JP2012093060A - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP2012093060A
JP2012093060A JP2010242705A JP2010242705A JP2012093060A JP 2012093060 A JP2012093060 A JP 2012093060A JP 2010242705 A JP2010242705 A JP 2010242705A JP 2010242705 A JP2010242705 A JP 2010242705A JP 2012093060 A JP2012093060 A JP 2012093060A
Authority
JP
Japan
Prior art keywords
hot water
flow rate
water storage
flow
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010242705A
Other languages
Japanese (ja)
Other versions
JP5654841B2 (en
Inventor
Naoki Imato
尚希 今任
Kaoru Katayama
馨 片山
Tomoaki Tanabe
智明 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2010242705A priority Critical patent/JP5654841B2/en
Priority to CN201110355961.0A priority patent/CN102455056B/en
Publication of JP2012093060A publication Critical patent/JP2012093060A/en
Application granted granted Critical
Publication of JP5654841B2 publication Critical patent/JP5654841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable hot water supply system capable of properly detecting a hot water storing amount of a hot water storing means.SOLUTION: The hot supply water system has a first flow rate detecting means for detecting the flow rate of water passing through a water supplying flowing channel and the second flow rate detecting means for detecting the flow rate or water discharged from the hot water storing means during boiling up operation and detects the hot water storing amount in a hot water storing tank by integrating the detected flow rate by the second flow rate detecting means during the boiling up operation as a hot water increasing amount, and by integrating the detected flow rate by the first flow rate detecting means during supplying hot water as a hot water reducing amount.

Description

この発明の実施形態は、水熱交換器を有するヒートポンプ式冷凍サイクルを熱源として備え、貯湯タンク内の水を上記水熱交換器に循環させることにより、貯湯手段に温水を貯える給湯システムに関する。   An embodiment of the present invention relates to a hot water supply system that includes a heat pump refrigeration cycle having a water heat exchanger as a heat source, and stores hot water in hot water storage means by circulating water in the hot water storage tank to the water heat exchanger.

ヒートポンプ式の冷凍サイクルを熱源として利用し、貯湯手段である貯湯タンクに給湯用の温水(湯)を貯える給湯システムがある(例えば、特許文献1)。この給湯システムでは、貯湯タンクに貯えられている温水の量つまり貯湯量を把握するために、貯湯タンクへの温水増加量を温度検知により推定し、貯湯タンクからの温水減少量として給湯口からの温水流出量を検知し、これら温水増加量および温水減少量を合算している。   There is a hot water supply system that uses a heat pump type refrigeration cycle as a heat source and stores hot water (hot water) for hot water supply in a hot water storage tank as hot water storage means (for example, Patent Document 1). In this hot water supply system, in order to grasp the amount of hot water stored in the hot water storage tank, that is, the amount of hot water stored, the amount of increase in hot water to the hot water storage tank is estimated by temperature detection, and the amount of hot water from the hot water storage tank is reduced. The amount of hot water outflow is detected, and the amount of increase in hot water and the amount of decrease in hot water are added together.

特開2008−122018号公報JP 2008-122018 A

給湯口から流出する温水は、貯湯タンクからの温水と給水源から供給される水とを混合したものである。このため、給湯口からの温水流出量を検知するだけでは、貯湯タンクの貯湯量を的確に検出できない。   The hot water flowing out from the hot water supply port is a mixture of hot water from the hot water storage tank and water supplied from the water supply source. For this reason, the amount of hot water stored in the hot water storage tank cannot be accurately detected only by detecting the amount of hot water flowing out from the hot water supply port.

この発明の実施態様の目的は、貯湯手段の貯湯量を的確に検出することが可能な信頼性にすぐれた給湯システムを提供することである。   An object of the embodiment of the present invention is to provide a reliable hot water supply system capable of accurately detecting the amount of hot water stored in the hot water storage means.

この発明の実施形態の給湯システムは、圧縮機の吐出冷媒を水熱交換器、減圧手段、および空気熱交換器に通して圧縮機に戻すヒートポンプ式の冷凍サイクルと、貯湯手段と、給水源から上記貯湯手段へ水を供給する給水流路と、上記貯湯手段から温水を出湯する出湯流路と、上記貯湯手段から水を導出しその水を上記水熱交換器で加熱して上記貯湯手段上部に導く沸上げ運転用の循環路を形成する貯湯回路と、上記給水流路を通る水の流量を検知する第1流量検知手段と、上記沸上げ運転時に上記貯湯手段から導出される水の流量を検知する第2流量検知手段と、上記沸上げ運転時の上記第2流量検知手段の検知流量を温水増加量として積算し、上記出湯流路からの給湯時の上記第1流量検知手段の検知流量を温水減少量として積算することにより、上記貯湯タンクの貯湯量を検出する貯湯量検出手段と、を備える。   A hot water supply system according to an embodiment of the present invention includes a heat pump type refrigeration cycle for returning refrigerant discharged from a compressor to a compressor through a water heat exchanger, a decompression means, and an air heat exchanger, hot water storage means, and a water supply source. A water supply passage for supplying water to the hot water storage means, a hot water supply passage for discharging hot water from the hot water storage means, and water is led out from the hot water storage means and heated by the water heat exchanger to heat the upper portion of the hot water storage means A hot water storage circuit that forms a circulation path for a boiling operation that leads to water, a first flow rate detection means that detects a flow rate of water passing through the water supply flow path, and a flow rate of water that is derived from the hot water storage means during the boiling operation The flow rate detected by the second flow rate detecting means for detecting the flow rate and the detected flow rate of the second flow rate detecting means during the boiling operation are integrated as the amount of increase in hot water, and the detection of the first flow rate detecting means during hot water supply from the hot water flow path Accumulate the flow rate as the amount of hot water decrease. By, and a hot water storage amount detecting means for detecting the amount of hot water storage in the hot water storage tank.

第1の実施形態の構成および沸上げ運転時の温水および水の流れを示す図。The figure which shows the structure of 1st Embodiment, and the flow of warm water and the water at the time of boiling operation. 第1の実施形態における除霜運転時の温水の流れを示す図。The figure which shows the flow of the warm water at the time of the defrost operation in 1st Embodiment. 第1の実施形態における給湯・給水時の温水および水の流れを示す図。The figure which shows the flow of the warm water and the water at the time of hot water supply and water supply in 1st Embodiment. 各実施形態におけるリモートコントローラを示す図。The figure which shows the remote controller in each embodiment. 各実施形態の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of each embodiment. 第2および第3の実施形態の構成および沸上げ運転時の温水および水の流れを示す図。The figure which shows the structure of 2nd and 3rd embodiment and the flow of warm water and water at the time of boiling operation. 第4の実施形態の構成および沸上げ運転時の温水および水の流れを示す図。The figure which shows the structure of 4th Embodiment, and the flow of warm water and the water at the time of boiling operation. 第4の実施形態における除霜運転時の温水の流れを示す図。The figure which shows the flow of the warm water at the time of the defrost operation in 4th Embodiment.

[1]以下、第1の実施形態について図面を参照して説明する。
図1に示すように、ヒートポンプ式冷凍サイクルを熱源として有するヒートポンプユニット1にタンクユニット21が配管接続され、給湯システムが構成される。
[1] Hereinafter, a first embodiment will be described with reference to the drawings.
As shown in FIG. 1, a tank unit 21 is connected by piping to a heat pump unit 1 having a heat pump refrigeration cycle as a heat source, thereby forming a hot water supply system.

まず、ヒートポンプユニット1について説明する。
圧縮機2の冷媒吐出口に四方弁3を介して水熱交換器4の冷媒流路4aの入口側が配管接続され、その冷媒流路4aの出口側に減圧手段である膨張弁5、空気熱交換器6、および四方弁3を介して圧縮機2の吸込口が配管接続される。空気熱交換器6の近傍には室外ファン7が配設される。そして、水側接続口11に三方弁12の一方の流路を介して循環ポンプ13の吸込口が配管接続され、その循環ポンプ13の吐出口に水熱交換器4の水流路4bおよび三方弁14の一方の流路を介して湯側接続口15が配管接続される。また、循環ポンプ13の吸込口に三方弁12の他方の流路を介して湯側接続口15が配管接続されるとともに、水熱交換器4の水流路4bの出口側に三方弁14の他方の流路を介して水側接続口11が配管接続される。
First, the heat pump unit 1 will be described.
The refrigerant discharge port of the compressor 2 is connected to the inlet side of the refrigerant flow path 4a of the water heat exchanger 4 through the four-way valve 3, and the expansion valve 5 serving as a decompression means, air heat is connected to the outlet side of the refrigerant flow path 4a. The suction port of the compressor 2 is connected by piping through the exchanger 6 and the four-way valve 3. An outdoor fan 7 is disposed in the vicinity of the air heat exchanger 6. The suction port of the circulation pump 13 is connected to the water-side connection port 11 through one flow path of the three-way valve 12, and the water flow path 4 b and the three-way valve of the water heat exchanger 4 are connected to the discharge port of the circulation pump 13. The hot water side connection port 15 is connected by piping through one of the flow paths 14. The hot water side connection port 15 is connected to the suction port of the circulation pump 13 through the other flow path of the three-way valve 12, and the other side of the three-way valve 14 is connected to the outlet side of the water flow path 4 b of the water heat exchanger 4. The water-side connection port 11 is pipe-connected through the flow path.

貯湯手段である貯湯タンク22に温水を貯める沸上げ運転時は、図示矢印のように、圧縮機2の吐出冷媒が四方弁3、水熱交換器4の冷媒流路4a、膨張弁5、空気熱交換器6、四方弁3を通って圧縮機2に戻る冷媒流路が形成され、水熱交換器4が凝縮器、空気熱交換器6が蒸発器として機能する。このとき、三方弁12,14のそれぞれ一方の流路が開き、水側接続口11に入る温水または水が三方弁12および循環ポンプ13を通って水熱交換器4の水流路4bに流れ、そこで加熱された温水が三方弁14を通って湯側接続口15から流出する。   During a boiling operation in which hot water is stored in a hot water storage tank 22 that is a hot water storage means, the refrigerant discharged from the compressor 2 is the four-way valve 3, the refrigerant flow path 4a of the water heat exchanger 4, the expansion valve 5, air, as shown by the arrows in the figure. A refrigerant flow path that returns to the compressor 2 through the heat exchanger 6 and the four-way valve 3 is formed, and the water heat exchanger 4 functions as a condenser and the air heat exchanger 6 functions as an evaporator. At this time, one flow path of each of the three-way valves 12 and 14 is opened, and warm water or water entering the water side connection port 11 flows through the three-way valve 12 and the circulation pump 13 to the water flow path 4b of the water heat exchanger 4; The heated hot water flows out from the hot water side connection port 15 through the three-way valve 14.

空気熱交換器6に付着した霜を除去する除霜運転時は、図2に矢印で示すように、圧縮機2の吐出冷媒が四方弁3、空気熱交換器6、膨張弁5、水熱交換器4の冷媒流路4a、および四方弁3を通って圧縮機2に戻る冷媒流路が形成され、空気熱交換器6が凝縮器、水熱交換器4が蒸発器として機能する。このとき、三方弁12,14のそれぞれ他方の流路が開き、湯側接続口15に入る温水が三方弁12および循環ポンプ13を通って水熱交換器4の水流路4bに流れ、そこで熱を奪われた水が三方弁14を通って水側接続口11から流出する。   During the defrosting operation for removing frost adhering to the air heat exchanger 6, the refrigerant discharged from the compressor 2 is the four-way valve 3, the air heat exchanger 6, the expansion valve 5, and the water heat as shown by arrows in FIG. A refrigerant flow path 4a of the exchanger 4 and a refrigerant flow path that returns to the compressor 2 through the four-way valve 3 are formed, and the air heat exchanger 6 functions as a condenser and the water heat exchanger 4 functions as an evaporator. At this time, the other flow path of each of the three-way valves 12 and 14 is opened, and hot water entering the hot water side connection port 15 flows into the water flow path 4b of the water heat exchanger 4 through the three-way valve 12 and the circulation pump 13, where heat is generated. The water deprived of water flows out from the water-side connection port 11 through the three-way valve 14.

次に、タンクユニット21について説明する。
タンクユニット21は、貯湯手段である貯湯タンク22を備え、水道等の給水源に接続される給水接続口23に給水流路である給水管24を介して貯湯タンク22の底部が接続される。給水管24には、2つの減圧弁25,25および第1流量検知手段である流量センサ26が配設される。流量センサ26は、給水管24を通る水の流量f1を検知する。
Next, the tank unit 21 will be described.
The tank unit 21 includes a hot water storage tank 22 that is a hot water storage means, and a bottom portion of the hot water storage tank 22 is connected to a water supply connection port 23 that is connected to a water supply source such as a water supply via a water supply pipe 24 that is a water supply flow path. The water supply pipe 24 is provided with two pressure reducing valves 25 and 25 and a flow rate sensor 26 which is a first flow rate detection means. The flow rate sensor 26 detects the flow rate f1 of water passing through the water supply pipe 24.

貯湯タンク22には、温水の温度をその貯湯タンク22の深さ方向に沿う複数個所で検知する複数の温度センサ(第1温度検知手段)T3,T2,T1が取付けられている。これら温度センサの検知温度から、貯湯タンク1の深さ方向における温水の温度分布を捕らえることができる。   The hot water storage tank 22 is provided with a plurality of temperature sensors (first temperature detection means) T3, T2, and T1 that detect the temperature of the hot water at a plurality of locations along the depth direction of the hot water storage tank 22. The temperature distribution of the hot water in the depth direction of the hot water storage tank 1 can be captured from the detected temperatures of these temperature sensors.

上記給水管24における流量センサ26の配設位置より下流側と往き接続口28との間に水管27が接続され、その水管27に逆止弁31、流量センサ(第2流量検知手段)32、および温度センサ(第2温度検知手段)33が配設される。逆止弁31は、貯湯タンク22の底部から導出されて往き接続口28へ向かう水の流れを許容し、それとは逆方向の水の流れを阻止する。流量センサ32は、逆止弁31を経て往き接続口28へ向かう水の流量f2を検知する。温度センサ33は、逆止弁31を経て往き接続口28へ向かう水の温度Txを検知する。   A water pipe 27 is connected between the downstream side from the position where the flow rate sensor 26 is disposed in the water supply pipe 24 and the forward connection port 28, and a check valve 31, a flow rate sensor (second flow rate detection means) 32, A temperature sensor (second temperature detection means) 33 is also provided. The check valve 31 allows the flow of water that is led out from the bottom of the hot water storage tank 22 toward the forward connection port 28, and blocks the flow of water in the opposite direction. The flow rate sensor 32 detects the flow rate f2 of water going to the forward connection port 28 via the check valve 31. The temperature sensor 33 detects the temperature Tx of the water passing through the check valve 31 and going to the outgoing connection port 28.

この水管27の逆止弁31、流量センサ32、温度センサ33をバイパスする状態にバイパス管27aが接続され、そのバイパス管27aに逆止弁34および流量センサ(第3流量検知手段)35が配設される。逆止弁34は、往き接続口28から貯湯タンク22の底部へ向かう水の流れを許容し、それとは逆方向の水の流れを阻止する。流量センサ35は、逆止弁34を経て貯湯タンク22の底部へ向かう水の流量f3を検知する。   A bypass pipe 27a is connected to bypass the check valve 31, the flow sensor 32, and the temperature sensor 33 of the water pipe 27, and a check valve 34 and a flow sensor (third flow detection means) 35 are arranged in the bypass pipe 27a. Established. The check valve 34 allows the flow of water from the forward connection port 28 toward the bottom of the hot water storage tank 22 and blocks the flow of water in the opposite direction. The flow rate sensor 35 detects the flow rate f3 of water that goes to the bottom of the hot water storage tank 22 via the check valve 34.

そして、上記往き接続口28に水管29を介してヒートポンプユニット1の水側接続口11が接続され、ヒートポンプユニット1の湯側接続口15に温水管41を介してタンクユニット21の戻り接続口42が接続される。この戻り接続口42から貯湯タンク22の上部にかけて温水管43が接続される。   The water connection port 11 of the heat pump unit 1 is connected to the forward connection port 28 via the water pipe 29, and the return connection port 42 of the tank unit 21 is connected to the hot water side connection port 15 of the heat pump unit 1 via the hot water pipe 41. Is connected. A hot water pipe 43 is connected from the return connection port 42 to the upper part of the hot water storage tank 22.

こうして、上記給水管24の一部、水管27、バイパス管27a、水管29、温水管41,43により、貯湯タンク22の底部とその貯湯タンク22の上部とをヒートポンプユニット1の水熱交換器4を介して連通する貯湯回路が形成される。この貯湯回路では、水管27の逆止弁31、流量センサ32、温度センサ33を通る沸上げ運転用の循環路と、バイパス管27aの逆止弁34および流量センサ35を通る除霜運転用の循環路とが選択的に形成される。   Thus, the water heat exchanger 4 of the heat pump unit 1 connects the bottom of the hot water storage tank 22 and the upper portion of the hot water storage tank 22 by a part of the water supply pipe 24, the water pipe 27, the bypass pipe 27a, the water pipe 29, and the hot water pipes 41 and 43. A hot water storage circuit communicating with each other is formed. In this hot water storage circuit, a circuit for heating operation that passes through the check valve 31, the flow sensor 32, and the temperature sensor 33 of the water pipe 27, and a circuit for defrosting operation that passes through the check valve 34 and the flow sensor 35 of the bypass pipe 27a. A circulation path is selectively formed.

また、貯湯タンク22の上部から出湯接続口46にかけて出湯流路である出湯管44が接続され、その出湯管44に混合弁45が配設される。混合弁45は、出湯管44を流れる温水に対し、上記給水管24から分岐したバイパス管24aから導かれる水を混合することにより、給湯設定温度の温水を生成する。生成された温水は、出湯接続口46を介して使用場所である台所、洗面所、風呂場等に導かれる。   A hot water discharge pipe 44, which is a hot water flow path, is connected from the upper part of the hot water storage tank 22 to the hot water connection port 46, and a mixing valve 45 is disposed in the hot water discharge pipe 44. The mixing valve 45 generates hot water having a hot water supply set temperature by mixing water guided from the bypass pipe 24 a branched from the water supply pipe 24 with hot water flowing through the hot water discharge pipe 44. The generated hot water is led to a kitchen, a washroom, a bathroom, and the like, which are used places, through a hot water connection port 46.

貯湯タンク22の温水を使用場所に供給しながら貯湯タンク22に水を補給する給湯・給水時の温水および水の流れを図3に矢印で示す。   The hot water and the flow of water at the time of hot water supply / water supply for supplying hot water to the hot water storage tank 22 while supplying the hot water of the hot water storage tank 22 to the place of use are indicated by arrows in FIG.

一方、ヒートポンプユニット1およびタンクユニット21に制御部50が接続され、その制御部50にリモートコントロール式の操作器(リモコンと略称する)60が接続される。   On the other hand, a controller 50 is connected to the heat pump unit 1 and the tank unit 21, and a remote control type operating device (abbreviated as a remote controller) 60 is connected to the controller 50.

リモコン60は、図4に示すように、液晶表示部61、満タン運転ボタン62、温度調節ボタン63,64、運転モード選択ボタンなどを含む操作部を開閉自在に覆うカバー65などを有する。液晶表示部61は、貯湯量をパーセント表示する貯湯量示領域61a、給湯設定温度を数値表示する温度表示領域61bなどを有する。   As shown in FIG. 4, the remote controller 60 includes a cover 65 that covers an operation unit including a liquid crystal display unit 61, a full operation button 62, temperature control buttons 63 and 64, an operation mode selection button, and the like so as to be freely opened and closed. The liquid crystal display unit 61 includes a hot water storage amount display region 61a for displaying the hot water storage amount as a percentage, a temperature display region 61b for displaying the hot water supply set temperature numerically, and the like.

制御部50は、主要な機能として次の(1)〜(3)の手段を有する。
(1)沸上げ運転時、流量センサ32の検知流量f2を温水増加量として積算し、その積算値が予め定められた設定値に達して温水満杯が検出されたときの積算値を貯湯量100%として初期設定し、以後、出湯管44からの給湯時の流量センサ26の検知流量(=貯湯タンク22への給水流量)f1を温水減少量として積算し、除霜運転時の流量センサ35の検知流量f3を温水減少量として積算することにより、貯湯タンク22の貯湯量(100%に対する割合)を検出する貯湯量検出手段。
The control unit 50 includes the following means (1) to (3) as main functions.
(1) During boiling operation, the detected flow rate f2 of the flow sensor 32 is integrated as the amount of increase in hot water, and the integrated value when the integrated value reaches a predetermined set value and hot water is full is detected as the hot water storage amount 100. After that, the detection flow rate of the flow rate sensor 26 during hot water supply from the hot water discharge pipe 44 (= the flow rate of water supply to the hot water storage tank 22) f1 is integrated as a hot water decrease amount, and the flow rate sensor 35 during the defrosting operation is integrated. Hot water storage amount detection means for detecting the hot water storage amount (ratio to 100%) of the hot water storage tank 22 by integrating the detected flow rate f3 as the hot water decrease amount.

(2)上記貯湯量検出手段で検出した貯湯量を図4に示すようにリモコン60における液晶表示部61の貯湯量示領域61aでパーセント表示する表示制御手段。   (2) Display control means for displaying the hot water storage amount detected by the hot water storage amount detection means as a percentage in the hot water storage amount display area 61a of the liquid crystal display unit 61 in the remote controller 60 as shown in FIG.

(3)リモコン60で異常判定モードが設定された場合に、ヒートポンプユニット1およびタンクユニット21の相互間における貯湯回路で沸上げ運転用の循環路を形成し、この沸上げ運転用の循環路において流量センサ32が流れを検知すれば貯湯回路における水管29および温水管41の接続が正常であると判定し、同沸上げ運転用の循環路において流量センサ32が流れを検知せず流量センサ35が流れを検知した場合は貯湯回路で除霜運転用の循環路を形成し、この除霜運転用の循環路において流量センサ32が流れを検知すれば貯湯回路における水管29および温水管41が逆接続異常であると判定し、上記沸上げ運転用の循環路において流量センサ32,35が共に流れを検知しない場合および上記除霜運転用の循環路において流量センサ32が流れを検知しない場合は貯湯回路が詰り異常であると判定する異常判定手段。   (3) When the abnormality determination mode is set by the remote controller 60, a hot water storage circuit between the heat pump unit 1 and the tank unit 21 is formed with a circuit for boiling operation, and in this circuit for heating operation If the flow sensor 32 detects the flow, it is determined that the connection between the water pipe 29 and the hot water pipe 41 in the hot water storage circuit is normal, and the flow sensor 32 does not detect the flow in the circulation path for the same heating operation, and the flow sensor 35 When the flow is detected, a circulation path for defrosting operation is formed in the hot water storage circuit, and if the flow sensor 32 detects the flow in the circulation path for defrosting operation, the water pipe 29 and the hot water pipe 41 in the hot water storage circuit are reversely connected. In the case where it is determined that there is an abnormality and the flow sensors 32 and 35 do not detect the flow in the circulation path for the boiling operation, and in the circulation path for the defrosting operation Abnormality determining means for determining as abnormal clogging hot water storage circuit when the amount sensor 32 does not detect the flow.

つぎに、図5のフローチャートを参照しながら動作を説明する。
リモコン60で沸上げ運転モードが設定されると(ステップ101のYES)、図1に示す沸上げ流路が形成され、貯湯タンク22の底部の水が水熱交換器4で加熱され、その水熱交換器4を経た温水が貯湯タンク22の上部に導かれる。
Next, the operation will be described with reference to the flowchart of FIG.
When the boiling operation mode is set by the remote controller 60 (YES in step 101), the boiling flow path shown in FIG. 1 is formed, and the water at the bottom of the hot water storage tank 22 is heated by the water heat exchanger 4, and the water Hot water that has passed through the heat exchanger 4 is guided to the upper part of the hot water storage tank 22.

この沸上げ運転時、水管27における流量センサ32の検知流量f2が温水増加量として積算され(ステップ102)、その積算値が予め定められた設定値に達して温水満杯が検出されたときの積算値が貯湯量100%として初期設定される。以後、図2に示す除霜流路が形成されて空気熱交換器6に対する除霜運転が実行されると(ステップ103のYES)、バイパス管27aにおける流量センサ35の検知流量f3が温水減少量として積算される(ステップ104)。また、図3に示す給湯・給水流路が形成されて使用場所への給湯運転が実行されると(ステップ105のYES)、給水管24における流量センサ26の検知流量f1が温水減少量として積算される(ステップ106)。流量センサ26で検知される給水流量f1は、使用場所への給湯量(貯湯タンク22からの出湯量)と同じである。   During this boiling operation, the detected flow rate f2 of the flow sensor 32 in the water pipe 27 is integrated as the amount of increase in hot water (step 102), and the integration when the integrated value reaches a predetermined set value and full hot water is detected. The value is initially set as a hot water storage amount of 100%. Thereafter, when the defrosting flow path shown in FIG. 2 is formed and the defrosting operation for the air heat exchanger 6 is executed (YES in Step 103), the detected flow rate f3 of the flow rate sensor 35 in the bypass pipe 27a is the amount of decrease in hot water. (Step 104). When the hot water supply / water supply flow path shown in FIG. 3 is formed and the hot water supply operation to the place of use is executed (YES in step 105), the detected flow rate f1 of the flow sensor 26 in the water supply pipe 24 is integrated as the hot water decrease amount. (Step 106). The water supply flow rate f1 detected by the flow sensor 26 is the same as the amount of hot water supplied to the place of use (the amount of hot water discharged from the hot water storage tank 22).

これら積算値が逐次に合算されて、貯湯タンク22の貯湯量(100%に対する割合)が検出される(ステップ107)。そして、検出された貯湯量がリモコン60における液晶表示部61の貯湯量示領域61aでパーセント表示される(ステップ108)。このリモコン60の表示を見ることにより、給湯可能な温水がどれだけ残っているかを一目瞭然に把握することができる。このように、第1の実施形態の給湯システムは、貯湯手段である貯湯タンク22の貯湯量を的確に検出することができ、温度検知手段の数を減少させることができる。   These integrated values are sequentially added to detect the amount of hot water stored in the hot water storage tank 22 (ratio to 100%) (step 107). The detected hot water storage amount is displayed as a percentage in the hot water storage amount display area 61a of the liquid crystal display 61 in the remote controller 60 (step 108). By looking at the display on the remote controller 60, it is possible to grasp at a glance how much hot water that can be supplied with hot water remains. As described above, the hot water supply system according to the first embodiment can accurately detect the amount of hot water stored in the hot water storage tank 22 as hot water storage means, and can reduce the number of temperature detection means.

ところで、当該給湯システムの据付け完了時、作業員がリモコン60で異常判定モードを設定すると(ステップ110のYES)、循環ポンプ13がt1分だけ運転されて図1の沸上げ運転用の循環路が形成される(ステップ111)。このとき、水管27における流量センサ32で流れ(流量f2)が検知されるかどうか判定される(ステップ112)。流れが検知されれば(ステップ112のYES)、水管29および温水管41の接続が正常であると判定される(ステップ113)。以後、各種運転が許容される。   By the way, when the worker sets the abnormality determination mode with the remote controller 60 when the installation of the hot water supply system is completed (YES in step 110), the circulation pump 13 is operated for t1 and the circulation path for the boiling operation in FIG. It is formed (step 111). At this time, it is determined whether or not a flow (flow rate f2) is detected by the flow rate sensor 32 in the water pipe 27 (step 112). If the flow is detected (YES in step 112), it is determined that the connection between the water pipe 29 and the hot water pipe 41 is normal (step 113). Thereafter, various operations are allowed.

ただし、流量センサ32で流れ(流量f2)が検知されない場合は(ステップ112のNO)、バイパス管27aにおける流量センサ35で流れ(流量f3)が検知されるかどうか判定される(ステップ114)。流れが検知されれば(ステップ114のYES)、図2の除霜運転用の循環路に切換えられて循環ポンプ13がt1分だけ運転される(ステップ115)。このとき、水管27における流量センサ32で流れ(流量f2)が検知されるかどうか判定される(ステップ116)。流れが検知されれば(ステップ116のYES)、水管29および温水管41が逆接続異常であると判定される(ステップ117)。この判定に伴い、以後の運転が禁止されるとともに、逆接続異常の旨がリモコン60の液晶表示部61で表示される。   However, when the flow (flow rate f2) is not detected by the flow sensor 32 (NO in step 112), it is determined whether or not the flow (flow rate f3) is detected by the flow sensor 35 in the bypass pipe 27a (step 114). If a flow is detected (YES in step 114), the flow is switched to the defrosting operation circulation path of FIG. 2 and the circulation pump 13 is operated for t1 (step 115). At this time, it is determined whether or not a flow (flow rate f2) is detected by the flow rate sensor 32 in the water pipe 27 (step 116). If the flow is detected (YES in step 116), it is determined that the water pipe 29 and the hot water pipe 41 are in the reverse connection abnormality (step 117). As a result of this determination, the subsequent operation is prohibited and the fact that the reverse connection is abnormal is displayed on the liquid crystal display unit 61 of the remote controller 60.

また、上記沸上げ運転用の循環路において、流量センサ32,35が共に流れを検知しない場合は(ステップ112のNO、ステップ114のNO)、水管29および温水管41を含む貯湯回路が詰り異常であると判定される(ステップ118)。この判定に伴い、以後の運転が禁止されるとともに、逆接続異常の旨がリモコン60の液晶表示部61で表示される。   Further, in the above-described circulation path for boiling operation, when both the flow sensors 32 and 35 do not detect the flow (NO in step 112, NO in step 114), the hot water storage circuit including the water pipe 29 and the hot water pipe 41 is abnormally clogged. Is determined (step 118). As a result of this determination, the subsequent operation is prohibited and the fact that the reverse connection is abnormal is displayed on the liquid crystal display unit 61 of the remote controller 60.

上記除霜運転用の循環路において、流量センサ32が流れを検知しない場合も(ステップ116のNO)、水管29および温水管41を含む貯湯回路が詰り異常であると判定される(ステップ118)。この判定に伴い、以後の運転が禁止されるとともに、逆接続異常の旨がリモコン60の液晶表示部61で表示される。   Even when the flow sensor 32 does not detect a flow in the circulation path for the defrosting operation (NO in step 116), it is determined that the hot water storage circuit including the water pipe 29 and the hot water pipe 41 is clogged abnormally (step 118). . As a result of this determination, the subsequent operation is prohibited and the fact that the reverse connection is abnormal is displayed on the liquid crystal display unit 61 of the remote controller 60.

このような異常判定機能を有することにより、異常が生じたまま運転が行われる不具合を未然に防ぐことができ、信頼性を向上することができる。   By having such an abnormality determination function, it is possible to prevent a problem that the operation is performed with an abnormality occurring, and it is possible to improve reliability.

[2]第2の実施形態について説明する。
図6に示すように、タンクユニット21に加えて補助タンクユニット71,81が配設される。これらタンクユニット21および補助タンクユニット71,81の貯湯タンク22,72,81の上部および底部が水管47により順次に直列接続される貯湯手段を構成する。そして、これら直列接続された貯湯タンク22,72,81のうち、一端側に位置する貯湯タンク82(給水側貯湯タンク)の底部へ給水管24が接続され、他端側に位置する貯湯タンク22(出湯貯湯タンク)の上部に出湯管44および温水管43が接続される。
[2] A second embodiment will be described.
As shown in FIG. 6, auxiliary tank units 71 and 81 are disposed in addition to the tank unit 21. The upper and bottom portions of the hot water storage tanks 22, 72, 81 of the tank unit 21 and the auxiliary tank units 71, 81 constitute hot water storage means that are sequentially connected in series by a water pipe 47. Of these hot water storage tanks 22, 72, 81 connected in series, the hot water storage pipe 22 is connected to the bottom of a hot water storage tank 82 (water supply side hot water storage tank) located on one end side, and the hot water storage tank 22 located on the other end side. An outlet hot water pipe 44 and a hot water pipe 43 are connected to the upper part of the hot water storage tank.

すなわち、給水側貯湯タンクである貯湯タンク82の底部と出湯貯湯タンクである貯湯タンク22の上部とをヒートポンプユニット1の水熱交換器4を介して連通する貯湯回路が形成される。この貯湯回路では、給水側貯湯タンクである貯湯タンク82の底部から水を導出し、その水を水管27の逆止弁31、流量センサ32、温度センサ33、水熱交換器4に通して出湯貯湯タンクである貯湯タンク22の上部に導く沸上げ運転用の循環路と、出湯貯湯タンクである貯湯タンク22の上部から温水を導出し、その温水を水熱交換器4、バイパス管27aの逆止弁34および流量センサ35に通して給水側貯湯タンクである貯湯タンク82の底部に戻す除霜運転用の循環路とが選択的に形成される。   That is, a hot water storage circuit is formed that communicates the bottom of the hot water storage tank 82 that is the water supply side hot water storage tank and the upper part of the hot water storage tank 22 that is the hot water storage tank through the water heat exchanger 4 of the heat pump unit 1. In this hot water storage circuit, water is led out from the bottom of a hot water storage tank 82 which is a water supply side hot water storage tank, and the water is passed through a check valve 31, a flow rate sensor 32, a temperature sensor 33, and a water heat exchanger 4 in a water pipe 27. Hot water is led out from the circulation path for the boiling operation leading to the upper part of the hot water storage tank 22 which is a hot water storage tank and the upper part of the hot water storage tank 22 which is a hot water storage tank, and the hot water is reversely connected to the water heat exchanger 4 and the bypass pipe 27a. A circulation path for defrosting operation is selectively formed through the stop valve 34 and the flow rate sensor 35 and returning to the bottom of the hot water storage tank 82 which is a water supply side hot water storage tank.

流量センサ32は、沸上げ運転時に給水側貯湯タンクである貯湯タンク82の底部から導出される水の流量を検知する。流量センサ35は、除霜運転時に給水側貯湯タンクである貯湯タンク82の底部に戻る水の流量を検知する。   The flow rate sensor 32 detects the flow rate of water derived from the bottom of the hot water storage tank 82 that is a water supply side hot water storage tank during the boiling operation. The flow rate sensor 35 detects the flow rate of water returning to the bottom of the hot water storage tank 82 which is a water supply side hot water storage tank during the defrosting operation.

温度センサT3,T2,T1は、貯湯タンク22にのみ取付けられている。貯湯タンク22,72,83は連通しているので、貯湯タンク72,82がどのような容量であっても、これら温度センサT3,T2,T1のみで、貯湯タンク22,72,82の温水満杯を検出できる。
温水満杯の検出が異なるだけで、他の構成および動作は第1の実施形態と同じである。よって、その説明は省略する。
The temperature sensors T 3, T 2, T 1 are attached only to the hot water storage tank 22. Since the hot water storage tanks 22, 72, and 83 are in communication, whatever the capacity of the hot water storage tanks 72, 82, the hot water storage tanks 22, 72, 82 are filled with only the temperature sensors T3, T2, T1. Can be detected.
Other configurations and operations are the same as those in the first embodiment, except that the detection of hot water fullness is different. Therefore, the description is omitted.

[3]第3の実施形態について説明する。
この第3の実施形態は、第2の実施形態の図6と同じく貯湯手段として複数の貯湯タンク22,72,82を有する構成を対象としている。制御部50は、主要な機能として、第1の実施形態の(1)の機能に代わる次の(11)の手段を有する。
[3] A third embodiment will be described.
This third embodiment is intended for a configuration having a plurality of hot water storage tanks 22, 72, 82 as hot water storage means, as in FIG. 6 of the second embodiment. The control unit 50 has the following means (11) instead of the function (1) of the first embodiment as a main function.

(11)沸上げ運転時、流量センサ32の検知流量f2を温水増加量として積算し、水管24における温度センサ33の検知温度が設定値Tzに達したときの積算値を貯湯量100%として初期設定し、以後、出湯管44からの給湯時の流量センサ26の検知流量(=貯湯タンク22への給水流量)f1を温水減少量として積算し且つ除霜運転時の流量センサ35の検知流量f3を温水減少量として積算して貯湯タンク22,72,82の貯湯量(100%に対する割合)を検出するとともに、温度センサT3,T2,T1のいずれかが温水温度を検知している間はその温度検知している温度センサの深さ方向の位置に基づいて貯湯量(100%に対する割合)を検出しそれを最終的な検出結果として更新する貯湯量検出手段。   (11) During boiling operation, the detected flow rate f2 of the flow sensor 32 is integrated as an increase amount of hot water, and the integrated value when the detected temperature of the temperature sensor 33 in the water pipe 24 reaches the set value Tz is initially set as the hot water storage amount 100%. After that, the detected flow rate f3 of the flow rate sensor 26 at the time of hot water supply from the hot water discharge pipe 44 (= the supplied water flow rate to the hot water storage tank 22) f1 is integrated as a decrease amount of hot water, and the detected flow rate f3 of the flow rate sensor 35 at the time of defrosting operation Is added as a hot water decrease amount to detect the hot water storage amount (ratio to 100%) of the hot water storage tanks 22, 72, 82, and while any of the temperature sensors T3, T2, T1 detects the hot water temperature, Hot water storage amount detection means for detecting a hot water storage amount (ratio to 100%) based on a position in the depth direction of the temperature sensor that detects the temperature and updating it as a final detection result.

すなわち、貯湯タンク22,72,82の温水が満杯になると、その温水が水管27に流入して温度センサ33の検知温度が設定値Tzまで上昇するので、それを満杯として捕らえている。また、温度センサT3,T2,T1の取付け位置は予め分かっているので、その取付け位置から、実際の貯湯量が貯湯量100%に対してどのくらいの割合にあるかを検出することができる。流量検知に基づく貯湯量の検出に際しては、貯湯タンク22,72,82の相互間の水管47の長さや容量などに基づく誤差が生じる可能性があるが、温度センサT3,T2,T1のいずれかが温水温度を検知している間は、その温度検知している温度センサの深さ方向の位置に基づいて貯湯量を検出しそれを最終的な検出結果として更新することにより、貯湯タンク22,72,82の相互間の水管47の長さや容量などに影響を受けることなく、適正な貯湯量を検出できる。   That is, when the hot water in the hot water storage tanks 22, 72, 82 is full, the hot water flows into the water pipe 27 and the temperature detected by the temperature sensor 33 rises to the set value Tz, so that it is caught as full. Further, since the mounting positions of the temperature sensors T3, T2, and T1 are known in advance, it is possible to detect from the mounting position how much the actual hot water storage amount is relative to the hot water storage amount 100%. When detecting the amount of hot water storage based on the flow rate detection, there is a possibility that an error based on the length or capacity of the water pipe 47 between the hot water storage tanks 22, 72, 82 may occur, but any one of the temperature sensors T3, T2, T1. While detecting the hot water temperature, the hot water storage tank 22, by detecting the hot water storage amount based on the position in the depth direction of the temperature sensor detecting the temperature and updating it as the final detection result. An appropriate amount of stored hot water can be detected without being affected by the length or capacity of the water pipe 47 between 72 and 82.

他の構成および動作は第1の実施形態と同じである。よって、その説明は省略する。   Other configurations and operations are the same as those of the first embodiment. Therefore, the description is omitted.

[4]第4の実施形態について説明する。
この第4の実施形態は、ヒートポンプユニット1の冷凍サイクルが冷媒としてCOを採用している点が第1の実施形態と異なる。
[4] A fourth embodiment will be described.
The fourth embodiment is different from the first embodiment in that the refrigeration cycle of the heat pump unit 1 employs CO 2 as a refrigerant.

すなわち、図7に示すように、圧縮機2の冷媒吐出口に水熱交換器4の冷媒流路4aの入口側が配管接続され、その冷媒流路4aの出口側に膨張弁5および空気熱交換器6を介して圧縮機2の吸込口が配管接続される。   That is, as shown in FIG. 7, the refrigerant discharge port of the compressor 2 is connected to the inlet side of the refrigerant flow path 4a of the water heat exchanger 4, and the expansion valve 5 and air heat exchange are connected to the outlet side of the refrigerant flow path 4a. The suction port of the compressor 2 is connected via a pipe 6.

沸上げ運転時は、図示矢印のように、圧縮機2の吐出冷媒が水熱交換器4の冷媒流路4a、膨張弁5、空気熱交換器6を通って圧縮機2に戻る流路が形成されるとともに、循環ポンプ13および室外ファン7が動作する。除霜運転時は、図8に示すように、循環ポンプ13および室外ファン7が停止されるだけで、沸上げ運転時と同じ流路が形成される。   During the boiling operation, there is a flow path in which the refrigerant discharged from the compressor 2 returns to the compressor 2 through the refrigerant flow path 4 a of the water heat exchanger 4, the expansion valve 5, and the air heat exchanger 6 as indicated by the arrows in the figure. At the same time, the circulation pump 13 and the outdoor fan 7 operate. At the time of defrosting operation, as shown in FIG. 8, only the circulation pump 13 and the outdoor fan 7 are stopped, and the same flow path as that at the time of boiling operation is formed.

この場合、タンクユニット21における逆止弁34および流量センサ35が除去される。そして、流量センサ32の検知流量f2を温水増加量として積算し、出湯管44からの給湯時の流量センサ26の検知流量(=貯湯タンク22への給水流量)f1を温水減少量として積算することにより、貯湯手段である貯湯タンク22の貯湯量を検出する。
他の構成および動作は第1の実施形態と同じである。よって、その説明は省略する。
In this case, the check valve 34 and the flow sensor 35 in the tank unit 21 are removed. Then, the detected flow rate f2 of the flow sensor 32 is integrated as the amount of increase in hot water, and the detected flow rate of the flow sensor 26 during hot water supply from the hot water discharge pipe 44 (= the supply water flow rate to the hot water storage tank 22) f1 is integrated as the amount of decrease in hot water. Thus, the amount of hot water stored in the hot water storage tank 22 as hot water storage means is detected.
Other configurations and operations are the same as those of the first embodiment. Therefore, the description is omitted.

以上のように、各実施形態の給湯システムは、貯湯手段の貯湯量を的確に検出することができ、温度検知手段の数を減少させることができる。   As described above, the hot water supply system of each embodiment can accurately detect the amount of hot water stored in the hot water storage means, and can reduce the number of temperature detection means.

[5]なお、上記各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な各実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   [5] The above embodiments are presented as examples, and are not intended to limit the scope of the invention. Each of the novel embodiments can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the scope of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.

1…ヒートポンプユニット、2…圧縮機、3…四方弁、4…水熱交換器、5…膨張弁、6…空気熱交換器、7…室外ファン、13…循環ポンプ、21…タンクユニット、22…貯湯タンク(貯湯手段)、T3,T2,T1…温度センサ(第1温度検知手段)、24…給水管(給水流路)、26…流量センサ(第1流量検知手段)、27…水管、27a…バイパス管、31…逆止弁、32…流量センサ(第2流量検知手段)、33…温度センサ(第2温度検知手段)、34…逆止弁、35…流量センサ(第3流量検知手段)、44…出湯管(出湯流路)、45…混合弁、50…制御部、60…リモコン、61…液晶表示部、61a…貯湯量表示領域   DESCRIPTION OF SYMBOLS 1 ... Heat pump unit, 2 ... Compressor, 3 ... Four-way valve, 4 ... Water heat exchanger, 5 ... Expansion valve, 6 ... Air heat exchanger, 7 ... Outdoor fan, 13 ... Circulation pump, 21 ... Tank unit, 22 ... hot water storage tank (hot water storage means), T3, T2, T1 ... temperature sensor (first temperature detection means), 24 ... water supply pipe (water supply flow path), 26 ... flow sensor (first flow rate detection means), 27 ... water pipe, 27a ... bypass pipe, 31 ... check valve, 32 ... flow sensor (second flow detection means), 33 ... temperature sensor (second temperature detection means), 34 ... check valve, 35 ... flow sensor (third flow detection) Means), 44 ... Hot water pipe (hot water flow path), 45 ... Mixing valve, 50 ... Control part, 60 ... Remote control, 61 ... Liquid crystal display part, 61a ... Hot water storage amount display area

Claims (5)

圧縮機の吐出冷媒を水熱交換器、減圧手段、および空気熱交換器に通して圧縮機に戻すヒートポンプ式の冷凍サイクルと、
貯湯手段と、
給水源から上記貯湯手段へ水を供給する給水流路と、
上記貯湯手段から温水を出湯する出湯流路と、
上記貯湯手段から水を導出しその水を上記水熱交換器で加熱して上記貯湯手段に導く沸上げ運転用の循環路を形成する貯湯回路と、
上記給水流路を通る水の流量を検知する第1流量検知手段と、
上記沸上げ運転時に上記貯湯手段から導出される水の流量を検知する第2流量検知手段と、
上記沸上げ運転時の上記第2流量検知手段の検知流量を温水増加量として積算し、上記出湯流路からの給湯時の上記第1流量検知手段の検知流量を温水減少量として積算することにより、上記貯湯手段の貯湯量を検出する貯湯量検出手段と、
を備えることを特徴とする給湯システム。
A heat pump type refrigeration cycle for passing the refrigerant discharged from the compressor through the water heat exchanger, the decompression means, and the air heat exchanger and returning it to the compressor;
Hot water storage means,
A water supply passage for supplying water from a water supply source to the hot water storage means;
A hot water flow path for hot water from the hot water storage means;
A hot water storage circuit that forms a circulation path for a boiling operation that leads out water from the hot water storage means and heats the water with the water heat exchanger to lead to the hot water storage means;
First flow rate detection means for detecting the flow rate of water passing through the water supply flow path;
Second flow rate detection means for detecting the flow rate of water derived from the hot water storage means during the boiling operation;
By integrating the detection flow rate of the second flow rate detection means during the boiling operation as an increase amount of hot water, and integrating the detection flow rate of the first flow rate detection means during hot water supply from the hot water flow path as the decrease amount of hot water , Hot water storage amount detection means for detecting the hot water storage amount of the hot water storage means,
A hot water supply system comprising:
上記貯湯回路は、上記貯湯手段から水を導出しその水を上記水熱交換器で加熱して上記貯湯手段に導く沸上げ運転用の循環路と、上記貯湯手段から温水を導出しその温水を上記水熱交換器に通して上記貯湯手段に戻す除霜運転用の循環路とを選択的に形成し、
上記除霜運転時に上記貯湯手段に戻る温水の流量を検知する第3流量検知手段をさらに備え、
上記貯湯量検出手段は、上記沸上げ運転時の上記第2流量検知手段の検知流量を温水増加量として積算し、上記給湯時の上記第1流量検知手段の検知流量を温水減少量として積算し、上記除霜運転時の上記第3流量検知手段の検知流量を温水減少量として積算することにより、上記貯湯手段の貯湯量を検出する、
ことを特徴とする請求項1記載の給湯システム。
The hot water storage circuit includes a circulation path for a boiling operation in which water is led out from the hot water storage means and the water is heated by the hydrothermal exchanger and led to the hot water storage means, and hot water is led out from the hot water storage means and the hot water is Selectively forming a defrosting operation circulation path that returns to the hot water storage means through the water heat exchanger,
Further comprising third flow rate detecting means for detecting the flow rate of warm water returning to the hot water storage means during the defrosting operation;
The hot water storage amount detection means integrates the detected flow rate of the second flow rate detection means during the boiling operation as a warm water increase amount, and integrates the detection flow rate of the first flow rate detection means during the hot water supply as a hot water decrease amount. The amount of hot water stored in the hot water storage means is detected by integrating the detected flow rate of the third flow rate detection means during the defrosting operation as a hot water decrease amount.
The hot water supply system according to claim 1.
上記貯湯手段は、上部および底部が水管により順次に直列接続された複数の貯湯タンクであり、

上記貯湯回路は、直列接続された上記複数の貯湯タンクのうち、一端側に位置し底部に上記給水流路が接続された給水側貯湯タンクの底部と他端側に位置し上部に出湯流路が接続された出湯側貯湯タンクの上部とを上記水熱交換器を介して連通し、上記給水側貯湯タンクの底部から水を導出しその水を上記水熱交換器で加熱して出湯側貯湯タンクの上部に導く沸上げ運転用の循環路を形成し、
上記第2流量検知手段は、上記沸上げ運転時に給水側貯湯タンクの底部から導出される水の流量を検知する、
ことを特徴とする請求項1記載の給湯システム。
The hot water storage means is a plurality of hot water storage tanks whose top and bottom are sequentially connected in series by a water pipe,

The hot water storage circuit is located at one end of the plurality of hot water storage tanks connected in series and is connected to the bottom and the other end of the water supply hot water storage tank connected to the water supply flow path at the bottom. Is connected to the upper part of the hot water storage tank connected to the hot water via the water heat exchanger, the water is led out from the bottom of the hot water storage tank, and the water is heated by the water heat exchanger. Form a circuit for boiling operation leading to the top of the tank,
The second flow rate detection means detects the flow rate of water derived from the bottom of the water supply side hot water storage tank during the boiling operation.
The hot water supply system according to claim 1.
上記複数の貯湯タンクのうち、出湯側貯湯タンク内の温水の温度をその貯湯タンクの深さ方向に沿う複数個所で検知する複数の第1温度検知手段と、
上記沸上げ運転用の循環路に設けられた第2温度検知手段と、
をさらに備え、
上記貯湯量検出手段は、上記沸上げ運転時の上記第2温度検知手段の検知温度が設定値に達した場合にそのときの上記第2流量検知手段の検知流量の積算値を貯湯量100%として初期設定し、以後、上記沸上げ運転時の上記第2流量検知手段の検知流量を温水増加量として積算し且つ上記給湯時の上記第1流量検知手段の検知流量を温水減少量として積算して上記複数の貯湯タンクの貯湯量を検出するとともに、上記各第1温度検知手段のいずれかが温水温度を検知している間はその温度検知している第1温度検知手段の深さ方向の位置に基づいて上記貯湯タンクの貯湯量を検出しそれを最終的な検出結果として更新する、
ことを特徴とする請求項3記載の給湯システム。
Among the plurality of hot water storage tanks, a plurality of first temperature detection means for detecting the temperature of the hot water in the hot water storage side hot water storage tank at a plurality of locations along the depth direction of the hot water storage tank;
A second temperature detection means provided in the circulation path for the boiling operation;
Further comprising
When the detected temperature of the second temperature detecting means during the boiling operation reaches a set value, the hot water storage amount detecting means calculates the accumulated value of the detected flow rate of the second flow rate detecting means at that time as the hot water storage amount of 100%. After that, the detected flow rate of the second flow rate detecting means during the boiling operation is integrated as the hot water increase amount, and the detected flow rate of the first flow rate detecting means during the hot water supply is integrated as the hot water decrease amount. Detecting the amount of hot water stored in the plurality of hot water storage tanks, and while any one of the first temperature detecting means detects the hot water temperature, the first temperature detecting means for detecting the temperature of the first temperature detecting means in the depth direction. Detecting the amount of hot water stored in the hot water storage tank based on the position and updating it as a final detection result;
The hot water supply system according to claim 3.
上記貯湯回路で上記沸上げ運転用の循環路を形成し、この沸上げ運転用の循環路において上記第2流量検知手段が流れを検知すれば上記貯湯回路の接続が正常であると判定し、上記沸上げ運転用の循環路において上記第2流量検知手段が流れを検知せず上記第3流量検知手段が流れを検知した場合は上記貯湯回路で上記除霜運転用の循環路を形成し、この除霜運転用の循環路において上記第2流量検知手段が流れを検知すれば上記貯湯回路が逆接続異常であると判定し、上記沸上げ運転用の循環路において上記第2流量検知手段および上記第3流量検知手段が共に流れを検知しない場合および上記除霜運転用の循環路において上記第2流量検知手段が流れを検知しない場合は上記貯湯回路が詰り異常であると判定する異常判定手段、
をさらに備えることを特徴とする請求項2記載の給湯システム。
If the hot water storage circuit forms the circulation path for the boiling operation, and the second flow rate detection means detects a flow in the circulation path for the boiling operation, it is determined that the connection of the hot water storage circuit is normal, When the second flow rate detection means does not detect the flow in the circulation path for the boiling operation and the third flow rate detection means detects the flow, the circulation path for the defrosting operation is formed in the hot water storage circuit, If the second flow rate detection means detects a flow in the circuit for defrosting operation, it is determined that the hot water storage circuit is in reverse connection abnormality, and the second flow rate detection means and Abnormality determining means for determining that the hot water storage circuit is clogged abnormally when the third flow rate detecting means does not detect the flow and when the second flow rate detecting means does not detect the flow in the circulation path for the defrosting operation. ,
The hot water supply system according to claim 2, further comprising:
JP2010242705A 2010-10-28 2010-10-28 Hot water system Active JP5654841B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010242705A JP5654841B2 (en) 2010-10-28 2010-10-28 Hot water system
CN201110355961.0A CN102455056B (en) 2010-10-28 2011-10-27 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242705A JP5654841B2 (en) 2010-10-28 2010-10-28 Hot water system

Publications (2)

Publication Number Publication Date
JP2012093060A true JP2012093060A (en) 2012-05-17
JP5654841B2 JP5654841B2 (en) 2015-01-14

Family

ID=46038508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242705A Active JP5654841B2 (en) 2010-10-28 2010-10-28 Hot water system

Country Status (2)

Country Link
JP (1) JP5654841B2 (en)
CN (1) CN102455056B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142153A (en) * 2013-01-25 2014-08-07 Toho Gas Co Ltd Hot water system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016010347A (en) * 2014-02-12 2017-01-16 Zemach Shai Interactive learning water heating scheduler.
CN106766215B (en) * 2016-11-14 2019-09-17 广东美的暖通设备有限公司 Temperature sensor monitoring method and device, the hot-water heating system of water tank
CN112629040B (en) * 2021-01-12 2022-01-21 宁波方太厨具有限公司 Constant temperature water storage tank and contain its water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184366A (en) * 1985-02-08 1986-08-18 株式会社日立製作所 Heat pump type hot-water supply device
JPH0144979B2 (en) * 1984-06-15 1989-10-02 Matsushita Electric Ind Co Ltd
JP2004012057A (en) * 2002-06-10 2004-01-15 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP2006214622A (en) * 2005-02-02 2006-08-17 Chugoku Electric Power Co Inc:The Temperature distribution estimating system of hot water storage tank
JP2008122018A (en) * 2006-11-14 2008-05-29 Daikin Ind Ltd Hot water supply apparatus and method for computing hot water storage amount

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107464B2 (en) * 1987-11-24 1995-11-15 松下電器産業株式会社 Method for detecting the amount of remaining hot water in the hot water storage tank
JP2003222391A (en) * 2002-01-29 2003-08-08 Daikin Ind Ltd Heat pump type water heater
JP4877033B2 (en) * 2007-04-20 2012-02-15 パナソニック電工株式会社 Hot water system
CN201053786Y (en) * 2007-05-25 2008-04-30 桂海燕 Highly effective energy-saving heat pump hot water set

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0144979B2 (en) * 1984-06-15 1989-10-02 Matsushita Electric Ind Co Ltd
JPS61184366A (en) * 1985-02-08 1986-08-18 株式会社日立製作所 Heat pump type hot-water supply device
JP2004012057A (en) * 2002-06-10 2004-01-15 Hitachi Home & Life Solutions Inc Heat pump type water heater
JP2006214622A (en) * 2005-02-02 2006-08-17 Chugoku Electric Power Co Inc:The Temperature distribution estimating system of hot water storage tank
JP2008122018A (en) * 2006-11-14 2008-05-29 Daikin Ind Ltd Hot water supply apparatus and method for computing hot water storage amount

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142153A (en) * 2013-01-25 2014-08-07 Toho Gas Co Ltd Hot water system

Also Published As

Publication number Publication date
CN102455056B (en) 2014-08-20
JP5654841B2 (en) 2015-01-14
CN102455056A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US8794538B2 (en) Hot water circulation system associated with heat pump
JP5238001B2 (en) Refrigeration cycle equipment
JP4756035B2 (en) Water heater
AU2014399713B2 (en) Heating and hot water supply system
US8082744B2 (en) Method for controlling hot water circulation system associated with heat pump
JP5882120B2 (en) Hot water storage water heater
JP5654841B2 (en) Hot water system
JP5418253B2 (en) Refrigeration cycle equipment
JP2002031462A (en) Constant temperature cooling liquid circulator
KR20150067890A (en) Dehumidifier
JP2012078015A (en) Refrigeration cycle device
JPWO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP4666111B1 (en) Refrigeration cycle equipment
JP5542617B2 (en) Heating system
JP5821002B2 (en) Hot water system
JP5831198B2 (en) Hot water storage water heater
JP5747160B2 (en) Air conditioner
JP2012032120A (en) Heat pump device
CN105241143B (en) Air-cooled heat pump cold-hot water machine and its prevent high voltage protective method
JP2006275449A (en) Heat storage type air conditioner
JP4933171B2 (en) Water heater
JP5927502B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP5888116B2 (en) Hot water storage water heater
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2012037130A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141121

R150 Certificate of patent or registration of utility model

Ref document number: 5654841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250