitrarily adjusted.

部分加熱電極11は全体加熱電極10と常に導通状態にあるので、部分加熱と全体加熱が常に同時に行われることになり、部分加熱により被加熱物の厚みの厚い部分に強い高周波電界を印加させて高エネルギーで加熱を行うと共に、その他の部分はエアギャップ量が大きい全体加熱電極によりそれよりも弱いエネルギーで加熱され、それにより加熱ムラのない高速加熱を実現できる。そして、部分加熱電極11は、全体加熱電極の一部をも構成し、部分加熱電極11が下降してその頂面が全体加熱電極10と略等しい面に達すると、全体加熱電極と合体して上部電極3との間に略同じレベルの高周波電界を形成し、全体を均一な強度の高周波電界で加熱することができる。従来装置によれば、部分加熱電極と全体加熱電極による高周波電界が別々に形成され、部分加熱電極を停止すると、部分加熱電極が占める投影面積分だけ全体加熱電極が遮蔽され、全体加熱電極に部分的に遮蔽部が生じるが、本発明によれば、そのような不都合は生じず、高周波電界強度が部分的に調整可能でありながら常に被加熱物全体に高周波電界を印加することができる。   Since the partial heating electrode 11 is always in conduction with the whole heating electrode 10, the partial heating and the whole heating are always performed simultaneously, and a strong high-frequency electric field is applied to the thick part of the object to be heated by the partial heating. While heating with high energy, the other portions are heated with weaker energy by the whole heating electrode having a large air gap amount, thereby realizing high-speed heating without heating unevenness. The partial heating electrode 11 also constitutes a part of the entire heating electrode. When the partial heating electrode 11 descends and the top surface reaches a surface substantially equal to the entire heating electrode 10, the partial heating electrode 11 is combined with the entire heating electrode. A high-frequency electric field having substantially the same level can be formed between the upper electrode 3 and the whole can be heated with a high-frequency electric field having a uniform intensity. According to the conventional apparatus, the high-frequency electric field by the partial heating electrode and the whole heating electrode is formed separately, and when the partial heating electrode is stopped, the whole heating electrode is shielded by the projected area occupied by the partial heating electrode, However, according to the present invention, such inconvenience does not occur, and the high frequency electric field can always be applied to the entire object to be heated while the intensity of the high frequency electric field can be partially adjusted.

上部電極3は、本実施形態では、加熱ピン電極の集合体30で形成している。
この加熱ピン電極集合体30は、その詳細を図5に示すように、例えば本出願人が先に提供したWO2009/008421号公報に記載されているものを採用でき、被加熱物に当接し電気的または熱的作用を及ぼす複数のピン電極31と、各ピン電極31を摺動可能に支持すると共にピン電極31に対する電源または熱源となる導電性基盤としてのピン支持台32と、ピン電極31をピン支持台32に対し相対変位させる圧力可変ガスチャンバー体33とを具備して構成されている。
In this embodiment, the upper electrode 3 is formed of an assembly 30 of heating pin electrodes.
As shown in detail in FIG. 5, the heating pin electrode assembly 30 can employ, for example, the one described in WO2009 / 008421 previously provided by the applicant of the present invention. A plurality of pin electrodes 31 that exert a functional or thermal action, a pin support base 32 as a conductive base that supports each pin electrode 31 in a slidable manner and serves as a power source or a heat source for the pin electrode 31, and a pin electrode 31 A pressure variable gas chamber body 33 that is displaced relative to the pin support base 32 is provided.

ピン電極31は、被加熱物に直に当接するピンヘッド35と、ピンヘッド35に結合しピン支持台32との電気的または熱的接点となりピン電極31のピン支持台32に対する移動量(ストローク)を規定するロッド36と、ピンヘッド35の端位置を規定すると共にストッパーとして機能するピンキャップ37とから成る。ピンヘッド35は、例えば半球部と円筒部が組み合わされた形状を成し、ロッド36は例えば細長円筒形状を成し一方の端部をピンヘッド35と反対側の端部をピンキャップ37とネジ結合している。また、ロッド36は、後述の貫通穴38に挿通されピン支持台32との電気的または熱的接点となる。なお、ピンヘッド35とロッド36の結合については、被加熱物の形状に応じてピンヘッドの交換をすることが可能なネジ結合が好ましいが、切削や溶接などにより一体に形成してあっても良い。また、ピンヘッド35、ロッド36およびピンキャップ37の材質としては、アルミ、銅、カーボン、チタン、白金等の導電材である。ピン支持台32には、ピン電極31が摺動しながら相対変位する貫通穴38がピン電極31ごとに別個独立に設けられている。この貫通穴38の内径は、ピン電極31のロッド36の外径より僅かに大きい程度である。これにより、各ピン電極31はピン支持台32と通電または伝熱しながらピン支持台32に対し軸方向に別個独立に相対変位し、被加熱物の形状に好適に追従することが可能となる。   The pin electrode 31 is an electrical or thermal contact with the pin head 35 that is in direct contact with the object to be heated and the pin head 35, and the amount of movement (stroke) of the pin electrode 31 relative to the pin support base 32 is reduced. It comprises a defining rod 36 and a pin cap 37 that defines the end position of the pin head 35 and functions as a stopper. The pin head 35 has, for example, a shape in which a hemispherical portion and a cylindrical portion are combined. The rod 36 has, for example, an elongated cylindrical shape, and one end thereof is screwed to the pin cap 37 at the end opposite to the pin head 35. ing. Further, the rod 36 is inserted into a through-hole 38 described later and serves as an electrical or thermal contact with the pin support base 32. As for the connection between the pin head 35 and the rod 36, a screw connection capable of exchanging the pin head according to the shape of the object to be heated is preferable, but it may be integrally formed by cutting or welding. The material of the pin head 35, the rod 36, and the pin cap 37 is a conductive material such as aluminum, copper, carbon, titanium, or platinum. The pin support base 32 is provided with a through hole 38 that is relatively displaced while the pin electrode 31 slides, and is provided separately for each pin electrode 31. The inner diameter of the through hole 38 is slightly larger than the outer diameter of the rod 36 of the pin electrode 31. As a result, each pin electrode 31 is independently displaced relative to the pin support base 32 in the axial direction while energizing or transferring heat to the pin support base 32, and can suitably follow the shape of the object to be heated.

なお、ピン電極31の駆動は、圧力可変ガスチャンバー以外に、バネやゴムなどの弾性工具を用いることでも容易に実現できる。また、ピン支持台32はピン電極31に対する電源または熱源となるため、その材質としては、ピン電極31と同等か若しくはそれ以上の導電率および熱伝導率を有する材質が好ましい。ピン支持台32の形状は平板の他、曲面を有する複合形でもあっても良い。なお、図中39はピン支持台32と圧力可変ガスチャンバー体33間に設けられた電気絶縁・断熱材である。   The driving of the pin electrode 31 can be easily realized by using an elastic tool such as a spring or rubber in addition to the pressure variable gas chamber. Further, since the pin support base 32 serves as a power source or a heat source for the pin electrode 31, a material having a conductivity and thermal conductivity equal to or higher than that of the pin electrode 31 is preferable. The shape of the pin support base 32 may be a flat plate or a composite shape having a curved surface. In the figure, reference numeral 39 denotes an electrical insulating / heat insulating material provided between the pin support base 32 and the pressure variable gas chamber body 33.

圧力可変ガスチャンバー体33は、ガスを貯める圧力可変ガスチャンバー34と、ガスの流路となるチャンネル29と、外部の高圧ガス源(圧縮機)または(真空)ポンプと連結するガスポート28とから成る。圧力可変ガスチャンバー34の圧力調整は、チャンネル29を介してガスを供給し又は排気することにより行われる。ここで、圧力可変ガスチャンバー34の圧力Pinが外気Poutよりも高い場合は、貫通穴38の入口と出口において圧力勾配が生じピン電極31が圧力可変ガスチャンバー34のガス圧により押し下げられ下方に相対変位することとなる。一方、圧力可変ガスチャンバー34の圧力Pinが外気Poutよりも低い場合は、それとは逆向きの圧力勾配が生じピン電極31が外気によって押し上げられ上方に相対変位することとなる。このように、圧力可変ガスチャンバー34の圧力を調整することにより、ピン電極31をピン支持台32に対し相対変位させることが可能となる。また、ピン電極31が被加熱物に当接した状態で圧力可変ガスチャンバー34の圧力を調整することにより、ピン電極31が被加熱物に当接する押圧を変えることが可能となる。従って、ピン電極31が被加熱物に当接した状態で圧力可変ガスチャンバー34の圧力を調整することにより、複数のピン電極31により被加熱物を加熱・保持することが可能となり、被加熱物とのエアギャップもなくなる。 The pressure variable gas chamber body 33 includes a pressure variable gas chamber 34 for storing gas, a channel 29 serving as a gas flow path, and a gas port 28 connected to an external high-pressure gas source (compressor) or a (vacuum) pump. Become. The pressure of the pressure variable gas chamber 34 is adjusted by supplying or exhausting gas via the channel 29. Here, it pushed down by the pressure variable when the pressure P in the gas chamber 34 is higher than the outside air P out is the inlet gas pressure of the pin electrode 31 occurs pressure gradient pressure-variable gas chamber 34 at the outlet of the through hole 38 downward Relative displacement. On the other hand, if the pressure P in the pressure-variable gas chamber 34 is lower than the outside air P out, the pin electrode 31 occurs pressure gradient in the reverse direction is to be relatively displaced in the upward pushed by the outside air with it. As described above, the pin electrode 31 can be relatively displaced with respect to the pin support base 32 by adjusting the pressure of the pressure variable gas chamber 34. Further, by adjusting the pressure of the pressure variable gas chamber 34 in a state where the pin electrode 31 is in contact with the object to be heated, it is possible to change the pressure at which the pin electrode 31 contacts the object to be heated. Therefore, by adjusting the pressure of the pressure variable gas chamber 34 in a state where the pin electrode 31 is in contact with the object to be heated, the object to be heated can be heated and held by the plurality of pin electrodes 31. And the air gap disappears.

本実施形態の誘電加熱装置は以上のように構成され、該装置によって例えば被加熱物が厚みが不均一な冷凍食品であっても、次のようにして高速解凍で解凍ムラなく均一に解凍できる。
冷凍食品の高周波誘電加熱装置による解凍はインピーダンスが小さい食品表面に電界が集中するため、高エネルギーでの急速解凍を行うと表面に褐変が生じるため、殺菌加熱の場合と比べて長時間を要する。その上、冷凍食品が均一高さでなく厚みにバラツキがある不定形の場合、高周波誘電加熱による平板加熱電極間での解凍は、電極板と被加熱物表面とのエアギャップ量の差異によって加熱ムラが生じるため、解凍むらムラをなくすためには、より長時間をかけて解凍しなければならず、後述する比較例に示すように急速解凍は困難であった。
The dielectric heating device according to the present embodiment is configured as described above, and for example, even if the object to be heated is a frozen food having a non-uniform thickness, it can be thawed uniformly without thawing by high-speed thawing as follows. .
When a frozen food is thawed by a high-frequency dielectric heating device, the electric field concentrates on the surface of the food having a low impedance, so that rapid thawing with high energy causes browning on the surface, which requires a longer time than in the case of sterilization heating. In addition, when frozen foods are indeterminate with uneven thickness and not uniform height, thawing between the flat plate heating electrodes by high frequency dielectric heating is caused by the difference in the air gap between the electrode plate and the surface of the object to be heated. Since unevenness occurs, in order to eliminate unevenness in thawing, it has to be defrosted for a longer time, and rapid thawing was difficult as shown in a comparative example described later.

本実施形態では、図1に示すように、冷凍食品である被加熱物Mのもっとも厚みのある箇所が部分加熱電極11の上方に位置するように載置台15に載置し、ピン電極集合体30の多数のピン電極31が被加熱物表面の変化に追従して接触するように圧力可変ガスチャンバー内の圧力を調整した上部電極3をこの状態で下降させることによって、図2に示すように多数のピン電極が被加熱物の形状に追従してその表面に接触し、上部電極と被加熱物との間のエアギャップが略ない状態となる。一方、下部電極は全体加熱電極と部分加熱電極で構成されているが、高周波電力は常に単一源から同時に与えられる。しかしながら、全体加熱電極10は載置台15との間に予め決められた所定のエアギャップを有し、部分加熱電極11は載置台15とのエアギャップ量が任意に調節可能に構成されているので、加熱初期は、例えば部分加熱電極11を載置台に当接させて冷凍食品とのエアギャップ量を極力少なくすることによって、部分加熱電極上方部に位置している厚みの厚い部分が他の箇所よりも強い高周波エネルギーが与えられ、且つ全体加熱電極が対向する部分はエアギャップ量が大きく高周波電界が小さく被加熱部分に与えるエネルギーが小さい状態で同時に加熱される。   In the present embodiment, as shown in FIG. 1, the pin electrode assembly is mounted on the mounting table 15 so that the thickest portion of the heated object M that is frozen food is positioned above the partial heating electrode 11. As shown in FIG. 2, by lowering the upper electrode 3 in which the pressure in the pressure variable gas chamber is adjusted so that a large number of 30 pin electrodes 31 are brought into contact with the surface of the object to be heated in contact with each other. A large number of pin electrodes follow the shape of the object to be heated and come into contact with the surface thereof, so that there is almost no air gap between the upper electrode and the object to be heated. On the other hand, the lower electrode is composed of a whole heating electrode and a partial heating electrode, but the high frequency power is always applied simultaneously from a single source. However, the entire heating electrode 10 has a predetermined air gap determined in advance with the mounting table 15, and the partial heating electrode 11 is configured such that the amount of air gap with the mounting table 15 can be arbitrarily adjusted. In the initial stage of heating, for example, by bringing the partial heating electrode 11 into contact with the mounting table and reducing the amount of air gap with the frozen food as much as possible, the thick portion located above the partial heating electrode is located at other locations. The portion where the entire heating electrode is opposed is heated at the same time in a state where the air gap amount is large, the high-frequency electric field is small and the energy given to the heated portion is small.

そして、部分加熱電極を一箇所に長く載置台に当接した状態で加熱すると、冷凍食品が例えば食肉であるとその部分にドリップが出て品質劣化になる恐れがあるので、本実施形態では所定時間経過後に加圧チャンバー14bのエアをオフにすることによって、部分加熱電極を図3に示すように下方位置に下げて、エアギャップ量を大きくする。部分加熱電極がその状態となると、略全体が全体加熱電極と同じ強さの高周波エネルギーが付加される。あるいは必要に応じて加圧チャンバー14bのエアのオンオフを繰り替えして部分加熱電界強度を間欠的に変更することも可能である。また、前記の場合は部分電極を2位置に切り替え制御するものであるが、加圧チャンバー14a、14bの圧力を調整することによって、部分加熱電極11のエアギャップ量を段階的に大きくすることも可能であり、その場合部分加熱電極11による加熱エネルギーを段階的に減少させ、電界集中による過熱をより効果的に防止し全体をより均一に解凍することが可能となる。このように、本実施形態では全体加熱電極と部分加熱電極が常に同時に作用して被加熱物全体を加熱し、しかも、全体加熱電極と部分加熱電極のそれぞれのエアギャップ量を相対的に制御できるので、ムラなく均一に加熱できる。   And, if the partially heated electrode is heated in a state where it is in contact with the mounting table for a long time, if the frozen food is, for example, meat, there is a risk of drip coming out at that portion, resulting in quality deterioration. By turning off the air in the pressurizing chamber 14b after a lapse of time, the partial heating electrode is lowered to the lower position as shown in FIG. 3 to increase the air gap amount. When the partial heating electrode is in that state, high-frequency energy having substantially the same strength as the entire heating electrode is applied. Alternatively, it is also possible to intermittently change the partial heating electric field strength by repeatedly turning on and off the air in the pressurizing chamber 14b as necessary. In the above case, the partial electrode is controlled to be switched to two positions. However, the air gap amount of the partial heating electrode 11 may be increased stepwise by adjusting the pressure in the pressurizing chambers 14a and 14b. In this case, it is possible to reduce the heating energy by the partial heating electrode 11 step by step, to prevent overheating due to electric field concentration more effectively and to thaw the whole more uniformly. As described above, in this embodiment, the entire heating electrode and the partial heating electrode always act simultaneously to heat the entire object to be heated, and the air gap amounts of the entire heating electrode and the partial heating electrode can be relatively controlled. Therefore, it can be heated evenly.

図4は、本発明に係る高周波誘電加熱装置の他の実施形態の概略模式図であり、前記実施形態の図1に示す状態に対応している。
本実施形態は、下部電極を構成する全体加熱電極と部分加熱電極が共にエアギャップ量が調整可能に構成されている点で、前記実施形態と相違している。前記実施形態と共通する部分は前記実施形態と同様な符号を付し、相違点のみについて詳細に説明する。
FIG. 4 is a schematic diagram of another embodiment of the high-frequency dielectric heating device according to the present invention, and corresponds to the state shown in FIG. 1 of the embodiment.
This embodiment is different from the above-described embodiment in that both the entire heating electrode and the partial heating electrode constituting the lower electrode are configured such that the air gap amount can be adjusted. Portions common to the above-described embodiment are denoted by the same reference numerals as those of the above-described embodiment, and only differences will be described in detail.

本実施形態では、下部電極の全体加熱電極40は、通常の板状の電極板から構成され、チャンバー内の図示しない適宜の駆動手段により載置面15との間のエアギャップを調整できるように、上下調節可能に設置されている。全体加熱電極40の上下動調節手段として、例えば全体加熱電極が密封状態のチャンバー体12に上下に仕切るように適宜のガイド機構により摺動可能に設けて、上側の加圧チャンバー41aと下側の加圧チャンバー41bを形成して、各チャンバーに加圧空気の供給排出口42a、42bを設け、該供給排出口42a、42bを介して加圧空気を給排出することによって、全体加熱電極40を上下動して、被加熱物とのエアギャップを自由に調整できるように構成されている。全体加熱電極の上下駆動手段は、該全体加熱電極が載置面15とのエアギャップ量が所定の値を選択できればよく、その駆動手段は特に限定されないが、例えば他の駆動手段として、全体加熱電極を上下駆動量を制御できるシリンダ装置で支持して、制御手段からの制御信号により、載置面15とのエアギャップ量が所定値になるようにシリンダ装置を駆動するようにしてもよい。   In this embodiment, the entire heating electrode 40 of the lower electrode is composed of a normal plate-shaped electrode plate, and the air gap between the mounting surface 15 and the mounting surface 15 can be adjusted by an appropriate driving means (not shown) in the chamber. It is installed so that it can be adjusted up and down. As a means for adjusting the vertical movement of the whole heating electrode 40, for example, the whole heating electrode is provided so as to be slidable by an appropriate guide mechanism so as to be partitioned into the sealed chamber body 12 up and down, and the upper pressurizing chamber 41a and the lower side are arranged. A pressurized chamber 41b is formed, and supply / exhaust ports 42a and 42b for pressurized air are provided in each chamber, and pressurized air is supplied and discharged through the supply / exhaust ports 42a and 42b. By moving up and down, the air gap with the object to be heated can be freely adjusted. The whole heating electrode vertical driving means is not particularly limited as long as the air heating gap between the whole heating electrode and the mounting surface 15 can be selected, and the driving means is not particularly limited. The electrode may be supported by a cylinder device capable of controlling the vertical driving amount, and the cylinder device may be driven by a control signal from the control means so that the air gap amount with the mounting surface 15 becomes a predetermined value.

一方、部分加熱電極45は、全体加熱電極40に形成された摺動穴に対して電気的に全体加熱電極と導通した状態で上下動調節可能に形成されている。部分加熱電極45の上下駆動手段として、例えばシリンダ装置46等任意の手段が採用できる。
以上のように本実施形態では、全体加熱電極と部分加熱電極を別々にエアギャップを調整でき、それぞれの電極による高周波電界強度を別々に調整しながら、全体加熱と部分加熱を同時にできる。例えば、被加熱物の大きさや種類に応じて、予め全体加熱電極と部分加熱電極のエアギャップ量を調整した状態で加熱を開始し、理想的にはその後も予め設定した制御プログラムに応じて全体加熱電極40および部分加熱電極45のエアギャップ量を制御しながら同時に加熱することによって、より理想的な状態で加熱ムラがなく短時間に効率よく解凍ができる。
On the other hand, the partial heating electrode 45 is formed so that the vertical movement can be adjusted in a state where the partial heating electrode 45 is electrically connected to the whole heating electrode with respect to the sliding hole formed in the whole heating electrode 40. As the vertical drive means of the partial heating electrode 45, for example, any means such as a cylinder device 46 can be adopted.
As described above, in the present embodiment, the air gap can be adjusted separately for the whole heating electrode and the partial heating electrode, and the whole heating and the partial heating can be performed simultaneously while separately adjusting the high-frequency electric field intensity by each electrode. For example, heating is started in a state where the air gap amount between the entire heating electrode and the partial heating electrode is adjusted in advance according to the size and type of the object to be heated, and ideally, the entire heating electrode is subsequently set in accordance with the preset control program. By simultaneously heating while controlling the air gap amount of the heating electrode 40 and the partial heating electrode 45, there is no heating unevenness in a more ideal state, and the thawing can be efficiently performed in a short time.

図6は、本発明に係る高周波誘電加熱装置のさらに他の実施形態を示し、前記実施形態と同様な箇所には同じ引出符号を付し、相違点のみについて説明する。本実施形態における高周波誘電加熱装置50の前記実施形態との主な相違点は、部分加熱電極が複数の加熱ピン電極から構成され、それぞれのピン電極が独立して被加熱物とのエアギャップ量を調整可能に駆動されることである。
本実施形態の下部電極51は、板状の全体加熱電極52に、図7に示すように複数(本実施形態では7本)の部分加熱電極53が上下動可能に保持されている。該部分加熱電極はピン電極で構成され、全体加熱電極52に形成された部分加熱電極の嵌合穴54がピン電極を上下駆動するシリンダを構成し、該嵌合穴54にそれぞれ個別の配管55を介して加圧空気源に連結され、該嵌合穴54に加圧空気を給排気することによって、ピン電極上端が載置台15と接する位置(即ち、エアギャップ量がゼロ)と全体加熱電極52の上面と一致する位置(エアギャップ量最大)とに変位可能となっている。したがって、被加熱物の形状等に応じて、複数のピン電極の位置を任意に制御することによって、より良好に解凍することが可能となる。ピン電極のエアギャップの調整は、例えば、実施形態7本のピン電極のうち常に1本のピン電極のみがエアギャップ量が最小となるように、一定時間ごとにピン電極を順に上下動させることによって、部分加熱の位置を順に変えることができる。それにより、部分電極により特定部位を断続的に加熱することが可能となる。なお、本実施形態においても、図4に示す実施形態のように、部分加熱電極のみならず、全体加熱電極のエアギャップ量を調節可能とすることもできる。
FIG. 6 shows still another embodiment of the high-frequency dielectric heating device according to the present invention. The same reference numerals are assigned to the same parts as in the above-described embodiment, and only the differences will be described. The main difference of the high-frequency dielectric heating device 50 in this embodiment from the above-described embodiment is that the partial heating electrode is composed of a plurality of heating pin electrodes, and each pin electrode is independently an air gap amount to the object to be heated. Is driven to be adjustable.
In the lower electrode 51 of this embodiment, a plurality of (seven in the present embodiment) partial heating electrodes 53 are held on a plate-like overall heating electrode 52 as shown in FIG. The partial heating electrode is constituted by a pin electrode, and a fitting hole 54 of the partial heating electrode formed in the whole heating electrode 52 constitutes a cylinder for driving the pin electrode up and down, and each fitting hole 54 has an individual pipe 55. The position where the upper end of the pin electrode is in contact with the mounting table 15 (that is, the amount of air gap is zero) and the whole heating electrode are connected to a pressurized air source via It can be displaced to a position that coincides with the upper surface of 52 (maximum air gap amount). Therefore, it is possible to defrost better by arbitrarily controlling the positions of the plurality of pin electrodes according to the shape of the object to be heated. The air gap of the pin electrode is adjusted, for example, by sequentially moving the pin electrode up and down at regular intervals so that only one pin electrode of the seventh embodiment of the pin electrode has the minimum air gap amount. The position of partial heating can be changed in order. Thereby, it becomes possible to heat a specific part intermittently with a partial electrode. In the present embodiment as well, as in the embodiment shown in FIG. 4, the air gap amount of the entire heating electrode as well as the partial heating electrode can be adjusted.

以上、本発明の高周波誘電加熱装置及びその方法の実施形態を説明したが、本発明は上記実施形態に限るものでなく、その技術的思想の範囲内で種々の設計変更が可能である。
例えば、上記各実施形態では、部分加熱電極は1個しか示されていないが、複数個の部分加熱電極を設けて被加熱物の形状や大きさに応じてそれぞれ選択的にエアギャップ量を調整するようにすると、より加熱ムラなく良好に全体を均一に解凍できるので望ましい。また、全体加熱電極及び部分加熱電極のエアギャップ量を調整するための機構は、空気による加圧機構やシリンダ機構に限らず、スプリング等との併用や、サーボモータによる上下動機構等任意の手段を採用できる。また、前記実施形態では、下部電極を全体加熱電極と部分加熱電極で形成したが、逆に上部電極を全体加熱電極と部分加熱電極で形成し、下部電極を全体加熱電極で構成することも可能である。また、上記実施形態では、冷凍食品の解凍に適用した場合について説明したが、本発明の高周波誘電加熱方法および装置は、冷凍食品の解凍ばかりでなく、被加熱物の通常の加熱処理や、殺菌のための加熱等にも好適に適用できる。
Although the embodiments of the high-frequency dielectric heating apparatus and method of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made within the scope of the technical idea.
For example, in each of the above embodiments, only one partial heating electrode is shown, but a plurality of partial heating electrodes are provided to selectively adjust the air gap amount according to the shape and size of the object to be heated. This is desirable because the whole can be thawed well and uniformly without heating unevenness. Further, the mechanism for adjusting the air gap amount of the entire heating electrode and the partial heating electrode is not limited to the pressurization mechanism or cylinder mechanism using air, but any means such as a combined use with a spring or a vertical movement mechanism using a servo motor. Can be adopted. Moreover, in the said embodiment, although the lower electrode was formed with the whole heating electrode and the partial heating electrode, conversely, it is also possible to form the upper electrode with the whole heating electrode and the partial heating electrode and to configure the lower electrode with the whole heating electrode. It is. Moreover, although the case where it applied to the defrosting of frozen food was demonstrated in the said embodiment, the high frequency dielectric heating method and apparatus of this invention are not only the defrosting of frozen food, but the normal heat processing of a to-be-heated material, or disinfection It can be suitably applied to heating for the purpose.

実施例1
被加熱物:冷凍豚ブロック肉約400g(サイズ140×100×60mm)、
但し厚さは不均一で最高厚さが60mm
被加熱物の解凍開始前の中心温度:−21.8℃、表面温度:−8.6℃
上記被加熱物を図1に示す実施形態の高周波誘電加熱装置で次の条件で解凍をおこなった。
下部電極サイズ:全体加熱電極215×215mm、部分加熱電極 φ15mm
解凍時の電源周波数:13.56MHz
解凍時の電源出力:200W
全体加熱電極と載置台間のエアギャップ量:21mm
部分加熱電極と載置台間のエアギャップ量:0mm(開始後120秒間)、その後 21mm
上記解凍中、中心温度を光ファイバー温度計を用いて計測し−5℃に達すると解凍完了とした。解凍終了時の冷凍豚ブロック肉の上側表面温度5箇所と下側表面温度5カ所の任意の点を測定した。それぞれの平均表面温度は、上側2.9℃、下側5.7℃であった。本実施例によれば、解凍時間3分半で中心温度は−5℃に達し、極めて短時間に解凍でき、しかも部分加熱電極によるエアギャップ調整により、豚肉表面で発熱集中による褐変もなく、ドリップの発生も殆どなく良好に解凍できた。
Example 1
Object to be heated: about 400 g of frozen pork block meat (size 140 x 100 x 60 mm),
However, the thickness is uneven and the maximum thickness is 60mm
Center temperature before start of thawing of heated object: -21.8 ° C, surface temperature: -8.6 ° C
The object to be heated was thawed under the following conditions with the high frequency dielectric heating apparatus of the embodiment shown in FIG.
Lower electrode size: Overall heating electrode 215 × 215 mm, partial heating electrode φ15 mm
Power supply frequency at decompression: 13.56 MHz
Power output during thawing: 200W
Air gap between the entire heating electrode and mounting table: 21 mm
Air gap between the partially heated electrode and the mounting table: 0 mm (120 seconds after starting), then 21 mm
During the thawing, the center temperature was measured using an optical fiber thermometer, and when the temperature reached −5 ° C., the thawing was completed. Arbitrary points were measured at five places on the upper surface temperature and five places on the lower surface temperature of the frozen pork block meat at the end of thawing. Each average surface temperature was 2.9 ° C on the upper side and 5.7 ° C on the lower side. According to this example, the center temperature reaches -5 ° C. with a thawing time of 3 minutes and a half, and it can be thawed in a very short time, and by adjusting the air gap by the partial heating electrode, there is no browning due to heat generation concentration on the pork surface, There was almost no generation | occurrence | production, and it was able to defrost well.

比較例1:
被加熱物:実施例1と同様な大きさで同質の冷凍豚ブロック肉400g
解凍開始前の中心温度:−21.8℃、表面温度:−8.6℃
上記被加熱物を下部電極が全体加熱電極のみで構成され、その他上部電極は図1に示すピン電極で構成されている高周波誘電加熱装置で次の条件で解凍をおこなった。
電極サイズ:全体加熱電極215×215mm、
解凍時の電源周波数:13.56MHz
解凍時の電源出力:200W
全体加熱電源と載置台間のエアギャップ量:21mm
上記解凍中、中心温度が―5℃に達すると解凍完了とした。その結果を実施例1と共に図8に示す。本比較例では、解凍時間12分で中心温度は5℃に達し、実施例1の場合と比べて解凍時間が4倍弱の長時間を要した。
Comparative Example 1:
Object to be heated: 400g of frozen pork block meat of the same size and quality as in Example 1.
Center temperature before thawing start: −21.8 ° C., surface temperature: −8.6 ° C.
The object to be heated was thawed under the following conditions with a high-frequency dielectric heating apparatus in which the lower electrode was composed only of the entire heating electrode and the other upper electrode was composed of the pin electrode shown in FIG.
Electrode size: Whole heating electrode 215 × 215 mm,
Power supply frequency at decompression: 13.56 MHz
Power output during thawing: 200W
Air gap between the entire heating power supply and the mounting table: 21 mm
During the thawing, the thawing was completed when the center temperature reached -5 ° C. The results are shown in FIG. 8 together with Example 1. In this comparative example, the center temperature reached 5 ° C. with a thawing time of 12 minutes, and it took a long time that the thawing time was a little less than 4 times that of Example 1.

実施例2
被加熱物:冷凍豚ブロック肉約400g(サイズ130×90×58mm)
但し厚さは不均一で最高厚さが58mm
被加熱物の解凍開始前の中心温度:−22℃、表面温度:−10℃
上記被加熱物を図6に示す実施形態の高周波誘電加熱装置で次の条件で解凍をおこなった。
下部電極サイズ:全体加熱電極215×215mm、部分加熱電極φ15mm7本
各部分電極下部からエアーの流入排出によって、それぞれ上下切り替え駆動可能であり、切り替えタイミングは8秒毎とした。全体加熱電極と載置台間のエアギャップ距離は21mmであり、部分加熱電極と載置台間のエアギャップは、エアー流入時0mm、エアー排出時21mmとした。
解凍時の電源周波数:13.56MHz
解凍時の電源出力:35W
上記解凍中、中心温度を計測し−3℃に達すると解凍完了とした。解凍後、冷凍豚ブロック肉の表面温度をサーモグラフィーによって測定し表面平均温度を算出した。上側平均温度7.2℃、下側平均温度8.0℃であった。本実施例によれば、豚肉表面で発熱集中による褐変やドリップを発生させることなく、中心温度は−3℃に達し、極めて短時間に解凍可能であった。この場合、表面温度が単一部分電極の場合と比べて、上側平均温度と下側平均温度との差が小さく、解凍時の電源出力は35Wで表面全体を略均一に解凍することができた。
Example 2 :
Object to be heated: about 400g of frozen pork block meat (size 130 x 90 x 58mm)
However, the thickness is uneven and the maximum thickness is 58mm.
Center temperature before starting thawing of object to be heated: −22 ° C., surface temperature: −10 ° C.
The object to be heated was thawed under the following conditions with the high frequency dielectric heating apparatus of the embodiment shown in FIG.
Lower electrode size: Whole heating electrode 215 × 215 mm, partial heating electrode φ15 mm 7 Up / down switching drive is possible by air inflow / outflow from the lower part of each partial electrode, and the switching timing is every 8 seconds. The air gap distance between the entire heating electrode and the mounting table was 21 mm, and the air gap between the partial heating electrode and the mounting table was 0 mm when air was inflow and 21 mm when air was discharged.
Power supply frequency at decompression: 13.56 MHz
Power output during thawing: 35W
During the thawing, the center temperature was measured, and when the temperature reached −3 ° C., the thawing was completed. After thawing, the surface temperature of the frozen pork block meat was measured by thermography to calculate the surface average temperature. The upper average temperature was 7.2 ° C and the lower average temperature was 8.0 ° C. According to this example, the center temperature reached −3 ° C. without causing browning or drip due to heat generation concentration on the pork surface, and it was possible to defrost in a very short time. In this case, the difference between the upper average temperature and the lower average temperature was small compared to the case where the surface temperature was a single partial electrode, and the power output at the time of thawing was 35 W, and the entire surface could be defrosted substantially uniformly.

比較例2:
上記実施例2において、下部電極を全体加熱電極のみで構成し、下記の条件で解凍をおこなった。
載置台間のエアギャップ量:21mm
解凍時の電源周波数:13.56MHz
解凍時の電源出力:35W
上記解凍中、中心温度を計測し−3℃に達すると解凍完了とした。解凍後、冷凍豚ブロック肉の表面温度をサーモグラフィーによって測定し表面平均温度を算出した。上側平均温度9.6℃、下側平均温度9.8℃であった。本比較例によれば、実施例2に比べて解凍後の豚肉表面温度は高く、また、中心温度−3℃までの解凍時間は長く要した。
Comparative Example 2:
In the said Example 2, the lower electrode was comprised only with the whole heating electrode, and it thawed | decompressed on the following conditions.
Air gap between mounting tables: 21 mm
Power supply frequency at decompression: 13.56 MHz
Power output during thawing: 35W
During the thawing, the center temperature was measured, and when the temperature reached −3 ° C., the thawing was completed. After thawing, the surface temperature of the frozen pork block meat was measured by thermography to calculate the surface average temperature. The upper average temperature was 9.6 ° C., and the lower average temperature was 9.8 ° C. According to this comparative example, the surface temperature of the pork after thawing was higher than that of Example 2, and the thawing time to the central temperature of −3 ° C. was longer.

本発明の高周波誘電加熱装置及び誘電加熱装置は、被加熱物表面と内面部への電界強度をコントロールしながら全体加熱と部分加熱を同時に行うことが可能であり、被加熱物表面への電界集中を抑制しながら、急速解凍ができ、飲食店や家庭等における冷凍食品の解凍やその他の工業用の加熱に広く適用でき、産業上の利用可能性が高い。   The high-frequency dielectric heating device and dielectric heating device of the present invention can perform total heating and partial heating simultaneously while controlling the electric field strength to the surface and inner surface of the object to be heated, and the electric field concentration on the surface of the object to be heated. Can be rapidly thawed, and can be widely applied to the thawing of frozen foods in restaurants and homes and other industrial heating, and the industrial applicability is high.

1、50 高周波誘電加熱装置
2、51 下部電極
3 上部電極
10、40、52 全体加熱電極
11、45、53 部分加熱電極
12 チャンバー体
13、43 摺動穴
14a、14b、41a、41b 加圧チャンバー
15 載置台
16a、16b、42a、42b 加圧空気給排口
17 シリンダ装置
30 ピン電極集合体
31 ピン電極
32 ピン支持台
33、34 圧力可変ガスチャンバー
35 ピンヘッド
36 ロッド
37 ピンキャップ
38 貫通孔
54 嵌合穴
DESCRIPTION OF SYMBOLS 1,50 High frequency dielectric heating apparatus 2,51 Lower electrode 3 Upper electrode 10,40,52 Whole heating electrode 11,45,53 Partial heating electrode 12 Chamber body 13,43 Sliding hole 14a, 14b, 41a, 41b Pressurization chamber 15 Mounting base 16a, 16b, 42a, 42b Pressurized air supply / exhaust port 17 Cylinder device 30 Pin electrode assembly 31 Pin electrode 32 Pin support base 33, 34 Pressure variable gas chamber 35 Pin head 36 Rod 37 Pin cap 38 Through hole 54 Fit Hole

Claims (10)

対向に配置された電極にて被加熱物を加熱する高周波誘電加熱方法であって、少なくとも片方の電極が全体加熱用電極と部分加熱用電極とからなり、被加熱物と前記全体加熱用電極と前記部分加熱用電極の少なくとも一方の電極との距離を調整しながら、全体加熱と部分加熱を同時に行うことを特徴とする高周波誘電加熱方法。   A high-frequency dielectric heating method for heating an object to be heated with electrodes arranged opposite to each other, wherein at least one of the electrodes is composed of an entire heating electrode and a partial heating electrode, A high-frequency dielectric heating method comprising performing total heating and partial heating simultaneously while adjusting a distance from at least one of the partial heating electrodes. 前記被加熱物と前記電極との距離が、エアーギャップにより調整して行う請求項1に記載の高周波誘電加熱方法。   The high frequency dielectric heating method according to claim 1, wherein a distance between the object to be heated and the electrode is adjusted by an air gap. 前記被加熱物を載置台に配置して行う請求項1又は2に記載の高周波誘電加熱方法。   The high frequency dielectric heating method according to claim 1, wherein the object to be heated is placed on a mounting table. 前記被加熱物が食品である請求項1〜3の何れかに記載の高周波誘電加熱。   The high-frequency dielectric heating according to any one of claims 1 to 3, wherein the object to be heated is food. 対向配置された電極で被加熱物を高周波誘電加熱する加熱装置であって、少なくとも一方の電極が、全体加熱電極と該全体加熱電極に設けられた貫通孔に上下に摺動可能である部分加熱電極からなり、前記全体加熱電極は被加熱物の投影面積よりも大きくかつ前記部分加熱電極は被加熱物の投影面積よりも小さく形成され、前記全体加熱電極と前記部分加熱電極の少なくとも一方の電極が被加熱物との距離の調整を行う手段を設けていることを特徴とする高周波誘電加熱装置。   A heating apparatus for high-frequency dielectric heating of an object to be heated with electrodes arranged opposite to each other, wherein at least one of the electrodes is slidable up and down in a whole heating electrode and a through hole provided in the whole heating electrode The overall heating electrode is larger than the projected area of the object to be heated, and the partial heating electrode is smaller than the projected area of the object to be heated, and at least one of the overall heating electrode and the partial heating electrode Is provided with means for adjusting the distance from the object to be heated. 前記全体加熱電極と前記部分加熱電極が電気的に導通している請求項5に記載の高周波誘電加熱装置。   The high frequency dielectric heating apparatus according to claim 5, wherein the whole heating electrode and the partial heating electrode are electrically connected. 前記全体加熱電極には、複数の部分加熱電極を設けている請求項5又は6に記載の高周波誘電加熱装置。   The high frequency dielectric heating apparatus according to claim 5 or 6, wherein the whole heating electrode is provided with a plurality of partial heating electrodes. 対向に配置された他方の電極が前記被加熱物の形状に追従可能な電極である請求項5〜7の何れかに記載の高周波誘電加熱装置。   The high-frequency dielectric heating device according to any one of claims 5 to 7, wherein the other electrode arranged oppositely is an electrode capable of following the shape of the object to be heated. 前記全体加熱電極に結合されたエアチャンバーを有する請求項5〜8の何れかに記載の高周波誘電加熱装置。   The high-frequency dielectric heating device according to any one of claims 5 to 8, further comprising an air chamber coupled to the whole heating electrode. 前記被加熱物を載置台に配置させて、載置台側に前記被加熱物との距離の調整を行う手段を設ける請求項5〜9の何れかに記載の高周波誘電加熱装置。   The high frequency dielectric heating apparatus according to any one of claims 5 to 9, wherein means for arranging the object to be heated on a mounting table and adjusting a distance from the object to be heated are provided on the mounting table side.
JP2010244099A 2010-10-29 2010-10-29 High frequency dielectric heating device for heated object Expired - Fee Related JP5614536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244099A JP5614536B2 (en) 2010-10-29 2010-10-29 High frequency dielectric heating device for heated object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244099A JP5614536B2 (en) 2010-10-29 2010-10-29 High frequency dielectric heating device for heated object

Publications (2)

Publication Number Publication Date
JP2012099263A true JP2012099263A (en) 2012-05-24
JP5614536B2 JP5614536B2 (en) 2014-10-29

Family

ID=46390977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244099A Expired - Fee Related JP5614536B2 (en) 2010-10-29 2010-10-29 High frequency dielectric heating device for heated object

Country Status (1)

Country Link
JP (1) JP5614536B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107823A (en) * 2013-02-28 2014-09-05 엘지전자 주식회사 Cooking appliance
JP2015076292A (en) * 2013-10-09 2015-04-20 東洋製罐株式会社 Dielectric heating method for object to be heated and heating electrode
EP2871914A4 (en) * 2012-07-09 2016-03-16 Toyo Seikan Group Holdings Ltd Heating device and heating method
JP2021168279A (en) * 2020-04-13 2021-10-21 山本ビニター株式会社 High-frequency electrode structure and high-frequency induction heating device
WO2023158125A1 (en) * 2022-02-15 2023-08-24 삼성전자 주식회사 Electronic device including dielectric heating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106210A (en) * 1984-10-29 1986-05-24 Tadao Mihashi High-frequency preheater
JPS62118390U (en) * 1986-01-21 1987-07-27
JPH0289983A (en) * 1988-09-27 1990-03-29 Hisaka Works Ltd Batch type high-frequency drying device and electrode plate to be employed therefor
JPH0878151A (en) * 1994-09-02 1996-03-22 Sharp Corp High frequency thawing device
WO2009008421A1 (en) * 2007-07-10 2009-01-15 Toyo Seikan Kaisha, Ltd. Heating electrode and method for heating material-to-be-heated by using the heating electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106210A (en) * 1984-10-29 1986-05-24 Tadao Mihashi High-frequency preheater
JPS62118390U (en) * 1986-01-21 1987-07-27
JPH0289983A (en) * 1988-09-27 1990-03-29 Hisaka Works Ltd Batch type high-frequency drying device and electrode plate to be employed therefor
JPH0878151A (en) * 1994-09-02 1996-03-22 Sharp Corp High frequency thawing device
WO2009008421A1 (en) * 2007-07-10 2009-01-15 Toyo Seikan Kaisha, Ltd. Heating electrode and method for heating material-to-be-heated by using the heating electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871914A4 (en) * 2012-07-09 2016-03-16 Toyo Seikan Group Holdings Ltd Heating device and heating method
US9930726B2 (en) 2012-07-09 2018-03-27 Toyo Seikan Group Holdings, Ltd. Heating device and heating method
KR20140107823A (en) * 2013-02-28 2014-09-05 엘지전자 주식회사 Cooking appliance
KR102035805B1 (en) 2013-02-28 2019-10-23 엘지전자 주식회사 Cooking appliance
JP2015076292A (en) * 2013-10-09 2015-04-20 東洋製罐株式会社 Dielectric heating method for object to be heated and heating electrode
JP2021168279A (en) * 2020-04-13 2021-10-21 山本ビニター株式会社 High-frequency electrode structure and high-frequency induction heating device
JP7204218B2 (en) 2020-04-13 2023-01-16 山本ビニター株式会社 High frequency electrode structure and high frequency dielectric heating device
WO2023158125A1 (en) * 2022-02-15 2023-08-24 삼성전자 주식회사 Electronic device including dielectric heating device

Also Published As

Publication number Publication date
JP5614536B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5614536B2 (en) High frequency dielectric heating device for heated object
CN100595502C (en) Defrosting apparatus of refrigerator
CN103398577B (en) Samarium cobalt permanent magnet vacuum sintering furnace
CN109674357B (en) Multifunctional quick-baking oven
CN111406788A (en) Thawing device and refrigerator
CN203478929U (en) Vacuum sintering furnace for samarium-cobalt permanent magnet
JP5768972B2 (en) High frequency dielectric heating device
KR101412578B1 (en) Electric heater
EP2433056B1 (en) Cooker
JP5141349B2 (en) Cooking device
KR101866512B1 (en) Apparatus for processing substrate and method for processing substrate using the same
JP5768973B2 (en) High frequency dielectric heating method
JP3547413B2 (en) Electric heating method of food
JP2007147130A (en) Heating cooker
JP2014022128A (en) Electrode supporting device and direct resistance heating apparatus including the same
US9144347B2 (en) Food baking machine
CN205362929U (en) Heating device for be used for vacuum apparatus
JP4448749B2 (en) Heating and cooling device
CN113143047B (en) Electric pizza stove
JP5067274B2 (en) Cooking device
CN210895140U (en) Double-temperature control circuit of air fryer
JP5626503B2 (en) Heating electrode and heating method of heated material using the same
CN203057544U (en) Temperature-control heating device
CN220308956U (en) Uniform temperature type baking tray
CN107740874A (en) A kind of safe self-heating pressure regulator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5614536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees