JP5626503B2 - Heating electrode and heating method of heated material using the same - Google Patents

Heating electrode and heating method of heated material using the same Download PDF

Info

Publication number
JP5626503B2
JP5626503B2 JP2009115466A JP2009115466A JP5626503B2 JP 5626503 B2 JP5626503 B2 JP 5626503B2 JP 2009115466 A JP2009115466 A JP 2009115466A JP 2009115466 A JP2009115466 A JP 2009115466A JP 5626503 B2 JP5626503 B2 JP 5626503B2
Authority
JP
Japan
Prior art keywords
electrode
pin
heating
heated
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009115466A
Other languages
Japanese (ja)
Other versions
JP2010267401A (en
Inventor
真司 山田
真司 山田
栄隆 辰見
栄隆 辰見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2009115466A priority Critical patent/JP5626503B2/en
Publication of JP2010267401A publication Critical patent/JP2010267401A/en
Application granted granted Critical
Publication of JP5626503B2 publication Critical patent/JP5626503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

本発明は、加熱電極及びそれを用いた被加熱材の加熱方法、特に、被加熱材に対する加熱効率を低下させずに負荷と高周波電源のインピーダンスの整合をとることが可能な加熱電極及びそれを用いた被加熱材の加熱方法に関する。   The present invention relates to a heating electrode and a heating method of a heated material using the heating electrode, and more particularly to a heating electrode capable of matching the impedance of a load and a high frequency power supply without reducing the heating efficiency of the heated material and the heating electrode. The present invention relates to a heating method for the material to be heated.

食材を電気的に加熱する方法の一つである誘電加熱法は、被加熱材(誘電体)に高周波電圧を印加し、被加熱材を構成する各分子の極性を高周波で変化させ、それに伴う分子の回転・衝突・振動・摩擦等に起因する内部発熱によって被加熱材を加熱する方法である。
従って、誘電加熱法は食材の表面を過加熱することなく食材の内部まで深く加熱することが出来る利点を有している。誘電加熱の原理は、理論的には、図10に示す等価回路と、そのベクトル図によって説明される。すなわち、誘電体には内部抵抗(r)が存在するため、その等価回路はキャパシタンス(C)と内部抵抗(r)が並列に接続された回路となる。従って、この誘電体に周波数f[Hz]、実効値Vの交番電圧を印加すると、交番電圧と同相の電流成分(Ir)が誘電体内部に流れ、誘電体内部でIr×Vに相当する電力Prが熱として消費される。その単位面積当たりの電力量P[W/m2]は、下記の比例式で表されることが知られている。
P∝f×E2×εr×tanδ
ここで、Eは電界の強さ[V/cm]、fは電源の周波数[Hz]、εrは比誘電率、tanδは誘電体損失角である。特に、比誘電率εrと誘電体損失角tanδとの積εrtanδは損失係数と呼ばれ、損失係数の値が高ければ高いほど発熱量は大きくなる。また、加熱の進行に伴い被加熱材の誘電体損失角tanδは変化し、被加熱材を含む負荷全体のインピーダンスも変化する。その結果、負荷と高周波電源のインピーダンスが整合しなくなる。負荷と高周波電源の各インピーダンスが整合していない場合、高周波電源の送電電力の一部が負荷で反射し、負荷に対する送電効率が低下する。従って、通常、負荷と高周波電源との間には双方のインピーダンスの整合をとる整合回路が設けられている(例えば、特許文献1を参照。)

ところで、被加熱材を含む負荷全体のインピーダンスは、一般に、ZL=R+jωL+1/(jωC)、と表されるため、抵抗R、リアクタンスL又はキャパシタンスCの何れかを変化させることにより、負荷のインピーダンスZLを調整することが出来る。
負荷と高周波電源のインピーダンスの整合をとる方法として、加熱電極を3枚の電極板で構成し、真ん中の電極板を可動電極板とし、その外側を固定電極板とし、その固定電極板同士を短絡し、可動電極板と一方の固定電極板との間に高周波電圧を印加し、必要に応じて真ん中の可動電極板を移動させ負荷側のキャパシタンスを変えることにより、負荷と高周波電源のインピーダンスの整合をとる誘電加熱装置が知られている(例えば、特許文献2を参照。)。
The dielectric heating method, which is one of the methods for electrically heating food materials, applies a high-frequency voltage to the material to be heated (dielectric material), changes the polarity of each molecule constituting the material to be heated at a high frequency, and accompanies it. This is a method of heating a material to be heated by internal heat generation caused by rotation, collision, vibration, friction, etc. of molecules.
Therefore, the dielectric heating method has an advantage that the surface of the food can be deeply heated without overheating the food. The principle of dielectric heating is theoretically explained by the equivalent circuit shown in FIG. 10 and its vector diagram. That is, since the internal resistance (r) exists in the dielectric, the equivalent circuit is a circuit in which the capacitance (C) and the internal resistance (r) are connected in parallel. Therefore, when an alternating voltage having a frequency f [Hz] and an effective value V is applied to this dielectric, a current component (I r ) in phase with the alternating voltage flows inside the dielectric, which corresponds to I r × V inside the dielectric. to power P r it is consumed as heat. It is known that the electric energy P [W / m 2 ] per unit area is expressed by the following proportional expression.
P∝f × E 2 × ε r × tanδ
Here, E is the electric field strength [V / cm], f is the frequency [Hz] of the power source, ε r is the relative permittivity, and tan δ is the dielectric loss angle. In particular, the product epsilon r tan [delta between the relative permittivity epsilon r and the dielectric loss angle tan [delta called loss factor, calorific value the higher the value of the loss factor increases. Further, as the heating proceeds, the dielectric loss angle tanδ of the heated material changes, and the impedance of the entire load including the heated material also changes. As a result, the impedances of the load and the high frequency power supply do not match. When the impedances of the load and the high-frequency power source do not match, a part of the transmission power of the high-frequency power source is reflected by the load, and the transmission efficiency for the load is reduced. Therefore, normally, a matching circuit for matching the impedances of both is provided between the load and the high-frequency power supply (see, for example, Patent Document 1).
.
By the way, since the impedance of the entire load including the material to be heated is generally expressed as Z L = R + jωL + 1 / (jωC), the impedance of the load can be changed by changing any of the resistance R, reactance L, or capacitance C. Z L can be adjusted.
As a method of matching the impedance of the load and the high frequency power supply, the heating electrode is composed of three electrode plates, the middle electrode plate is a movable electrode plate, the outside is a fixed electrode plate, and the fixed electrode plates are short-circuited. Then, by applying a high-frequency voltage between the movable electrode plate and one fixed electrode plate, and moving the movable electrode plate in the middle to change the capacitance on the load side as necessary, matching the impedance between the load and the high-frequency power supply A dielectric heating apparatus that takes the following is known (see, for example, Patent Document 2 ).

特開2004−340471号公報JP 2004-340471 A 特許第3249701号Japanese Patent No. 3249701

上記誘電加熱装置の負荷は、2つのコンデンサ(共振回路部14と容量安定用コンデンサ21)が並列に結合した回路と等価である。従って、可動電極板を移動させることにより、各コンデンサの極板間隔を変え、各キャパシタンスを変えて負荷のインピーダンスを所望の値に調整している。この時、被加熱材を誘電加熱する機能は、被加熱材に対向した共振回路部14が担うことになる。
しかしながら、上記誘電加熱装置では、負荷と高周波電源のインピーダンスの整合をとる際、被加熱材と電極板との間に隙間が生じ、或いは隙間が更に拡がることが起こり得る。被加熱材と電極板との間の隙間は、電極板が被加熱材に作用する電気的作用(特に、電界Eは2乗で作用する。)を弱め、極板間(今の場合、可動電極板と固定電極板の間)の比誘電率εrを小さくすることになる。その結果、被加熱材における上記発熱量Pが小さくなる。ところで、電極板は電気的作用以外に熱伝導によって被加熱材を加熱する伝熱板としても機能する場合がある。その場合、被加熱材と電極板との間に隙間が生じると、熱が被加熱材にほとんど伝熱されないことになる。このように、電極板と被加熱材との間に隙間が生じると、誘電加熱の際は被加熱材に対する電気的作用を弱め、他方、熱伝導による加熱の際は、被加熱材に対する熱的作用を弱め、その結果、被加熱材に対する加熱効率が低下するという問題が起こる。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的は、被加熱材に対する加熱効率を低下させずに負荷と高周波電源のインピーダンスの整合をとることが可能な加熱電極及びそれを用いた被加熱材の加熱方法を提供することにある。
The load of the dielectric heating device is equivalent to a circuit in which two capacitors (resonance circuit unit 14 and capacitance stabilizing capacitor 21) are coupled in parallel. Therefore, by moving the movable electrode plate, the electrode plate interval of each capacitor is changed, and each capacitance is changed to adjust the load impedance to a desired value. At this time, the function of dielectrically heating the material to be heated is performed by the resonance circuit unit 14 facing the material to be heated.
However, in the above dielectric heating device, when matching the impedance of the load and the high frequency power supply, a gap may be formed between the material to be heated and the electrode plate, or the gap may be further expanded. The gap between the material to be heated and the electrode plate weakens the electrical action (especially, the electric field E acts as a square) that the electrode plate acts on the material to be heated, and between the electrode plates (in this case, movable) The relative dielectric constant ε r between the electrode plate and the fixed electrode plate is reduced. As a result, the heat generation amount P in the heated material is reduced. By the way, an electrode plate may function also as a heat exchanger plate which heats a to-be-heated material by heat conduction other than an electrical effect | action. In that case, when a gap is generated between the heated material and the electrode plate, heat is hardly transferred to the heated material. As described above, when a gap is generated between the electrode plate and the material to be heated, the electric action on the material to be heated is weakened during dielectric heating, while the heat to the material to be heated is reduced during heating by heat conduction. As a result, there arises a problem that the heating efficiency for the material to be heated is lowered.
Therefore, the present invention has been made in view of the problems of the prior art, and the object thereof is to match the impedance of the load and the high frequency power supply without reducing the heating efficiency for the material to be heated. It is providing the heating electrode and the heating method of the to-be-heated material using the same.

前記目的を達成するために請求項1に記載の加熱電極は、対向して配置され被加熱材を保持・高周波誘電加熱する加熱電極は、前記被加熱材の形状に追従する形態で被加熱材を保持する保持電極部と、該保持電極部に導通し別個独立して電極間方向に変位可能であり、負荷と高周波電源のインピーダンス整合をとる負荷調整電極とを備えたものであって、前記保持部電極が前記被加熱材の形状に追従するピン電極であり、さらに、前記ピン電極を支持するピン支持台とを備えてなり、前記負荷調整部は、前記ピン電極に導通しながら導通・摺動可能に貫通させる貫通孔が設けられた負荷調整電極として構成され、前記ピン電極と前記負荷電極とは摺動しながら相対変位することができるように構成され、前記被加熱材からピン支持台側に向かって、前記被加熱材をピン電極にて保持する保持部、前記負荷調整部、前記ピン支持台の順で構成されていることを特徴とする。
上記加熱電極では、負荷調整部が被加熱材を保持する保持電極部に対し別個独立して電極間方向に変位することが出来るように構成されている。このため、被加熱材を保持した状態で負荷と電源のインピーダンスの整合をとることが可能となる。つまり、上記加熱電極は、被加熱材と保持電極部との間に隙間を作らないで、負荷調整部によって負荷と高周波電源のインピーダンスの整合をとることが可能となる。その際、保持電極部は被加熱材を保持し、被加熱材に対する電気的作用および熱的作用を弱めることがないので、被加熱材に対する加熱効率を好適に維持することになる。
上記加熱電極では、上記構成とすることにより、被加熱材の形状に依存せずに被加熱材を均一かつ効率よく加熱することが出来る。
In order to achieve the above object, the heating electrode according to claim 1 is arranged so as to be opposed to each other, and the heating electrode for holding the material to be heated and performing high-frequency dielectric heating follows the shape of the material to be heated. A holding electrode part, and a load adjusting electrode that conducts to the holding electrode part and can be independently displaced in the direction between the electrodes, and performs impedance matching between the load and the high-frequency power source , The holding portion electrode is a pin electrode that follows the shape of the material to be heated, and further includes a pin support base that supports the pin electrode, and the load adjusting portion is electrically connected to the pin electrode while conducting. It is configured as a load adjustment electrode provided with a through-hole that is slidably penetrated. The pin electrode and the load electrode are configured to be able to displace relative to each other while sliding, and support the pin from the material to be heated. Head to the table Te, holder for holding the material to be heated at the pin electrodes, the load adjustment section, characterized in that it is constituted by the pin support table order.
The heating electrode is configured such that the load adjusting unit can be displaced independently of the holding electrode unit holding the material to be heated in the inter-electrode direction. For this reason, it becomes possible to match the impedance of the load and the power supply while holding the heated material. That is, the heating electrode can match the impedance of the load and the high-frequency power source by the load adjusting unit without forming a gap between the heated material and the holding electrode unit. At that time, the holding electrode portion holds the material to be heated and does not weaken the electrical and thermal effects on the material to be heated, so that the heating efficiency for the material to be heated is suitably maintained.
With the above-described configuration, the heating electrode can uniformly and efficiently heat the heated material without depending on the shape of the heated material.

前記目的を達成するために請求項4に記載の誘電加熱装置の加熱方法は、被加熱材を保持する保持電極部とインピーダンスの整合をとる負荷調整部とから成る加熱電極によって被加熱材を高周波誘電加熱する加熱方法であって、前記保持部電極が前記被加熱材の形状に追従するピン電極であり、さらに、前記ピン電極を支持するピン支持台とを備えてなり、前記負荷調整部は、前記ピン電極に導通しながら導通・摺動可能に貫通させる貫通孔が設けられた負荷調整電極として構成され、前記ピン電極と前記負荷電極とは摺動しながら相対変位することができるように構成され、前記被加熱材からピン支持台側に向かって、前記被加熱材をピン電極にて保持する保持部、前記負荷調整部、前記ピン支持台の順で構成され、前記保持電極部で形状に追従する形態で前記被加熱材を保持しながら、前記負荷調整部を構成する電極は前記保持電極部に対して電極間方向に別個独立に変位させることにより負荷と高周波電源のインピーダンスの整合をとることを特徴とする。
上記誘電加熱装置の加熱方法では、被加熱材を保持電極部によって保持した状態で、負荷調整部を保持電極部に対し別個独立に変位させながら、負荷と高周波電源のインピーダンスの整合をとるため、保持電極部の被加熱材に対する加熱状態に影響を及ぼさずに負荷と高周波電源のインピーダンスの整合をとることが可能となる。
In order to achieve the above object, the heating method of the dielectric heating device according to claim 4 , wherein the material to be heated is high-frequency by a heating electrode comprising a holding electrode portion for holding the material to be heated and a load adjusting portion for matching impedance. A heating method for dielectric heating, wherein the holding portion electrode is a pin electrode that follows the shape of the material to be heated, and further includes a pin support that supports the pin electrode, and the load adjustment portion is The load adjustment electrode is provided with a through-hole that is slidably connected to the pin electrode while being conductive, so that the pin electrode and the load electrode can be displaced relative to each other while sliding. is configured, the toward the pin support table side from the material to be heated, the holding portion for holding at the material to be heated pin electrodes, the load adjustment section is composed of the pin support table in order, at the holding electrode portion shape Wherein while maintaining the material to be heated in the follow-up to form the electrodes constituting the load adjustment section matching the load and the RF source impedance by displacing independently of each inter-electrode direction with respect to the holding electrode portion It is characterized by that.
In the heating method of the dielectric heating device, in order to match the impedance of the load and the high-frequency power source while displacing the load adjustment unit independently with respect to the holding electrode unit in a state where the material to be heated is held by the holding electrode unit, It is possible to match the impedance between the load and the high-frequency power source without affecting the heating state of the holding electrode portion with respect to the material to be heated.

本発明の加熱電極及びそれを用いた被加熱材の加熱方法によれば、被加熱材を保持する保持電極部と被加熱材との間に隙間を作ることなく、負荷と高周波電源のインピーダンスの整合をとることが可能となる。これにより、インピーダンス整合時における被加熱材に対する加熱効率の低下を好適に防止することが出来る。また、加熱電極の少なくとも一方の電極がピン電極である場合は、被加熱材の形状に好適に追従するため、負荷と高周波電源のインピーダンスの整合をとりながら、被加熱材の形状に依らずに被加熱材を均一に加熱することが可能となる。   According to the heating electrode of the present invention and the heating method of the heated material using the heating electrode, the impedance of the load and the high-frequency power source can be reduced without creating a gap between the holding electrode portion that holds the heated material and the heated material. It is possible to achieve consistency. Thereby, the fall of the heating efficiency with respect to the to-be-heated material at the time of impedance matching can be prevented suitably. In addition, when at least one of the heating electrodes is a pin electrode, in order to appropriately follow the shape of the material to be heated, the impedance of the load and the high-frequency power source are matched, without depending on the shape of the material to be heated. It becomes possible to heat the material to be heated uniformly.

本発明の加熱電極に係る加熱電極を示す要部断面説明図である。It is principal part cross-sectional explanatory drawing which shows the heating electrode which concerns on the heating electrode of this invention. 本発明の加熱電極に係る加熱電極による食材の加熱例を示す説明図である。It is explanatory drawing which shows the example of a heating of the foodstuff by the heating electrode which concerns on the heating electrode of this invention. 実施例1に係るピン支持台を示す要部断面説明図である。It is principal part cross-sectional explanatory drawing which shows the pin support stand which concerns on Example 1. FIG. 実施例2に係る加熱電極を用いた加熱方法を示す説明図である。6 is an explanatory view showing a heating method using a heating electrode according to Example 2. FIG. 実施例3に係る加熱電極を示す要部断面説明図である。FIG. 6 is a cross-sectional explanatory view of a main part showing a heating electrode according to Example 3. 上記加熱電極を用いた食材の加熱方法を示す説明図である。It is explanatory drawing which shows the heating method of the foodstuff using the said heating electrode. 実施例5に係る加熱電極を用いた食材の加熱方法を示す説明図である。It is explanatory drawing which shows the heating method of the foodstuff using the heating electrode which concerns on Example 5. FIG. 実施例6に係る加熱電極を示す要部断面説明図である。FIG. 10 is an explanatory cross-sectional view of a main part showing a heating electrode according to Example 6. 実施例7に係る加熱電極を示す説明図である。10 is an explanatory view showing a heating electrode according to Example 7. FIG. 誘電加熱法の原理を示す説明図である。It is explanatory drawing which shows the principle of a dielectric heating method.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明の加熱電極100を示す要部断面説明図である。
この加熱電極100は、被加熱材に当接し電気的または熱的作用を及ぼす複数の、保持電極部としてのピン電極10と、各ピン電極10を摺動可能に支持すると共にピン電極10に対する電源または熱源となる導電性基盤としてのピン支持台20と、ピン電極10をピン支持台20に対し相対変位させる圧力可変ガスチャンバ30と、被加熱材に高周波電界を印加して誘電加熱する際に負荷と高周波電源のインピーダンスの整合をとる負荷調整部としての負荷調整電極40とを具備して構成される。
FIG. 1 is an explanatory cross-sectional view of a main part showing a heating electrode 100 of the present invention.
The heating electrode 100 includes a plurality of pin electrodes 10 serving as holding electrode portions that are in contact with a material to be heated and exerting an electrical or thermal action, and each pin electrode 10 is slidably supported and a power source for the pin electrode 10 Alternatively, a pin support base 20 as a conductive base serving as a heat source, a pressure variable gas chamber 30 that displaces the pin electrode 10 relative to the pin support base 20, and a dielectric heating by applying a high-frequency electric field to the material to be heated. A load adjustment electrode 40 as a load adjustment unit that matches the impedance of the load and the high frequency power supply is provided.

負荷調整電極40は、ピン電極10に導通しながらピン電極10とは別個独立に変位することが出来るように構成されている。そのため、負荷調整電極40には、ピン電極10を導通・摺動可能に貫通させる貫通穴41が設けられ、自身は位置可変機構42によって駆動される。一方、ピン電極10は、負荷調整電極40に摺動しながら圧力可変ガスチャンバ30によって軸方向に駆動される。従って、負荷調整電極40とピン電極10は常に同一電位を保ちながら別個独立に相対変位することが出来る。このため、上記加熱電極100は、ピン電極10が被加熱材に当接した状態において、ピン電極10の被加熱材に対する電気的および/または熱的作用に影響を及ぼすことなく、負荷調整電極40をピン電極10とは別個独立に変位させることによって負荷と高周波電源のインピーダンスの整合をとることが可能になる。
電極保持部と負荷調整部は、上記のように他方を貫通する構造以外に、はめ合いなど電気的に導通し摺動可能な凹凸構造を有した一体構造であっても良い。
The load adjustment electrode 40 is configured to be able to displace independently from the pin electrode 10 while being electrically connected to the pin electrode 10. Therefore, the load adjusting electrode 40 is provided with a through hole 41 through which the pin electrode 10 is slidable and slidable, and is itself driven by the position variable mechanism 42. On the other hand, the pin electrode 10 is driven in the axial direction by the pressure variable gas chamber 30 while sliding on the load adjusting electrode 40. Therefore, the load adjustment electrode 40 and the pin electrode 10 can be relatively displaced independently while always maintaining the same potential. Therefore, the heating electrode 100 does not affect the electrical and / or thermal action of the pin electrode 10 on the heated material in a state where the pin electrode 10 is in contact with the heated material. Can be matched independently of the pin electrode 10 to match the impedance between the load and the high-frequency power source.
In addition to the structure penetrating the other as described above, the electrode holding portion and the load adjusting portion may be an integrated structure having a concavo-convex structure that is electrically conductive and slidable, such as fitting.

位置可変機構42は、例えばスライド機構を採用することが出来る。また、位置可変機構42はピン支持台20に内蔵または外付けの形態で取り付けられ、ピン電極10と電気的および機械的に一体に構成されている。   For example, a slide mechanism can be adopted as the position variable mechanism 42. The position variable mechanism 42 is attached to the pin support 20 in a built-in or external form, and is configured integrally with the pin electrode 10 electrically and mechanically.

負荷調整電極40の材質としては、例えばアルミ、銅、チタン、白金等の導電材である。   Examples of the material of the load adjustment electrode 40 include conductive materials such as aluminum, copper, titanium, and platinum.

ピン電極10は、食材に直に当接するピンヘッド11と、ピンヘッド11に結合しピン支持台20との電気的または熱的接点となりピン電極10のピン支持台20に対する移動量(ストローク)を規定するロッド12と、ピンヘッド11の端位置を規定すると共にストッパーとして機能するピンキャップ13とから成る。   The pin electrode 10 is an electrical or thermal contact with the pin head 11 that directly contacts the food and the pin head 11 and defines the amount of movement (stroke) of the pin electrode 10 relative to the pin support base 20. The rod 12 includes a pin cap 13 that defines the end position of the pin head 11 and functions as a stopper.

ピンヘッド11は、例えば半球部と円筒部が組み合わされた形状を成し、ロッド12は例えば細長円筒形状を成し一方の端部をピンヘッド11と反対側の端部をピンキャップ13とネジ結合している。また、ロッド12は、後述の貫通穴21に挿通されピン支持台20との電気的または熱的接点となる。   The pin head 11 has, for example, a shape in which a hemispherical portion and a cylindrical portion are combined, and the rod 12 has, for example, an elongated cylindrical shape, and one end is screwed to the pin cap 13 and the other end is screwed. ing. Further, the rod 12 is inserted into a through-hole 21 described later and serves as an electrical or thermal contact with the pin support base 20.

なお、ピンヘッド11とロッド12の結合については、食材の形状に応じてピンヘッドの交換をすることが可能なネジ結合が好ましいが、切削や溶接など一体に形成してあっても良い。または、ロッド12とピンキャップ13を切削、溶接、加締めなどにより一体に形成してピンヘッド11とロッド12をネジ結合としても良い。   In addition, about the coupling | bonding of the pin head 11 and the rod 12, although the screw coupling | bonding which can replace | exchange a pin head according to the shape of a foodstuff is preferable, you may form integrally, such as cutting and welding. Alternatively, the rod 12 and the pin cap 13 may be integrally formed by cutting, welding, caulking, etc., and the pin head 11 and the rod 12 may be screwed together.

また、ピンヘッド11、ロッド12およびピンキャップ13の材質としては、上記負荷調整電極板と同じアルミ、銅、カーボン、チタン、白金等の導電材である。   The material of the pin head 11, the rod 12 and the pin cap 13 is the same conductive material as aluminum, copper, carbon, titanium, platinum, etc., as in the load adjusting electrode plate.

ピン支持台20には、ピン電極10が摺動しながら相対変位する貫通穴21がピン電極10ごとに別個独立に設けられている。この貫通穴21の内径は、ピン電極10のロッド12の外径より僅かに大きい程度である。これにより、各ピン電極10はピン支持台20と通電または伝熱しながらピン支持台20に対し軸方向に別個独立に相対変位し、食材の形状に好適に追従することが可能となる。   The pin support 20 is provided with a through-hole 21 in which the pin electrode 10 slides and relatively displaces independently for each pin electrode 10. The inner diameter of the through hole 21 is slightly larger than the outer diameter of the rod 12 of the pin electrode 10. Thereby, each pin electrode 10 can be relatively displaced in the axial direction separately from the pin support base 20 while energizing or transferring heat with the pin support base 20, and can suitably follow the shape of the foodstuff.

ところで、ピン電極10の駆動は、後述するように、圧力可変ガスチャンバ30の内圧を変えることにより行われる。従って、ロッド12と貫通穴21とのクリアランスはピン電極10の駆動に影響を与えるとも考えられるが、上述した通りこのクリアランスは極僅かであるため、圧力可変ガスチャンバ30からこのクリアランスを通じてのガスリーク量は極微量であるため、その結果圧力可変ガスチャンバ30の圧力変動は極僅かとなり、結果としてこのクリアランスはピン電極10の駆動にほとんど影響を与えない。なお、ピン電極10の駆動は、圧力可変ガスチャンバ以外に、バネやゴムなどの弾性工具を用いることでも容易に実現できる。   By the way, the drive of the pin electrode 10 is performed by changing the internal pressure of the pressure variable gas chamber 30, as will be described later. Therefore, the clearance between the rod 12 and the through hole 21 may be considered to affect the driving of the pin electrode 10, but as described above, this clearance is very small. As a result, the pressure fluctuation in the pressure variable gas chamber 30 becomes extremely small. As a result, this clearance hardly affects the driving of the pin electrode 10. The driving of the pin electrode 10 can be easily realized by using an elastic tool such as a spring or rubber in addition to the pressure variable gas chamber.

また、ピン支持台20はピン電極10に対する電源または熱源となるため、その材質としては、ピン電極10と同等か若しくはそれ以上の導電率および熱伝導率を有する材質が好ましい。   Further, since the pin support 20 serves as a power source or heat source for the pin electrode 10, a material having a conductivity and thermal conductivity equal to or higher than that of the pin electrode 10 is preferable.

また、ピン支持台20の形状は平板の他、曲面を有する複合形でもあっても良い。   Further, the shape of the pin support 20 may be a flat plate or a composite shape having a curved surface.

圧力可変ガスチャンバ30は、ガスを貯めるインナースペース31と、ガスの流路となるチャンネル32と、外部の高圧ガス源(圧縮機)または(真空)ポンプと連結するガスポート33とから成る。インナースペース31の圧力調整は、チャンネル32を介してガスを供給し又は排気することにより行われる。ここで、インナースペース31の圧力Pinが外気Poutよりも高い場合は、貫通穴21の入口と出口において圧力勾配が生じピン電極10がインナースペース31のガス圧により押し下げられ下方に相対変位することとなる。一方、インナースペース31の圧力Pinが外気Poutよりも低い場合は、それとは逆向きの圧力勾配が生じピン電極10が外気によって押し上げられ上方に相対変位することとなる。このように、インナースペース31の圧力を調整することにより、ピン電極10をピン支持台20に対し相対変位させることが可能となる。また、ピン電極10が食材に当接した状態でインナースペース31の圧力を調整することにより、ピン電極10が食材に当接する押圧を変えることが可能となる。従って、ピン電極10が食材に当接した状態でインナースペース31の圧力を調整することにより、複数のピン電極10により食材を加熱・保持することが可能となる。従って、この加熱電極100に搬送手段を具備させることにより、電極による食材の加熱・保持搬送を安定して行うことが可能となる。 The pressure variable gas chamber 30 includes an inner space 31 for storing gas, a channel 32 serving as a gas flow path, and a gas port 33 connected to an external high-pressure gas source (compressor) or a (vacuum) pump. The pressure of the inner space 31 is adjusted by supplying or exhausting gas through the channel 32. Here, the pressure P in of the inner space 31 is higher than the outside air P out, the pressure gradient at the inlet and outlet of the through hole 21 is a pin electrode 10 occurs relatively displaced downwardly pushed down by the gas pressure of the inner space 31 It will be. On the other hand, when the pressure Pin in the inner space 31 is lower than the outside air Pout , a pressure gradient opposite to that occurs, and the pin electrode 10 is pushed up by the outside air and relatively displaced upward. As described above, the pin electrode 10 can be displaced relative to the pin support 20 by adjusting the pressure of the inner space 31. Further, by adjusting the pressure of the inner space 31 in a state where the pin electrode 10 is in contact with the food material, it is possible to change the pressure at which the pin electrode 10 is in contact with the food material. Therefore, by adjusting the pressure in the inner space 31 with the pin electrode 10 in contact with the food material, the food material can be heated and held by the plurality of pin electrodes 10. Accordingly, by providing the heating electrode 100 with a conveying means, it is possible to stably heat and hold the food by the electrode.

なお、使用されるガスについては、例えば清浄な空気および窒素等の不活性ガスである。   In addition, about the gas used, they are inert gas, such as clean air and nitrogen, for example.

図2は、本発明の加熱電極100による食材の加熱例を示す説明図である。
この加熱例では、被加熱材として包材50に包まれた食材51が、上下(垂直方向)に対向して配置された加熱電極100,100によって加熱・保持され、電極板間における位置が決められた状態で、誘電加熱されながら図示せぬ搬送手段によって搬送されている。
FIG. 2 is an explanatory view showing an example of heating food by the heating electrode 100 of the present invention.
In this heating example, the food material 51 wrapped in the packaging material 50 as a material to be heated is heated and held by the heating electrodes 100 and 100 arranged vertically (in the vertical direction), and the position between the electrode plates is determined. In this state, it is conveyed by a conveying means (not shown) while being dielectrically heated.

また、加熱が進行し、負荷と高周波電源のインピーダンスの不整合が生じる場合は、位置可変機構42によって負荷調整電極40,40の極板間距離を変化させて負荷のインピーダンスZLと高周波電源のインピーダンスZSを整合させる。 The heating proceeds, the load and if the impedance mismatch of the high-frequency power source occurs, the load by changing the electrode plates distance load adjustment electrodes 40, 40 by the position changing mechanism 42 impedance Z L and the high frequency power source Match impedance Z S.

圧力可変ガスチャンバ30の圧力調整は、例えば圧縮機34と真空ポンプ35を三方弁36を介して圧力可変ガスチャンバ30に結合させて加圧の場合は圧縮機34側に三方弁をスイッチし減圧の場合は真空ポンプ35側に三方弁をスイッチすることにより行われる。   For adjusting the pressure of the pressure variable gas chamber 30, for example, the compressor 34 and the vacuum pump 35 are coupled to the pressure variable gas chamber 30 via the three-way valve 36, and in the case of pressurization, the pressure is reduced by switching the three-way valve to the compressor 34 side. In this case, the three-way valve is switched to the vacuum pump 35 side.

また、高周波電源60の周波数は、例えば、数KHzから数百MHzまたは3MHzから100MHzである。   Moreover, the frequency of the high frequency power supply 60 is, for example, several KHz to several hundred MHz or 3 MHz to 100 MHz.

また、包材50の材質は、例えばPE(ポリエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)等の樹脂、鉄やアルミ等の金属、紙、ガラス、その組み合わせからなる複合材等からなり、包装形態はフィルム、トレー、カップ状の容器など特に規定されるものではない。また、これら容器に塗料や蒸着処理など各種表面処理が施されてあっても良い。   The packaging material 50 is made of, for example, a resin such as PE (polyethylene), PP (polypropylene), or PET (polyethylene terephthalate), a metal such as iron or aluminum, paper, glass, a composite material composed of a combination thereof, or the like. The packaging form is not particularly specified such as a film, a tray, or a cup-shaped container. These containers may be subjected to various surface treatments such as paint and vapor deposition treatment.

なお、本加熱例では、2つの加熱電極100,100を用いた誘電加熱例を示したが、これに限らず、加熱電極100と通常の平板電極との組み合わせによる誘電加熱であっても良い。また、電極の配置についても、垂直方向だけでなく水平方向であっても良い。   In this heating example, the dielectric heating example using the two heating electrodes 100 and 100 has been described. However, the present invention is not limited to this, and dielectric heating by a combination of the heating electrode 100 and a normal plate electrode may be used. Further, the arrangement of the electrodes may be not only in the vertical direction but also in the horizontal direction.

図3は、実施例1に係るピン支持台20を示す要部断面説明図である。
このピン支持台20では、貫通穴21,21間に温度調整用水(以下、「温調水」という。)が流れる水路22が縦貫している。従って、ピン電極10が食材に当接している状態で温調水を流すことより、温調水とピン電極10との間で熱交換が行われるのと同時に、ピン電極10と食材との間でも熱交換が行われるため、結果として食材の表面が間接的に加熱または冷却される。従って、温度上昇が鈍い加熱不良の場合は温調水として熱水を流すことにより、逆に温度上昇が急峻で目標温度を超えそうな過加熱の場合は温調水として冷却水を流すことにより、食材に対する精度の良い温度制御が可能となる。このように、ピン支持台20の内部に水路22を形成し温調水を流すことにより、雰囲気全体を空調するより食材に対する効率的な温度制御が可能となる。また、高周波電源60の周波数や出力調整では温度調整が難しい食材に対する加熱温度の微調整が可能となる。
FIG. 3 is an explanatory cross-sectional view of a main part showing the pin support 20 according to the first embodiment.
In the pin support 20, a water channel 22 through which temperature adjusting water (hereinafter referred to as “temperature-controlled water”) flows vertically passes between the through holes 21. Accordingly, by flowing the temperature-controlled water while the pin electrode 10 is in contact with the food material, heat exchange is performed between the temperature-controlled water and the pin electrode 10, and at the same time, between the pin electrode 10 and the food material. However, since heat exchange is performed, the surface of the food is indirectly heated or cooled as a result. Therefore, hot water is flown as temperature control water in the case of poor heating where the temperature rise is slow, and conversely, cooling water is flowed as temperature control water in the case of overheating where the temperature rise is steep and likely to exceed the target temperature. This makes it possible to control the temperature of food with high accuracy. Thus, by forming the water channel 22 inside the pin support base 20 and flowing the temperature-controlled water, it is possible to control the temperature more efficiently for the food than to air-condition the entire atmosphere. In addition, it is possible to finely adjust the heating temperature for foods that are difficult to adjust by adjusting the frequency and output of the high-frequency power supply 60.

図4は、実施例2に係る加熱電極100,100を用いた加熱方法を示す説明図である。なお、説明の都合上、ピン電極10およびピン支持台20のみを描き、その他の構成部品については省略してある。
この加熱電極は、ピン電極10の軸方向がコンベアCの搬送面に平行かつ搬送方向に直交するように水平対向に配設されている。従って、食材51はコンベアCにより搬送されながらその加熱ピン電極間を通過することにより、ピン電極10から誘電加熱を受けて加熱殺菌される。なお、コンベアCを一定時間停止し、食材51が集中的に誘電加熱を受けて加熱殺菌されるようにしても良い。
FIG. 4 is an explanatory diagram illustrating a heating method using the heating electrodes 100 and 100 according to the second embodiment. For convenience of explanation, only the pin electrode 10 and the pin support base 20 are drawn, and the other components are omitted.
The heating electrodes are arranged horizontally opposite so that the axial direction of the pin electrode 10 is parallel to the conveying surface of the conveyor C and perpendicular to the conveying direction. Therefore, the food material 51 passes through between the heating pin electrodes while being conveyed by the conveyor C, and is thus subjected to heat sterilization by receiving dielectric heating from the pin electrode 10. In addition, the conveyor C may be stopped for a certain period of time, and the food material 51 may be subjected to heat sterilization by intensively receiving dielectric heating.

図5は、実施例3に係る加熱電極200を示す要部断面説明図である。
この加熱電極200は、食品接触による汚染、食品加熱時に食品中から発生する蒸気、あるいは雰囲気環境による腐食からピンを好適に保護するカバー52を備えている。また、カバー52の材質としては、柔軟性がありピン動作を損なわなければ特に限定されることはなく、例えば、厚み0.3mm〜5mm程度のシリコンゴムやフッ素ゴム、厚み0.05mm〜0.2mm程度のPP、PE、PET等の熱可塑性樹脂フィルム、又はこれらの複合材であり、アルミ、銅、カーボン、チタン、白金等の導電性金属箔又は導電性箔であっても良い。上記以外の構成については加熱電極100と同じである。
FIG. 5 is an explanatory cross-sectional view of a main part showing the heating electrode 200 according to the third embodiment.
The heating electrode 200 includes a cover 52 that suitably protects the pins from contamination due to food contact, steam generated from the food during heating of the food, or corrosion due to the atmospheric environment. The material of the cover 52 is not particularly limited as long as it is flexible and does not impair the pin operation. For example, silicon rubber or fluororubber having a thickness of about 0.3 mm to 5 mm, a thickness of 0.05 mm to 0.00 mm. It is a thermoplastic resin film such as PP, PE, and PET of about 2 mm, or a composite material thereof, and may be a conductive metal foil or conductive foil such as aluminum, copper, carbon, titanium, or platinum. The configuration other than the above is the same as that of the heating electrode 100.

図6は、上記加熱電極200を用いた食材の加熱方法を示す説明図である。
この加熱方法は、被加熱材が非密閉状態でトレー又はカップ等の容器53に充填された食材51である場合の加熱方法を示している。電極の一方は、上方に配され食材51の凹凸形状に好適に追従して食材51を加熱する加熱電極200であり、他方は下方に配され容器53の底部形状を型取った凹部形状300aを有し食材51を加熱する加熱電極300である。また、加熱電極300は、容器53の底部形状を型取った凹形状に加工されたアルミ材に高耐食性表面処理としてテフロン(登録商標)コート、ダイクロンコート、無電解ニッケルメッキ等を施したものであり、他にも銅、カーボン、チタン、白金等の導電性材料であってもよい。
FIG. 6 is an explanatory diagram showing a method of heating food using the heating electrode 200.
This heating method is a heating method in the case where the material to be heated is the food material 51 filled in a container 53 such as a tray or a cup in an unsealed state. One of the electrodes is a heating electrode 200 that is arranged on the upper side and suitably follows the uneven shape of the food material 51 to heat the food material 51, and the other is a concave shape 300a that is arranged on the lower side and molds the bottom shape of the container 53. This is a heating electrode 300 for heating the food 51. Further, the heating electrode 300 is obtained by applying a Teflon (registered trademark) coat, a dicron coat, an electroless nickel plating, etc. as a highly corrosion-resistant surface treatment to an aluminum material processed into a concave shape obtained by shaping the bottom shape of the container 53. In addition, a conductive material such as copper, carbon, titanium, or platinum may be used.

図7は、実施例5に係る加熱電極400を用いた食材の加熱方法を示す説明図である。
この加熱方法は、包材50に包まれた食材51が、上下方向に対向して配置された加熱電極400,100(本実施例では固定され、位置可変機構42は取り外されている。)によって保持・位置決めされた状態で誘電加熱されている。なお、加熱電極400は可動電極であり、ピン支持台20'が負荷調整電極としても機能するように、圧力可変ガスチャンバ30に位置可変機構42'が設けられている。この位置可変機構42'によって、ピン支持台20'を他方のピン支持台20に対しピン電極10の駆動とは別個独立に相対変位させ、負荷のインピーダンスZLと高周波電源のインピーダンスZSを整合させることが可能になる。また、上記以外の構成については加熱電極100と同じである。
FIG. 7 is an explanatory diagram illustrating a heating method of food using the heating electrode 400 according to the fifth embodiment.
In this heating method, the food 51 wrapped in the packaging material 50 is heated by the heating electrodes 400 and 100 (in the present embodiment, fixed and the position variable mechanism 42 is removed) arranged to face each other in the vertical direction. Dielectric heating is performed in a state of being held and positioned. The heating electrode 400 is a movable electrode, and a variable position mechanism 42 ′ is provided in the variable pressure gas chamber 30 so that the pin support 20 ′ also functions as a load adjustment electrode. 'By pin support 20' the position changing mechanism 42 is relatively displaced in independently of the driving of the pin electrodes 10 relative to the other pin support table 20, matching the impedance Z L and the high-frequency power source impedance Z S of the load It becomes possible to make it. The configuration other than the above is the same as that of the heating electrode 100.

このように、加熱電極に対し負荷調整電極40を別個に設けなくとも、例えば一方の加熱電極を可動電極とし他方の加熱電極を固定電極とすることによって、ピン電極10の被加熱材に対する電気的および/または熱的作用に影響を及ぼすことなく、負荷と高周波電源のインピーダンスの整合をとることが可能になる。   Thus, even if the load adjusting electrode 40 is not separately provided for the heating electrode, for example, by using one heating electrode as a movable electrode and the other heating electrode as a fixed electrode, the pin electrode 10 is electrically connected to the material to be heated. And / or impedance matching between the load and the high frequency power supply can be achieved without affecting the thermal action.

図8は、実施例6に係る加熱電極500を示す要部断面説明図である。
この加熱電極500では、対向する他方の電極(図示せず)と共に被加熱材を保持しながら被加熱材に対し電気的または熱的作用を及ぼす電極が平板電極11'によって構成され、ロッド12を介して圧力可変ガスチャンバ30によって軸方向に駆動される。なお、上記加熱電極100と同様に、負荷調整電極40は、位置可変機構42によって平板電極11’に対し別個独立に変位することが出来る。従って、上記加熱電極100,200,400と同様に、平板電極11’が被加熱材を保持し電気的作用および/または熱的作用を及ぼしている場合において、平板電極11’の被加熱材に対する電気的作用および/または熱的作用に影響を及ぼすことなく、負荷と高周波電源のインピーダンスの整合をとることが可能になる。
FIG. 8 is an explanatory cross-sectional view of a main part showing a heating electrode 500 according to the sixth embodiment.
In the heating electrode 500, an electrode that exerts an electrical or thermal action on the heated material while holding the heated material together with the other electrode (not shown) facing each other is constituted by the plate electrode 11 ′. And is driven in the axial direction by the pressure variable gas chamber 30. Similar to the heating electrode 100, the load adjustment electrode 40 can be independently displaced with respect to the plate electrode 11 ′ by the position variable mechanism. Therefore, as in the case of the heating electrodes 100, 200, and 400, when the plate electrode 11 ′ holds the material to be heated and exerts an electrical action and / or a thermal action, the plate electrode 11 ′ has a resistance to the material to be heated. The impedance of the load and the high frequency power source can be matched without affecting the electrical and / or thermal effects.

また、上記加熱電極200と同様に、加熱電極500に対しカバー52を設けても良い。   Further, similarly to the heating electrode 200, a cover 52 may be provided for the heating electrode 500.

図9は、実施例7に係る加熱電極600を示す説明図である。図9(a)は平面図であり、同(b)はA−A断面図である。
この加熱電極600では、被加熱材である食材51に電気的および/または熱的作用を及ぼす電極が、容器53の胴部外周面に部分的に嵌合する形状追従電極11"を成している。従って、食材51を加熱する形態は、絶縁部材70を介して形状追従電極11",11"によって両側から狭持する割型加熱形態である。また、上記加熱電極100と同様に、負荷調整電極40は、負荷調整駆動軸42aによって形状追従電極11"に対し別個独立に変位することが出来るため、形状追従電極11"の被加熱材に対する電気的作用および/または熱的作用に影響を及ぼすことなく、負荷と高周波電源のインピーダンスの整合をとることが可能になる。なお、図示されていないその他の構成要素については上記加熱電極100,200,400,500と同様である。
FIG. 9 is an explanatory diagram illustrating the heating electrode 600 according to the seventh embodiment. FIG. 9A is a plan view, and FIG. 9B is a cross-sectional view taken along line AA.
In this heating electrode 600, an electrode that electrically and / or thermally acts on the food 51 that is a material to be heated forms a shape following electrode 11 ″ that partially fits to the outer peripheral surface of the body portion of the container 53. Therefore, the form for heating the food material 51 is a split-type heating form that is sandwiched from both sides by the shape following electrodes 11 ″ and 11 ″ via the insulating member 70. Also, like the heating electrode 100, a load is applied. Since the adjustment electrode 40 can be independently displaced with respect to the shape following electrode 11 "by the load adjustment drive shaft 42a, the electric action and / or the thermal action of the shape following electrode 11" on the material to be heated is affected. The impedance of the load and the high-frequency power source can be matched without affecting the other components, which are not shown in the figure, similar to those of the heating electrodes 100, 200, 400, 500. is there.

本発明の加熱電極及びそれを用いた被加熱材の加熱方法は、特に不定形の食材の加熱に好適に適用することが可能である。   The heating electrode of the present invention and the heating method of a material to be heated using the heating electrode can be suitably applied particularly to heating of an irregular shaped food material.

10 ピン電極
11 ピンヘッド
12 ロッド
13 ピンキャップ
20 ピン支持台
21 貫通穴
30 圧力可変ガスチャンバ
31 インナースペース
32 チャンネル
33 ガスポート
34 圧縮機
35 真空ポンプ
36 三方弁
40 負荷調整電極
42 位置可変機構
52 カバー
100,200,300,400,500,600 加熱電極
DESCRIPTION OF SYMBOLS 10 Pin electrode 11 Pin head 12 Rod 13 Pin cap 20 Pin support 21 Through hole 30 Pressure variable gas chamber 31 Inner space 32 Channel 33 Gas port 34 Compressor 35 Vacuum pump 36 Three-way valve 40 Load adjustment electrode 42 Position variable mechanism 52 Cover 100 , 200, 300, 400, 500, 600 Heating electrode

Claims (4)

対向して配置され被加熱材を保持・高周波誘電加熱する加熱電極は、前記被加熱材の形状に追従する形態で被加熱材を保持する保持電極部と、該保持電極部に導通し別個独立して電極間方向に変位可能であり、負荷と高周波電源のインピーダンス整合をとる負荷調整電極とを備えたものであって、
前記保持部電極が前記被加熱材の形状に追従するピン電極であり、さらに、前記ピン電極を支持するピン支持台とを備えてなり、
前記負荷調整部は、前記ピン電極に導通しながら導通・摺動可能に貫通させる貫通孔が設けられた負荷調整電極として構成され、前記ピン電極と前記負荷電極とは摺動しながら相対変位することができるように構成され、
前記被加熱材からピン支持台側に向かって、前記被加熱材をピン電極にて保持する保持部、前記負荷調整部、前記ピン支持台の順で構成されていることを特徴とする加熱電極。
The heating electrodes that are arranged opposite to hold the heated material and perform high-frequency dielectric heating include a holding electrode portion that holds the heated material in a form that follows the shape of the heated material, and a conductive electrode that is electrically connected to the holding electrode portion. The load can be displaced in the direction between the electrodes, and includes a load and a load adjusting electrode for impedance matching of the high frequency power source ,
The holding part electrode is a pin electrode that follows the shape of the material to be heated, and further comprises a pin support that supports the pin electrode,
The load adjusting portion is configured as a load adjusting electrode provided with a through-hole that allows conduction and sliding while being conducted to the pin electrode, and the pin electrode and the load electrode are relatively displaced while sliding. Configured to be able to
A heating electrode comprising a holding portion for holding the heated material by a pin electrode, the load adjusting portion, and the pin supporting table in this order from the heated material toward the pin support base side .
前記保持電極部が配列された複数のピン電極構造である請求項1に記載の加熱電極。   The heating electrode according to claim 1, which has a plurality of pin electrode structures in which the holding electrode portions are arranged. 前記負荷調整電極は貫通穴が設けられ、前記ピン電極を通電・摺動可能に貫通される請求項2に記載の加熱電極。   The heating electrode according to claim 2, wherein the load adjustment electrode is provided with a through hole, and is passed through the pin electrode so as to be energized / slidable. 被加熱材を保持する保持電極部とインピーダンスの整合をとる負荷調整部とから成る加熱電極によって被加熱材を高周波誘電加熱する加熱方法であって、
前記保持部電極が前記被加熱材の形状に追従するピン電極であり、さらに、前記ピン電極を支持するピン支持台とを備えてなり、
前記負荷調整部は、前記ピン電極に導通しながら導通・摺動可能に貫通させる貫通孔が設けられた負荷調整電極として構成され、前記ピン電極と前記負荷電極とは摺動しながら相対変位することができるように構成され、
前記被加熱材からピン支持台側に向かって、前記被加熱材をピン電極にて保持する保持部、前記負荷調整部、前記ピン支持台の順で構成され、
前記保持電極部で形状に追従する形態で前記被加熱材を保持しながら、前記負荷調整部を構成する電極は前記保持電極部に対して電極間方向に別個独立に変位させることにより負荷と高周波電源のインピーダンスの整合をとることを特徴とする誘電加熱装置の加熱方法。
A heating method in which a material to be heated is subjected to high-frequency dielectric heating by a heating electrode composed of a holding electrode portion that holds the material to be heated and a load adjusting unit that matches impedance.
The holding part electrode is a pin electrode that follows the shape of the material to be heated, and further comprises a pin support that supports the pin electrode,
The load adjusting portion is configured as a load adjusting electrode provided with a through-hole that allows conduction and sliding while being conducted to the pin electrode, and the pin electrode and the load electrode are relatively displaced while sliding. Configured to be able to
From the heated material toward the pin support base side, the holding part that holds the heated material with a pin electrode, the load adjusting unit, and the pin support base are configured in this order.
Wherein while maintaining the material to be heated in a form that follows the shape the holding electrode portion, the electrode constituting the load adjustment section load and high frequency by displaced independently in the inter-electrode direction with respect to the holding electrode portion A method for heating a dielectric heating device, characterized by matching impedance of a power source .
JP2009115466A 2009-05-12 2009-05-12 Heating electrode and heating method of heated material using the same Expired - Fee Related JP5626503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115466A JP5626503B2 (en) 2009-05-12 2009-05-12 Heating electrode and heating method of heated material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115466A JP5626503B2 (en) 2009-05-12 2009-05-12 Heating electrode and heating method of heated material using the same

Publications (2)

Publication Number Publication Date
JP2010267401A JP2010267401A (en) 2010-11-25
JP5626503B2 true JP5626503B2 (en) 2014-11-19

Family

ID=43364214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115466A Expired - Fee Related JP5626503B2 (en) 2009-05-12 2009-05-12 Heating electrode and heating method of heated material using the same

Country Status (1)

Country Link
JP (1) JP5626503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013827A (en) * 2012-07-09 2015-02-05 도요세이칸 그룹 홀딩스 가부시키가이샤 Heating device and heating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878151A (en) * 1994-09-02 1996-03-22 Sharp Corp High frequency thawing device
JP3249701B2 (en) * 1994-12-28 2002-01-21 シャープ株式会社 Dielectric heating device
JP3966888B2 (en) * 2005-12-09 2007-08-29 株式会社羽野製作所 Electric cooking equipment for food
CN101731021B (en) * 2007-07-10 2013-03-20 东洋制罐株式会社 Heating electrode and method for heating material-to-be-heated by using the heating electrode

Also Published As

Publication number Publication date
JP2010267401A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5292611B2 (en) Heating electrode and heating method of heated material using the same
KR102540156B1 (en) Mounting table and plasma processing apparatus
WO2020253774A1 (en) Apparatus for manufacturing foam plastic by adopting rf and working method of the same
US10515786B2 (en) Mounting table and plasma processing apparatus
US8664574B2 (en) Resonator unit, expansion process and apparatus for heating containers
JP2008244063A5 (en)
HK1131731A1 (en) Device for pasteurizing a mass of foodstuff
US20170278737A1 (en) Processing apparatus for workpiece
JP5626503B2 (en) Heating electrode and heating method of heated material using the same
JP4893963B2 (en) Method and apparatus for heating food package
CN109430675B (en) High-frequency thawing device and high-frequency thawing method
JP2016530120A (en) Apparatus for heating preforms made of thermoplastic material or planar or preformed semi-finished products
JP5494921B2 (en) Heating device
JP5614536B2 (en) High frequency dielectric heating device for heated object
US9734993B2 (en) Semiconductor manufacturing apparatus
US10006143B2 (en) Power supplying member and high-speed plating machine provided with the same
US8981805B2 (en) Inspection apparatus and inspection method
JP6737574B2 (en) High frequency induction heating device
JP6484783B2 (en) Pressurized heat treatment apparatus and pressure heat treatment method for food
JP2010057423A (en) Method for sterilizing liquid food product by shortwave electric field, and sterilization apparatus
US6610246B1 (en) Sintering method and sintering apparatus
JP6497038B2 (en) Heating method of heated material
KR101320064B1 (en) Wafer bonder using dual-cooling and wafer bonding method
EP2832520A1 (en) Machine and method for rotational molding of hollow objects of thermoplastic material
KR101331590B1 (en) Wafer bonder unsing electromagnetic wave heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5626503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees