JP2012098247A - Tree position detection device, tree position detection method, and program - Google Patents

Tree position detection device, tree position detection method, and program Download PDF

Info

Publication number
JP2012098247A
JP2012098247A JP2010248369A JP2010248369A JP2012098247A JP 2012098247 A JP2012098247 A JP 2012098247A JP 2010248369 A JP2010248369 A JP 2010248369A JP 2010248369 A JP2010248369 A JP 2010248369A JP 2012098247 A JP2012098247 A JP 2012098247A
Authority
JP
Japan
Prior art keywords
tree
point cloud
cloud data
forest
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010248369A
Other languages
Japanese (ja)
Other versions
JP5507418B2 (en
Inventor
Hideki Shimamura
秀樹 島村
Toshio Kogure
利雄 小暮
Kikuo Tachibana
菊生 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2010248369A priority Critical patent/JP5507418B2/en
Publication of JP2012098247A publication Critical patent/JP2012098247A/en
Application granted granted Critical
Publication of JP5507418B2 publication Critical patent/JP5507418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is not easy to accurately recognize positions of individual trees on the basis of tree crown shapes recognized from the sky above a forest.SOLUTION: Positions of trees are detected using three-dimensional point group data of a forest, which is acquired by airborne laser measurement which measures a reflected signal waveform of a laser pulse made to sweep from the sky above. Heights represented by the point group data are converted to substantial heights from the ground surface to generate normalized point group data (S52). A certain height range within the forest is set as a branch height layer on the basis of difference in distribution of the normalized point group data between a tree crown region and a branch height region under it in the forest (S54). Normalized point group data belonging to the branch height layer is extracted and is projected on a plane along the ground surface to obtain a two-dimensional frequency distribution (S56). Positions of high densities of the normalized point group data in the two-dimensional frequency distribution are detected on the basis of prescribed criteria and are defined as tree positions (S58).

Description

本発明は、森林における樹木位置を検出する樹木位置検出装置、樹木位置検出方法、及びプログラムに関する。   The present invention relates to a tree position detection device, a tree position detection method, and a program for detecting a tree position in a forest.

森林の樹種、樹齢、立木数、樹高等の評価は、調査員が現地に調査に赴き、各種計測器のよる測定や目視による観測により行うことができる。しかし、調査対象の森林が広大である場合は、調査対象区域全体を現地調査することは多大な費用・労力を要し現実的ではない。そこで、従来、調査対象区域内にて代表的な林相、地形を有する一部領域にて現地調査を行い、その調査結果に基づいて当該調査対象区域の全体を評価していた。   Evaluation of forest tree species, tree age, number of standing trees, tree height, etc. can be carried out by investigators visiting the site and making measurements with various measuring instruments and visual observations. However, if the forest to be surveyed is vast, it is not practical to conduct a field survey of the entire survey area because it requires a lot of cost and labor. Therefore, in the past, field surveys were conducted in some areas with typical forest features and topography within the survey area, and the entire survey area was evaluated based on the survey results.

近年では世界各国において地球温暖化対策が検討されている。森林による二酸化炭素吸収は温暖化防止策とされ、その吸収量を算定するために森林についての上記評価の精度を確保することが必要である。しかし、例えば、調査対象区域全体の樹種及び樹齢が同一であったとしても、樹木の立地条件の違いによって樹木の生育状態が異なり得る。このことからも理解されるように、一部領域の現地調査の結果に基づいて調査対象の森林全体を正確に評価することは極めて困難である。   In recent years, global warming countermeasures are being studied in various countries around the world. Carbon dioxide absorption by forests is considered as a measure to prevent global warming, and it is necessary to ensure the accuracy of the above evaluation for forests in order to calculate the amount of absorption. However, even if, for example, the tree species and the age of the entire survey target area are the same, the growth state of the tree may differ depending on the location condition of the tree. As can be understood from this, it is extremely difficult to accurately evaluate the entire forest under study based on the results of field surveys in some areas.

この点、調査対象区域全体について、航空写真を目視で判読したり、航空レーザ計測データを解析したりして森林を評価することも行われる。   In this regard, forests are also evaluated by visually interpreting aerial photographs and analyzing aerial laser measurement data for the entire survey area.

特開2007−198760号公報JP 2007-198760 A

例えば、森林管理が行き届いていない場合や、針葉樹に比較して横に広がる性質を有する広葉樹の場合に、各樹木の樹冠が互いに近接、密集したり、樹冠頂点が不明確となりやすい。このような場合、航空写真において各樹木の樹冠の形状が明瞭でなくなり、樹木の位置、本数の目視判読が難しくなる。そのため、その判読結果は判読する者の技術レベルに大きく依存し、精度・信頼性が十分でない場合もあるという問題があった。   For example, when forest management is not perfect, or when a broadleaf tree has the property of spreading laterally compared to conifers, the crowns of the trees tend to be close to each other and dense, or the crown apex tends to be unclear. In such a case, the shape of the crown of each tree is not clear in the aerial photograph, and visual interpretation of the position and number of the trees becomes difficult. For this reason, the interpretation result largely depends on the technical level of the interpreter, and there is a problem that accuracy and reliability may not be sufficient.

この点、航空レーザ計測により得られる数値表層モデル(Digital Surface Model:DSM)では、樹冠表面の起伏が数値で表されるので航空写真と比較すれば樹冠形状を客観的に把握可能となるが、上述のように広葉樹が密集している場合などには、樹冠表面の起伏と樹木との対応付けは必ずしも容易ではない。   In this regard, in the numerical surface model (Digital Surface Model: DSM) obtained by aerial laser measurement, the undulations on the surface of the canopy are expressed numerically, so it is possible to objectively grasp the crown shape compared to aerial photographs, When broad-leaved trees are dense as described above, it is not always easy to associate the undulations on the crown surface with the trees.

本発明は上記問題点を解決するためになされたものであり、現地調査に頼らずに樹木の位置を精度よく検出するための樹木位置検出装置、樹木位置検出方法、及びプログラムを提供することを目的とする。   The present invention has been made to solve the above problems, and provides a tree position detection device, a tree position detection method, and a program for accurately detecting the position of a tree without depending on a field survey. Objective.

本発明に係る樹木位置検出装置は、上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する装置であって、前記点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成する正規化手段と、当該森林の樹冠領域とその下の枝下領域とでの前記正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する枝下層設定手段と、前記枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求める平面投影手段と、所定基準に基づいて、前記二次元頻度分布にて前記正規化点群データが集まる箇所を検出して樹木位置とする位置検出手段と、を有する。   A tree position detection device according to the present invention is a device that detects the position of a tree using three-dimensional point cloud data of a forest obtained by aerial laser measurement that sweeps a laser pulse from above and measures a reflected signal waveform thereof. A normalization means for generating normalized point cloud data by converting the height represented by the point cloud data into a real height from the ground surface, and a canopy region of the forest and a sub-branch region below the normal region. Based on the difference in the distribution of the normalized point cloud data, the lower branch setting means for setting a constant height range in the forest as the lower branch, and the normalized point cloud data belonging to the lower branch is extracted. Plane projection means for obtaining a two-dimensional frequency distribution by projecting onto a plane along the ground surface, and a tree position by detecting a location where the normalized point cloud data gathers in the two-dimensional frequency distribution based on a predetermined criterion; And position detecting means for

他の本発明に係る樹木位置検出装置においては、前記枝下層設定手段は、前記正規化点群データの高さ方向の頻度分布を求め、前記枝下領域での前記正規化点群データの分布密度が前記樹冠領域よりも低くなることに応じて前記頻度分布に形成される、地表側にて樹冠領域側よりも頻度が低くなる範囲に前記枝下層を設定する。   In the tree position detecting apparatus according to another aspect of the present invention, the lower branch setting means obtains a frequency distribution in the height direction of the normalized point cloud data, and the distribution of the normalized point cloud data in the lower branch region The lower branch layer is set in a range that is formed in the frequency distribution according to the density being lower than that of the canopy region and is lower in frequency than the canopy region side on the ground surface side.

別の本発明に係る樹木位置検出装置は、さらに、前記点群データに基づいて数値標高モデルを生成する数値標高モデル生成手段を有し、前記正規化手段は、前記点群データが表す高さから前記数値標高モデルが表す高さを減算して前記実質高さを求める。   The tree position detecting apparatus according to another aspect of the present invention further includes a digital elevation model generating unit that generates a digital elevation model based on the point cloud data, and the normalizing unit is a height represented by the point cloud data. The real height is obtained by subtracting the height represented by the digital elevation model from

また別の本発明に係る樹木位置検出装置は、さらに上空から前記森林を撮影した画像にて樹木毎の樹冠画像を抽出する樹冠画像抽出手段と、前記位置検出手段で求めた前記樹木位置を前記樹冠画像の樹木位置との照合により確定する照合手段と、を有する。   The tree position detection device according to another aspect of the present invention further includes a crown image extraction means for extracting a crown image for each tree in an image obtained by photographing the forest from above, and the tree position obtained by the position detection means as the tree position. Collating means for confirming with a tree position of the tree crown image.

本発明の好適な態様は、上記本発明に係る樹木位置検出装置において、前記森林について樹種又は樹齢を含む森林管理情報に基づき予め区分された区域毎に、前記樹木位置を求めるものである。   According to a preferred aspect of the present invention, in the tree position detection apparatus according to the present invention, the tree position is obtained for each area that is pre-divided based on forest management information including tree species or tree age for the forest.

本発明に係る樹木位置検出方法は、上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する方法であって、前記点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成する正規化ステップと、当該森林の樹冠領域とその下の枝下領域とでの前記正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する枝下層設定ステップと、前記枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求める平面投影ステップと、所定基準に基づいて、前記二次元頻度分布にて前記正規化点群データが集まる箇所を検出して樹木位置とする位置検出ステップと、を有する。   The tree position detection method according to the present invention is a method for detecting the position of a tree using three-dimensional point cloud data of a forest obtained by aerial laser measurement that sweeps a laser pulse from above and measures a reflected signal waveform thereof. A normalization step for generating normalized point cloud data by converting the height represented by the point cloud data into a real height from the ground surface, and a canopy region of the forest and a sub-branch region below the normal region. Based on the difference in the distribution of the normalized point cloud data, a lower branch setting step for setting a constant height range in the forest as a lower branch layer, and extracting the normalized point cloud data belonging to the lower branch layer A plane projection step for obtaining a two-dimensional frequency distribution by projecting onto a plane along the ground surface, and a tree position by detecting a location where the normalized point cloud data gathers in the two-dimensional frequency distribution based on a predetermined criterion; Position detection step Has a flop, the.

本発明に係るプログラムは、コンピュータに、上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する処理を行わせるためのプログラムであって、当該コンピュータを、前記点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成する正規化手段、当該森林の樹冠領域とその下の枝下領域とでの前記正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する枝下層設定手段、前記枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求める平面投影手段、及び、所定基準に基づいて、前記二次元頻度分布にて前記正規化点群データが集まる箇所を検出して樹木位置とする位置検出手段、として機能させる。   The program according to the present invention is a process for detecting the position of a tree using three-dimensional point cloud data of a forest acquired by an aerial laser measurement that sweeps a laser pulse from the sky and measures the reflected signal waveform in a computer. A normalizing means for generating normalized point cloud data by converting the height represented by the point cloud data into a real height from the ground surface, and a canopy region of the forest Based on the difference in distribution of the normalized point cloud data between the lower branch area and the lower branch area, the branch lower layer setting means for setting a constant height range in the forest as the branch lower layer, the branch belonging to the branch lower layer Normalized point cloud data is extracted and projected onto a plane along the ground surface to obtain a two-dimensional frequency distribution, and based on a predetermined criterion, the normalized point cloud data is extracted from the two-dimensional frequency distribution. Collection Position detecting means for location and detect and trees position that, to function as a.

本発明によれば、航空レーザ計測のデータを用いて現地調査に頼らずに、かつ精度が向上した樹木位置の検出が可能となる。   According to the present invention, it is possible to detect a tree position with improved accuracy without relying on an on-site survey using data of an aerial laser measurement.

本発明の実施形態に係る樹木位置検出装置の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the tree position detection apparatus which concerns on embodiment of this invention. 本発明の実施形態の樹木位置検出装置による樹木位置検出処理の概略のフロー図である。It is a general | schematic flowchart of the tree position detection process by the tree position detection apparatus of embodiment of this invention. 正規化処理を説明する森林の模式図である。It is a schematic diagram of the forest explaining a normalization process. 枝下層設定処理を説明する森林の模式図である。It is a schematic diagram of the forest explaining a branch lower layer setting process. 正規化点群データの高さ方向の頻度分布を説明する模式図である。It is a schematic diagram explaining the frequency distribution of the height direction of normalized point cloud data. 枝下層の正規化点群データを水平面に投影して得られる二次元頻度分布の模式図である。It is a schematic diagram of the two-dimensional frequency distribution obtained by projecting the normalized point cloud data of the lower branch layer on the horizontal plane.

以下、本発明の実施の形態(以下実施形態という)である樹木位置検出装置2について、図面に基づいて説明する。本装置は、航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する。   Hereinafter, a tree position detection apparatus 2 according to an embodiment of the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. This device detects the position of the tree using the three-dimensional point cloud data of the forest acquired by the aviation laser measurement.

三次元の点群データは、例えば、航空機やヘリコプターなどに搭載されたレーザ計測装置を用いて取得される。レーザ計測装置は上空からレーザパルスを掃射し、その反射信号を受信し、パルス発射から受信までの時間から反射点までの距離を求める。   The three-dimensional point cloud data is acquired using, for example, a laser measurement device mounted on an aircraft, a helicopter, or the like. The laser measuring device sweeps the laser pulse from the sky, receives the reflection signal, and obtains the distance from the time from pulse emission to reception to the reflection point.

従来のレーザ計測装置では、反射信号波形に現れるピークのうち強度が大きいものを所定数(例えば、4点とする装置が多い)だけ記録していたが、近年、フルウェーブフォーム計測を可能とするレーザ計測装置が開発されている。フルウェーブフォーム計測では、反射信号を連続的に計測し記録することで、計測データにより波形が表される。本装置では、このフルウェーブフォーム計測によるデータを用いる。例えば、フルウェーブフォーム計測により、反射信号は256点にてサンプリングされて記録され、これにより、本装置で用いる三次元の点群データにはレーザパルスを照射した方向の任意の高さでの反射がその強度にかかわらず含まれる。   In the conventional laser measuring apparatus, only a predetermined number (for example, many apparatuses having four points) of high intensity among the peaks appearing in the reflected signal waveform are recorded. However, in recent years, full waveform measurement is possible. Laser measuring devices have been developed. In full waveform measurement, a reflected signal is continuously measured and recorded, whereby a waveform is represented by measurement data. In this apparatus, data by this full waveform measurement is used. For example, by a full waveform measurement, the reflected signal is sampled and recorded at 256 points, and as a result, the three-dimensional point cloud data used in this apparatus is reflected at an arbitrary height in the direction of laser pulse irradiation. Is included regardless of its strength.

平地ではレーザ計測装置は通常、直下視方式で搭載され、レーザパルスの照射は航空機等の直下方向を中心として飛行方向に直交する方向にスキャンされる。すなわち、レーザパルスは鉛直方向への照射を除き、多かれ少なかれ斜めに樹木に対して当たる。この点、地形計測の際は、森林域においてレーザパルスが樹木を通過して地表面に当たりやすくするために、スキャン角度を小さく設定して地表に対して垂直に近い角度でレーザを照射することが好適である。これに対し、本装置では樹木の位置を検出するために樹幹での反射を利用するので、スキャン角度を大きくして樹幹にレーザパルスが当たりやすくして取得されたレーザ計測データの方が好適である。さらに、スキャン幅のオーバーラップ率を調節して、各計測地点にて斜め照射によるレーザ計測データが得られるようにすることも好適である。また、斜面の計測に際して採られる斜方視方式でレーザ計測装置を搭載して取得されたレーザ計測データを用いることも好適である。   On flat ground, the laser measuring device is usually mounted in a direct view method, and the irradiation of the laser pulse is scanned in a direction perpendicular to the flight direction centering on the direct downward direction of an aircraft or the like. That is, the laser pulse strikes the tree more or less diagonally, except for vertical irradiation. In this regard, when measuring topography, in order to make it easier for the laser pulse to pass through the trees and hit the ground surface in the forest area, it is possible to set the scan angle small and irradiate the laser at an angle close to the ground surface. Is preferred. On the other hand, since this apparatus uses reflection at the trunk to detect the position of the tree, laser measurement data acquired by increasing the scan angle and making the laser pulse easily hit the trunk is more suitable. is there. It is also preferable to adjust the scan width overlap rate so that laser measurement data obtained by oblique irradiation can be obtained at each measurement point. In addition, it is also preferable to use laser measurement data acquired by mounting a laser measurement device in the oblique viewing method adopted when measuring a slope.

本装置は、レーザ計測データだけで樹木位置を良好な精度で検出することを可能とする一方、航空写真の情報を併用することで一層の精度・信頼性の向上を図ることもできる。そこで、例えば、レーザ計測を行う航空機にデジタルカメラも搭載しレーザ計測と同時に写真撮影を行うなどして、調査対象区域のレーザ計測データの他に、当該区域の航空写真も取得されているものとする。   While this apparatus can detect a tree position with good accuracy only by laser measurement data, it can also improve accuracy and reliability by using aerial photograph information together. Therefore, for example, an aerial photograph of the survey area is acquired in addition to the laser measurement data of the survey target area by installing a digital camera on the aircraft that performs laser measurement and taking a photograph at the same time as the laser measurement. To do.

図1は、樹木位置検出装置2の概略の構成を示すブロック図である。本システムは、演算処理装置4、記憶装置6、入力装置8及び出力装置10を含んで構成される。演算処理装置4として、本システムの各種演算処理を行う専用のハードウェアを作ることも可能であるが、本実施形態では演算処理装置4は、コンピュータ及び、当該コンピュータ上で実行されるプログラムを用いて構築される。   FIG. 1 is a block diagram illustrating a schematic configuration of the tree position detection apparatus 2. The system includes an arithmetic processing device 4, a storage device 6, an input device 8, and an output device 10. As the arithmetic processing device 4, it is possible to make dedicated hardware for performing various arithmetic processing of this system, but in this embodiment, the arithmetic processing device 4 uses a computer and a program executed on the computer. Built.

当該コンピュータのCPU(Central Processing Unit)が演算処理装置4を構成し、後述するDTM生成手段20、正規化手段22、枝下層設定手段24、平面投影手段26、位置検出手段28、樹冠画像抽出手段30及び照合手段32として機能する。   A CPU (Central Processing Unit) of the computer constitutes an arithmetic processing unit 4, which will be described later, such as DTM generation means 20, normalization means 22, branch layer setting means 24, plane projection means 26, position detection means 28, and canopy image extraction means. 30 and the matching means 32.

記憶装置6はコンピュータに内蔵されるハードディスクなどで構成される。記憶装置6は演算処理装置4をDTM生成手段20、正規化手段22、枝下層設定手段24、平面投影手段26、位置検出手段28、樹冠画像抽出手段30及び照合手段32として機能させるためのプログラム及びその他のプログラムや、本システムの処理に必要な各種データを記憶する。例えば、調査対象区域とする森林について上述のレーザ計測装置で取得されたレーザ計測データは地上での例えば直交座標系で表された三次元の点群データ40とされ、記憶装置6に処理対象データとして格納される。また、デジタルカメラで撮影された航空写真の画像データ42も処理対象データとして記憶装置6に格納される。記憶装置6は、各処理での中間データの保持にも用いられ、例えば、後述する正規化点群データ44を格納する。   The storage device 6 is composed of a hard disk or the like built in the computer. The storage device 6 is a program for causing the arithmetic processing unit 4 to function as the DTM generation unit 20, the normalization unit 22, the lower layer setting unit 24, the plane projection unit 26, the position detection unit 28, the tree crown image extraction unit 30, and the matching unit 32. And other programs and various data necessary for processing of the system. For example, the laser measurement data acquired by the above-described laser measurement device for the forest that is the survey target area is the three-dimensional point cloud data 40 represented on the ground, for example, in an orthogonal coordinate system, and the processing target data is stored in the storage device 6. Is stored as The aerial photograph image data 42 taken by the digital camera is also stored in the storage device 6 as processing target data. The storage device 6 is also used to hold intermediate data in each process, and stores, for example, normalized point cloud data 44 described later.

入力装置8は、キーボード、マウスなどであり、ユーザが本システムへの操作を行うために用いる。   The input device 8 is a keyboard, a mouse, or the like, and is used for a user to operate the system.

出力装置10は、ディスプレイ、プリンタなどであり、本システムにより求められた樹木位置を画面表示、印刷等によりユーザに示す等に用いられる。   The output device 10 is a display, a printer, or the like, and is used for showing the tree position obtained by this system to the user by screen display, printing, or the like.

図2は、樹木位置検出装置2による樹木位置検出処理の概略のフロー図である。この図2を参照しながら、演算処理装置4の各手段を説明する。   FIG. 2 is a schematic flowchart of tree position detection processing by the tree position detection device 2. Each means of the arithmetic processing unit 4 will be described with reference to FIG.

DTM生成手段20は、点群データ40に基づいて数値標高モデル(Digital Terrain Model:DTM)を生成する(DTM生成処理S50)。森林へ発射した各レーザパルスに対する反射信号の末尾にて得られるラストパルスは地表での反射によるものであると期待できる。そこで、DTM生成手段20は、点群データ40のうちラストパルスに対応する点に基づいてDTMを生成する。なお、その際、ラストパルスが表す三次元形状に対して、さらに樹木、建物等の地物除去のためのフィルタリング処理を行ってもよい。フルウェーブフォーム計測で得られる点群データ40には、従来の計測より地表面の反射点を多く取得できるので、DTMを精度よく求めることが可能である。地表面標高の精度の向上により樹木の根元の高さが精度よく定まり、ひいては後述の枝下層が精度よく求められる利点がある。なお、他の手段で予め得られているDTMを次の正規化処理で使用する場合は、DTM生成手段20による処理は省略することができる。   The DTM generation means 20 generates a digital elevation model (Digital Terrain Model: DTM) based on the point cloud data 40 (DTM generation processing S50). It can be expected that the last pulse obtained at the end of the reflection signal for each laser pulse emitted to the forest is due to reflection on the ground surface. Therefore, the DTM generating unit 20 generates a DTM based on the point corresponding to the last pulse in the point cloud data 40. At that time, filtering processing for removing features such as trees and buildings may be further performed on the three-dimensional shape represented by the last pulse. In the point cloud data 40 obtained by the full waveform measurement, more reflection points on the ground surface can be obtained than in the conventional measurement, so that the DTM can be obtained with high accuracy. By improving the accuracy of the ground surface elevation, the height of the root of the tree can be determined with high accuracy, and as a result, there is an advantage that a lower branch layer described later can be obtained with high accuracy. When a DTM obtained in advance by other means is used in the next normalization process, the process by the DTM generating means 20 can be omitted.

正規化手段22は、直交座標系XYZのZ値で表される点群データ40の高さを地表からの実質高さに換算して正規化点群データ44を生成する(正規化処理S52)。具体的には、正規化点群データ44は、点群データ40の高さ(標高)を、その高さからDTMが表す高さ(標高)を減算して得られる実質高さで置き換えることにより生成される。   The normalizing means 22 generates the normalized point cloud data 44 by converting the height of the point cloud data 40 represented by the Z value of the orthogonal coordinate system XYZ into a substantial height from the ground surface (normalization processing S52). . Specifically, the normalized point cloud data 44 is obtained by replacing the height (elevation) of the point cloud data 40 with the actual height obtained by subtracting the height (elevation) represented by the DTM from the height. Generated.

図3は正規化処理S52を説明する森林の模式図であり、横方向は水平方向(X,Y軸方向)に対応し、縦方向は垂直方向(Z軸方向)に対応する。図3(a)は、正規化処理S52の前の状態、図3(b)は正規化処理S52の後の状態を表している。   FIG. 3 is a schematic diagram of the forest for explaining the normalization process S52. The horizontal direction corresponds to the horizontal direction (X and Y axis directions), and the vertical direction corresponds to the vertical direction (Z axis direction). 3A shows a state before the normalization process S52, and FIG. 3B shows a state after the normalization process S52.

図3(a)に示す森林の樹木70は地表72に立っている。同図において点群データ40を構成する反射点74の位置を“×”印で例示している。樹木70の反射点74の高さは点群データ40では標高で表されているので、その値は当該樹木70が立つ地表72の標高に、樹木70の根元から当該反射点74までの実質高さを加えたものとなる。すなわち、図3(a)に示すように、地表72が起伏を有する場合、各樹木70にて枝葉が茂る樹冠部分76の下の樹幹部分78の高さ範囲が地表72の標高に応じて変動する。   The forest tree 70 shown in FIG. In the drawing, the positions of the reflection points 74 constituting the point cloud data 40 are illustrated by “x” marks. Since the height of the reflection point 74 of the tree 70 is represented by an altitude in the point cloud data 40, the value is the altitude of the ground surface 72 where the tree 70 stands, and the actual height from the root of the tree 70 to the reflection point 74. Will be added. That is, as shown in FIG. 3A, when the ground surface 72 has undulations, the height range of the trunk portion 78 under the crown portion 76 where branches and leaves grow in each tree 70 varies depending on the altitude of the ground surface 72. To do.

正規化処理S52は、樹木70の反射点74の高さから地表72の標高を表すDTMの値を減算することで、図3(b)に示すように、樹幹部分78の根元を高さ0の平面に変換された地表72bに揃え、これにより後述の処理での樹幹部分78の抽出処理を容易とする。   The normalization process S52 subtracts the DTM value representing the altitude of the ground surface 72 from the height of the reflection point 74 of the tree 70, so that the root of the trunk portion 78 has a height of 0 as shown in FIG. Thus, the extraction process of the trunk portion 78 in the process described later is facilitated.

枝下層設定手段24は、調査対象の森林の樹冠領域とその下の枝下領域とでの正規化点群データ44の分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する(枝下層設定処理S54)。   Based on the difference in the distribution of the normalized point cloud data 44 between the canopy region of the forest to be investigated and the sub-branch region below it, the branch lower layer setting means 24 calculates a constant height range within the forest. (Branch lower layer setting process S54).

図4は、枝下層設定処理S54を説明する森林の模式図であり、図3(b)で示した正規化処理S52後の状態に当たる。図4には、各樹木70の樹冠部分76からなる樹冠領域80と、その下の枝葉を有さない樹幹部分78からなる枝下領域82とを示している。枝下領域82の下端は、平面である地表72bに一致するのに対し、上端は各樹木70によって異なり得る。   FIG. 4 is a schematic diagram of the forest for explaining the branch lower layer setting process S54, and corresponds to the state after the normalization process S52 shown in FIG. FIG. 4 shows a canopy region 80 made up of a crown portion 76 of each tree 70 and a sub-branch region 82 made up of a trunk portion 78 having no branches and leaves below. The lower end of the lower branch region 82 coincides with the ground surface 72b which is a plane, while the upper end may be different for each tree 70.

樹冠領域80と枝下領域82とでの正規化点群データ44の分布の違いは、正規化点群データ44の高さ方向の頻度分布に現れる。図5は当該頻度分布を説明する模式図であり、同図の左側には図4に示した森林の模式図を示し、その右側に当該森林の高さ方向の頻度分布90を示している。頻度分布90は、そのZ軸を左側の森林の模式図のZ軸と共通にして表示している。樹木70はその樹冠部分76では、樹幹に茂る枝葉によって樹幹よりも水平方向に広がり、その枝葉がレーザパルスの反射点74となり得るので、基本的に樹幹部分78より反射点74が多く生じ、その分布密度が高くなる。一方、樹幹部分78は基本的に樹冠部分76より細いので、樹冠部分76と比較してレーザパルスが当たりにくく反射点74が少ないので分布密度が低くなる。その結果、頻度分布90は、樹冠領域80に対応する高さ範囲Raでの頻度が枝下領域82に対応する高さ範囲Rbより概して大きくなる。頻度分布90は、高さ範囲Raでの樹冠領域80と枝下領域82とが共存する高さ範囲Rmにて、高さ範囲Raでの相対的に高い平均レベルを有する状態から高さ範囲Rbでの低い頻度分布へ遷移する。すなわち、頻度分布90は、地表72b側にて樹冠領域80側の高さ範囲Raよりも頻度が低くなる高さ範囲Rtを有する。   The difference in distribution of the normalized point cloud data 44 between the tree crown region 80 and the under-branch region 82 appears in the frequency distribution in the height direction of the normalized point cloud data 44. FIG. 5 is a schematic diagram for explaining the frequency distribution. The left side of FIG. 5 shows the schematic diagram of the forest shown in FIG. 4, and the right side shows the frequency distribution 90 in the height direction of the forest. The frequency distribution 90 is displayed with the Z axis in common with the Z axis of the schematic diagram of the left forest. In the crown portion 76 of the tree 70, the branches and leaves that extend over the trunk extend in the horizontal direction from the trunk, and the branches and leaves can serve as the reflection points 74 of the laser pulse, so that basically there are more reflection points 74 than the trunk portion 78. Distribution density increases. On the other hand, since the trunk portion 78 is basically thinner than the crown portion 76, the laser pulse is less likely to hit as compared with the crown portion 76, and the number of reflection points 74 is small, so the distribution density is low. As a result, in the frequency distribution 90, the frequency in the height range Ra corresponding to the canopy region 80 is generally larger than the height range Rb corresponding to the under-branch region 82. The frequency distribution 90 has a height range Rb from a state having a relatively high average level in the height range Ra in the height range Rm in which the crown region 80 and the under-branch region 82 coexist in the height range Ra. Transition to a low frequency distribution at. That is, the frequency distribution 90 has a height range Rt whose frequency is lower on the ground surface 72b side than the height range Ra on the tree crown region 80 side.

この高さ範囲Rtは図5に示すように、例えば、頻度分布90の高さ範囲Raでの平均レベルAより低い所定の閾値Thを設定し、当該閾値Thより低い範囲として抽出することができる。ここで、閾値Thは高さ範囲Rbでの反射点74の頻度より大きく設定するが、高さ範囲Rbでの頻度は森林内の樹木70の数に応じて変化するので、閾値Thも固定値ではなく、樹木70の数に応じて変化させるのが好適である。例えば、高さ範囲Raでの頻度の平均値Aも樹木70の数に応じて変化するので、0<α<1なる比例係数を用いて、Th=αAと設定することができる。αはいくつかの木を実測して予め設定される。   As shown in FIG. 5, the height range Rt can be extracted as a range lower than the threshold Th by setting a predetermined threshold Th lower than the average level A in the height range Ra of the frequency distribution 90, for example. . Here, the threshold Th is set to be larger than the frequency of the reflection points 74 in the height range Rb. However, since the frequency in the height range Rb changes according to the number of trees 70 in the forest, the threshold Th is also a fixed value. Instead, it is preferable to change the number according to the number of trees 70. For example, since the average value A of the frequency in the height range Ra also changes according to the number of trees 70, Th = αA can be set using a proportionality coefficient of 0 <α <1. α is set in advance by actually measuring several trees.

このように抽出された高さ範囲Rtに枝下層100を設定する。枝下層100は図5に示すように水平方向に平らな領域である。枝下層100の高さ範囲は高さ範囲Rtに一致させる設定も可能であるし、高さ範囲Rtの一部だけを占める設定とすることも可能である。例えば、高さ範囲Rtの上限側の領域は、樹冠領域80と枝下領域82との共存領域の高さ範囲Rmに位置し、樹冠領域80の反射点74を一部含み得る。その樹冠領域80の反射点74は後述する樹幹部分78の位置検出の精度を低下させ得るので、当該位置検出の精度をより好適としたい場合には、枝下層100の高さ上限を高さ範囲Rtの上限より低く設定する。また、地表72b近くには草などに起因する反射点74が存在し得、このような反射点74も樹幹部分78の位置検出の精度を低下させ得るので、枝下層100の高さ下限を高さ範囲Rtの下限である地表72bよりも高く設定してもよい。   The lower branch layer 100 is set in the height range Rt thus extracted. As shown in FIG. 5, the lower branch layer 100 is a flat region in the horizontal direction. The height range of the branch lower layer 100 can be set to coincide with the height range Rt, or can be set to occupy only a part of the height range Rt. For example, the region on the upper limit side of the height range Rt is located in the height range Rm of the coexistence region of the canopy region 80 and the under-branch region 82 and may partially include the reflection point 74 of the canopy region 80. Since the reflection point 74 of the tree crown region 80 can lower the accuracy of position detection of the trunk portion 78 described later, when the accuracy of position detection is desired to be more suitable, the height upper limit of the branch lower layer 100 is set to the height range. Set lower than the upper limit of Rt. Further, there may be a reflection point 74 caused by grass or the like near the ground surface 72b, and such a reflection point 74 can also reduce the accuracy of detecting the position of the trunk portion 78, so that the height lower limit of the branch lower layer 100 is increased. It may be set higher than the ground surface 72b which is the lower limit of the range Rt.

このようにして枝下層100からは正規化点群データ44において大きな比率を占める樹冠部分76の反射点74が基本的に除去され、枝下層100に含まれる反射点74は樹幹部分78のものが支配的となる。   In this way, the reflection points 74 of the crown portion 76 occupying a large proportion in the normalized point cloud data 44 are basically removed from the lower branch layer 100, and the reflection points 74 included in the lower branch layer 100 are those of the trunk portion 78. Become dominant.

平面投影手段26は、枝下層100に属する正規化点群データを抽出し、地表72bに沿った平面に投影して二次元頻度分布を求める(平面投影処理S56)。図6は当該二次元頻度分布110の模式図であり、水平面であるXY面での枝下層100内の正規化点群データ44の投影点112の位置を“○”印で示している。正規化点群データ44のうち大半が樹冠部分76の反射点74であり、樹幹部分78の反射点74は少数である。そのため、枝下層100内の樹幹部分78の反射点74は三次元的にはまばらに分布し、その分布から樹幹部分78の位置を特定することは一般には容易ではない。この点、樹幹部分78はおおまかには高さ方向に延在する特徴を有するので、高さ方向の投影で得られる二次元頻度分布110では、各樹幹部分78の複数の反射点74は互いに近い位置に投影される。すなわち、二次元頻度分布110では各樹幹部分78の投影点112は樹幹の位置に互いに集まってグループ114を形成し、これにより樹幹部分78の位置特定が容易となる。   The plane projection unit 26 extracts the normalized point cloud data belonging to the lower branch layer 100 and projects it onto the plane along the ground surface 72b to obtain a two-dimensional frequency distribution (plane projection process S56). FIG. 6 is a schematic diagram of the two-dimensional frequency distribution 110, and the position of the projection point 112 of the normalized point cloud data 44 in the branch layer 100 on the XY plane which is a horizontal plane is indicated by “◯”. Most of the normalized point cloud data 44 is the reflection points 74 of the tree crown portion 76, and the reflection points 74 of the trunk portion 78 are few. Therefore, the reflection points 74 of the trunk portion 78 in the lower branch layer 100 are sparsely distributed three-dimensionally, and it is generally not easy to specify the position of the trunk portion 78 from the distribution. In this respect, since the trunk portion 78 has a feature extending roughly in the height direction, in the two-dimensional frequency distribution 110 obtained by projection in the height direction, the plurality of reflection points 74 of each trunk portion 78 are close to each other. Projected to position. That is, in the two-dimensional frequency distribution 110, the projection points 112 of the respective trunk portions 78 gather together at the position of the trunk to form a group 114, whereby the position of the trunk portion 78 can be easily specified.

位置検出手段28は、所定基準に基づいて、二次元頻度分布110にて正規化点群データ44が集まりグループ114を形成する箇所を検出して樹木位置とする(位置検出処理S58)。グループ114が多数の投影点112から構成され、二次元頻度分布110にピークが形成される場合には、例えば、二次元頻度分布110から閾値判定により、閾値以上の頻度が得られた箇所にグループ114の存在を検知する。また、閾値判定以外のピーク検出手法によりピークの位置を求めても良い。   Based on a predetermined criterion, the position detection unit 28 detects a place where the normalized point cloud data 44 gathers and forms the group 114 in the two-dimensional frequency distribution 110 to obtain a tree position (position detection process S58). When the group 114 is composed of a large number of projection points 112 and a peak is formed in the two-dimensional frequency distribution 110, for example, the group is located at a place where a frequency equal to or higher than the threshold is obtained from the two-dimensional frequency distribution 110 by threshold determination. The presence of 114 is detected. Further, the peak position may be obtained by a peak detection method other than the threshold determination.

なお、樹幹部分78の投影点112の数が少ない場合は、グループ114の領域でも二次元頻度分布110の値は“0”か“1”のいずれかとなり、頻度分布のピークが形成されないことが想定される。このような場合は、例えば、単純な投影で得られた二次元頻度分布110を樹幹の太さ程度のウィンドウで走査し平滑化するフィルタリングを行い、投影点112が集まる箇所ではピークが形成されるようにすればよい。   When the number of projection points 112 of the trunk portion 78 is small, the value of the two-dimensional frequency distribution 110 is either “0” or “1” even in the region of the group 114, and the peak of the frequency distribution may not be formed. is assumed. In such a case, for example, filtering is performed to scan and smooth the two-dimensional frequency distribution 110 obtained by simple projection with a window having a thickness of a trunk, and a peak is formed at a place where the projection points 112 gather. What should I do?

位置検出手段28は、例えば、ピークの位置を樹木位置(Xd,Yd)として出力する。また、グループ114毎に投影点112の重心位置を求めて樹木位置(Xd,Yd)としてもよい。樹木位置検出装置2は、この位置検出処理S58により検出された樹木位置(Xd,Yd)を例えば出力装置10へ出力することができる。   For example, the position detection unit 28 outputs the peak position as a tree position (Xd, Yd). Alternatively, the position of the center of gravity of the projection point 112 may be obtained for each group 114 to obtain the tree position (Xd, Yd). The tree position detection device 2 can output the tree position (Xd, Yd) detected by the position detection processing S58 to the output device 10, for example.

また、樹木位置検出装置2はさらに、航空写真の画像データ42を用いて、樹木位置の精度・信頼性の向上を図ることもできる。この場合は位置検出処理S58で求められた位置(Xd,Yd)は樹木位置の候補となる。   Further, the tree position detection apparatus 2 can further improve the accuracy and reliability of the tree position using the aerial photograph image data 42. In this case, the position (Xd, Yd) obtained in the position detection process S58 is a tree position candidate.

樹冠画像抽出手段30は、画像データ42を解析して樹木毎の樹冠画像を抽出する(樹冠画像抽出処理S60)。樹冠画像抽出手段30は例えば、特開2003−344048号公報に示されるように、画像データ42からウォーターシェッド・アルゴリズムに基づいて樹冠形状を抽出する。さらに樹冠画像抽出手段30は例えば、その樹冠形状の中心に当たる点(Xh,Yh)を樹木位置として求める。なお、作業者が航空写真を判読して樹冠画像を抽出し樹木位置として求めた点(Xh,Yh)を記憶装置6に格納し、次の照合手段32で利用してもよい。   The crown image extraction means 30 analyzes the image data 42 and extracts a crown image for each tree (tree crown image extraction processing S60). For example, as shown in Japanese Patent Application Laid-Open No. 2003-344048, the tree crown image extraction means 30 extracts the tree crown shape from the image data 42 based on the watershed algorithm. Further, the tree image extracting means 30 obtains, for example, a point (Xh, Yh) corresponding to the center of the tree crown shape as a tree position. Note that the point (Xh, Yh) obtained by the operator reading the aerial photograph, extracting the tree crown image, and obtaining the tree position may be stored in the storage device 6 and used in the next matching unit 32.

照合手段32は樹木位置(Xd,Yd)を樹冠画像から求めた樹木位置(Xh,Yh)との照合により修正する(照合処理S62)。照合処理S62は、任意の候補位置(Xd,Yd)に対応する樹木位置(Xh,Yh)が存在するか否かを調べ、存在すれば照合成立として、位置(Xd,Yd)を樹木位置として確定し、存在しなれば照合不成立として候補位置(Xd,Yd)は樹木位置ではないと判定する。すなわち、照合手段32は、位置検出処理S58で得られる一群の樹木位置から、照合不成立のものを除去する修正を行う。   The collation means 32 corrects the tree position (Xd, Yd) by collation with the tree position (Xh, Yh) obtained from the tree crown image (collation processing S62). The collation process S62 checks whether or not a tree position (Xh, Yh) corresponding to an arbitrary candidate position (Xd, Yd) exists, and if it exists, the collation is established, and the position (Xd, Yd) is set as a tree position. If it does not exist, the candidate position (Xd, Yd) is determined not to be a tree position because the verification is not established. That is, the collation means 32 performs a correction to remove those that have not been collated from the group of tree positions obtained in the position detection process S58.

具体的には、照合における位置ずれの許容距離をβとして、次の(1)式及び(2)式を共に満たす樹冠画像の位置(Xh,Yh)が存在すれば照合成立と判定する。なお、βは例えば、樹冠形状に応じた大きさの円の半径以下に設定することができる。   Specifically, if the allowable distance of misalignment in collation is β and there is a position (Xh, Yh) of the crown image that satisfies both the following expressions (1) and (2), it is determined that the collation is established. For example, β can be set to be equal to or less than the radius of a circle having a size corresponding to the crown shape.

Xd−β≦Xh≦Xd+β ・・・(1)
Yd−β≦Yh≦Yd+β ・・・(2)
Xd−β ≦ Xh ≦ Xd + β (1)
Yd−β ≦ Yh ≦ Yd + β (2)

樹木位置検出装置2は、照合処理S62を行った場合には、照合が成立した樹木位置(Xd,Yd)を例えば出力装置10へ出力することができる。   The tree position detection device 2 can output, for example, the tree position (Xd, Yd) where the verification is established to the output device 10 when the verification processing S62 is performed.

さて以上、説明を簡単とするため、調査対象区域の森林を一括して扱う例を述べた。しかし、例えば、広大な森林を調査対象とする場合、場所に応じて樹種、樹齢、地形などに違いが存在することから、調査対象区域の森林を複数の区域に区分し、当該区域毎に上述の処理の全部又は一部を実行することが好適である。例えば、枝下領域82は、樹種、樹齢により高さが異なり、また地形やその他の生育環境も枝下領域82の高さに影響を与える。よって、それらの要因が共通する、又は大きくは異ならない範囲で区域を設定すれば、樹冠部分76の反射点74を好適に排除し、かつ樹幹部分78の反射点74が多く含まれるように枝下層100を設定できるので、二次元頻度分布110に樹木の位置が一層明確に現れ得る。   In the above, for the sake of simplicity, an example has been described in which forests in the survey area are handled in a lump. However, for example, when exploring a vast forest, there are differences in tree species, age, topography, etc. depending on the location, so the forest in the survey area is divided into multiple areas and It is preferable to execute all or part of the process. For example, the height of the lower branch region 82 varies depending on the tree type and age, and the topography and other growth environments also affect the height of the lower branch region 82. Therefore, if an area is set in a range in which those factors are common or not greatly different, the reflection points 74 of the crown portion 76 are preferably excluded, and the branch points such that many reflection points 74 of the trunk portion 78 are included. Since the lower layer 100 can be set, the position of the tree can appear more clearly in the two-dimensional frequency distribution 110.

森林の多くは人により管理・手入れされて、場所毎に樹種や樹齢が概ね揃えられる。そして、当該状況は森林管理情報として把握されていることが多い。よって、この場合には、森林管理情報に基づいて区域を設定することが可能である。地形図に基づいて、地形を考慮して区域を設定することもできる。また、単純に調査対象区域全体を所定サイズのメッシュ状に区分しても、枝下層100が場所毎に好適に調整され、樹木位置の検出精度が向上する効果が期待できる。   Most of the forest is managed and maintained by humans, and the tree species and age are almost the same for each place. The situation is often grasped as forest management information. Therefore, in this case, the area can be set based on the forest management information. Based on the topographic map, the area can be set in consideration of the topography. Moreover, even if the entire survey area is simply divided into meshes of a predetermined size, the lower branch layer 100 is suitably adjusted for each location, and an effect of improving the detection accuracy of the tree position can be expected.

なお、枝下層の設定の仕方の他の構成では、地表72側の高さに枝下層100を仮に設定し、当該仮設定の枝下層100に対する二次元頻度分布110を求める。望ましい枝下層100では樹幹部分78の反射点74の比率が多い結果、図6に示すように投影点112は樹幹に対応した位置に集中する一方、樹幹相互間の領域には投影点112は存在しない。これに対し、仮設定の枝下層100に樹冠部分76や地表72b近くの草などの反射点74が含まれると、樹幹の位置以外にも投影点112が分布し、集中の度合いが低くなる。このような分布の相違は、生物学における分布様式と同様に分散指数を用いて定量化し比較することができる。そこで、枝下層設定手段24は、仮設定の枝下層100の上限高さや下限高さを変化させて、二次元頻度分布110での分散指数を求め、投影点112が好適に集中する高さ範囲を枝下層100として決定することができる。   In another configuration for setting the branch lower layer, the branch lower layer 100 is temporarily set at the height on the ground surface 72 side, and the two-dimensional frequency distribution 110 for the temporarily set branch lower layer 100 is obtained. In the desirable lower branch layer 100, the ratio of the reflection points 74 of the trunk portion 78 is large. As a result, the projection points 112 are concentrated at positions corresponding to the trunks as shown in FIG. do not do. On the other hand, if the provisional lower branch layer 100 includes a reflection point 74 such as a tree portion 76 or grass near the ground surface 72b, the projection points 112 are distributed in addition to the position of the trunk, and the degree of concentration is low. Such distribution differences can be quantified and compared using the dispersion index in the same manner as the distribution pattern in biology. Therefore, the branch lower layer setting means 24 obtains the dispersion index in the two-dimensional frequency distribution 110 by changing the upper limit height and the lower limit height of the temporarily set branch lower layer 100, and the height range in which the projection points 112 are preferably concentrated. Can be determined as the lower branch layer 100.

以上、森林における樹木位置の検出に焦点を当てて本願発明を説明したが、樹木位置が求められれば、樹木の本数を計数することは容易に樹木位置検出装置2にて行われ、また樹木の密度を求めることもできる。   The present invention has been described above with a focus on the detection of the tree position in the forest. However, if the tree position is obtained, the number of trees can be easily counted by the tree position detection device 2, and the tree The density can also be determined.

2 樹木位置検出装置、4 演算処理装置、6 記憶装置、8 入力装置、10 出力装置、20 DTM生成手段、22 正規化手段、24 枝下層設定手段、26 平面投影手段、28 位置検出手段、30 樹冠画像抽出手段、32 照合手段、40 点群データ、42 画像データ、44 正規化点群データ、70 樹木、72 地表、74 反射点、76 樹冠部分、78 樹幹部分、80 樹冠領域、82 枝下領域、90 頻度分布、100 枝下層、110 二次元頻度分布、112 投影点、114 グループ。   2 Tree position detection device, 4 arithmetic processing device, 6 storage device, 8 input device, 10 output device, 20 DTM generation means, 22 normalization means, 24 branch lower layer setting means, 26 plane projection means, 28 position detection means, 30 Tree crown image extraction means, 32 collation means, 40 point cloud data, 42 image data, 44 normalized point cloud data, 70 tree, 72 ground surface, 74 reflection point, 76 tree crown part, 78 tree trunk part, 80 tree crown area, 82 under branch Area, 90 frequency distribution, 100 lower branch, 110 two-dimensional frequency distribution, 112 projection points, 114 groups.

Claims (7)

上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する樹木位置検出装置であって、
前記点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成する正規化手段と、
当該森林の樹冠領域とその下の枝下領域とでの前記正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する枝下層設定手段と、
前記枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求める平面投影手段と、
所定基準に基づいて、前記二次元頻度分布にて前記正規化点群データが集まる箇所を検出して樹木位置とする位置検出手段と、
を有することを特徴とする樹木位置検出装置。
A tree position detection device that detects the position of a tree using three-dimensional point cloud data of a forest acquired by aerial laser measurement that sweeps a laser pulse from the sky and measures a reflected signal waveform thereof,
Normalizing means for generating normalized point cloud data by converting the height represented by the point cloud data into a substantial height from the ground surface;
Based on the difference in the distribution of the normalized point cloud data in the forest crown area and the lower branch area below the forest, a lower branch setting means for setting a constant height range in the forest as a lower branch,
A plane projection means for extracting the normalized point cloud data belonging to the lower branch layer and projecting it on a plane along the ground surface to obtain a two-dimensional frequency distribution;
Based on a predetermined criterion, a position detection means for detecting a location where the normalized point cloud data gathers in the two-dimensional frequency distribution and setting it as a tree position;
A tree position detecting device characterized by comprising:
請求項1に記載の樹木位置検出装置において、
前記枝下層設定手段は、前記正規化点群データの高さ方向の頻度分布を求め、前記枝下領域での前記正規化点群データの分布密度が前記樹冠領域よりも低くなることに応じて前記頻度分布に形成される、地表側にて樹冠領域側よりも頻度が低くなる範囲に前記枝下層を設定すること、を特徴とする樹木位置検出装置。
In the tree position detection apparatus according to claim 1,
The lower branch setting means obtains a frequency distribution in the height direction of the normalized point cloud data, and according to the distribution density of the normalized point cloud data in the lower branch region being lower than the crown region A tree position detection apparatus, characterized in that the lower branch layer is set in a range formed in the frequency distribution and having a lower frequency on the ground surface side than on the crown area side.
請求項1又は請求項2に記載の樹木位置検出装置において、
前記点群データに基づいて数値標高モデルを生成する数値標高モデル生成手段を有し、
前記正規化手段は、前記点群データが表す高さから前記数値標高モデルが表す高さを減算して前記実質高さを求めること、
を特徴とする樹木位置検出装置。
In the tree position detection apparatus according to claim 1 or 2,
A digital elevation model generating means for generating a digital elevation model based on the point cloud data;
The normalization means obtains the substantial height by subtracting the height represented by the digital elevation model from the height represented by the point cloud data;
Tree position detecting device characterized by the above.
請求項1から請求項3に記載の樹木位置検出装置において、
上空から前記森林を撮影した画像にて樹木毎の樹冠画像を抽出する樹冠画像抽出手段と、
前記位置検出手段で求めた前記樹木位置を前記樹冠画像の樹木位置との照合により確定する照合手段と、
を有することを特徴とする樹木位置検出装置。
In the tree position detection apparatus according to claim 1,
A crown image extraction means for extracting a crown image for each tree in an image obtained by photographing the forest from above;
Collating means for determining the tree position obtained by the position detecting means by collating with the tree position of the crown image;
A tree position detecting device characterized by comprising:
請求項1から請求項4に記載の樹木位置検出装置において、
前記森林について樹種又は樹齢を含む森林管理情報に基づき予め区分された区域毎に、前記樹木位置を求めること、を特徴とする樹木位置検出装置。
In the tree position detection device according to claim 1,
A tree position detection apparatus, wherein the tree position is obtained for each area that has been divided in advance based on forest management information including tree species or tree age for the forest.
上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する方法であって、
前記点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成する正規化ステップと、
当該森林の樹冠領域とその下の枝下領域とでの前記正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する枝下層設定ステップと、
前記枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求める平面投影ステップと、
所定基準に基づいて、前記二次元頻度分布にて前記正規化点群データが集まる箇所を検出して樹木位置とする位置検出ステップと、
を有することを特徴とする樹木位置検出方法。
A method of detecting the position of a tree using three-dimensional point cloud data of a forest obtained by aerial laser measurement that sweeps a laser pulse from above and measures its reflected signal waveform,
A normalization step of generating normalized point cloud data by converting the height represented by the point cloud data into a substantial height from the ground surface;
Based on the difference in distribution of the normalized point cloud data between the forest crown area and the lower branch area below the branch area, a lower branch setting step for setting a constant height range in the forest as a lower branch,
A plane projection step of extracting the normalized point cloud data belonging to the lower branch layer and projecting it on a plane along the ground surface to obtain a two-dimensional frequency distribution;
Based on a predetermined criterion, a position detection step of detecting a location where the normalized point cloud data gathers in the two-dimensional frequency distribution and setting it as a tree position;
A tree position detecting method characterized by comprising:
コンピュータに、上空からレーザパルスを掃射し、その反射信号波形を計測する航空レーザ計測により取得された森林の三次元の点群データを用いて樹木の位置を検出する処理を行わせるためのプログラムであって、当該コンピュータを、
前記点群データが表す高さを地表からの実質高さに換算して正規化点群データを生成する正規化手段、
当該森林の樹冠領域とその下の枝下領域とでの前記正規化点群データの分布の違いに基づいて、当該森林内で一定した高さ範囲を枝下層として設定する枝下層設定手段、
前記枝下層に属する前記正規化点群データを抽出し、地表に沿った平面に投影して二次元頻度分布を求める平面投影手段、及び、
所定基準に基づいて、前記二次元頻度分布にて前記正規化点群データが集まる箇所を検出して樹木位置とする位置検出手段、として機能させることを特徴とするプログラム。
A program for causing a computer to detect the position of a tree using three-dimensional point cloud data of a forest acquired by aerial laser measurement that sweeps a laser pulse from the sky and measures the reflected signal waveform And the computer
Normalizing means for generating normalized point cloud data by converting the height represented by the point cloud data into a substantial height from the ground surface,
Based on the difference in the distribution of the normalized point cloud data between the canopy region of the forest and the sub-branch region below the branch region, a branch layer setting means for setting a constant height range in the forest as a branch layer,
A plane projection means for extracting the normalized point cloud data belonging to the lower branch layer and projecting it on a plane along the ground surface to obtain a two-dimensional frequency distribution; and
A program that functions as a position detection unit that detects a location where the normalized point cloud data gathers in the two-dimensional frequency distribution based on a predetermined criterion and sets it as a tree position.
JP2010248369A 2010-11-05 2010-11-05 Tree position detection device, tree position detection method, and program Active JP5507418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248369A JP5507418B2 (en) 2010-11-05 2010-11-05 Tree position detection device, tree position detection method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248369A JP5507418B2 (en) 2010-11-05 2010-11-05 Tree position detection device, tree position detection method, and program

Publications (2)

Publication Number Publication Date
JP2012098247A true JP2012098247A (en) 2012-05-24
JP5507418B2 JP5507418B2 (en) 2014-05-28

Family

ID=46390307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248369A Active JP5507418B2 (en) 2010-11-05 2010-11-05 Tree position detection device, tree position detection method, and program

Country Status (1)

Country Link
JP (1) JP5507418B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115606A (en) * 2013-02-21 2013-05-22 北京林业大学 Tree crown size and surface area measurement technology with electronic theodolite as tool
CN103206944A (en) * 2013-02-21 2013-07-17 北京林业大学 Method for calculating and measuring volume and area of crown based on three-dimensional laser-point cloud data
KR20140076481A (en) * 2012-12-12 2014-06-20 더 보잉 컴파니 Aerial forest inventory system
WO2016136775A1 (en) * 2015-02-24 2016-09-01 株式会社パスコ Laser measuring system, reflection target body, and laser measuring method
JP2017096690A (en) * 2015-11-19 2017-06-01 株式会社大林組 Long material positioning support device
JP2018084472A (en) * 2016-11-22 2018-05-31 国立大学法人信州大学 Forest resource information calculation method and forest resource information calculation device
JP2019148436A (en) * 2018-02-26 2019-09-05 株式会社 ジツタ Standing tree evaluation method in forest area and boundary line surveying method suitable for specifying evaluation target area in the evaluation method
JP2020098442A (en) * 2018-12-18 2020-06-25 株式会社パスコ Tree width setting device and program
CN111462312A (en) * 2020-04-01 2020-07-28 中国林业科学研究院资源信息研究所 Dynamic visual simulation method and system for subbranch height considering spatial structure
JP2021032656A (en) * 2019-08-22 2021-03-01 株式会社 ジツタ Method for evaluating tree in forest area, and boundary line survey method suited to specification of evaluation target area in this evaluation method
CN113156472A (en) * 2020-01-07 2021-07-23 北京林业大学 Technology and method for building mixed forest by smart phone/tablet computer according to 3S technology
CN113142007A (en) * 2021-01-22 2021-07-23 上海市园林科学规划研究院 Method for determining specification of minimum earth ball for transplanting large-size full-crown arbor
JP7374977B2 (en) 2021-12-17 2023-11-07 ヤマハ発動機株式会社 Tree information estimation system, tree information estimation method, and computer program
WO2024034297A1 (en) * 2022-08-12 2024-02-15 株式会社日立製作所 Inventory management device and inventory management method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072863B1 (en) 2012-12-12 2020-02-03 더 보잉 컴파니 Aerial forest inventory system
KR20140076481A (en) * 2012-12-12 2014-06-20 더 보잉 컴파니 Aerial forest inventory system
JP2014119449A (en) * 2012-12-12 2014-06-30 Boeing Co Aerial forest inventory system
CN103206944A (en) * 2013-02-21 2013-07-17 北京林业大学 Method for calculating and measuring volume and area of crown based on three-dimensional laser-point cloud data
CN103115606A (en) * 2013-02-21 2013-05-22 北京林业大学 Tree crown size and surface area measurement technology with electronic theodolite as tool
WO2016136775A1 (en) * 2015-02-24 2016-09-01 株式会社パスコ Laser measuring system, reflection target body, and laser measuring method
JP2016156676A (en) * 2015-02-24 2016-09-01 株式会社パスコ Laser measurement system, reflection target body, and laser measurement method
JP2017096690A (en) * 2015-11-19 2017-06-01 株式会社大林組 Long material positioning support device
JP2018084472A (en) * 2016-11-22 2018-05-31 国立大学法人信州大学 Forest resource information calculation method and forest resource information calculation device
JP7123366B2 (en) 2018-02-26 2022-08-23 株式会社 ジツタ Evaluation method for standing trees in a forest area and boundary survey method suitable for identifying the evaluation target area in this evaluation method
JP2019148436A (en) * 2018-02-26 2019-09-05 株式会社 ジツタ Standing tree evaluation method in forest area and boundary line surveying method suitable for specifying evaluation target area in the evaluation method
JP2020098442A (en) * 2018-12-18 2020-06-25 株式会社パスコ Tree width setting device and program
JP7248419B2 (en) 2018-12-18 2023-03-29 株式会社パスコ Tree width setting device and program
JP2021032656A (en) * 2019-08-22 2021-03-01 株式会社 ジツタ Method for evaluating tree in forest area, and boundary line survey method suited to specification of evaluation target area in this evaluation method
JP7298823B2 (en) 2019-08-22 2023-06-27 株式会社 ジツタ Evaluation method for standing trees in a forest area and boundary survey method suitable for identifying the evaluation target area in this evaluation method
CN113156472A (en) * 2020-01-07 2021-07-23 北京林业大学 Technology and method for building mixed forest by smart phone/tablet computer according to 3S technology
CN111462312A (en) * 2020-04-01 2020-07-28 中国林业科学研究院资源信息研究所 Dynamic visual simulation method and system for subbranch height considering spatial structure
CN113142007A (en) * 2021-01-22 2021-07-23 上海市园林科学规划研究院 Method for determining specification of minimum earth ball for transplanting large-size full-crown arbor
CN113142007B (en) * 2021-01-22 2023-02-24 上海市园林科学规划研究院 Method for determining specification of minimum earth ball for transplanting large-size full-crown arbor
JP7374977B2 (en) 2021-12-17 2023-11-07 ヤマハ発動機株式会社 Tree information estimation system, tree information estimation method, and computer program
WO2024034297A1 (en) * 2022-08-12 2024-02-15 株式会社日立製作所 Inventory management device and inventory management method

Also Published As

Publication number Publication date
JP5507418B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5507418B2 (en) Tree position detection device, tree position detection method, and program
Gatziolis et al. Challenges to estimating tree height via LiDAR in closed-canopy forests: A parable from Western Oregon
US8537337B2 (en) Method and apparatus for analyzing tree canopies with LiDAR data
Bienert et al. Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds
Hosoi et al. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar
Popescu et al. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass
KR20200122897A (en) System and method for monitoring the forest gaps using airborne lidar datasets
JP2013088188A (en) Form investigation method of three-dimensional measurement subject
JP6828211B1 (en) Forest resource analysis equipment, forest resource analysis method and forest resource analysis program
Chasmer et al. Assessing the three-dimensional frequency distribution of airborne and ground-based lidar data for red pine and mixed deciduous forest plots
CN109407112A (en) Top fruit sprayer volume measuring method and system based on LiDAR point cloud data
Li et al. A new approach for estimating living vegetation volume based on terrestrial point cloud data
Yin et al. Individual tree parameters estimation for chinese fir (cunninghamia lanceolate (lamb.) hook) plantations of south china using UAV Oblique Photography: Possibilities and Challenges
Andersen Using airborne light detection and ranging (LIDAR) to characterize forest stand condition on the Kenai Peninsula of Alaska
Wagner et al. Robust filtering of airborne laser scanner data for vegetation analysis
Bao et al. Synchronous estimation of DTM and fractional vegetation cover in forested area from airborne LIDAR height and intensity data
JP5520786B2 (en) Laser density distribution estimation apparatus, laser density distribution estimation method, and program
CN114353680A (en) Forest resource information generation structure, method and storage medium
KR100741155B1 (en) System for extracting height data of tree using laser pulse and method therefor
Zhen et al. Development of accuracy assessment tool of individual tree crown delineation
Eker et al. A primary test results of a handheld mobile laser scanner in extraction of tree parameters
Morsdorf et al. The potential of discrete return, small footprint airborne laser scanning data for vegetation density estimation
Harikumar et al. An Approach to Tree Species Classification Using Voxel Neighborhood Density-Based Subsampling of Multiscan Terrestrial Lidar Data
Ahokas et al. Quality of laser scanning
AU2010333915B2 (en) Method and apparatus for analyzing tree canopies with LiDAR data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250