JP2012092678A - 過給機ユニット - Google Patents

過給機ユニット Download PDF

Info

Publication number
JP2012092678A
JP2012092678A JP2010238712A JP2010238712A JP2012092678A JP 2012092678 A JP2012092678 A JP 2012092678A JP 2010238712 A JP2010238712 A JP 2010238712A JP 2010238712 A JP2010238712 A JP 2010238712A JP 2012092678 A JP2012092678 A JP 2012092678A
Authority
JP
Japan
Prior art keywords
speed increasing
clutch
rotating shaft
shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238712A
Other languages
English (en)
Inventor
Hidefumi Mori
英文 森
Masao Iguchi
雅夫 井口
Fuminobu Enoshima
史修 榎島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2010238712A priority Critical patent/JP2012092678A/ja
Publication of JP2012092678A publication Critical patent/JP2012092678A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)

Abstract

【課題】ターボチャージャを加速回転するための時間を一層短縮できるようにする。
【解決手段】ターボチャージャ11は、タービンハウジング12と、コンプレッサハウジング13と、センターハウジング14と、センターハウジング14とタービンハウジング12との間に介在された支持壁15とを備えている。支持壁15の内端面には増速歯車機構21が設けられており、回転軸16と同軸上に電磁クラッチ30が設けられている。内燃機関の回転駆動力は、ベルト35、受動プーリ34、駆動軸31及び駆動歯車38を介して増速歯車機構21に入力される。電磁クラッチ30が励磁(連結)されると、増速歯車機構21の出力回転が回転軸16に伝えられる。
【選択図】図1

Description

本発明は、燃焼機関の排気ガスを吹き付けられることにより回転するタービンホイールが回転可能な回転軸に支持されているターボチャージャを備えた過給機ユニットに関する。
この種のターボチャージャでは、タービンホイールと同軸上に配設されたコンプレッサホイールがタービンホイール及び回転軸と一体的に回転することによって吸気エアが圧縮される。しかし、タービンホイール、回転軸及びコンプレッサホイールには慣性モーメントがあり、発進加速時の排気エネルギーが十分でない。そのため、発進加速時には、排気ガスによってタービンホイール、回転軸及びコンプレッサホイールを加速回転するのに時間が掛かり、エンジンから充分な出力が得られ難い。
図3(b)は、特許文献1に開示のターボチャージャ100を備えた過給機ユニットを模式的に示す。特許文献1に開示のターボチャージャ100では、タ−ビン101とコンプレッサ102とが軸103上に設けられている。このターボチャージャ100は、軸103に取り付けられた遊星歯車機構104(増速機構)と、軸103に回転自在に取り付けられてエンジンのクランク軸105の回転により回転される回転部材106と、回転部材106の回転と遊星歯車機構104の回転とを断接するクラッチ手段107とを備えている。クランク軸105の回転数は、タ−ビン101の回転数よりもかなり低い(例えば1/10以下の回転数)。そのため、クランク軸105の回転数を増速して軸103(つまりタ−ビン101)に伝達するために増速機構が用いられる。
発進加速時にはクラッチ手段107が連結状態にされ、クランク軸105の回転が遊星歯車機構104を介して軸103に伝達される。これにより、排気エネルギーのみによって軸103を回転させる場合に比べて、加速回転するための時間が短縮する。
実開平5−12631号公報
しかし、遊星歯車機構104の太陽歯車108が軸103に止着されており、軸103が回転すると、遊星歯車機構104も回転する。一般に、軸103を増速するための遊星歯車機構104(増速機構)の慣性モーメントは大きい。そのため、発進加速時においてクラッチ手段107を遮断状態から連結状態に切り換えて、排気エネルギーのみによって軸103を駆動する状態から、クランク軸105の回転駆動力によって軸103の駆動をアシストする状態に切り換えたときには、クランク軸105の回転駆動力によるアシストが慣性モーメントの大きい遊星歯車機構104の加速回転に費やされる。これは、軸103の加速回転に掛かる時間の短縮の妨げになる。
本発明は、ターボチャージャを加速回転するための時間を一層短縮できるようにすることを目的とする。
本発明は、燃焼機関の排気ガスを吹き付けられることにより回転するタービンホイールが回転可能な回転軸に支持されているターボチャージャを備えた過給機ユニットを対象とし、請求項1の発明では、前記燃焼機関の回転を前記回転軸に伝達するための駆動力伝達機構を備え、前記駆動力伝達機構は、増速機構と、前記増速機構と前記回転軸との間で前記増速機構から前記回転軸への出力回転を遮断可能なクラッチとを含んでいる。
増速機構と回転軸との間にクラッチがあるため、クラッチが遮断状態にあるときには、回転軸の回転と増速機構の回転とは独立しており、燃焼機関が作動状態にあるときには増速機構は常時回転している。クラッチを遮断状態から連結状態に切り換えて、排気エネルギーのみによって回転軸を駆動する状態から、燃焼機関の回転駆動力によって回転軸の駆動をアシストする状態に切り換える場合、増速機構は既に回転している。そのため、加速時の燃焼機関の回転駆動力によって増速機構の加速回転に費やされる損失程度は、停止状態の増速機構を加速回転する場合に比べて、遙かに少ない。これは、回転軸の加速回転に掛かる時間の短縮の向上をもたらす。
好適な例では、前記クラッチの被動クラッチ部は、前記回転軸に止着されており、前記増速機構は、前記回転軸と同軸上に配設されている。
このような構成は、装置のコンパクト化に寄与する。
好適な例では、前記駆動力伝達機構は、前記回転軸とは別の駆動軸を備えており、前記クラッチの被動クラッチ部は、前記回転軸に止着されており、前記増速機構は、前記駆動軸と同軸上に配設されている。
駆動軸を回転軸から遠ざけることによってタービンホイール側における熱的影響から増速機構を遠ざけることが可能になる。これは、熱による増速機構の劣化の抑制に寄与する。
好適な例では、前記クラッチは、電磁クラッチであり、前記電磁クラッチの被動クラッチ部が前記回転軸と連結されている。
電磁クラッチは、遮断状態と連結状態との切り換え(内燃機関の回転駆動力のアシストの利用の有無の切り換え)制御の容易化に有利である。
好適な例では、前記クラッチは、一方向クラッチであり、前記一方向クラッチは、前記増速機構の出力回転数が前記回転軸の回転数を上回るときには連結状態となる。
一般に、排気エネルギーが小さい状態である燃焼機関の低速回転時には、増速機構の出力回転数が前記回転軸の回転数を上回る。この状態ではクラッチが連結状態となり、増速機構の出力回転が回転軸の回転をアシストする。燃焼機関の回転数が高くなると、排気エネルギーが大きくなって増速機構の出力回転数が回転軸の回転数を下回るようになる。この状態では、クラッチが遮断状態となり、回転軸が排気エネルギーのみで回転する。増速機構の出力回転による不必要なアシストは、一方向クラッチの採用によって自動的に回避される。又、一方向クラッチは、電磁クラッチに比べて、コンパクトである。
好適な例では、前記燃焼機関と前記一方向クラッチとの間の駆動力伝達経路上に電磁クラッチが設けられている。
内燃機関の回転駆動力によるアシストによってタービンホイールやコンプレッサホイールが許容回転数を超える場合には、電磁クラッチを遮断状態にしてタービンホイールやコンプレッサホイールが許容回転数を超えないようにすることができる。
本発明は、ターボチャージャを加速回転するための時間を一層短縮することができるという優れた効果を奏する。
第1の実施形態を示すターボチャージャを備えた過給機ユニットの全体側断面図。 (a)は、部分拡大側断面図。(b)は、図2(a)のA−A線断面図。 (a)は、ターボチャージャを備えた過給機ユニットの模式図。(b)は、ターボチャージャを備えた従来の過給機ユニットの模式図。 フローチャート。 第2の実施形態を示す過給機ユニットの全体側断面図。 第3の実施形態を示す部分拡大側断面図。 第4の実施形態を示す過給機ユニットの全体側断面図。 第5の実施形態を示す過給機ユニットの一部省略側断面図。 第6の実施形態を示す過給機ユニットの全体側断面図。 回転軸の回転数と過給エア流量との関係、及び駆動軸の回転数と過給エア流量との関係を示すグラフ。
以下、本発明を具体化した第1の実施形態を図1〜図4に基づいて説明する。
図1に示すように、ターボチャージャ11は、内燃機関36(燃焼機関)〔図3(a)参照〕の排気通路(図示略)に配設されるタービンハウジング12、及び内燃機関36の吸気通路(図示略)に配設されるコンプレッサハウジング13を備えている。タービンハウジング12とコンプレッサハウジング13との間にはセンターハウジング14及び支持壁15が設けられている。支持壁15にはセンターハウジング14及びタービンハウジング12が連結して固定されている。
支持壁15に対向するセンターハウジング14の端壁141とには回転軸16がラジアル軸受17,18を介して回転可能に支持されている。
タービンハウジング12内にはタービンホイール19が配設されており、コンプレッサハウジング13内にはコンプレッサホイール20が配設されている。タービンホイール19及びコンプレッサホイール20は、回転軸16に止着されており、タービンホイール19、回転軸16及びコンプレッサホイール20は、回転軸線161を中心にして一体的に回転可能である。
タービンハウジング12内には渦巻き状のスクロール通路121及び環状の旋回通路122が設けられている。スクロール通路121は、内燃機関36〔図3(a)参照〕の排気通路に連通しており、内燃機関36の燃焼室から排気通路へ排出された排気ガスがスクロール通路121に送り込まれる。スクロール通路121内の排気ガスは、旋回通路122を介してタービンホイール19へ向けて吹き付けられる。タービンホイール19へ向けて吹き付けられた排気ガスは、タービンハウジング12内の流出通路123から図示しない排気通路を経由して大気中に排出される。
コンプレッサハウジング13は、コンプレッサホイール20の外周を囲うようにセンターハウジング14の端壁141に連結して固定されている。コンプレッサハウジング13には回転軸線161の方向に向けて外部に開口する流入通路131が設けられている。コンプレッサハウジング13内には渦巻き状のコンプレッサ通路132及び環状の送出通路133が設けられている。コンプレッサ通路132は、吸気通路を介して内燃機関36〔図3(a)参照〕の燃焼室に連通しており、送出通路133は、コンプレッサ通路132に沿って設けられている。
タービンホイール19は、タービンハウジング12側からコンプレッサハウジング13側へ向かうにつれて拡径してゆく軸部191と、軸部191の周面に一体形成された複数の羽根192とを備えている。内燃機関の燃焼室から前記排気通路へ排出された排気ガスは、スクロール通路121及び旋回通路122を経由して羽根192に吹き付けられる。これにより、タービンホイール19が回転される。
コンプレッサホイール20は、コンプレッサハウジング13側からタービンハウジング12側へ向かうにつれて拡径してゆく軸部201と、軸部201の周面に一体形成された複数の羽根202とを備えている。コンプレッサホイール20は、タービンホイール19の回転に伴って一体的に回転し、回転する複数の羽根202は、吸気通路内の空気(ガス)を流入通路131へ導入すると共に、遠心作用によって送出通路133へ放出する。送出通路133内へ放出された空気は、コンプレッサ通路132を経由して燃焼室へ過給される。
図2(a)に示すように、支持壁15の内端面には増速歯車機構21が設けられている。増速歯車機構21は、支持壁15に植設された複数本の支軸22〔図2(b)に示すように本実施形態では3本〕と、各支軸22に回転可能に支持された中間歯車23と、各中間歯車23を包囲する外輪歯車24と、各中間歯車23に噛合された太陽歯車25とから構成されている。外輪歯車24の外周には歯列が形成されており、外輪歯車24の内周には歯列が形成されている。外輪歯車24の内周の歯列は、各中間歯車23に噛合している。外輪歯車24が回転すると、中間歯車23が支軸22を中心にして回転する。中間歯車23の回転は、太陽歯車25へ伝えられ、太陽歯車25が回転軸16を中心にして回転する。
中間歯車23に関して支持壁15とは反対側に支持プレート26が設けられている。支持プレート26には支軸22が貫通して固定されている。つまり、支持プレート26は、複数本の支軸22によって支持されている。
太陽歯車25には円筒部251が端壁141に向けて延出するように一体形成されており、円筒部251の先端部にはフランジ252が一体形成されている。フランジ252と支持プレート26との間にはソレノイド27が設けられている。
フランジ252と端壁141との間には板形状の被動クラッチ部28が設けられている。被動クラッチ部28には回転軸16が貫通されており、被動クラッチ部28は、回転軸16に対して回転軸線161の方向へ移動可能である。被動クラッチ部28とラジアル軸受18との間には複数の板バネ29が設けられている。板バネ29の一端は、被動クラッチ部28に止着されており、板バネ29は、被動クラッチ部28と一体的に回転する。板バネ29の他端は、回転軸16に連結されており、被動クラッチ部28及び板バネ29は、回転軸16と一体的に回転する。
ソレノイド27を励磁すると、被動クラッチ部28が板バネ29のバネ力に抗してフランジ252に吸着される。ソレノイド27を消磁すると、被動クラッチ部28が板バネ29のバネ力によってフランジ252から離される。ソレノイド27、フランジ252、被動クラッチ部28及び板バネ29は、電磁クラッチ30を構成する。
図1に示すように、センターハウジング14には筒部142が支持壁15とは反対側に突出するように一体形成されている。筒部142と支持壁15とには駆動軸31がラジアル軸受32,33を介して回転可能に支持されている。駆動軸31は、回転軸16と平行である。駆動軸31は、筒部142の筒内から外部へ突出しており、駆動軸31の突出端部には受動プーリ34が止着されている。受動プーリ34にはベルト35が巻き掛けられている。
図3(a)は、ターボチャージャ11の模式図を示す。ベルト35は、内燃機関36のクランク軸361に止着された駆動プーリ37に巻き掛けられており、クランク軸361の回転が駆動プーリ37、ベルト35及び受動プーリ34を介して駆動軸31に伝達される。
センターハウジング14内の駆動軸31の部位には駆動歯車38が止着されている。駆動歯車38は、外輪歯車24の外周側の歯列に噛合している。駆動軸31の回転は、駆動歯車38を介して外輪歯車24に伝えられる。
内燃機関36が作動している状態では、内燃機関36の回転(クランク軸361の回転)は、駆動プーリ37、ベルト35、受動プーリ34、駆動軸31及び駆動歯車38を介して増速歯車機構21へ伝えられる。つまり、内燃機関36が作動している状態では、増速歯車機構21の太陽歯車25が常に回転しており、増速歯車機構21は、駆動軸31〔図1参照〕の回転を増速して出力する。
電磁クラッチ30は、制御コンピュータCの励消磁制御を受ける。制御コンピュータCには回転数検出手段10が信号接続されている。回転数検出手段10は、内燃機関36の回転数を検出する。回転数検出手段10によって得られた回転数検出情報は、制御コンピュータCへおくられる。制御コンピュータCは、回転数検出情報に基づいて電磁クラッチ30を励消磁制御する。
駆動プーリ37、ベルト35、受動プーリ34、駆動軸31〔図1参照〕、駆動歯車38、増速歯車機構21及び電磁クラッチ30は、回転軸16を回転駆動させる内燃機関36と回転軸16との間に介在された駆動力伝達機構を構成する。
図4は、励消磁制御プログラムを示すフローチャートである。以下、制御コンピュータCによる電磁クラッチ30の励消磁制御を図4のフローチャートに基づいて説明する。
制御コンピュータCは、回転数検出手段10によって得られた検出回転数Nxと基準回転数N1との大小関係を判断する(ステップS1)。基準回転数N1は、排気エネルギーが不足する低回転数の上限として見なして設定された回転数である。検出回転数Nxが基準回転数N1に満たない場合(ステップS1においてNO)、制御コンピュータCは、電磁クラッチ30を励磁(ステップS2)する。これにより、内燃機関36の回転が回転軸16へ伝えられ、回転軸16が排気エネルギーと内燃機関36の回転駆動力との両方によって回転される。
検出回転数Nxが基準回転数N1以上である場合(ステップS1においてYES)、制御コンピュータCは、検出回転数Nxと基準回転数N2との大小関係を判断する(ステップS3)。基準回転数N2は、排気エネルギーが十分である高回転数の下限として見なして設定された回転数である。
検出回転数Nxが基準回転数N2に満たない場合(ステップS3においてNO)、制御コンピュータCは、電磁クラッチ30を励磁(ステップS4)する。これにより、内燃機関36の回転が回転軸16へ伝えられ、回転軸16が排気エネルギーと内燃機関36の回転駆動力との両方によって回転される。
検出回転数Nxが基準回転数N2以上である場合(ステップS3においてYES)、制御コンピュータCは、電磁クラッチ30を消磁(ステップS5)する。これにより、内燃機関36の回転が回転軸16へ伝えられることはなく、回転軸16が排気エネルギーのみによって回転される。
第1の実施形態では以下の効果が得られる。
(1)増速歯車機構21と回転軸16との間に電磁クラッチ30があるため、電磁クラッチ30が消磁状態(遮断状態)にあるときには、回転軸16の回転と増速歯車機構21の回転とは独立している。内燃機関36が作動状態にあるときには増速歯車機構21は常時回転している。内燃機関36の回転数が基準回転数N2より少ない回転数のときには、電磁クラッチ30が消磁状態(遮断状態)から励磁状態(連結状態)に切り換えられる。これにより、排気エネルギーのみによって回転軸16を駆動する状態から、内燃機関36の回転駆動力によって回転軸16の駆動をアシストする状態に切り換えられるが、増速歯車機構21は、既に回転している。そのため、加速時の内燃機関36の回転駆動力が既に回転している増速歯車機構21の加速回転に費やされる損失程度は、停止状態の増速歯車機構21を加速回転する場合に比べて、遙かに少ない。これは、回転軸16の加速回転に掛かる時間の短縮の向上をもたらす。
(2)電磁クラッチ30の被動クラッチ部28は、板バネ29を介して回転軸16に止着されている。又、増速歯車機構21の中心軸線(太陽歯車25の回転軸線)は、回転軸16の回転軸線161と同一線上にあり、増速歯車機構21は、回転軸16と同軸上に配設されている。このような構成は、回転軸16の周囲に増速歯車機構21及び電磁クラッチ30を配設することを可能にする。これは、ターボチャージャ11のコンパクト化に寄与する。
(3)回転軸16を回転させるためのトルクは、回転数が高くなるほど、小さくて済む。増速歯車機構21にて増速された回転数であれば、回転軸16を回転させるためのトルクは小さくて済む。従って、電磁クラッチ30の被動クラッチ部28及びフランジ252の接触面積は、小さくてよい。これは、電磁クラッチ30のコンパクト化を可能にする。電磁クラッチ30のコンパクト化は、電磁クラッチ及び増速機構を搭載したターボチャージャのコンパクト化に寄与する。
(4)一般的には、内燃機関36が高速回転しているときには、ターボチャージャ11の回転数は、増速歯車機構21にて増速された回転数を上回る。このときのターボチャージャ11の回転数は、十分な過給をもたらしており、内燃機関36の回転駆動力のアシストは不要である。アシスト不要時に電磁クラッチ30を連結状態にしておくと、逆にターボチャージャ11の加速回転が妨げられる。
電磁クラッチ30の採用は、内燃機関36の回転駆動力のアシストの利用の有無を切り換える上で好ましい。
(5)ターボチャージャ11のハウジング内の回転軸16にベルト35を巻き掛けるのは、構造的に難しい。回転軸16と平行に駆動軸31を配設した構成では、駆動軸31をターボチャージャ11のハウジング内から外部へ突出することが容易であり、駆動軸31の突出端部にベルト35を巻き掛けるのは、容易である。
次に、図5の第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
センターハウジング14とタービンハウジング12との間には支持壁15A及び補助ハウジング39が介在されている。センターハウジング14と補助ハウジング39とには回転軸16Aがラジアル軸受17,18を介して回転可能に支持されている。回転軸16Aには大径部160が形成されており、大径部160の一端側の段差には止め輪40が止着されている。大径部160には被動クラッチ部28が相対回動可能かつ回転軸線161の方向に移動可能に設けられており、被動クラッチ部28と止め輪40との間には板バネ29が介在されている。
大径部160の他端側の回転軸16Aの小径部にはサークリップ41が取り付けられており、サークリップ41と止め輪40との間の回転軸16Aには被動歯車42が相対回転可能に設けられている。被動歯車42は、サークリップ41と止め輪40との間に位置規制されている。被動歯車42にはソレノイド27が止着されている。ソレノイド27が励磁されると、被動クラッチ部28が板バネ29のばね力に抗して被動歯車42の端面に吸着される。被動歯車42、ソレノイド27、被動クラッチ部28及び板バネ29は、電磁クラッチ30Aを構成する。
支持壁15Aには増速歯車機構21Aが設けられている。増速歯車機構21Aは、支持壁15Aに植設された複数本の支軸22と、各支軸22に回転可能に支持された中間歯車23と、各中間歯車23を包囲する外輪歯車24Aと、各中間歯車23に噛合された太陽歯車25Aとから構成されている。太陽歯車25Aには出力軸43の一端が止着されており、出力軸43の他端には駆動歯車44が止着されている。駆動歯車44は、被動歯車42に噛合されている。駆動歯車44の歯数は、太陽歯車25Aの歯数よりも多くしてある。
外輪歯車24Aは、円板形状の端板241を備えており、端板241には駆動軸31が連結して固定されている。駆動軸31は、ラジアル軸受32,33を介してセンターハウジング14の筒部142に回転可能に支持されている。駆動軸31及び出力軸43は、同軸上にある。外輪歯車24Aは、駆動軸31と一体的に回転する。
外輪歯車24Aの内周には歯列が形成されている。外輪歯車24の内周の歯列は、各中間歯車23に噛合している。外輪歯車24が回転すると、中間歯車23が支軸22を中心にして回転する。中間歯車23の回転は、太陽歯車25Aへ伝えられ、太陽歯車25Aが出力軸43を中心にして回転する。太陽歯車25Aの回転は、駆動歯車44に伝えられ、駆動歯車44及びソレノイド27が回転軸16Aを中心にして一体的に回転する。
電磁クラッチ30Aが励磁されると、増速歯車機構21Aの出力回転が電磁クラッチ30Aを介して回転軸16Aに伝えられる。
第2の実施形態では、第1の実施形態における(1),(3),(4)項と同様の効果が得られる。
増速歯車機構を潤滑する潤滑油が熱によって劣化すると、増速歯車機構が劣化して信頼性が低下する。駆動軸31は、回転軸16Aから離されており、増速歯車機構21Aは、駆動軸31と同軸上に配設されている。従って、タービンホイール19側における排気ガスの熱的影響から増速歯車機構21Aが遠ざけられたことになる。これは、排気ガスの熱による増速歯車機構21Aの劣化の抑制に寄与する。
次に、図6の第3の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
増速歯車機構21Bを構成する太陽歯車25Bには収納筒部253が一体形成されており、収納筒部253と回転軸16との間には一方向クラッチ45が設けられている。排気エネルギーによる回転軸16の回転数が増速歯車機構21Bの出力回転数を上回ると、一方向クラッチ45は遮断状態となる。つまり、一方向クラッチ45は、増速歯車機構21Bの出力回転数が回転軸16の回転数を上回るときには連結状態となる。
一方向クラッチ45は遮断状態になったときには、増速歯車機構21Bの出力回転が回転軸16に伝わることはなく、回転軸16は、排気エネルギーのみで回転する。増速歯車機構21Bの出力回転による不必要なアシストは、一方向クラッチ45の採用によって自動的に回避される。又、一方向クラッチ45は、電磁クラッチに比べて、コンパクトである。
次に、図7の第4の実施形態を説明する。第2,3の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
センターハウジング14Cに連結されたコンプレッサハウジング13Cは、曲がった流入通路131Cを形成する通路形成筒134を備えている。通路形成筒134には支持壁46が一体形成されており、支持壁46には増速機構ハウジング47が連結して固定されている。増速機構ハウジング47には駆動軸31がラジアル軸受32,33を介して回転可能に支持されている。増速機構ハウジング47内には増速歯車機構21Bが設けられている。支軸22は、支持壁46に植設されている。
駆動軸31は、増速歯車機構21Bを構成する外輪歯車24Aに連結されており、外輪歯車24Aは、駆動軸31と一体的に回転する。
回転軸16は、通路形成筒134及び支持壁46を貫通しており、回転軸16の貫通端部と太陽歯車25Bの収納筒部253との間には一方向クラッチ45が介在されている。
排気エネルギーによる回転軸16の回転数が増速歯車機構21Bの出力回転数を上回ると、一方向クラッチ45は遮断状態となる。つまり、増速歯車機構21Bの出力回転が回転軸16に伝わることはなく、回転軸16は、排気エネルギーのみで回転する。
増速歯車機構21Bは、コンプレッサホイール20に関してタービンホイール19とは反対側にある。従って、増速歯車機構21Bは、タービンホイール19側の熱的影響から離れており、排気ガスの熱による増速歯車機構21Bの劣化が抑制される。
又、第4の実施形態では、第3の実施形態と同様の効果が得られる。
次に、図8の第5の実施形態を説明する。第4の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
一方向クラッチ45と回転軸16との間には軸継ぎ手48が介在されている。駆動軸31の回転は、一方向クラッチ45を介して軸継ぎ手48へ伝えられる。
第4の実施形態では、増速歯車機構21Bの組み付け誤差がある場合には、一方向クラッチ45が連結状態にあるときには、増速歯車機構21Bの出力が回転軸16に対するラジアル力を生じさせる可能性がある。回転軸16に対してラジアル力が作用した場合には、ラジアル軸受17,18の耐久性が低下する。
軸継ぎ手48を設けた第5の実施形態では、軸継ぎ手48が回転軸16に対するラジアル力を吸収するため、増速歯車機構21Bの出力が回転軸16に対するラジアル力を生じさせるおそれはない。
次に、図9及び図10の第6の実施形態を説明する。第4の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
図9に示すように、増速機構ハウジング47及び駆動軸31には電磁クラッチ49が装着されている。電磁クラッチ49のソレノイド50に通電(電磁クラッチ49を励磁)すると、駆動クラッチ板51が被動クラッチ板52に接合し、ベルト35の駆動が被動クラッチ板52及び駆動クラッチ板51を介して駆動軸31に伝達される。
図10のグラフにおける曲線Dは、駆動軸31の回転数とコンプレッサ通路132内のエア流量との関係を示し、曲線Eは、コンプレッサホイール20の回転数とコンプレッサ通路132内のエア流量との関係を示す。これらの関係は、コンプレッサ通路132内のエア流量がある一定以上において成り立つ。曲線Dと曲線Eとの交差位置の回転数Noよりも低い回転数領域では、エア流量が同じである場合には、コンプレッサホイール20の回転数が駆動軸31の回転数よりも高い。従って、図7の第4の実施形態では、一方向クラッチ45が遮断状態になる。
曲線Dと曲線Eとの交差位置の回転数Noよりも高い回転数領域では、エア流量が同じである場合には、コンプレッサホイール20の回転数が駆動軸31の回転数よりも低い。従って、図7の第4の実施形態では、一方向クラッチ45が連結状態になり、内燃機関36〔図3(a)参照〕の回転駆動力によってコンプレッサホイール20の駆動がアシストされる。内燃機関36の回転駆動力によってコンプレッサホイール20の駆動をアシストする能力を高めるには、増速歯車機構21Bの増速比を増大すればよい。しかし、図7の第4の実施形態では、単に増速歯車機構21Bの増速比を増大するだけでは、過給エア流量が増大し、回転数Noよりも高い回転数領域になってしまう。そのため、内燃機関36の回転駆動力によるアシストによってタービンホイール19やコンプレッサホイール20が許容回転数を超えてしまい、ターボチャージャ11に異常が生じるおそれがある。
内燃機関36と一方向クラッチ45との間の駆動力伝達経路上に電磁クラッチ49を設けた第5の実施形態では、内燃機関36の回転駆動力によるアシストによってタービンホイール19やコンプレッサホイール20が許容回転数を超える場合には、電磁クラッチ49を消磁して電磁クラッチ49を遮断状態にすることができる。これにより、増速歯車機構21Bの増速比を増大して内燃機関36の回転駆動力によるアシスト性能を高めた場合のターボチャージャ11の故障発生の問題を回避することができる。
本発明では以下のような実施形態も可能である。
○増速機構として、中間歯車が公転する遊星歯車機構を用いてもよい。
○増速機構として遊星ローラ機構を用いてもよい。遊星ローラ機構は、増速歯車機構に比べて、増速比を大きくし易い。
○第5の実施形態において、電磁クラッチ49の代わりに、或る回転数以上で遮断される遠心クラッチを用いてもよい。
前記した実施形態から把握できる技術思想について以下に記載する。
(イ)前記駆動軸は、前記回転軸と平行に配設されている請求項3に記載の過給機ユニット。
(ロ)前記増速機構は、太陽歯車と、中間歯車と、外輪歯車とを備えた増速歯車機構である請求項1乃至請求項5のいずれか1項に記載の過給機ユニット。
11…ターボチャージャ。16,16A…回転軸。19…タービンホイール。21,21A,21B…増速歯車機構。28…被動クラッチ部。30,30A…電磁クラッチ。31…駆動軸。44…一方向クラッチ。36…燃焼機関である内燃機関。

Claims (6)

  1. 燃焼機関の排気ガスを吹き付けられることにより回転するタービンホイールが回転可能な回転軸に支持されているターボチャージャを備えた過給機ユニットにおいて、
    前記燃焼機関の回転を前記回転軸に伝達するための駆動力伝達機構を備え、
    前記駆動力伝達機構は、増速機構と、前記増速機構と前記回転軸との間で前記増速機構から前記回転軸への出力回転を遮断可能なクラッチとを含んでいる過給機ユニット。
  2. 前記増速機構は、前記回転軸と同軸上に配設されている請求項1に記載の過給機ユニット。
  3. 前記駆動力伝達機構は、前記回転軸とは別の駆動軸を備えており、前記増速機構は、前記駆動軸と同軸上に配設されている請求項1に記載の過給機ユニット。
  4. 前記クラッチは、電磁クラッチであり、前記電磁クラッチの被動クラッチ部が前記回転軸と連結されている請求項1乃至請求項3のいずれか1項に記載の過給機ユニット。
  5. 前記クラッチは、一方向クラッチであり、前記一方向クラッチは、前記増速機構の出力回転数が前記回転軸の回転数を上回るときには連結状態となる請求項1乃至請求項3のいずれか1項に記載の過給機ユニット。
  6. 前記燃焼機関と前記一方向クラッチとの間の駆動力伝達経路上に電磁クラッチが設けられている請求項5に記載の過給機ユニット。
JP2010238712A 2010-10-25 2010-10-25 過給機ユニット Pending JP2012092678A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238712A JP2012092678A (ja) 2010-10-25 2010-10-25 過給機ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238712A JP2012092678A (ja) 2010-10-25 2010-10-25 過給機ユニット

Publications (1)

Publication Number Publication Date
JP2012092678A true JP2012092678A (ja) 2012-05-17

Family

ID=46386298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238712A Pending JP2012092678A (ja) 2010-10-25 2010-10-25 過給機ユニット

Country Status (1)

Country Link
JP (1) JP2012092678A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110138808A1 (en) * 2007-07-24 2011-06-16 Kasi Forvaltning I Goteborg Ab New enhanced supercharging system and an internal combustion engine having such a system
JP2016084815A (ja) * 2014-10-24 2016-05-19 ヴァンダイン スーパーターボ,インコーポレーテッド 減速機械式ターボ過給機
US10371060B2 (en) 2015-02-20 2019-08-06 Pratt & Whitney Canada Corp. Compound engine assembly with confined fire zone
US10408123B2 (en) 2015-02-20 2019-09-10 Pratt & Whitney Canada Corp. Engine assembly with modular compressor and turbine
US10428734B2 (en) 2015-02-20 2019-10-01 Pratt & Whitney Canada Corp. Compound engine assembly with inlet lip anti-icing
US10533492B2 (en) 2015-02-20 2020-01-14 Pratt & Whitney Canada Corp. Compound engine assembly with mount cage
US10533500B2 (en) 2015-02-20 2020-01-14 Pratt & Whitney Canada Corp. Compound engine assembly with mount cage
US10598086B2 (en) 2015-02-20 2020-03-24 Pratt & Whitney Canada Corp. Compound engine assembly with cantilevered compressor and turbine
US10677154B2 (en) 2015-02-20 2020-06-09 Pratt & Whitney Canada Corp. Compound engine assembly with offset turbine shaft, engine shaft and inlet duct

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110138808A1 (en) * 2007-07-24 2011-06-16 Kasi Forvaltning I Goteborg Ab New enhanced supercharging system and an internal combustion engine having such a system
US8490394B2 (en) 2007-07-24 2013-07-23 Kasi Technologies Ab Enhanced supercharging system and an internal combustion engine having such a system
US8490393B2 (en) 2007-07-24 2013-07-23 Kasi Technologies Ab Enhanced supercharging system and an internal combustion engine having such a system
US8522550B2 (en) 2007-07-24 2013-09-03 Kasi Technologies Ab Enhanced supercharging system and an internal combustion engine having such a system
US8528330B2 (en) * 2007-07-24 2013-09-10 Kasi Technologies Ab Enhanced supercharging system and an internal combustion engine having such a system
US8528331B2 (en) 2007-07-24 2013-09-10 Kasi Technologies Ab Enhanced supercharging system and an internal combustion engine having such a system
JP2016084815A (ja) * 2014-10-24 2016-05-19 ヴァンダイン スーパーターボ,インコーポレーテッド 減速機械式ターボ過給機
US10371060B2 (en) 2015-02-20 2019-08-06 Pratt & Whitney Canada Corp. Compound engine assembly with confined fire zone
US10408123B2 (en) 2015-02-20 2019-09-10 Pratt & Whitney Canada Corp. Engine assembly with modular compressor and turbine
US10428734B2 (en) 2015-02-20 2019-10-01 Pratt & Whitney Canada Corp. Compound engine assembly with inlet lip anti-icing
EP3059417B1 (en) * 2015-02-20 2020-01-08 Pratt & Whitney Canada Corp. Engine assembly with modular compressor and turbine
US10533492B2 (en) 2015-02-20 2020-01-14 Pratt & Whitney Canada Corp. Compound engine assembly with mount cage
US10533500B2 (en) 2015-02-20 2020-01-14 Pratt & Whitney Canada Corp. Compound engine assembly with mount cage
US10598086B2 (en) 2015-02-20 2020-03-24 Pratt & Whitney Canada Corp. Compound engine assembly with cantilevered compressor and turbine
US10677154B2 (en) 2015-02-20 2020-06-09 Pratt & Whitney Canada Corp. Compound engine assembly with offset turbine shaft, engine shaft and inlet duct

Similar Documents

Publication Publication Date Title
JP2012092678A (ja) 過給機ユニット
US8169100B2 (en) Torque transmission for an aircraft engine
JP6112229B2 (ja) 駆動装置
KR101127200B1 (ko) 유체 역학적 리버스 클러치를 구비한 구동력 전달 장치
JP6052435B2 (ja) ハイブリッド駆動装置
US5033269A (en) Compound power plant
US4914906A (en) Turbine starter device
JP6476615B2 (ja) 可変ノズルユニット及び可変容量型過給機
US20090199567A1 (en) Decoupler devices to prevent backdrive in air turbine starters
JP4491490B2 (ja) 車両用過給装置
JP2007040302A (ja) ガスタービンエンジン用ptoアセンブリ
US10473034B2 (en) Gas turbine engine starter reduction gear train with geared rotary actuator
US4989410A (en) Compound power plant
JP2008082336A (ja) ガスタービンエンジン組立体
JP2008223626A (ja) ターボ過給機への潤滑液供給システム
US20200123983A1 (en) Air turbine starter with decoupler
JP2009541628A (ja) ターボ複合化エンジン
JP2003120765A (ja) 可変速モータ・ジェネレータ
WO2007116220A1 (en) Transmission systems
WO2012173123A1 (ja) 流体機械
JP5800081B2 (ja) 動力伝達装置
WO2005024263A1 (ja) 流体継手
US20180283492A1 (en) Power transmission apparatus with centrifugal pendulum damper
JP2015123813A (ja) ハイブリッド駆動装置
JP2006299938A (ja) ターボコンパウンドシステム