JP2012092967A - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
JP2012092967A
JP2012092967A JP2011188681A JP2011188681A JP2012092967A JP 2012092967 A JP2012092967 A JP 2012092967A JP 2011188681 A JP2011188681 A JP 2011188681A JP 2011188681 A JP2011188681 A JP 2011188681A JP 2012092967 A JP2012092967 A JP 2012092967A
Authority
JP
Japan
Prior art keywords
foil
leaf
bearing
shaft
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011188681A
Other languages
Japanese (ja)
Other versions
JP5781402B2 (en
Inventor
Hiroki Fujiwara
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011188681A priority Critical patent/JP5781402B2/en
Priority to PCT/JP2011/071729 priority patent/WO2012043416A1/en
Publication of JP2012092967A publication Critical patent/JP2012092967A/en
Application granted granted Critical
Publication of JP5781402B2 publication Critical patent/JP5781402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/166Sliding contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Abstract

PROBLEM TO BE SOLVED: To reduce the manufacturing cost and assembling cost of a component so as to reduce the cost of a foil bearing.SOLUTION: A foil bearing 10 includes a cylindrical outward member 11, a shaft 6 inserted into the inner periphery of the outward member 11, and leaves 14 arranged at a plurality of points along a circumferential direction between an inner peripheral surface 11b of the outward member 11 and an outer peripheral surface 6a of the shaft 6. A fluid film generated in a radial bearing gap supports a relative rotation between the shaft 6 and the outward member 11. At each of leaves 14, a tip end 14a constituting a free end, a base end 14b constituting a fixed end, and a bearing surface 14c forming the radial bearing gap between the tip end 14a and the base end 14b are provided. The leaves 14 are connected to one another at a connection part 15, and the leaves 14 and the connection part 15 are formed integrally by using a single foil member 13.

Description

本発明は、外方部材の内周面と軸の外周面との間に薄膜状のフォイル部材を介在させたフォイル軸受に関する。   The present invention relates to a foil bearing in which a thin film foil member is interposed between an inner peripheral surface of an outer member and an outer peripheral surface of a shaft.

ガスタービンやターボチャージャの主軸は高速で回転駆動される。また、主軸に取り付けられたタービン翼は高温に晒される。そのため、これらの主軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。この種の用途の軸受として、油潤滑の転がり軸受や油動圧軸受を使用する場合もあるが、潤滑油などの液体による潤滑が困難な場合、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難な場合、あるいは液体のせん断による抵抗が問題になる場合、等の条件下では、これらの軸受の使用は制約を受ける。そこで、そのような条件下での使用に適合する軸受として、空気動圧軸受が着目されている。   The main shaft of a gas turbine or turbocharger is driven to rotate at high speed. Moreover, the turbine blade attached to the main shaft is exposed to high temperature. Therefore, bearings that support these main shafts are required to be able to withstand severe environments such as high temperature and high speed rotation. Oil lubricated rolling bearings and hydrodynamic pressure bearings may be used as bearings for this type of application, but if lubrication with a liquid such as lubricating oil is difficult, the auxiliary equipment of the lubricating oil circulation system from the viewpoint of energy efficiency The use of these bearings is restricted under conditions such as when it is difficult to provide a separate or when resistance due to liquid shear becomes a problem. Therefore, an air dynamic pressure bearing has attracted attention as a bearing suitable for use under such conditions.

空気動圧軸受としては、回転側と固定側の双方の軸受面を剛体で構成したものが一般的である。しかしながら、この種の空気動圧軸受では、回転側と固定側の軸受面間に形成されるラジアル軸受隙間の管理が不十分であると、安定限界を超えた際にホワールと呼ばれる自励的な主軸の触れ回りを生じ易い。そのため、使用される回転速度に応じた隙間管理が重要となる。特に、ガスタービンやターボチャージャのように、温度変化の激しい環境では熱膨張の影響でラジアル軸受隙間の幅が変動するため、精度の良い隙間管理は極めて困難となる。   As an air dynamic pressure bearing, one in which both the rotating side and the fixed side bearing surfaces are made of a rigid body is generally used. However, in this type of air dynamic pressure bearing, if the radial bearing clearance formed between the rotating and stationary bearing surfaces is insufficiently managed, a self-excited so-called whirl is called when the stability limit is exceeded. Easy to touch around the spindle. Therefore, gap management according to the rotation speed used is important. In particular, in an environment such as a gas turbine or a turbocharger where the temperature changes drastically, the radial bearing gap varies due to the effect of thermal expansion, so accurate gap management becomes extremely difficult.

ホワールが生じにくく、かつ温度変化の大きい環境下でも隙間管理を容易にできる軸受としてフォイル軸受が知られている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。通常は、軸受の内周面をトップフォイルと呼ばれる薄板で構成し、その外径側にバックフォイルと呼ばれるばね状の部材を配置してトップフォイルが受ける荷重をバックフォイルで弾性的に支持している。この場合、軸の回転時には、軸の外周面とトップフォイルの内周面との間に空気膜が形成され、軸が非接触支持される。   A foil bearing is known as a bearing that is less likely to cause a whirl and can easily manage a gap even in an environment with a large temperature change. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. Normally, the inner peripheral surface of the bearing is composed of a thin plate called a top foil, and a spring-like member called a back foil is arranged on the outer diameter side to elastically support the load received by the top foil with the back foil. Yes. In this case, when the shaft rotates, an air film is formed between the outer peripheral surface of the shaft and the inner peripheral surface of the top foil, and the shaft is supported in a non-contact manner.

フォイル軸受では、フォイルの可撓性により、軸の回転速度や荷重、周囲温度等の運転条件に応じた適切なラジアル軸受隙間が形成されるため、安定性に優れるという特徴があり、一般的な空気動圧軸受と比較して高速での使用が可能である。また、一般的な動圧軸受のラジアル軸受隙間は軸直径の1/1000のオーダーで管理する必要があり、例えば直径数mm程度の軸では数μm程度のラジアル軸受隙間を常時確保する必要がある。従って、製造時の公差、さらには温度変化が激しい場合の熱膨張まで考慮すると、厳密な隙間管理は困難である。これに対して、フォイル軸受の場合には、数十μm程度のラジアル軸受隙間に管理すれば足り、その製造や隙間管理が容易となる利点を有する。   Foil bearings are characterized by excellent stability because of the flexibility of the foil, an appropriate radial bearing gap is formed according to the operating conditions such as shaft rotation speed, load, and ambient temperature. It can be used at a higher speed than an air dynamic pressure bearing. In addition, the radial bearing clearance of a general dynamic pressure bearing needs to be managed in the order of 1/1000 of the shaft diameter. For example, a radial bearing clearance of about several μm needs to be always secured for a shaft having a diameter of about several millimeters. . Therefore, when taking into account manufacturing tolerances, and even thermal expansion when the temperature change is severe, strict gap management is difficult. On the other hand, in the case of a foil bearing, it is sufficient to manage a radial bearing gap of about several tens of μm, and there is an advantage that its manufacture and gap management become easy.

フォイル軸受としては、バックフォイルに設けた切り起こしでトップフォイルを弾性的に支持するもの(特許文献1)、素線を網状に編成した弾性体で軸受フォイルを弾性的に支持するもの(特許文献2)、および、バックフォイルに、外輪内面に接触し周方向に移動しない支持部とトップフォイルからの面圧により弾性的に撓む弾性部とを設けたもの(特許文献3)等が公知である。   As the foil bearing, a top foil is elastically supported by a cut and raised provided in a back foil (Patent Document 1), and a bearing foil is elastically supported by an elastic body formed by meshing strands (Patent Document). 2) and those having a back foil provided with a support portion that contacts the inner surface of the outer ring and does not move in the circumferential direction and an elastic portion that is elastically bent by the surface pressure from the top foil (Patent Document 3), etc. are known. is there.

フォイル軸受の一種として、バックフォイルを設けず、トップフォイルを周方向で分割してリーフフォイルを形成し、リーフフォイルをその一部を重ね合わせながら周方向の複数個所に設け、リーフフォイルの重なり合った部分でばね性を得るリーフ型と呼ばれるものも存在する。このリーフ型のフォイル軸受としては、固定軸受環を周方向で複数の円弧状環部材に分割し、各円弧状環部材の接合端部にフォイルの一端を溶接すると共に、フォイルにレイリーステップを屈曲形成したもの(特許文献4)、リーフをピエゾバイモルフで形成したもの(特許文献5)、リーフフォイルを線膨張率の異なる2種類の金属からなるバイメタルにより形成したもの(特許文献6)、等が公知である。   As a type of foil bearing, the back foil is not provided, the top foil is divided in the circumferential direction to form a leaf foil, and the leaf foils are provided in multiple places in the circumferential direction while overlapping the parts, and the leaf foils overlap. There is also a so-called leaf type that obtains springiness at a portion. In this leaf type foil bearing, the fixed bearing ring is divided into a plurality of arc-shaped ring members in the circumferential direction, one end of the foil is welded to the joining end of each arc-shaped ring member, and a Rayleigh step is bent on the foil. One formed (Patent Document 4), one formed by a piezo bimorph (Patent Document 5), one formed by a bimetal made of two types of metals having different linear expansion coefficients (Patent Document 6), etc. It is known.

特開2002−364643公報JP 2002-364463 A 特開2003−262222号公報JP 2003-262222 A 特開2009−299748号公報JP 2009-299748 A 特公平2−20851号公報Japanese Examined Patent Publication No. 2-20851 特開平4−54309号公報JP-A-4-54309 特開2002−295467号公報JP 2002-295467 A

従来のフォイル軸受のうち、特許文献1〜3に示すフォイル軸受では、トップフォイルとバックフォイルの二種類のフォイルが必要であり、部品点数が多くなる。また、組み立て工程も煩雑化しており、フォイル軸受のさらなる低コスト化を阻む要因になっている。特にバックフォイルは複雑な形状であることが多く、その製造工程が煩雑化する傾向にあることから、改善が要望されている。   Among the conventional foil bearings, the foil bearings disclosed in Patent Documents 1 to 3 require two types of foils, a top foil and a back foil, and increase the number of parts. In addition, the assembly process is complicated, which is a factor that hinders further cost reduction of the foil bearing. In particular, the back foil often has a complicated shape, and the manufacturing process tends to be complicated, and therefore, improvement is desired.

特許文献4〜6に示すリーフ型のフォイル軸受では、複数のリーフを外方部材の内周にそれぞれ個別に取り付ける必要がある。そのため、煩雑な組み立て工程を要し、同様にコスト高となっている。   In the leaf type foil bearings shown in Patent Documents 4 to 6, it is necessary to individually attach a plurality of leaves to the inner periphery of the outer member. Therefore, a complicated assembly process is required, and the cost is similarly high.

そこで、本発明は、フォイル軸受の低コスト化を図ることを目的とする。   Therefore, an object of the present invention is to reduce the cost of a foil bearing.

上記目的を達成するため、本発明は、円筒状の外方部材と、外方部材の内周に挿入された軸と、円周方向の複数個所に配置され、自由端を構成する先端、固定端を構成する基端、および先端と基端の間でラジアル軸受隙間を形成する軸受面、を備える複数のリーフとを具備し、軸と外方部材の何れか一方を回転側の部材、他方を固定側の部材とし、ラジアル軸受隙間に生じた流体膜で軸と外方部材の相対回転を支持するフォイル軸受において、外方部材の内周面と軸の外周面との間に、複数のリーフと、各リーフを連結する連結部とを一体に有するフォイル部材を配置したことを特徴とする。   In order to achieve the above object, the present invention provides a cylindrical outer member, a shaft inserted into the inner periphery of the outer member, a tip disposed at a plurality of locations in the circumferential direction, and a fixed end. A plurality of leaves including a base end constituting the end and a bearing surface that forms a radial bearing gap between the front end and the base end, and either the shaft or the outer member is a rotation side member, the other In the foil bearing that supports the relative rotation of the shaft and the outer member with the fluid film generated in the radial bearing gap, a plurality of gaps are provided between the inner peripheral surface of the outer member and the outer peripheral surface of the shaft. The foil member which integrally has the leaf and the connection part which connects each leaf is arrange | positioned, It is characterized by the above-mentioned.

このように、複数のリーフを連結部で連結し、フォイル部材に複数のリーフと連結部とを一体形成することにより、フォイル部材を一枚の帯状フォイルから製作することが可能となる。また、フォイル部材の一箇所を外方部材もしくは軸に固定すれば、各リーフを外方部材の内周面と軸の外周面との間の所定位置に配置することができる。従って、従来のように個々のリーフを外方部材に取り付ける場合に比べ、部品の製作コストや組み立てコストを削減することができ、フォイル軸受の低コスト化を図ることができる。   In this way, by connecting a plurality of leaves at the connecting portion and integrally forming the plurality of leaves and the connecting portion on the foil member, the foil member can be manufactured from a single strip-like foil. Further, if one portion of the foil member is fixed to the outer member or the shaft, each leaf can be disposed at a predetermined position between the inner peripheral surface of the outer member and the outer peripheral surface of the shaft. Therefore, compared to the case where individual leaves are attached to the outer member as in the prior art, the production cost and assembly cost of the parts can be reduced, and the cost of the foil bearing can be reduced.

フォイル部材を有端の円筒状とし、フォイル部材の周方向の一端側を外方部材もしくは軸に取り付けると共に、他端を自由端とし、前記一端から他端に至るフォイル部材の周回方向を、各リーフの基端から先端に向う方向と逆向きにすれば、回転側の部材の回転にフォイル部材が引き込まれることがなく、回転側の部材へのフォイル部材の巻き付きを防止することができる。   The foil member has a cylindrical shape with ends, one end side in the circumferential direction of the foil member is attached to the outer member or the shaft, the other end is a free end, and the circumferential direction of the foil member from the one end to the other end is If the direction is opposite to the direction from the proximal end of the leaf to the distal end, the foil member is not drawn by the rotation of the rotation-side member, and the foil member can be prevented from being wound around the rotation-side member.

複数のリーフと連結部の一体化は、例えば(1)複数のリーフの基端を連結部で連結することにより、あるいは(2)隣接する二つのリーフのうち、一方のリーフの先端と他方のリーフの基端とを連結部で連結することにより、行うことができる。   The integration of the plurality of leaves and the connecting portion is, for example, (1) by connecting the base ends of the plurality of leaves with the connecting portion, or (2) of two adjacent leaves, the tip of one leaf and the other This can be done by connecting the base end of the leaf with a connecting portion.

上記(1)の構成を有するフォイル軸受として、例えば半径方向で重なった第一フォイルおよび第二フォイルからなる二重フォイル部を備え、第一フォイルに第一リーフを形成すると共に、第二フォイルに第二リーフを形成したものが考えられる。この場合、第一リーフおよび第二リーフを、第一フォイルおよび第二フォイルのそれぞれに設けた切り込みで形成し、第一リーフを、前記切り込みで形成された第二フォイルの開口部を通して隣接する第二リーフの間に配置すれば、第一リーフと第二リーフを半径方向で部分的に重ねることができる。そのため、円周方向で切れ目のないラジアル軸受隙間を形成することができ、また、各リーフの軸受面を他のリーフで弾性的に支持することが可能となる。   The foil bearing having the configuration (1) includes, for example, a double foil portion including a first foil and a second foil that are overlapped in the radial direction. The first foil is formed on the first foil, and the second foil is formed on the second foil. What formed the 2nd leaf can be considered. In this case, the first leaf and the second leaf are formed by the notches provided in the first foil and the second foil, respectively, and the first leaf is adjacent to the first leaf through the opening of the second foil formed by the notch. If it arrange | positions between two leaves, a 1st leaf and a 2nd leaf can be partially overlapped in radial direction. Therefore, it is possible to form a radial bearing gap that is continuous in the circumferential direction, and it is possible to elastically support the bearing surface of each leaf with another leaf.

二重フォイル部は、一つのフォイル部材を軸周りに二回周回させることで形成することができる。あるいは、二つの円筒状のフォイル部材を半径方向に重ねて二重フォイル部を形成してもよい。   The double foil portion can be formed by rotating one foil member twice around the axis. Alternatively, the double foil portion may be formed by overlapping two cylindrical foil members in the radial direction.

上記(2)の構成のフォイル軸受においては、リーフおよび連結部を、フォイル部材の山折りおよび谷折りで形成することができる。   In the foil bearing having the configuration (2), the leaf and the connecting portion can be formed by mountain fold and valley fold of the foil member.

フォイル部材を、固定側の部材に対して周方向に摺動可能とすることにより、軸受面の変形自由度が増し、振動の減衰効果を高めることができる。この場合、フォイル部材による振動の減衰効果を考えると、この摺動部では、ある程度摩擦係数を大きくするのが望ましい。固定側の部材に対するフォイル部材の摺動部、およびフォイル部材に対する固定側の部材の摺動部のうち、何れか一方または双方に第一被膜を形成すれば、被膜材料を適宜選択することにより、フォイル部材や外方部材の材質とは無関係に両者の摺動部で最適な摩擦力を得ることが可能となり、軸受設計の自由度が増す。   By making the foil member slidable in the circumferential direction with respect to the member on the fixed side, the degree of freedom of deformation of the bearing surface is increased, and the vibration damping effect can be enhanced. In this case, considering the vibration damping effect of the foil member, it is desirable to increase the friction coefficient to some extent at this sliding portion. If the first coating is formed on either one or both of the sliding portion of the foil member relative to the stationary member and the sliding portion of the stationary member relative to the foil member, by appropriately selecting the coating material, Regardless of the material of the foil member or the outer member, it is possible to obtain an optimum frictional force at both sliding portions, and the degree of freedom in bearing design is increased.

起動直後や停止直後の低速回転状態では、各リーフの軸受面にラジアル軸受隙間を介して対向する部材が摺接する。軸受面に、表面を低摩擦化する第二被膜を形成することにより、起動直後や停止直後の摩擦トルクを減じて低トルク化を図ることができる。また、軸受面を保護して摺接時における軸受面の摩耗を抑制することができる。   In a low-speed rotation state immediately after starting or immediately after stopping, a member that faces the bearing surface of each leaf through a radial bearing gap comes into sliding contact. By forming a second coating on the bearing surface that reduces the friction of the surface, it is possible to reduce the torque by reducing the friction torque immediately after starting and immediately after stopping. Further, the bearing surface can be protected and wear of the bearing surface during sliding contact can be suppressed.

第一被膜と第二被膜は、摩擦係数の異なる材料で形成するのが望ましい。第一被膜および第二被膜としては、DLC被膜、チタンアルミナイトライド被膜、二流化モリブデン被膜の何れかを選択することができる。DLC被膜やチタンアルミナイトライド被膜は硬質被膜であるため、これらを使用すれば、低摩擦化に加えて、耐摩耗性の向上による軸受寿命の増大を図ることもできる。   The first film and the second film are preferably formed of materials having different friction coefficients. As the first film and the second film, any one of a DLC film, a titanium aluminum nitride film, and a diverted molybdenum film can be selected. Since the DLC coating and the titanium aluminum nitride coating are hard coatings, if they are used, in addition to reducing friction, it is possible to increase the bearing life by improving wear resistance.

以上に述べたフォイル軸受は、ガスタービンのロータの支持や、過給機のロータの支持に使用することができる。   The foil bearing described above can be used for supporting a rotor of a gas turbine or a rotor of a supercharger.

本発明によれば、部品点数を削減することができ、部品コストや組み立てコストの低廉化を通じてリーフ型フォイル軸受の低コスト化を図ることができる。   According to the present invention, the number of parts can be reduced, and the cost of the leaf-type foil bearing can be reduced through reduction in parts cost and assembly cost.

マイクロガスタービンの構成を概念的に示す図である。It is a figure which shows notionally the structure of a micro gas turbine. 上記マイクロガスタービンにおけるロータの支持構造を示す断面図である。It is sectional drawing which shows the support structure of the rotor in the said micro gas turbine. 本発明にかかるフォイル軸受の一実施形態を示す正面図である。It is a front view which shows one Embodiment of the foil bearing concerning this invention. 図1に示すフォイル軸受で使用されるフォイル部材の斜視図である。It is a perspective view of the foil member used with the foil bearing shown in FIG. (a)図は切り込みを形成した帯状フォイルの平面図であり、(b)図は、切り込み形成後に舌片部を折り曲げたフォイルの側面図である。(A) The figure is a top view of the strip | belt-shaped foil which formed the notch | incision, (b) The figure is a side view of the foil which bent the tongue piece part after the notch formation. (a)図は図3中の領域Xを拡大して示す断面図であり、(b)図は図3中の領域Yを拡大して示す断面図である。(A) The figure is sectional drawing which expands and shows the area | region X in FIG. 3, (b) The figure is sectional drawing which expands and shows the area | region Y in FIG. 本発明にかかるフォイル軸受の他の実施形態を示す正面図である。It is a front view which shows other embodiment of the foil bearing concerning this invention. 図7に示すフォイル軸受で使用されるフォイルアセンブリの斜視図である。FIG. 8 is a perspective view of a foil assembly used in the foil bearing shown in FIG. 7. 図8に示すフォイルアセンブリの第一フォイル部材を示す斜視図である。It is a perspective view which shows the 1st foil member of the foil assembly shown in FIG. 図8に示すフォイルアセンブリの第二フォイル部材を示す斜視図である。It is a perspective view which shows the 2nd foil member of the foil assembly shown in FIG. 本発明にかかるフォイル軸受の他の実施形態を示す正面図である。It is a front view which shows other embodiment of the foil bearing concerning this invention. 本発明にかかるフォイル軸受の他の実施形態を示す正面図である。It is a front view which shows other embodiment of the foil bearing concerning this invention. 図12に示すフォイル軸受の斜視図である。It is a perspective view of the foil bearing shown in FIG. (a)図は帯状フォイルの折り畳み行程を示す平面図であり、(b)図は同側面図である。(A) A figure is a top view which shows the folding process of a strip | belt-shaped foil, (b) A figure is the same side view. 本発明にかかるフォイル軸受の他の実施形態を示す正面図である。It is a front view which shows other embodiment of the foil bearing concerning this invention. フォイル軸受の概略構成を示す正面図で、(a)図は摺動力Pの作用方向とフォイル部材の周回方向を同じ向きにした場合を、(b)図は逆向きにした場合を示す。It is a front view which shows schematic structure of a foil bearing, (a) A figure shows the case where the action direction of sliding force P and the rotation direction of a foil member are made into the same direction, (b) A figure shows the case where it reverses. フォイル部材の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a foil member. 図17に示すフォイル部材の正面図である。It is a front view of the foil member shown in FIG. フォイルアセンブリの他の実施形態を示す斜視図である。FIG. 6 is a perspective view showing another embodiment of a foil assembly. 図19に示すフォイルアセンブリの正面図である。FIG. 20 is a front view of the foil assembly shown in FIG. 19. 図19に示すフォイルアセンブリの組立工程を示す斜視図である。It is a perspective view which shows the assembly process of the foil assembly shown in FIG. フォイル部材の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a foil member. 図22に示すフォイル部材の正面図である。It is a front view of the foil member shown in FIG. 過給機の構成を概念的に示す図である。It is a figure which shows notionally the structure of a supercharger.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、マイクロガスタービンと呼ばれるガスタービン装置の構成を概念的に示す。このマイクロガスタービンは、翼列を形成したタービン1および圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、および発電機3には、水平方向に延びる共通の軸6が設けられ、この軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、高温、高圧のガスでタービン1を回転させる。タービン1の回転力が軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。   FIG. 1 conceptually shows the configuration of a gas turbine device called a micro gas turbine. The micro gas turbine mainly includes a turbine 1 and a compressor 2 that form blade rows, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common shaft 6 that extends in the horizontal direction, and the shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas. The rotational force of the turbine 1 is transmitted to the generator 3 via the shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.

図2に、上記マイクロガスタービンにおけるロータの支持構造の一例を示す。この支持構造では、軸方向の2箇所にラジアル軸受10を配置し、軸6のフランジ部6bの軸方向両側にスラスト軸受20、20を配置することにより、軸6がラジアル方向及び両スラスト方向に支持されている。   FIG. 2 shows an example of a rotor support structure in the micro gas turbine. In this support structure, the radial bearings 10 are arranged at two locations in the axial direction, and the thrust bearings 20 and 20 are arranged on both axial sides of the flange portion 6b of the shaft 6, so that the shaft 6 is in the radial direction and both thrust directions. It is supported.

この支持構造において、タービン1と圧縮機2の間の領域は、高温、高圧のガスで回転されるタービン1に隣接しているために高温雰囲気となる。この高温雰囲気では、潤滑油やグリース等からなる潤滑剤が変質・蒸発してしまうため、これらの潤滑剤を使用する通常の軸受(転がり軸受等)を適用することは難しい。そのため、この種の支持構造で使用される軸受10、20としては、空気動圧軸受、特にフォイル軸受が適合する。   In this support structure, the region between the turbine 1 and the compressor 2 is adjacent to the turbine 1 that is rotated by high-temperature, high-pressure gas, and therefore has a high-temperature atmosphere. In this high temperature atmosphere, the lubricant composed of lubricating oil, grease and the like is altered and evaporated, so it is difficult to apply a normal bearing (such as a rolling bearing) using these lubricants. Therefore, as the bearings 10 and 20 used in this type of support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.

以下、上記マイクロガスタービン用のラジアル軸受10に適合するリーフ型のフォイル軸受10の構成を図3〜24に基づいて説明する。   Hereinafter, the structure of the leaf type foil bearing 10 suitable for the radial bearing 10 for the micro gas turbine will be described with reference to FIGS.

このリーフ型フォイル軸受10は、図3に示すように、図示しないハウジングの内周に固定される円筒状の外方部材11と、外方部材11の内周に挿入された軸6と、外方部材11の内周面と軸6の外周面との間に介在させた円筒状のフォイル部材13とで構成される。   As shown in FIG. 3, the leaf type foil bearing 10 includes a cylindrical outer member 11 fixed to an inner periphery of a housing (not shown), a shaft 6 inserted into the inner periphery of the outer member 11, The cylindrical foil member 13 is interposed between the inner peripheral surface of the side member 11 and the outer peripheral surface of the shaft 6.

フォイル部材13は、一枚の帯状フォイルを軸6周りに周回させた有端円筒状の形態をなし、円周方向の複数個所に複数のリーフ14を有する。フォイル部材13の両端13b、13cは、円周方向のほぼ同位置にあり、一端13bは外方部材11に取り付けられ、他端13cは自由端を構成する。   The foil member 13 has a cylindrical shape in which one strip-shaped foil is made to circulate around the axis 6 and has a plurality of leaves 14 at a plurality of locations in the circumferential direction. Both ends 13b and 13c of the foil member 13 are at substantially the same position in the circumferential direction, one end 13b is attached to the outer member 11, and the other end 13c constitutes a free end.

フォイル部材13には、その略全周にわたって、フォイルを半径方向に二重に重ねた二重フォイル部Wが形成される。この実施形態のフォイル軸受では、図3および図4に示すように、フォイル部材13を軸6の周囲で二回周回させることにより、一つのフォイル部材13で二重フォイル部Wが形成される。二重フォイル部Wのうち、外側のフォイルF1(第一フォイル)を部分的に内径側に立ち上げることにより、二種類のリーフ14の一方を構成する第一リーフ141が形成され、内側のフォイルF2(第二フォイル)を部分的に内径側に立ち上げることにより、他のリーフ14を構成する第二リーフ142が形成される。第一リーフ141および第二リーフ142は、フォイル部材13の両端部13b、13c付近を除いて円周方向で交互に配置されている。   The foil member 13 is formed with a double foil portion W in which the foils are doubled in the radial direction over substantially the entire circumference. In the foil bearing of this embodiment, as shown in FIGS. 3 and 4, the foil member 13 is rotated twice around the shaft 6, whereby the double foil portion W is formed by one foil member 13. Of the double foil portions W, the outer foil F1 (first foil) is partially raised to the inner diameter side to form the first leaf 141 constituting one of the two types of leaves 14, and the inner foil. A second leaf 142 constituting another leaf 14 is formed by partially raising F2 (second foil) toward the inner diameter side. The first leaf 141 and the second leaf 142 are alternately arranged in the circumferential direction except for the vicinity of both end portions 13b and 13c of the foil member 13.

各リーフ14は、自由端を構成する先端14aと、固定端を構成する基端14bとを有する。また、各リーフ14の先端14aと基端14bの間の内周面には、外径側を凸とする軸受面14cが形成されており、この軸受面14cと軸6の外周面6aとの間に、軸6の回転方向に向かって縮小する楔状のラジアル軸受隙間Cが形成される。各リーフ14の先端14a側は、回転方向先行側に隣接する他のリーフ14の内径側にあり、かつ該他のリーフ14の基端14b側と半径方向でオーバーラップしている。   Each leaf 14 has a distal end 14a constituting a free end and a proximal end 14b constituting a fixed end. A bearing surface 14c is formed on the inner peripheral surface between the distal end 14a and the base end 14b of each leaf 14 so that the outer diameter side is convex. The bearing surface 14c and the outer peripheral surface 6a of the shaft 6 are A wedge-shaped radial bearing gap C that decreases in the rotational direction of the shaft 6 is formed therebetween. The distal end 14a side of each leaf 14 is on the inner diameter side of another leaf 14 adjacent to the leading side in the rotational direction, and overlaps with the proximal end 14b side of the other leaf 14 in the radial direction.

フォイル部材13は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm〜200μm程度の帯状フォイルで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、油による防錆効果は期待できない。鋼材料や銅合金の代表例として、炭素鋼や黄銅を挙げることができるが、一般的な炭素鋼では錆による腐食が発生し易く、黄銅では加工ひずみによる置き割れを生じることがある(黄銅中のZnの含有量が多いほどこの傾向が強まる)。そのため、帯状フォイルとしては、ステンレス鋼もしくは青銅製のものを使用するのが好ましい。   The foil member 13 is formed of a belt-like foil having a thickness of about 20 μm to 200 μm made of a metal having a good spring property and good workability, such as a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in the present embodiment, since no lubricating oil exists in the atmosphere, the antirust effect by the oil cannot be expected. Typical examples of steel materials and copper alloys include carbon steel and brass, but general carbon steel is susceptible to corrosion due to rust, and brass may cause cracks due to processing strain (in brass) This tendency increases as the Zn content increases.) Therefore, it is preferable to use a stainless steel or bronze foil as the belt-like foil.

以下、図4に示すフォイル部材13の製作手順を説明する。なお、以下の製作手順で述べる「軸方向」、「半径方向」、および「周方向」の用語は、製作後のフォイル部材13を外方部材11の内周に組み込んだ状態での軸方向、半径方向、および周方向を意味する。具体的には、素材である帯状フォイル30の短辺に沿う方向が「軸方向」となり、長辺に沿う方向が「周方向」となり、厚さ方向が「半径方向」となる。   Hereinafter, the manufacturing procedure of the foil member 13 shown in FIG. 4 will be described. Note that the terms “axial direction”, “radial direction”, and “circumferential direction” described in the following production procedure are the axial direction in a state in which the foil member 13 after production is incorporated in the inner circumference of the outer member 11, It means radial direction and circumferential direction. Specifically, the direction along the short side of the strip-shaped foil 30 that is a material is the “axial direction”, the direction along the long side is the “circumferential direction”, and the thickness direction is the “radial direction”.

図5(a)に示すように、上記に例示した金属からなる帯状フォイル30を準備し、その一方の側縁部の複数個所に、ワイヤカット加工やプレス加工により適宜の間隔でL字型の切込み38を形成する。この切り込み38は、軸方向の切り込み38a、および軸方向の切り込み38aの終端につながった周方向の切り込み38bで構成される。この切り込み38により、帯状フォイル30の軸方向一方側にフラップ状をなす複数の舌片部34が形成される。他方の側縁部36および隣接する舌片部34間の領域37は、一体状態にして残す。   As shown in FIG. 5A, a belt-like foil 30 made of the metal exemplified above is prepared, and an L-shape is formed at appropriate intervals by wire cutting or pressing at a plurality of locations on one side edge thereof. A cut 38 is formed. The notch 38 includes an axial notch 38a and a circumferential notch 38b connected to the end of the axial notch 38a. By the cuts 38, a plurality of tongue pieces 34 having a flap shape are formed on one side in the axial direction of the belt-like foil 30. The region 37 between the other side edge 36 and the adjacent tongue piece 34 is left in an integrated state.

次に、図5(b)に示すように、各舌片部34を、その根元の軸方向の折り曲げ線(破線で示す)で同じ方向に折り曲げる。その後、各舌片部34を半径方向の内側にして、帯状フォイル30を二重の渦巻き状にローリングさせる。二巻き目のフォイルをローリングさせる際には、一巻き目のフォイルの隣接する舌片部34の間に、二巻き目の舌片部34を配置する。二巻き目の舌片部34は、一巻き目のフォイルの切り込み38で形成された開口部35(図3および図4参照)に挿入して、一巻き目の舌片部34の間に導入する。   Next, as shown in FIG. 5 (b), each tongue piece 34 is bent in the same direction along an axial fold line (shown by a broken line). Thereafter, the strip-shaped foil 30 is rolled into a double spiral shape with each tongue piece 34 being radially inward. When rolling the second roll of foil, the second roll tongue 34 is disposed between adjacent tongues 34 of the first roll. The second winding tongue 34 is inserted into the opening 35 (see FIGS. 3 and 4) formed by the first foil cut 38 and introduced between the first winding tongue 34. To do.

以上の手順により、図4に示すフォイル部材13が形成される。このフォイル部材13においては、二巻き目のフォイル部材13が外径側の第一フォイルF1となり、第一フォイルF1に形成された各舌片部34で第一リーフ141が構成される。また、一巻き目のフォイル部材13が内径側の第二フォイルF2となり、第二フォイルF2に形成された各舌片部34で第二リーフ142が形成される。第一リーフ141は、フォイル部材13の両端部13b、13c付近を除き、第二フォイルF2の開口部35を通って隣接する第二リーフ142の間に突出している。そのため、フォイル部材13の両端部13b、13c付近を除き、第一リーフ141と第二リーフ142が円周方向交互に配置される。帯状フォイル30の側縁部36および隣接する舌片部34間の領域37は、各リーフ14の基端14b同士を連結する連結部15を構成し、この連結部15により各リーフ14が弾性変形可能に保持される。   The foil member 13 shown in FIG. 4 is formed by the above procedure. In the foil member 13, the second foil member 13 of the second winding becomes the first foil F <b> 1 on the outer diameter side, and the first leaf 141 is configured by the tongue pieces 34 formed on the first foil F <b> 1. Moreover, the foil member 13 of the first roll becomes the second foil F2 on the inner diameter side, and the second leaf 142 is formed by each tongue piece portion 34 formed on the second foil F2. The 1st leaf 141 protrudes between the adjacent 2nd leaf 142 through the opening part 35 of the 2nd foil F2, except the both ends 13b and 13c vicinity of the foil member 13. FIG. Therefore, the first leaf 141 and the second leaf 142 are alternately arranged in the circumferential direction except for the vicinity of both end portions 13b and 13c of the foil member 13. A region 37 between the side edge portion 36 of the belt-like foil 30 and the adjacent tongue piece portion 34 constitutes a connecting portion 15 that connects the base ends 14b of the leaves 14, and each leaf 14 is elastically deformed by the connecting portion 15. Held possible.

以上の手順で製作したフォイル部材13は、外方部材1の内径側に配置した状態で、その一端13bを外方部材11に取り付けることにより、外方部材11に固定される。例えば上述したフォイル部材13の製作工程で、帯状フォイル30の一端部に外径方向に起立する取り付け部13a(図5(a)(b)参照)を形成し、この取り付け部13aを外方部材11の内周に形成した嵌合溝11aに嵌合固定することで、フォイル部材13を外方部材11に固定することができる。嵌合溝11aへの取り付け部13aの固定方法は任意で、接着や溶接で固定することもできる。その後、フォイル部材13の内周に軸6を挿入することで、図3に示すフォイル軸受が得られる。   The foil member 13 manufactured by the above procedure is fixed to the outer member 11 by attaching one end 13 b to the outer member 11 in a state where the foil member 13 is disposed on the inner diameter side of the outer member 1. For example, in the manufacturing process of the foil member 13 described above, an attachment portion 13a (see FIGS. 5A and 5B) standing up in the outer diameter direction is formed at one end portion of the strip-like foil 30, and this attachment portion 13a is used as the outer member. The foil member 13 can be fixed to the outer member 11 by being fitted and fixed in the fitting groove 11 a formed on the inner periphery of the outer peripheral member 11. The fixing method of the attachment part 13a to the fitting groove 11a is arbitrary, and can also be fixed by adhesion or welding. Thereafter, the shaft 6 is inserted into the inner periphery of the foil member 13 to obtain the foil bearing shown in FIG.

以上の構成において、楔状のラジアル軸受隙間Cの縮小方向に軸6を回転させると、各リーフ14の軸受面14cと軸6の外周面6aとの間に空気膜が形成される。これにより、軸6の周囲の円周方向複数個所に楔状のラジアル軸受隙間Cが形成され、軸6がフォイル部材13に対して非接触の状態でラジアル方向に回転自在に支持される(なお、実際のラジアル軸受隙間7の幅は数十μm程度の微小なものであるが、図3ではその幅を誇張して描いている。また、外方部材11の内周面11bと第一フォイルF1の間、および第一フォイルF1と第二フォイルF2の間の隙間も誇張して描いている)。また、フォイル部材13が有する可撓性により、各リーフ14の軸受面14cが荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間Cは運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、ラジアル軸受隙間を最適幅に管理することができ、軸6を安定して支持することが可能となる。   In the above configuration, when the shaft 6 is rotated in the reduction direction of the wedge-shaped radial bearing gap C, an air film is formed between the bearing surface 14c of each leaf 14 and the outer peripheral surface 6a of the shaft 6. Thereby, wedge-shaped radial bearing gaps C are formed at a plurality of locations around the shaft 6 in the circumferential direction, and the shaft 6 is rotatably supported in the radial direction in a non-contact state with respect to the foil member 13 (note that The actual radial bearing gap 7 has a very small width of about several tens of μm, but the width is exaggerated in Fig. 3. Also, the inner peripheral surface 11b of the outer member 11 and the first foil F1 are drawn. And the gap between the first foil F1 and the second foil F2 is also exaggerated). Further, since the bearing surface 14c of each leaf 14 is arbitrarily deformed according to the operating conditions such as the load, the rotational speed of the shaft 6, the ambient temperature, etc. due to the flexibility of the foil member 13, the radial bearing gap C is set to the operating condition. It is automatically adjusted to an appropriate width according to the Therefore, the radial bearing gap can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 6 can be stably supported.

本発明にかかるフォイル軸受では、各リーフ14を連結部15で連結し、各リーフ14と連結部15をフォイル部材13で一体形成しているので、フォイル部材13は、一枚の帯状フォイル30から製作することができる。また、フォイル部材13の一カ所を外方部材11に取り付けるだけでフォイル軸受を組み立てることができる。従って、従来のように個々のリーフを外方部材に取り付ける場合に比べ、部品の製作コストや組み立てコストを削減することができ、フォイル軸受の低コスト化を図ることができる。   In the foil bearing according to the present invention, each leaf 14 is connected by the connecting portion 15, and each leaf 14 and the connecting portion 15 are integrally formed by the foil member 13, so that the foil member 13 is formed from one strip-like foil 30. Can be produced. Moreover, a foil bearing can be assembled only by attaching one place of the foil member 13 to the outer member 11. Therefore, compared to the case where individual leaves are attached to the outer member as in the prior art, the production cost and assembly cost of the parts can be reduced, and the cost of the foil bearing can be reduced.

また、第一リーフ141を第二フォイルF2の開口部35を通して隣接する第二リーフ142の間に導入しているので、各リーフ14の先端14a側を、回転方向先行側に隣接する他のリーフの基端14b側と半径方でオーバーラップさせることが可能となり、円周方向で切れ目のないラジアル軸受隙間Cを形成することができる。フォイル部材を一回だけ周回させ、その円周方向複数個所を切り起こしてリーフを形成するだけでは(図9もしくは図10に示す形態)、リーフ14同士のオーバーラップを形成することができない。   Further, since the first leaf 141 is introduced between the adjacent second leaves 142 through the opening 35 of the second foil F2, the tip 14a side of each leaf 14 is connected to another leaf adjacent to the rotation direction leading side. It is possible to overlap with the base end 14b side in the radial direction, and it is possible to form a radial bearing gap C which is continuous in the circumferential direction. By simply rotating the foil member once and cutting and raising a plurality of portions in the circumferential direction to form a leaf (the form shown in FIG. 9 or FIG. 10), the overlap between the leaves 14 cannot be formed.

フォイル軸受では、軸6の停止直前や起動直後の低速回転時に、各リーフ14の軸受面14cや軸6の外周面6aに表面粗さ以上の厚さの空気膜を形成することが困難となる。そのため、各リーフ14の軸受面14cと軸6の外周面6aとの間で金属接触を生じ、トルクの増大を招く。この時の摩擦力を減じてトルク低減を図るため、図6(a)に示すように、各軸受面14cには、表面を低摩擦化する被膜17(第二被膜)を形成するのが望ましい。この第二被膜17としては、例えばDLC膜、チタンアルミナイトライド膜、あるいは二硫化モリブデン膜を使用することができる。DLC膜、チタンやアルミナイトライド膜はCVDやPVDで形成することができ、二硫化モリブデン膜はスプレーで簡単に形成することができる。特にDLC膜やチタンアルミナイトライド膜は硬質であるので、これらで被膜を形成することにより、軸受面14cの耐摩耗性をも向上させることができ、軸受寿命を増大させることができる。   In the foil bearing, it is difficult to form an air film having a thickness greater than the surface roughness on the bearing surface 14c of each leaf 14 and the outer peripheral surface 6a of each shaft 6 at the time of low-speed rotation immediately before the shaft 6 is stopped or immediately after starting. . For this reason, metal contact occurs between the bearing surface 14c of each leaf 14 and the outer peripheral surface 6a of the shaft 6, thereby increasing torque. In order to reduce the torque by reducing the friction force at this time, as shown in FIG. 6A, it is desirable to form a coating 17 (second coating) on each bearing surface 14c to reduce the friction of the surface. . As the second film 17, for example, a DLC film, a titanium aluminum nitride film, or a molybdenum disulfide film can be used. The DLC film, titanium or aluminum nitride film can be formed by CVD or PVD, and the molybdenum disulfide film can be easily formed by spraying. In particular, since the DLC film and the titanium aluminum nitride film are hard, the wear resistance of the bearing surface 14c can be improved and the bearing life can be increased by forming a film with these films.

また、軸受の運転中は、ラジアル軸受隙間に形成された空気膜の影響でフォイル部材13が全体的に拡径し、二重フォイル部Wの外側の第一フォイルF1が外方部材1の内周面11bに接触し、この接触部で円周方向の微小摺動が生じる。図6(b)に示すように、この摺動部、すなわち二重フォイル部Wの第一フォイルF1の外周面と、これに接触する外方部材1の内周面11bとの何れか一方または双方に被膜16(第一被膜)を形成することにより(図面では第一フォイルF1の外周面に第一被膜16を形成した場合を例示する)、この摺動部での耐摩耗性の向上を図ることができる。   Further, during the operation of the bearing, the foil member 13 is expanded in diameter as a whole due to the influence of the air film formed in the radial bearing gap, and the first foil F1 outside the double foil portion W is inside the outer member 1. It contacts the peripheral surface 11b, and a minute sliding in the circumferential direction occurs at this contact portion. As shown in FIG. 6 (b), either the outer peripheral surface of the sliding portion, that is, the first foil F1 of the double foil portion W, and the inner peripheral surface 11b of the outer member 1 in contact therewith, By forming the coating film 16 (first coating film) on both sides (in the drawing, the case where the first coating film 16 is formed on the outer peripheral surface of the first foil F1 is illustrated), the wear resistance at this sliding portion is improved. Can be planned.

なお、振動の減衰作用を向上させるためには、この摺動部である程度大きい摩擦力が必要となる場合もあり、第一被膜16にはそれほど低摩擦性は要求されない。従って、第一被膜16としては、二流化モリブデン膜よりも摩擦係数は大きいが耐摩耗性に優れるDLC膜やチタンやアルミナイトライド膜を使用するのが好ましい。例えば軸受面14cに形成する第二被膜17として二流化モリブデン膜を使用する一方で、フォイル部材13と外方部材11の摺動部に形成する第一被膜16としてDLC膜等を使用し、両被膜16,17の摩擦係数を異ならせることで、低トルク化と振動の減衰性の向上とを両立することが可能となる。   In addition, in order to improve the vibration damping action, a certain amount of frictional force may be required at the sliding portion, and the first coating 16 is not required to have a very low frictional property. Accordingly, as the first coating 16, it is preferable to use a DLC film, titanium, or aluminum nitride film that has a friction coefficient larger than that of the diverted molybdenum film but is excellent in wear resistance. For example, while using a disulfide molybdenum film as the second film 17 formed on the bearing surface 14c, a DLC film or the like is used as the first film 16 formed on the sliding portion of the foil member 13 and the outer member 11, By making the friction coefficients of the films 16 and 17 different, it is possible to achieve both a reduction in torque and an improvement in vibration damping.

以上の説明では、軸6を回転側部材とし、外方部材11を固定側部材とした場合を例示したが、これとは逆に軸6を固定側部材とし、外方部材11を回転側部材とした場合にも図3の構成をそのまま適用することもできる。但し、この場合はフォイル部材13が回転側部材となるので、遠心力によるフォイル部材13全体の変形を考慮してフォイル部材13の設計を行う必要がある。   In the above description, the case where the shaft 6 is the rotation side member and the outer member 11 is the fixed side member is illustrated. On the contrary, the shaft 6 is the fixed side member and the outer member 11 is the rotation side member. 3 can also be applied as it is. However, in this case, since the foil member 13 serves as a rotation side member, it is necessary to design the foil member 13 in consideration of deformation of the entire foil member 13 due to centrifugal force.

また、図3では、フォイル部材13を外方部材1に固定した場合を例示したが、フォイル13は軸6に固定することもできる。図11は、その一例で、フォイル部材13の一端の取り付け部13aを内径側に突出させ、これを軸6に設けた嵌合溝6bに嵌合固定した場合を示す。取り付け部13aはこれ以外にも接着や溶接で軸6に固定してもよい。   3 illustrates the case where the foil member 13 is fixed to the outer member 1, but the foil 13 can also be fixed to the shaft 6. FIG. 11 shows an example in which the attachment portion 13 a at one end of the foil member 13 protrudes toward the inner diameter side and is fitted and fixed to the fitting groove 6 b provided on the shaft 6. In addition to this, the attachment portion 13a may be fixed to the shaft 6 by adhesion or welding.

図11に示す実施形態のフォイル軸受10では、図3および図4に示す実施形態と同様に、一つのフォイル部材13を二回周回させることで、二つのフォイルF1,F2を半径方向で重ねた二重フォイル部Wが形成される。二重フォイル部Wの外側の第一フォイルF1に設けた舌片部34で、外径側の先端14aを自由端とし、内径側の基端14bを固定端とする第一リーフ141が形成され、内側の第二フォイルF2に設けた舌片部34で、外径側の先端14aを自由端とし、内径側の基端14bを固定端とする第二リーフ142が形成される。   In the foil bearing 10 of the embodiment shown in FIG. 11, as in the embodiment shown in FIGS. 3 and 4, two foils F <b> 1 and F <b> 2 are overlapped in the radial direction by rotating one foil member 13 twice. A double foil portion W is formed. The tongue piece 34 provided on the first foil F1 outside the double foil W is formed with a first leaf 141 having an outer diameter side distal end 14a as a free end and an inner diameter side proximal end 14b as a fixed end. The second leaf 142 having the outer diameter side distal end 14a as a free end and the inner diameter side proximal end 14b as a fixed end is formed by the tongue piece portion 34 provided on the inner second foil F2.

軸受面14cは、各リーフ14(第一リーフ141および第二リーフ142)の外周面に形成され、この軸受面14cと外方部材11の内周面11bとの間に楔状のラジアル軸受隙間Cが形成される。軸受の運転中は、ラジアル軸受隙間Cに形成された空気膜の影響でフォイル部材13が全体に縮径し、二重フォイル部Wの内側の第二フォイルF2が軸6の外周面6aに接触する。この接触部では、軸受の運転中に円周方向の微小摺動が生じるので、第二フォイルF2の内周面および軸6の外周面6aの何れか一方または双方の摺動部に、図6(b)に示す第一被膜16を形成する。各軸受面14cに図6(a)に示す第二被膜17を形成することもできる。   The bearing surface 14 c is formed on the outer peripheral surface of each leaf 14 (the first leaf 141 and the second leaf 142), and a wedge-shaped radial bearing gap C is formed between the bearing surface 14 c and the inner peripheral surface 11 b of the outer member 11. Is formed. During the operation of the bearing, the foil member 13 is reduced in diameter due to the air film formed in the radial bearing gap C, and the second foil F2 inside the double foil portion W contacts the outer peripheral surface 6a of the shaft 6. To do. In this contact portion, minute sliding in the circumferential direction occurs during the operation of the bearing, and therefore, either or both of the sliding portion of the inner peripheral surface of the second foil F2 and the outer peripheral surface 6a of the shaft 6 are shown in FIG. The first coating film 16 shown in (b) is formed. A second coating 17 shown in FIG. 6A can also be formed on each bearing surface 14c.

図11では外方部材11を回転側としているが、外方部材11を固定側としてもよい。但し、外方部材11を固定側とすると、フォイル部材13が回転側となるので、フォイル部材13の設計時には遠心力による第一リーフ141や第二リーフ142の変形を考慮する必要がある。   In FIG. 11, the outer member 11 is the rotating side, but the outer member 11 may be the fixed side. However, if the outer member 11 is on the fixed side, the foil member 13 is on the rotating side. Therefore, it is necessary to consider the deformation of the first leaf 141 and the second leaf 142 due to centrifugal force when designing the foil member 13.

以上に説明した各実施形態では、一枚のフォイル部材13を2回周回させることで二重フォイル部Wを形成しているが、以下に説明する実施形態では、円筒状にローリングさせた二つのフォイル部材13を同軸に嵌合させることで二重フォイル部Wを形成している。以下、この実施形態を図7〜図10に基づいて、説明する。   In each of the embodiments described above, the double foil portion W is formed by rotating the single foil member 13 twice, but in the embodiment described below, two foils rolled in a cylindrical shape are formed. The double foil part W is formed by fitting the foil member 13 coaxially. Hereinafter, this embodiment will be described with reference to FIGS.

図7に示すリーフ型フォイル軸受10は、外方部材11の内周面11bと軸6の外周面6aとの間に、二つの円筒状のフォイル部材131,132からなるフォイルアセンブリが配置される。第一フォイル部材131および第2フォイル部材132は、図3および図4に示すフォイル部材13と同様に、金属製の帯状フォイル30への切込み38の形成(図5(a)参照)、舌片部34の折り曲げ(同図(b)参照)、および帯状フォイル30のローリング、という一連の工程を経てそれぞれ製作される。両フォイル131、132は同一形状をなし、何れも一端に取り付け部13aが形成されている。帯状フォイル30をローリングさせる際の巻数は一回とし、両端部13b,13cを円周方向で略同位置に配置する。   In the leaf type foil bearing 10 shown in FIG. 7, a foil assembly including two cylindrical foil members 131 and 132 is disposed between the inner peripheral surface 11 b of the outer member 11 and the outer peripheral surface 6 a of the shaft 6. . The first foil member 131 and the second foil member 132 are formed with a cut 38 in the metal belt-like foil 30 (see FIG. 5 (a)), like the foil member 13 shown in FIGS. It is manufactured through a series of processes of bending the portion 34 (see FIG. 5B) and rolling the strip-like foil 30. Both foils 131 and 132 have the same shape, and an attachment portion 13a is formed at one end. The number of turns for rolling the belt-like foil 30 is one, and both end portions 13b and 13c are arranged at substantially the same position in the circumferential direction.

以上の工程を経ることで図9に示す第一フォイル部材131、および図10に示す第二フォイル部材132が得られる。第一フォイル部材131の舌片部34が第一リーフ141を構成し、第二フォイル部材132の舌片部34が第二リーフ142を構成する。また、両フォイル部材131,132において、帯状フォイル30の側縁部36および隣接する舌片部34間の領域37により連結部15が形成される。第一フォイル部材131では、第一リーフ141の基端14bが連結部15で連結され、各第一リーフ141と連結部15が一体形成される。第二フォイル部材132では、第二リーフ142の基端14bが連結部15で連結され、各第二リーフ142と連結部15が一体形成される。   Through the above steps, a first foil member 131 shown in FIG. 9 and a second foil member 132 shown in FIG. 10 are obtained. The tongue piece portion 34 of the first foil member 131 constitutes the first leaf 141, and the tongue piece portion 34 of the second foil member 132 constitutes the second leaf 142. Further, in both foil members 131 and 132, the connecting portion 15 is formed by the region 37 between the side edge portion 36 of the belt-like foil 30 and the adjacent tongue piece portion 34. In the 1st foil member 131, the base end 14b of the 1st leaf 141 is connected by the connection part 15, and each 1st leaf 141 and the connection part 15 are integrally formed. In the second foil member 132, the base end 14 b of the second leaf 142 is connected by the connecting portion 15, and each second leaf 142 and the connecting portion 15 are integrally formed.

なお、図9および図10に示すように、第一フォイル部材131および第二フォイル部材132の他端13cにおいては、切り込み38を設けることなく、その端部を折り曲げることで、第一リーフ141や第二リーフ142を形成することもできる。   As shown in FIGS. 9 and 10, the other end 13 c of the first foil member 131 and the second foil member 132 is not provided with the notch 38, but the end portion thereof is bent so that the first leaf 141 and A second leaf 142 can also be formed.

図8に示すフォイルアセンブリは、第一フォイル部材131と第二フォイル部材132の間の円周方向位相を一方のフォイル部材のリーフピッチの1/2分だけずらせた状態で、第二フォイル部材132を第一フォイル部材131の内周に嵌合させることで製作される。この時、第一フォイル部材131の第一リーフ141を、第二フォイル部材132の開口部35を通して隣接する第二リーフ142の間に導入することにより、第一リーフ141と第二リーフ142を円周方向交互に配置することができる。半径方向に重なり合った第一フォイル部材131および第二フォイル部材132で二重フォイル部Wが構成される。   The foil assembly shown in FIG. 8 has the second foil member 132 in a state where the circumferential phase between the first foil member 131 and the second foil member 132 is shifted by ½ of the leaf pitch of one foil member. Is fitted to the inner periphery of the first foil member 131. At this time, the first leaf 141 and the second leaf 142 are circularly introduced by introducing the first leaf 141 of the first foil member 131 between the adjacent second leaves 142 through the opening 35 of the second foil member 132. They can be arranged alternately in the circumferential direction. The double foil part W is comprised by the 1st foil member 131 and the 2nd foil member 132 which overlapped in the radial direction.

このフォイルアセンブリは、例えば両フォイル部材131、132の各取り付け部13aをそれぞれ外方部材11の内周に形成した二つの嵌合溝11aに嵌合固定することにより、外方部材1に取り付けられる。   The foil assembly is attached to the outer member 1 by, for example, fitting and fixing the attachment portions 13a of the foil members 131 and 132 into two fitting grooves 11a formed on the inner periphery of the outer member 11, respectively. .

フォイルアセンブリの内周に挿入した軸6を楔状ラジアル軸受隙間Cの縮小方向に回転させると、各リーフ14(第一リーフ141および第二リーフ142)の軸受面14cと軸6の外周面6aとの間に空気膜が形成され、軸6の周囲の円周方向複数個所に楔状のラジアル軸受隙間Cが形成される。このように、軸6を回転側部材とし、外方部材11を固定側部材とする他、これとは逆に軸6を固定側部材とし、外方部材11を回転側部材としてもよい。また、図11に示す実施形態に準じた構成を採用することで、図8に示すフォイルアセンブリを軸6に取り付けてもよい。   When the shaft 6 inserted in the inner periphery of the foil assembly is rotated in the reduction direction of the wedge-shaped radial bearing gap C, the bearing surface 14c of each leaf 14 (first leaf 141 and second leaf 142) and the outer peripheral surface 6a of the shaft 6 An air film is formed between them, and wedge-shaped radial bearing gaps C are formed at a plurality of locations around the shaft 6 in the circumferential direction. As described above, the shaft 6 may be the rotation side member and the outer member 11 may be the fixed side member. Conversely, the shaft 6 may be the fixed side member and the outer member 11 may be the rotation side member. Moreover, you may attach the foil assembly shown in FIG. 8 to the axis | shaft 6 by employ | adopting the structure according to embodiment shown in FIG.

このリーフ型フォイル軸受は、二つのフォイル部材131、132を製作し、それぞれの一カ所を外方部材11に取り付けるだけで組み立てることができるので、従来のように個々のリーフを外方部材に取り付ける場合に比べ、部品の製作コストや組み立てコストを削減することができ、フォイル軸受の低コスト化を図ることができる。その他の作用効果も図3および図4に示す実施形態と共通する。   This leaf type foil bearing can be assembled by simply manufacturing two foil members 131 and 132 and attaching each of them to the outer member 11, so that each leaf is attached to the outer member as in the prior art. Compared to the case, the production cost and assembly cost of the parts can be reduced, and the cost of the foil bearing can be reduced. Other functions and effects are also common to the embodiment shown in FIGS.

以上に述べた各実施形態では、各リーフ14の基端14bを連結部15で連結することで、各リーフ14と連結部15を一体形成している。この他にも、隣接する二つのリーフのうち、一方のリーフのリーフ先端14aと他方のリーフのリーフ基端14bとを連結部15で連結することで、各リーフ14と連結部15を一体形成することもできる。以下、この実施形態を図12〜図15に基づいてその構成を説明する。   In each embodiment described above, the base end 14b of each leaf 14 is connected by the connecting portion 15 so that each leaf 14 and the connecting portion 15 are integrally formed. In addition, of the two adjacent leaves, the leaf tip 14a of one leaf and the leaf base end 14b of the other leaf are connected by the connecting portion 15 so that each leaf 14 and the connecting portion 15 are integrally formed. You can also Hereinafter, the configuration of this embodiment will be described with reference to FIGS.

図12および図13に示すように、この実施形態のフォイル軸受10において、フォイル部材13は、山折りと谷折りを周方向で複数回繰り返して円筒状に形成される。フォイル部材13の山折り部分と谷折り部分の間には、円周方向長さが長い長尺部133と円周方向長さが短い短尺部134とが設けられる。長尺部133の内径端は内径側から見て山折りとなり、長尺部133の外径端は内径側から見て谷折りとなっている。隣接する長尺部133は、半径方向で一部重なっており、この重なり合った部分に両者を連結する短尺部134が介在している。長尺部133は、軸6の外周面6aと対向する軸受面14cを備えており、この軸受面14cと軸6の外周面6aとの間に楔状のラジアル軸受隙間が形成される。軸受面14cを有する長尺部133はリーフ14として機能する。この場合、長尺部133の内径端が先端14aを構成し、長尺部133の外径端が基端14bを構成する。短尺部134は、リーフ14の先端14aと、隣接するリーフ14の基端14bとを連結する連結部15を構成する。   As shown in FIGS. 12 and 13, in the foil bearing 10 of this embodiment, the foil member 13 is formed in a cylindrical shape by repeating mountain folding and valley folding a plurality of times in the circumferential direction. Between the mountain fold portion and the valley fold portion of the foil member 13, a long portion 133 having a long circumferential length and a short portion 134 having a short circumferential length are provided. The inner diameter end of the long portion 133 is mountain-folded when viewed from the inner diameter side, and the outer diameter end of the long portion 133 is valley-folded when viewed from the inner diameter side. Adjacent long portions 133 partially overlap in the radial direction, and a short portion 134 that connects them is interposed in the overlapping portion. The long portion 133 includes a bearing surface 14 c that faces the outer peripheral surface 6 a of the shaft 6, and a wedge-shaped radial bearing gap is formed between the bearing surface 14 c and the outer peripheral surface 6 a of the shaft 6. The long portion 133 having the bearing surface 14 c functions as the leaf 14. In this case, the inner diameter end of the long portion 133 constitutes the distal end 14a, and the outer diameter end of the long portion 133 constitutes the proximal end 14b. The short portion 134 constitutes the connecting portion 15 that connects the distal end 14 a of the leaf 14 and the proximal end 14 b of the adjacent leaf 14.

図12および図13に示すフォイル部材13は、図14(a)に示すように、金属製の帯状フォイル30を、その長手方向に山折り部135と谷折り部136とを交互に形成しながら折り畳み、その後、帯状フォイル30を図中の矢印方向に円筒状に曲げることで製作される。これにより、一枚のフォイル部材13で複数のリーフ14と連結部15を一体形成することができる。   As shown in FIG. 14 (a), the foil member 13 shown in FIGS. 12 and 13 is formed by alternately forming a metal strip-like foil 30 with a mountain fold 135 and a valley fold 136 in the longitudinal direction. It is manufactured by folding and then bending the belt-like foil 30 into a cylindrical shape in the direction of the arrow in the figure. Thereby, the several leaf 14 and the connection part 15 can be integrally formed by the foil member 13 of 1 sheet.

このフォイル部材13は、外方部材11の内径側に配置した状態で、その一端13bを外方部材11の内周に取り付けることにより、外方部材11に固定される。例えば上述したフォイル部材13の製作工程で、帯状フォイル30の一端部に外径方向に起立する取り付け部13aを形成し(図14(a)(b)参照)、この取り付け部13aを外方部材11の内周に形成した嵌合溝11aに嵌合固定することで、フォイル部材13を外方部材11に固定することができる。嵌合溝11aへの取り付け部13aの固定方法は任意で、接着や溶接で固定することもできる。その後、フォイル部材13の内周に軸6を挿入することで、図12に示すフォイル軸受が得られる。   The foil member 13 is fixed to the outer member 11 by attaching one end 13 b to the inner periphery of the outer member 11 in a state of being disposed on the inner diameter side of the outer member 11. For example, in the manufacturing process of the foil member 13 described above, an attachment portion 13a standing in the outer diameter direction is formed at one end portion of the belt-like foil 30 (see FIGS. 14A and 14B), and this attachment portion 13a is used as the outer member. The foil member 13 can be fixed to the outer member 11 by being fitted and fixed in the fitting groove 11 a formed on the inner periphery of the outer peripheral member 11. The fixing method of the attachment part 13a to the fitting groove 11a is arbitrary, and can also be fixed by adhesion or welding. Then, the foil bearing shown in FIG. 12 is obtained by inserting the shaft 6 into the inner periphery of the foil member 13.

フォイル部材13の周方向の他端13cは、周方向の一端13bの近傍まで延びて、一端13bの内周面に摺動自在に接触する(この接触部を符号Sで表す)。また、各リーフ14の基端14bは外方部材11の内周面11bに固定されておらず、内周面11b上を円周方向に摺動可能である。これにより、各リーフ14の軸受面14cが外方部材11に対して弾性的に支持される。   The other end 13c in the circumferential direction of the foil member 13 extends to the vicinity of one end 13b in the circumferential direction, and slidably contacts the inner peripheral surface of the one end 13b (this contact portion is represented by reference numeral S). Further, the base end 14b of each leaf 14 is not fixed to the inner peripheral surface 11b of the outer member 11, and can slide on the inner peripheral surface 11b in the circumferential direction. Thereby, the bearing surface 14 c of each leaf 14 is elastically supported with respect to the outer member 11.

以上の構成において、楔状のラジアル軸受隙間Cの縮小方向に軸6を回転させると、各リーフ14の軸受面14cと軸6の外周面6aとの間に空気膜が形成される。これにより、図12に示すように、軸6の周囲の円周方向複数個所に楔状のラジアル軸受隙間Cが形成され、軸6がフォイル部材13に対して非接触の状態でラジアル方向に回転自在に支持される。また、フォイル部材13が有する可撓性により、各リーフ14の軸受面14cが荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間Cは運転条件に応じた適切幅に自動調整される。そのため、ラジアル軸受隙間を最適幅に管理することができ、軸6を安定して支持することが可能となる。   In the above configuration, when the shaft 6 is rotated in the reduction direction of the wedge-shaped radial bearing gap C, an air film is formed between the bearing surface 14c of each leaf 14 and the outer peripheral surface 6a of the shaft 6. As a result, as shown in FIG. 12, wedge-shaped radial bearing gaps C are formed at a plurality of circumferential positions around the shaft 6, and the shaft 6 can rotate in the radial direction in a non-contact state with respect to the foil member 13. Supported by Further, since the bearing surface 14c of each leaf 14 is arbitrarily deformed according to the operating conditions such as the load, the rotational speed of the shaft 6, the ambient temperature, etc. due to the flexibility of the foil member 13, the radial bearing gap C is set to the operating condition. It is automatically adjusted to an appropriate width according to the Therefore, the radial bearing gap can be managed to the optimum width, and the shaft 6 can be supported stably.

本発明では、一枚のフォイル部材13から複数のリーフ14および連結部15を形成しているので、従来のように個々のリーフを外方部材に取り付ける場合に比べ、部品の製作コストや組み立てコストを削減することができ、フォイル軸受の低コスト化を図ることができる。   In the present invention, since a plurality of leaves 14 and connecting portions 15 are formed from a single foil member 13, the manufacturing cost and assembly cost of parts are compared to the case where individual leaves are attached to the outer member as in the prior art. The cost of the foil bearing can be reduced.

加えて、軸受面14cが連結部15によって弾性的に支持されていること、フォイル部材13の他端13cが接触部Sで一端13bに対して摺動自在であり、フォイル部材13の拡縮変形が可能であること、さらに各リーフ14の基端14bが外方部材11の内周面11bに対して摺動可能であること、等の理由から、ラジアル軸受隙間Cの幅の自己調整能力が強化され、かつ振動の減衰効果も得られる。そのため、高温・高速回転といった過酷な運転条件でもラジアル軸受隙間を最適幅に管理することができ、軸6を安定して支持することが可能となる。軸受面14cの弾性支持力は、連結部15の長さや傾きを変更することで任意に調整することができ、軸受設計の自由度が拡大する。   In addition, the bearing surface 14 c is elastically supported by the connecting portion 15, the other end 13 c of the foil member 13 is slidable with respect to the one end 13 b at the contact portion S, and the expansion and contraction deformation of the foil member 13 is performed. The ability to self-adjust the width of the radial bearing gap C is enhanced because the base end 14b of each leaf 14 is slidable with respect to the inner peripheral surface 11b of the outer member 11 and the like. In addition, a vibration damping effect can be obtained. Therefore, the radial bearing gap can be managed to the optimum width even under severe operating conditions such as high temperature and high speed rotation, and the shaft 6 can be stably supported. The elastic support force of the bearing surface 14c can be arbitrarily adjusted by changing the length and inclination of the connecting portion 15, and the degree of freedom in bearing design is expanded.

以上に述べたフォイル軸受でも、図3および図4に示す実施形態と同様に、軸受面14cに表面を低摩擦化する第二被膜17(図6(a)参照)を形成し、あるいは、各リーフ14の基端14bとこれに接触する外方部材11の内周面11bとの何れか一方または双方の摺動部に第一被膜16(図6(b)参照)を形成することにより、同様の作用効果を得ることができる。   In the foil bearing described above, as in the embodiment shown in FIGS. 3 and 4, the second coating 17 (see FIG. 6A) for reducing the friction surface is formed on the bearing surface 14c. By forming the first coating 16 (see FIG. 6B) on either or both sliding portions of the base end 14b of the leaf 14 and the inner peripheral surface 11b of the outer member 11 in contact therewith, Similar effects can be obtained.

軸受面14cやリーフ14の基端14bの摺動部に被膜16,17を有するフォイル部材13は、折り畳み前の帯状フォイル30の状態で、表裏面の一方または双方の全面にそれぞれ被膜を形成し、その後、図14(a)(b)に示すように帯状フォイル30を折り畳むことで低コストに製作することができる。折り畳みに伴い、山折り部135や谷折り部136の特に外側の頂端部分で被膜が剥離・脱落する場合があるが、これらの頂端部分は直接相手側部材と摺動する部分ではないので、軸受機能上、特に問題はない。この他、製作コストの高騰が問題とならないのであれば、帯状フォイル30の折り畳み後に第一被膜16や第二被膜17を形成することもできる。   The foil member 13 having the coatings 16 and 17 on the sliding portions of the bearing surface 14c and the base end 14b of the leaf 14 forms a coating on the entire surface of one or both of the front and back surfaces in the state of the strip-like foil 30 before folding. Then, as shown in FIGS. 14A and 14B, the belt-like foil 30 can be folded at a low cost. When folded, the coating may peel off or drop off at the top end portion of the mountain fold portion 135 or the valley fold portion 136 in particular, but these top end portions are not portions that slide directly with the counterpart member. There is no problem in function. In addition, if the increase in production cost is not a problem, the first coating 16 and the second coating 17 can be formed after the strip-like foil 30 is folded.

また、図12に示す実施形態では、軸6を回転側部材とし、外方部材11を固定側部材とした場合を例示したが、これとは逆に軸6を固定側部材とし、外方部材11を回転側部材とすることもできる。但し、この場合はフォイル部材13が回転側部材となるので、遠心力によるフォイル部材13全体の変形を考慮してフォイル部材13の設計を行う必要がある。   Further, in the embodiment shown in FIG. 12, the case where the shaft 6 is a rotation side member and the outer member 11 is a fixed side member is illustrated, but conversely, the shaft 6 is a fixed side member and the outer member. 11 can also be made into a rotation side member. However, in this case, since the foil member 13 serves as a rotation side member, it is necessary to design the foil member 13 in consideration of deformation of the entire foil member 13 due to centrifugal force.

また、図12および図13に示す実施形態では、フォイル部材13を外方部材11に固定した場合を例示したが、フォイル部材13は軸6に固定することもできる。図15は、その一例で、フォイル部材13の一端の取り付け部13aを軸受面14cの内径側に突出させ、これを例えば軸6に設けた嵌合溝6bに嵌合固定した場合を示す。取り付け部13aはこれ以外にも接着や溶接で軸6に固定しても構わない。フォイル部材13には、山折りと谷折りを繰り返すことでリーフ14と連結部15が一体に形成されている。各リーフ14の外径端が先端14aとなり、各リーフ14の内径端が基端14bとなる。フォイル部材13の周方向の他端13cは、フォイル部材13の一端13bの外径側で摺動自在に接触している(接触部を符号Sで表す)。軸受面14cは各リーフ14の外周面に形成され、この軸受面14cと外方部材11の内周面11bとの間に楔状のラジアル軸受隙間Cが形成される。各リーフ14の基端14bの内径側が軸6の外周面6aに摺動可能に接触する。この場合、図6(a)に示す第二被膜17は各リーフ14の軸受面14cに形成され、図6(b)に示す第一被膜16がリーフ14の基端14bと軸6の外周面6aのどちらか一方、または双方の摺動部に形成される。   In the embodiment shown in FIGS. 12 and 13, the foil member 13 is fixed to the outer member 11. However, the foil member 13 can be fixed to the shaft 6. FIG. 15 shows an example in which the attachment portion 13 a at one end of the foil member 13 protrudes toward the inner diameter side of the bearing surface 14 c and is fitted and fixed in a fitting groove 6 b provided in the shaft 6, for example. In addition to this, the attaching portion 13a may be fixed to the shaft 6 by adhesion or welding. In the foil member 13, the leaf 14 and the connecting portion 15 are integrally formed by repeating the mountain fold and the valley fold. The outer diameter end of each leaf 14 becomes the distal end 14a, and the inner diameter end of each leaf 14 becomes the proximal end 14b. The other end 13c in the circumferential direction of the foil member 13 is slidably in contact with the outer diameter side of the one end 13b of the foil member 13 (the contact portion is represented by a symbol S). The bearing surface 14 c is formed on the outer peripheral surface of each leaf 14, and a wedge-shaped radial bearing gap C is formed between the bearing surface 14 c and the inner peripheral surface 11 b of the outer member 11. The inner diameter side of the base end 14 b of each leaf 14 is slidably in contact with the outer peripheral surface 6 a of the shaft 6. In this case, the second coating 17 shown in FIG. 6A is formed on the bearing surface 14c of each leaf 14, and the first coating 16 shown in FIG. 6B is formed on the base end 14b of the leaf 14 and the outer peripheral surface of the shaft 6. 6a is formed on one or both sliding portions.

図15では外方部材11を回転側としているが、外方部材11を固定側としてもよい。但し、外方部材11を固定側とすると、フォイル部材13が回転側となるので、フォイル部材13の設計時には遠心力によるフォイル部材13の変形を考慮する必要がある。   In FIG. 15, the outer member 11 is the rotating side, but the outer member 11 may be the fixed side. However, if the outer member 11 is on the fixed side, the foil member 13 is on the rotating side. Therefore, when designing the foil member 13, it is necessary to consider deformation of the foil member 13 due to centrifugal force.

以上に述べた各実施形態のフォイル軸受では、図16(a)(b)に概略図示するように、各リーフ14は、起動時や停止持の回転側の部材(図面では軸部材6)との摺動により、リーフ基端14bからリーフ先端14aに向う方向の摺動力Pを受ける。なお、図16(a)(b)は、理解の容易化を図るため、フォイル部材13を1回だけ周回させた場合を示している。   In the foil bearing of each embodiment described above, as schematically shown in FIGS. 16 (a) and 16 (b), each leaf 14 is connected to a rotation-side member (shaft member 6 in the drawing) at the time of starting and stopping. The sliding force P in the direction from the leaf proximal end 14b to the leaf distal end 14a is received. FIGS. 16A and 16B show a case where the foil member 13 is circulated only once in order to facilitate understanding.

本発明のように、各リーフ14と連結部15が一体となった構成では、各リーフ14に作用する摺動力Pが同じフォイル部材13に作用する。この場合、図16(a)に示すように、フォイル部材13の一端13bから他端13cに向う周回方向Qが摺動力Pの作用方向と同方向であると、フォイル部材13が軸6の回転に巻き込まれ、軸受の使用条件や設計条件によっては、軸6の外周面6aにフォイル部材13が巻き付くおそれがある。   In the configuration in which each leaf 14 and the connecting portion 15 are integrated as in the present invention, the sliding force P acting on each leaf 14 acts on the same foil member 13. In this case, as shown in FIG. 16A, when the circumferential direction Q from the one end 13b to the other end 13c of the foil member 13 is the same as the direction of the sliding force P, the foil member 13 rotates the shaft 6. The foil member 13 may be wound around the outer peripheral surface 6a of the shaft 6 depending on the use conditions and design conditions of the bearing.

これに対し、図16(b)に示すように、フォイル部材13の周回方向Qが摺動力Pの作用方向と逆向きであれば、フォイル部材13が軸の回転に巻き込まれることはなく、軸6の外周面6aへの巻きつきを防止することができる。そのため、各リーフ14のリーフ基端14bからリーフ先端14aに向う方向Pと、フォイル部材13の一端13bから他端13cに向う周回方向Qとは逆向きに形成するのが望ましい。   On the other hand, as shown in FIG. 16 (b), if the circumferential direction Q of the foil member 13 is opposite to the direction of action of the sliding force P, the foil member 13 is not caught in the rotation of the shaft. 6 can be prevented from being wound around the outer peripheral surface 6a. Therefore, it is desirable that the direction P from the leaf base end 14b of each leaf 14 to the leaf tip 14a and the circumferential direction Q from the one end 13b to the other end 13c of the foil member 13 are opposite to each other.

図17〜図23は、これまでに述べた各実施形態のフォイル軸受において、上記のように摺動力Pの作用方向とフォイル部材13の周回方向Qとを逆向きにした場合の具体的構成を示すものである。このうち、図17および図18は、図3および図4に示す実施形態に対応し、一つのフォイル部材13を2回周回させることで二重フォイル部Wを形成した場合を示す。図19〜図21は、図7および図8に示す実施形態に対応し、二つのフォイル部材131,132を同軸に嵌合させることで(図21参照)、二重フォイル部Wを形成した場合を示す。図22および図23は、図12および図13に示す実施形態に対応し、フォイル部材13に複数回の山折りと谷折りを行うことで、各リーフ14の先端14aと隣接するリーフ14の基端14bとを連結部15で連結したフォイル軸受を示す。何れの構成においても、各リーフ14の基端14bから先端14aに向う方向Pと、フォイル部材13の一端13bから他端13cに至る周回方向Qとが逆向きになっており、そのため、起動時や停止時におけるフォイル部材13の軸6の外周面6aへの巻き付きを防止することができる。   FIGS. 17 to 23 show specific configurations in the case where the direction of the sliding force P and the rotating direction Q of the foil member 13 are reversed as described above in the foil bearings of the embodiments described above. It is shown. Of these, FIGS. 17 and 18 correspond to the embodiment shown in FIGS. 3 and 4 and show a case where the double foil portion W is formed by rotating one foil member 13 twice. FIGS. 19 to 21 correspond to the embodiment shown in FIGS. 7 and 8, and the double foil portion W is formed by fitting two foil members 131 and 132 coaxially (see FIG. 21). Indicates. FIGS. 22 and 23 correspond to the embodiment shown in FIGS. 12 and 13, and the base of the leaf 14 adjacent to the tip 14 a of each leaf 14 is obtained by performing multiple folds and valley folds on the foil member 13. The foil bearing which connected the end 14b with the connection part 15 is shown. In any configuration, the direction P from the base end 14b to the tip end 14a of each leaf 14 and the circumferential direction Q from the one end 13b to the other end 13c of the foil member 13 are opposite to each other. Further, it is possible to prevent the foil member 13 from being wound around the outer peripheral surface 6a of the shaft 6 at the time of stopping.

本発明にかかるフォイル軸受10の適用対象は、上述したマイクロガスタービンに限られず、例えば過給機のロータを支持する軸受としても使用することができる。過給機は、図24に示すように、エンジン53で生じた排気ガスでタービン51を駆動し、その駆動力で圧縮機52を回転させて吸入エアを圧縮し、エンジン53のトルクアップや効率改善を図るものである。タービン51、圧縮機52、および軸6でロータが構成され、軸6を支持するラジアル軸受10として、上記各実施形態のフォイル軸受10を使用することができる。   The application target of the foil bearing 10 according to the present invention is not limited to the above-described micro gas turbine, and can be used as, for example, a bearing that supports a rotor of a supercharger. As shown in FIG. 24, the supercharger drives the turbine 51 with the exhaust gas generated in the engine 53, rotates the compressor 52 with the driving force to compress the intake air, and increases the torque and efficiency of the engine 53. It is intended to improve. The rotor is constituted by the turbine 51, the compressor 52, and the shaft 6, and the foil bearing 10 of each of the above embodiments can be used as the radial bearing 10 that supports the shaft 6.

本発明にかかるフォイル軸受は、マイクロタービンや過給機に限らず、潤滑油などの液体による潤滑が困難である、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難である、あるいは液体のせん断による抵抗が問題になる等の制限下で使用される自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。   The foil bearing according to the present invention is not limited to a micro turbine or a supercharger, and it is difficult to lubricate with a liquid such as a lubricating oil. From the viewpoint of energy efficiency, it is difficult to separately provide an auxiliary machine for a lubricating oil circulation system. In addition, it can be widely used as a bearing for a vehicle such as an automobile used under a restriction that resistance due to liquid shear becomes a problem, and further as a bearing for industrial equipment.

本発明は、以上に述べた実施形態に限定されることはなく、種々の変形が可能である。例えば、以上の説明では、全てのリーフ14および連結部15を一枚のフォイル部材13で形成した場合を例示したが、少なくとも2つのリーフ14と連結部15を一枚のフォイル部材13で形成し、複数のフォイル部材13を周方向につないで円筒形にすることで、各リーフ14を形成するようにしてもよい。   The present invention is not limited to the embodiments described above, and various modifications are possible. For example, in the above description, the case where all the leaves 14 and the connecting portions 15 are formed by one foil member 13 is illustrated, but at least two leaves 14 and the connecting portions 15 are formed by one foil member 13. Each leaf 14 may be formed by connecting a plurality of foil members 13 in the circumferential direction into a cylindrical shape.

また、以上に説明した各フォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受であるが、これに限らず圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。   Each of the foil bearings described above is an air dynamic pressure bearing that uses air as a pressure generating fluid, but is not limited thereto, and may be used as an oil dynamic pressure bearing that uses lubricating oil as a pressure generating fluid. it can.

6 軸
6a 外周面
10 フォイル軸受
11 外方部材
11a 嵌合溝
11b 内周面
13 フォイル部材
13a 取り付け部
13b 一端
13c 他端
14 リーフ
14a 先端
14b 基端
14c 軸受面
15 連結部
16 第一被膜
17 第二被膜
131 フォイル部材
132 フォイル部材
F1 第一フォイル
F2 第二フォイル
141 第一リーフ
142 第二リーフ
C ラジアル軸受隙間
P 摺動力
Q 周回方向
W 二重フォイル部
6 shaft 6a outer peripheral surface 10 foil bearing 11 outer member 11a fitting groove 11b inner peripheral surface 13 foil member 13a mounting portion 13b one end 13c other end 14 leaf 14a front end 14b base end 14c bearing surface 15 connecting portion 16 first coating 17 first coating 17 Double coating 131 Foil member 132 Foil member F1 First foil F2 Second foil 141 First leaf 142 Second leaf C Radial bearing gap P Sliding force Q Circumferential direction W Double foil portion

Claims (17)

円筒状の外方部材と、外方部材の内周に挿入された軸と、円周方向の複数個所に配置され、自由端を構成する先端、固定端を構成する基端、および先端と基端の間でラジアル軸受隙間を形成する軸受面、を備える複数のリーフとを具備し、軸と外方部材の何れか一方を回転側の部材、他方を固定側の部材とし、ラジアル軸受隙間に生じた流体膜で軸と外方部材の相対回転を支持するフォイル軸受において、
外方部材の内周面と軸の外周面との間に、複数のリーフと、各リーフを連結する連結部とを一体に有するフォイル部材を配置したことを特徴とするフォイル軸受。
A cylindrical outer member, a shaft inserted in the inner periphery of the outer member, and a distal end constituting a free end, a proximal end constituting a fixed end, and a distal end and a base disposed at a plurality of locations in the circumferential direction A plurality of leaves having a bearing surface that forms a radial bearing gap between the ends. In the foil bearing that supports the relative rotation of the shaft and the outer member by the generated fluid film,
A foil bearing comprising a foil member integrally including a plurality of leaves and a connecting portion for connecting the leaves between an inner peripheral surface of the outer member and an outer peripheral surface of the shaft.
フォイル部材が有端の円筒状をなし、フォイル部材の周方向の一端側を外方部材もしくは軸に取り付けると共に、他端を自由端とし、前記一端から他端に至るフォイル部材の周回方向を、各リーフの基端から先端に向う方向と逆向きにした請求項1記載のフォイル軸受。   The foil member has a cylindrical shape with an end, the one end side in the circumferential direction of the foil member is attached to the outer member or the shaft, the other end is a free end, and the circumferential direction of the foil member from the one end to the other end is The foil bearing according to claim 1, wherein the direction is opposite to the direction from the proximal end to the distal end of each leaf. 前記複数のリーフの基端を連結部で連結した請求項1または2記載のフォイル軸受。   The foil bearing of Claim 1 or 2 which connected the base end of these leaves with the connection part. 半径方向で重なった第一フォイルおよび第二フォイルからなる二重フォイル部を備え、第一フォイルに第一リーフを形成すると共に、第二フォイルに第二リーフを形成した請求項3に記載のフォイル軸受。   The foil according to claim 3, comprising a double foil portion comprising a first foil and a second foil that are overlapped in the radial direction, wherein the first leaf is formed on the first foil and the second leaf is formed on the second foil. bearing. 第一リーフおよび第二リーフを、第一フォイルおよび第二フォイルのそれぞれに設けた切り込みで形成し、第一リーフを、前記切り込みで形成された第二フォイルの開口部を通して隣接する第二リーフの間に配置した請求項4記載のフォイル軸受。   The first leaf and the second leaf are formed by a cut provided in each of the first foil and the second foil, and the first leaf is formed in the adjacent second leaf through the opening of the second foil formed by the cut. The foil bearing of Claim 4 arrange | positioned between. 二重フォイル部を、一つのフォイル部材を軸周りに二回周回させて形成した請求項5記載のフォイル軸受。   6. A foil bearing according to claim 5, wherein the double foil portion is formed by rotating one foil member twice around an axis. 二重フォイル部を、二つの円筒状のフォイル部材を半径方向に重ねて形成した請求項5記載のフォイル軸受。   The foil bearing according to claim 5, wherein the double foil portion is formed by overlapping two cylindrical foil members in the radial direction. 隣接する二つのリーフのうち、一方のリーフの先端と他方のリーフの基端とを連結部で連結した請求項1または2記載のフォイル軸受。   The foil bearing of Claim 1 or 2 which connected the front-end | tip of one leaf and the base end of the other leaf among two adjacent leaves by the connection part. リーフおよび連結部を、フォイル部材の山折りおよび谷折りで形成した請求項8記載のフォイル軸受。   The foil bearing according to claim 8, wherein the leaf and the connecting portion are formed by a mountain fold and a valley fold of the foil member. フォイル部材を、固定側の部材に対して周方向に摺動可能とした請求項1〜9の何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 1 to 9, wherein the foil member is slidable in a circumferential direction with respect to a member on the fixed side. 固定側の部材に対するフォイル部材の摺動部、およびフォイル部材に対する固定側の部材の摺動部のうち、何れか一方または双方に第一被膜を形成した請求項10記載のフォイル軸受。   The foil bearing according to claim 10, wherein a first film is formed on one or both of a sliding portion of the foil member with respect to the fixed member and a sliding portion of the fixed member with respect to the foil member. リーフの軸受面に、表面を低摩擦化する第二被膜を形成した請求項1〜10の何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-10 which formed the 2nd film which makes the surface low friction on the bearing surface of a leaf. リーフの軸受面に、表面を低摩擦化する第二被膜を形成した請求項11記載のフォイル軸受。   The foil bearing according to claim 11, wherein a second coating for reducing friction of the surface is formed on the bearing surface of the leaf. 第一被膜と第二被膜を、摩擦係数の異なる材料で形成した請求項13記載のフォイル軸受。   The foil bearing according to claim 13, wherein the first coating and the second coating are formed of materials having different friction coefficients. 第一被膜および第二被膜として、DLC被膜、チタンアルミナイトライド被膜、二流化モリブデン被膜の何れかを選択した請求項13または14記載のフォイル軸受。   The foil bearing according to claim 13 or 14, wherein any one of a DLC film, a titanium aluminum nitride film, and a diverted molybdenum film is selected as the first film and the second film. ガスタービンのロータの支持に使用される請求項1〜15の何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-15 used for support of the rotor of a gas turbine. 過給機のロータの支持に使用される請求項1〜15の何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-15 used for support of the rotor of a supercharger.
JP2011188681A 2010-09-28 2011-08-31 Foil bearing Expired - Fee Related JP5781402B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011188681A JP5781402B2 (en) 2010-09-28 2011-08-31 Foil bearing
PCT/JP2011/071729 WO2012043416A1 (en) 2010-09-28 2011-09-22 Foil bearing

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010217042 2010-09-28
JP2010217038 2010-09-28
JP2010217038 2010-09-28
JP2010217042 2010-09-28
JP2011188681A JP5781402B2 (en) 2010-09-28 2011-08-31 Foil bearing

Publications (2)

Publication Number Publication Date
JP2012092967A true JP2012092967A (en) 2012-05-17
JP5781402B2 JP5781402B2 (en) 2015-09-24

Family

ID=45892866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188681A Expired - Fee Related JP5781402B2 (en) 2010-09-28 2011-08-31 Foil bearing

Country Status (2)

Country Link
JP (1) JP5781402B2 (en)
WO (1) WO2012043416A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079719A (en) * 2011-09-22 2013-05-02 Ntn Corp Foil bearing
JP2014126052A (en) * 2012-12-25 2014-07-07 Jtekt Corp Cage guide member of rolling bearing, and rolling bearing
WO2015087677A1 (en) * 2013-12-12 2015-06-18 Ntn株式会社 Thrust foil bearing, radial foil bearing, and method for manufacturing said thrust and radial foil bearings
US20190120291A1 (en) * 2017-10-24 2019-04-25 Hamilton Sundstrand Corporation Air bearing
US10428865B2 (en) * 2015-10-28 2019-10-01 Ntn Corporation Foil bearing, production method therefor, and intermediate product of foil bearing
US10480568B2 (en) 2015-10-16 2019-11-19 Ntn Corporation Foil bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545605B2 (en) * 2015-11-19 2019-07-17 Ntn株式会社 Foil bearing
CN113969938B (en) * 2021-12-27 2022-03-08 天津飞旋科技股份有限公司 Bump foil assembly, foil dynamic pressure air bearing and shaft system
CN115076219B (en) * 2022-07-20 2022-11-15 天津飞旋科技股份有限公司 Laminated type foil dynamic pressure bearing and shaft system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685415A1 (en) * 1991-12-19 1993-06-25 Ardepa Mechanical coupling device, with determinable coupling
JP2001323893A (en) * 2000-05-16 2001-11-22 Shimadzu Corp High speed rotation instrument
JP2006230145A (en) * 2005-02-18 2006-08-31 Ebara Corp Submerged turbine generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685415A1 (en) * 1991-12-19 1993-06-25 Ardepa Mechanical coupling device, with determinable coupling
JP2001323893A (en) * 2000-05-16 2001-11-22 Shimadzu Corp High speed rotation instrument
JP2006230145A (en) * 2005-02-18 2006-08-31 Ebara Corp Submerged turbine generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079719A (en) * 2011-09-22 2013-05-02 Ntn Corp Foil bearing
JP2014126052A (en) * 2012-12-25 2014-07-07 Jtekt Corp Cage guide member of rolling bearing, and rolling bearing
WO2015087677A1 (en) * 2013-12-12 2015-06-18 Ntn株式会社 Thrust foil bearing, radial foil bearing, and method for manufacturing said thrust and radial foil bearings
US9964143B2 (en) 2013-12-12 2018-05-08 Ntn Corporation Foil bearing and method for manufacturing thereof
US10480568B2 (en) 2015-10-16 2019-11-19 Ntn Corporation Foil bearing
US10428865B2 (en) * 2015-10-28 2019-10-01 Ntn Corporation Foil bearing, production method therefor, and intermediate product of foil bearing
US20190120291A1 (en) * 2017-10-24 2019-04-25 Hamilton Sundstrand Corporation Air bearing

Also Published As

Publication number Publication date
JP5781402B2 (en) 2015-09-24
WO2012043416A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5781402B2 (en) Foil bearing
JP6113444B2 (en) Foil bearing
JP2012092969A (en) Foil bearing
WO2014098005A1 (en) Foil bearing
JP6104597B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
WO2015087675A1 (en) Foil bearing, and foil bearing unit and turbo machine each having same
JP6104596B2 (en) Foil bearing
JP5840423B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP2013044394A (en) Thrust foil bearing
JP6144222B2 (en) Foil bearing
JP2019082195A (en) Foil bearing, foil bearing unit and turbo machine
WO2020195488A1 (en) Thrust foil bearing, foil bearing unit, turbo machine, and foil
JP2012072817A (en) Foil bearing
JP6219489B2 (en) Foil bearing
JP6622054B2 (en) Foil bearing
JP6541946B2 (en) Foil bearing and foil provided thereto
JP2021067353A (en) Foil bearing and rotating machine comprising the same
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
WO2017065176A1 (en) Foil bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5781402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees