JP2012092016A5 - - Google Patents

Download PDF

Info

Publication number
JP2012092016A5
JP2012092016A5 JP2012016333A JP2012016333A JP2012092016A5 JP 2012092016 A5 JP2012092016 A5 JP 2012092016A5 JP 2012016333 A JP2012016333 A JP 2012016333A JP 2012016333 A JP2012016333 A JP 2012016333A JP 2012092016 A5 JP2012092016 A5 JP 2012092016A5
Authority
JP
Japan
Prior art keywords
mass
less
glass
optical
oxide basis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012016333A
Other languages
Japanese (ja)
Other versions
JP5596717B2 (en
JP2012092016A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012016333A priority Critical patent/JP5596717B2/en
Priority claimed from JP2012016333A external-priority patent/JP5596717B2/en
Publication of JP2012092016A publication Critical patent/JP2012092016A/en
Publication of JP2012092016A5 publication Critical patent/JP2012092016A5/ja
Application granted granted Critical
Publication of JP5596717B2 publication Critical patent/JP5596717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明者らは、前記目標を達成するために鋭意試験研究を重ねた結果、SiO、B、Laを必須成分として含有させ、かつ構成成分の比率を調整することにより、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが130×10−12 −1 ×nm×cm−1×Pa−1以下を実現する高屈折率低分散光学ガラスを、環境負荷が高い成分及び希少鉱物資源を大量に使用することなく作製し、前記目的を達成し得ることを見出し、本発明をなすに至った。その構成を以下に示す。 As a result of intensive studies and research in order to achieve the above-mentioned goals, the inventors have included SiO 2 , B 2 O 3 , La 2 O 3 as essential components, and adjusted the ratio of the constituent components. The multiplication α × β of the average linear expansion coefficient α of −30 to + 70 ° C. and the photoelastic constant β at a wavelength of 546.1 nm realizes 130 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less. The present inventors have found that a high refractive index and low dispersion optical glass can be produced without using a large amount of components and rare mineral resources that have a high environmental load, and the above object can be achieved. The configuration is shown below.

(構成1)
−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが130×10−12 −1 ×nm×cm−1×Pa−1以下であって、酸化物基準で、SiOを1.0質量%より多く12.0質量%未満含有し、Bを8.0〜35.0質量%含有し、かつ、質量%比SiO/Bが0を超え0.6未満であり、Laを25.0〜50.0質量%含有することを特徴とする光学ガラス。
(Configuration 1)
The multiplication α × β of the average linear expansion coefficient α of −30 to + 70 ° C. and the photoelastic constant β at a wavelength of 546.1 nm is 130 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less, On the oxide basis, SiO 2 is contained in an amount of more than 1.0% and less than 12.0% by mass, B 2 O 3 is contained in an amount of 8.0 to 35.0% by mass, and the mass% ratio is SiO 2 / B. 2 O 3 is more than 0 and less than 0.6, and contains 25.0 to 50.0% by mass of La 2 O 3 .

(構成5)
構成1〜4のいずれか一項に記載のガラスであって、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが100×10−12 −1 ×nm×cm−1×Pa−1以下であることを特徴とする光学ガラス。
(Configuration 5)
The glass according to any one of Structures 1 to 4, wherein the multiplication α × β of an average linear expansion coefficient α of −30 to + 70 ° C. and a photoelastic constant β at a wavelength of 546.1 nm is 100 × 10 −12 ° C. -1 * nm * cm < -1 > * Pa < -1 > or less, The optical glass characterized by the above-mentioned.

(構成6)
構成1〜5のいずれか一項に記載のガラスであって、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが90×10−12 −1 ×nm×cm−1×Pa−1以下であることを特徴とする光学ガラス。
(Configuration 6)
It is glass as described in any one of the structures 1-5, Comprising: The multiplication (alpha) * (beta) of the average linear expansion coefficient (alpha) of -30- + 70 degreeC and the photoelastic constant (beta) in wavelength 546.1nm is 90 * 10 < -12 > degreeC. -1 * nm * cm < -1 > * Pa < -1 > or less, The optical glass characterized by the above-mentioned.

(構成13)
酸化物基準で
SiOを1.0質量%より多く10.0質量%未満、
を15.0〜28.0質量%、
Laを28.0〜35.0質量%、
Gdを25.0〜35.0質量%、
ZrOを5.0〜9.0質量%、及び
ZnOを0.1〜2.0質量%未満、並びに
Taを0.0〜6.0質量%、及び/又は
Nbを0.0〜5.0質量%、及び/又は
Sbを0.0〜1.0質量%、及び/又は
Alを0.0〜1.0質量%未満
を含有するガラスであって、かつ、ZrO+Nbの合計が5.0質量%を超え13.0質量%未満であり、屈折率(nd)が1.78〜1.83、アッベ数(νd)が44〜48の範囲の光学恒数を有し、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが90×10−12 −1 ×nm×cm−1×Pa−1以下であることを特徴とする光学ガラス。
(Configuration 13)
More than 1.0% by weight and less than 10.0% by weight of SiO 2 on an oxide basis,
B 2 O 3 of 15.0 to 28.0 wt%,
28.0 to 35.0% by mass of La 2 O 3 ,
Gd 2 O 3 of 25.0 to 35.0 wt%,
ZrO 2 is 5.0 to 9.0% by mass, ZnO is less than 0.1 to less than 2.0% by mass, and Ta 2 O 5 is 0.0 to 6.0% by mass, and / or Nb 2 O 5. 0.0-5.0% by mass and / or Sb 2 O 3 0.0-1.0% by mass and / or Al 2 O 3 0.0-1.0% by mass. It is glass and the total of ZrO 2 + Nb 2 O 5 is more than 5.0% by mass and less than 13.0% by mass, the refractive index (nd) is 1.78-1.83, and the Abbe number (νd ) Has an optical constant in the range of 44 to 48, and the product of the average linear expansion coefficient α of −30 to + 70 ° C. and the photoelastic constant β at a wavelength of 546.1 nm is α × β is 90 × 10 −12 ° C. −1 * Nm * cm < -1 > * Pa < -1 > or less optical glass characterized by the above-mentioned.

本発明の光学ガラスについて説明する。
前記構成1の光学ガラスは、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが130×10−12 −1 ×nm×cm−1×Pa−1以下であることを特徴とし、このα×βという指標は、使用環境における結像特性の変化量を示す。より具体的に説明すると、平均線膨張係数αが大きいほど、使用環境の温度変化に対して光学素子の膨張率(体積変化)が大きいことを意味するため、治具などで固定されている光学素子には、大きな熱応力が発生することを意味する。また、光弾性定数βが大きいほど、生じた熱応力によって生じる複屈折が大きいことを意味するため、すなわち、α×βがより小さいほど、使用環境における結像特性の変化が少ないことを示唆する。
なお、α×βが130×10−12 −1 ×nm×cm−1×Pa−1以下であることにより、光学設計時に所望していた結増特性が、実使用環境で温度変化が生じた場合でも実現されやすいという利益がある。
The optical glass of the present invention will be described.
In the optical glass having the constitution 1, the multiplication α × β of the average linear expansion coefficient α of −30 to + 70 ° C. and the photoelastic constant β at a wavelength of 546.1 nm is 130 × 10 −12 ° C. −1 × nm × cm −1 × and characterized in that Pa -1 or less, an indication that the alpha × beta indicates the amount of change in imaging properties in the use environment. More specifically, it means that the larger the average linear expansion coefficient α, the larger the expansion coefficient (volume change) of the optical element with respect to the temperature change in the use environment. It means that a large thermal stress is generated in the element. Moreover, it means that the larger the photoelastic constant β is, the larger the birefringence caused by the generated thermal stress is, that is, the smaller α × β is, the smaller the change in imaging characteristics in the use environment is. .
In addition, when α × β is 130 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less, the increase characteristic desired at the time of optical design changes in temperature in the actual use environment. There is a benefit that it is easy to be realized.

高屈折率低分散光学ガラスの乗算α×βが130×10−12 −1 ×nm×cm−1×Pa−1以下を実現するために、構成1ではSiOを1.0質量%より多く12.0質量%未満含有し、Bを8.0〜35.0質量%含有し、かつ、質量%比SiO/Bが0を超え0.6未満であり、Laを25.0〜50.0質量%含有することを特徴とする。 In order to realize the multiplication α × β of the high refractive index and low dispersion optical glass at 130 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less, in the configuration 1, the SiO 2 is less than 1.0% by mass. The content is less than 12.0% by mass, B 2 O 3 is contained in an amount of 8.0 to 35.0% by mass, and the mass% ratio SiO 2 / B 2 O 3 is more than 0 and less than 0.6, the la 2 O 3, characterized in that it contains 25.0 to 50.0 wt%.

前記構成5及び構成6の光学ガラスにおいては、より高精度かつ高精細な用途の光学素子に利用するために、乗算α×βは、100×10−12 −1 ×nm×cm−1×Pa−1以下であることが好ましく、最も好ましくは、90×10−12 −1 ×nm×cm−1×Pa−1以下である。 In the optical glass of the said structure 5 and the structure 6, in order to utilize for the optical element of a highly accurate and high-definition use, multiplication (alpha) * (beta) is 100 * 10 <-12> degreeC- 1 * nm * cm <-1> *. It is preferably Pa −1 or less, and most preferably 90 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less.

前記構成13の光学ガラスにおいては、上述した構成1〜12の光学ガラスのうち、最も好適な光学ガラスの構成成分比の範囲を明示したものである。具体的には
SiOを1.0質量%より多く10.0質量%未満、
を15.0〜28.0質量%、
Laを28.0〜35.0質量%、
Gdを25.0〜35.0質量%、
ZrOを5.0〜9.0質量%、及び
ZnOを0.1〜2.0質量%未満、並びに
Taを0.0〜6.0質量%、及び/又は
Nbを0.0〜5.0質量%、及び/又は
Sbを0.0〜1.0質量%、及び/又は
Alを0.0〜1.0質量%未満
にガラス組成を維持することにより、特に屈折率(nd)が1.78〜1.83、アッベ数(νd)が44〜48の範囲の光学恒数を有し、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが90×10−12 −1 ×nm×cm−1×Pa−1以下である光学ガラスを安定に取得できる利益がある。上述のように、構成成分とその含有量を所定の範囲の割合とすることにより、難熔融成分や希少鉱物資源の使用を最小限に抑え、環境負荷の高い成分を使用することなく、使用環境における結像特性の変化が少ない、高精度/高精細用途の光学素子を作り出すことが可能となる。
In the optical glass of the said structure 13, the range of the component ratio of the most suitable optical glass is clearly specified among the optical glasses of the structures 1-12 mentioned above. Specifically below the SiO 2 1.0 wt% more 10.0% by weight,
B 2 O 3 of 15.0 to 28.0 wt%,
28.0 to 35.0% by mass of La 2 O 3 ,
Gd 2 O 3 of 25.0 to 35.0 wt%,
ZrO 2 is 5.0 to 9.0% by mass, ZnO is less than 0.1 to less than 2.0% by mass, and Ta 2 O 5 is 0.0 to 6.0% by mass, and / or Nb 2 O 5. the 0.0 to 5.0 wt%, and / or Sb 2 O 3 of 0.0 to 1.0 wt%, and / or glass composition of Al 2 O 3 less than 0.0 to 1.0 wt% In particular, the refractive index (nd) has an optical constant in the range of 1.78 to 1.83, the Abbe number (νd) in the range of 44 to 48, and an average linear expansion coefficient of −30 to + 70 ° C. Multiplying α by the photoelastic constant β at a wavelength of 546.1 nm is advantageous in that an optical glass having α × β of 90 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less can be stably obtained. As mentioned above, by making the components and their contents within a specified range, the use of hardly fusible components and rare mineral resources is minimized, and the environment in which the components are used is high without using components with high environmental impact. It is possible to produce an optical element for high-precision / high-definition applications with little change in imaging characteristics.

表1〜8に示したとおり、本発明の好ましい実施例ではいずれも所望の光学恒数、乗算α×βを実現できることが分かった。一方、表9に示した比較例では、比較例Aは、比較的小さいα×βを実現できるが、光学恒数が近い実施例36〜34と比較すると、質量%比SiO/B比が0.6を超えているため、平均線膨張係数αが大きくなり、乗算α×βが90×10−12 −1 ×nm×cm−1×Pa−1 超えている。また、比較例Bでは、光学恒数が近い実施例30〜32と比較すると、ZnOを多く含有しているため、光弾性定数βが大きくなってしまい、乗算α×βが100×10−12 −1 ×nm×cm−1×Pa−1超えてしまう。その他に、SiO含有量が少なく、質量%比SiO/B比が0.05未満であるため、ガラスの耐失透性が十分でなく、ガラスを鋳込む際、ほぼガラス表面全体に結晶が発生した。また、比較例Cでは、ZnOの含有量が著しく多く、質量%比(ZnO+Y)/Laが0.733と大きいため、光弾性定数βが増大し、乗算α×βが130×10−12 −1 ×nm×cm−1×Pa−1 超えてしまう。 As shown in Tables 1 to 8, it has been found that all of the preferred embodiments of the present invention can realize a desired optical constant and multiplication α × β. On the other hand, in the comparative example shown in Table 9, comparative example A can realize a relatively small α × β, but the mass% ratio SiO 2 / B 2 O as compared with Examples 36 to 34, which have close optical constants. since 3 ratio is greater than 0.6, average linear expansion coefficient alpha is increased, the multiplication alpha × beta is greater than 90 × 10 -12 ℃ -1 × nm × cm -1 × Pa -1. Further, in Comparative Example B, compared with Examples 30 to 32 having a close optical constant, since it contains a large amount of ZnO, the photoelastic constant β is increased, and the multiplication α × β is 100 × 10 −12. It will exceed [deg.] C < -1> * nm * cm < -1 > * Pa < -1 >. In addition, since the SiO 2 content is low and the mass% ratio SiO 2 / B 2 O 3 ratio is less than 0.05, the devitrification resistance of the glass is not sufficient. Crystals were generated throughout. In Comparative Example C, the ZnO content is remarkably high, and the mass% ratio (ZnO + Y 2 O 3 ) / La 2 O 3 is as large as 0.733. Therefore, the photoelastic constant β increases, and the multiplication α × β is exceeds 130 × 10 -12 ℃ -1 × nm × cm -1 × Pa -1.

Claims (14)

−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが90×10−12 −1 ×nm×cm−1×Pa−1以下であって、酸化物基準で、SiOを1.0質量%より多く12.0質量%未満含有し、Bを8.0〜35.0質量%含有し、かつ、質量%比SiO/Bが0を超え0.6未満であり、Laを25.0〜50.0質量%含有することを特徴とする光学ガラス。 The multiplication α × β of the average linear expansion coefficient α of −30 to + 70 ° C. and the photoelastic constant β at a wavelength of 546.1 nm is 90 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less, On the oxide basis, SiO 2 is contained in an amount of more than 1.0% and less than 12.0% by mass, B 2 O 3 is contained in an amount of 8.0 to 35.0% by mass, and the mass% ratio is SiO 2 / B. 2 O 3 is more than 0 and less than 0.6, and contains 25.0 to 50.0% by mass of La 2 O 3 . 屈折率(nd)が1.75〜2.00、アッベ数(νd)が35〜55の範囲の光学恒数を有することを特徴とする請求項1に記載の光学ガラス。   The optical glass according to claim 1, wherein the optical glass has an optical constant having a refractive index (nd) of 1.75 to 2.00 and an Abbe number (νd) of 35 to 55. 請求項1又は2に記載のガラスであって、さらに酸化物基準で、Gdを0.0〜40.0質量%、Yを0.0〜15.0質量%、ZrOを0.0〜15.0質量%、Taを0.0〜25.0質量%、Nbを0.0〜18.0質量%、WOを0.0〜10.0質量%含有することを特徴とする光学ガラス。 A glass according to claim 1 or 2, further an oxide basis, the Gd 2 O 3 0.0 to 40.0 wt%, a Y 2 O 3 from .0 to 15.0 wt%, ZrO 2 0.0 to 15.0 wt%, Ta 2 O 5 of 0.0 to 25.0 wt%, Nb 2 O 5 of 0.0 to 18.0 wt%, WO 3 and from 0.0 to 10 An optical glass containing 0.0% by mass. 請求項1〜3のいずれか一項に記載のガラスであって、酸化物基準で、
GeOを0.0〜0.1質量%、
Ybを0.0〜1.0質量%、
Gaを0.0〜1.0質量%、又は
Biを0.0〜1.0質量%を含有し、
鉛化合物及び砒素化合物を含有しないことを特徴とする光学ガラス。
The glass according to any one of claims 1 to 3, which is based on an oxide.
0.02 to 0.1% by weight of GeO 2
Yb 2 O 3 and 0.0 to 1.0 wt%,
Ga 2 O 3 and 0.0 to 1.0 wt%, or Bi 2 O 3 contained 0.0 to 1.0 wt%,
An optical glass containing no lead compound and arsenic compound.
請求項1〜4のいずれか一項に記載のガラスであって、酸化物基準で、質量%比(Ta+Nb+WO)/(Gd+Y)が、0.05を超え1.30未満であることを特徴とする光学ガラス。 A glass according to any one of claims 1 to 4, on an oxide basis, the weight percent ratio (Ta 2 O 5 + Nb 2 O 5 + WO 3) / (Gd 2 O 3 + Y 2 O 3) is , And more than 0.05 and less than 1.30. 請求項1〜5のいずれか一項に記載のガラスであって、酸化物基準の質量%表示で、
LiO 0〜5.0%、
NaO 0〜5.0%、
O 0〜5.0%、
CsO 0〜5.0%、
MgO 0〜5.0%、
CaO 0〜5.0%、
SrO 0〜5.0%、
BaO 0〜5.0%、
TiO 0〜3.0%、
SnO 0〜3.0%、
Al 0〜3.0%、
0〜5.0%、
ZnO 0〜10.0%、
Lu 0〜5.0%、
TeO 0〜3.0%、
Sb 0〜2.0%、又は
F 0〜3.0%を含有することを特徴とする光学ガラス。
It is glass as described in any one of Claims 1-5, Comprising: By the mass% display of an oxide basis,
Li 2 O 0-5.0%,
Na 2 O 0-5.0%,
K 2 O 0-5.0%,
Cs 2 O 0~5.0%,
MgO 0-5.0%,
CaO 0-5.0%,
SrO 0-5.0%,
BaO 0-5.0%,
TiO 2 0-3.0%,
SnO 2 0-3.0%,
Al 2 O 3 0-3.0%,
P 2 O 5 0-5.0%,
ZnO 0 to 10.0%,
Lu 2 O 3 0-5.0%,
TeO 2 0-3.0%,
An optical glass containing Sb 2 O 3 0 to 2.0% or F 0 to 3.0%.
請求項1〜6のいずれか一項に記載のガラスであって、酸化物基準で、ZnOを2.0質量%未満含有することを特徴とする光学ガラス。   It is glass as described in any one of Claims 1-6, Comprising: ZnO is contained less than 2.0 mass% on an oxide basis, The optical glass characterized by the above-mentioned. 請求項1〜7のいずれか一項に記載のガラスであって、酸化物基準で、Yを3.5質量%未満含有することを特徴とする光学ガラス。 The glass according to any one of claims 1 to 7, wherein Y 2 O 3 is contained in an amount of less than 3.5% by mass based on an oxide. 請求項1〜8のいずれか一項に記載のガラスであって、酸化物基準で、質量%比(ZrO+Ta+Nb)/(SiO+B)が、1.00未満であることを特徴とする光学ガラス。 A glass according to any one of claims 1 to 8, on an oxide basis, the weight percent ratio of (ZrO 2 + Ta 2 O 5 + Nb 2 O 5) / (SiO 2 + B 2 O 3), 1 Optical glass characterized by being less than 0.00. 請求項1〜9のいずれか一項に記載のガラスであって、酸化物基準で、Yを3.5質量%未満含有し、質量%比(ZnO+Y)/Laが0を超え0.5未満であり、質量%和ZrO+Nbが5.0%を超え13.0%未満であることを特徴とする光学ガラス。 A glass according to any one of claims 1 to 9, on an oxide basis, the Y 2 O 3 and contains less than 3.5 wt%, the weight percent ratio (ZnO + Y 2 O 3) / La 2 O An optical glass, wherein 3 is greater than 0 and less than 0.5, and the mass% sum ZrO 2 + Nb 2 O 5 is greater than 5.0% and less than 13.0%. 酸化物基準で、
SiOを1.0質量%より多く10.0質量%未満、
を15.0〜28.0質量%、
Laを28.0〜35.0質量%、
Gdを25.0〜35.0質量%、
ZrOを5.0〜9.0質量%、及び
ZnOを0.1〜2.0質量%未満、
並びに
Taを0.0〜6.0質量%、
Nbを0.0〜5.0質量%、
Sbを0.0〜1.0質量%、又は
Alを0.0〜1.0質量%未満
を含有するガラスであって、かつ、ZrO+Nbの合計が5.0質量%を超え13.0質量%未満であり、屈折率(nd)が1.78〜1.83、アッベ数(νd)が44〜48の範囲の光学恒数を有し、−30〜+70℃の平均線膨張係数αと波長546.1nmにおける光弾性定数βの乗算α×βが90×10−12 −1 ×nm×cm−1×Pa−1以下であることを特徴とする光学ガラス。
On oxide basis,
More than a SiO 2 1.0 wt% less than 10.0 mass%,
B 2 O 3 of 15.0 to 28.0 wt%,
28.0 to 35.0% by mass of La 2 O 3 ,
Gd 2 O 3 of 25.0 to 35.0 wt%,
ZrO 2 is 5.0 to 9.0% by mass, and ZnO is less than 0.1 to 2.0% by mass,
And Ta 2 O 5 in an amount of 0.0 to 6.0% by mass,
Nb 2 O 5 of 0.0 to 5.0 wt%,
A glass containing 0.0 to 1.0% by mass of Sb 2 O 3 or 0.0 to less than 1.0% by mass of Al 2 O 3 , and the total of ZrO 2 + Nb 2 O 5 is It has an optical constant of more than 5.0% by mass and less than 13.0% by mass, a refractive index (nd) of 1.78 to 1.83, and an Abbe number (νd) of 44 to 48, − Multiplication α × β of an average linear expansion coefficient α of 30 to + 70 ° C. and a photoelastic constant β at a wavelength of 546.1 nm is 90 × 10 −12 ° C. −1 × nm × cm −1 × Pa −1 or less. Optical glass.
請求項1〜11のいずれか一項に記載のガラスを母材とする光学素子。   The optical element which uses the glass as described in any one of Claims 1-11 as a base material. 請求項1〜11のいずれか一項に記載のガラスをリヒートプレス加工して作成する光学素子。   An optical element produced by reheat pressing the glass according to any one of claims 1 to 11. 請求項1〜11のいずれか一項に記載のガラスで作成した光学素子及び光学基板材料を使用する光学機器。   The optical device which uses the optical element and optical substrate material which were created with the glass as described in any one of Claims 1-11.
JP2012016333A 2012-01-30 2012-01-30 Optical glass Active JP5596717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016333A JP5596717B2 (en) 2012-01-30 2012-01-30 Optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016333A JP5596717B2 (en) 2012-01-30 2012-01-30 Optical glass

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006098088A Division JP5078272B2 (en) 2006-03-31 2006-03-31 Optical glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014137972A Division JP2014196244A (en) 2014-07-03 2014-07-03 Optical glass

Publications (3)

Publication Number Publication Date
JP2012092016A JP2012092016A (en) 2012-05-17
JP2012092016A5 true JP2012092016A5 (en) 2013-04-18
JP5596717B2 JP5596717B2 (en) 2014-09-24

Family

ID=46385823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016333A Active JP5596717B2 (en) 2012-01-30 2012-01-30 Optical glass

Country Status (1)

Country Link
JP (1) JP5596717B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188553B2 (en) * 2013-07-31 2017-08-30 株式会社オハラ Optical glass, preform material and optical element
WO2015125794A1 (en) * 2014-02-21 2015-08-27 旭硝子株式会社 Light-guiding element and video display device
JP6693726B2 (en) * 2014-11-07 2020-05-13 Hoya株式会社 Glass, glass material for press molding, optical element blank, and optical element
JP6033487B2 (en) * 2016-08-19 2016-11-30 株式会社オハラ Optical glass and optical element
JP6033488B1 (en) * 2016-08-24 2016-11-30 株式会社オハラ Optical glass and optical element
JP6626907B2 (en) * 2018-01-18 2019-12-25 Hoya株式会社 Glass, glass material for press molding, optical element blank, and optical element
CN110028239B (en) * 2019-05-23 2022-08-09 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160340A (en) * 1980-05-09 1981-12-10 Ohara Inc Optical glass
JPS6022656B2 (en) * 1980-08-21 1985-06-03 ホ−ヤ株式会社 optical glass
JPS6046948A (en) * 1983-08-25 1985-03-14 Nippon Kogaku Kk <Nikon> Glass having high refractive index and low despersion
JPH08217484A (en) * 1995-02-13 1996-08-27 Ohara Inc Optical glass
JP4127949B2 (en) * 2000-06-27 2008-07-30 Hoya株式会社 Optical glass and optical product using the same
JP3912774B2 (en) * 2002-03-18 2007-05-09 Hoya株式会社 Optical glass for precision press molding, preform for precision press molding and manufacturing method thereof
AU2003289074A1 (en) * 2002-12-17 2004-07-09 Kabushiki Kaisha Ohara Optical glass
JP4739721B2 (en) * 2003-11-17 2011-08-03 株式会社オハラ Optical glass
JP4218804B2 (en) * 2004-03-19 2009-02-04 Hoya株式会社 Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2012092016A5 (en)
TWI359120B (en)
JP2014125408A5 (en)
JP2010180129A5 (en)
TW200946472A (en) Optical glass
JP2006327926A (en) Optical glass
JP2011093780A5 (en)
JP2008056554A5 (en)
TW201934506A (en) Optical glass, preform, and optical element
JP2019123667A5 (en)
JP6631775B2 (en) Infrared transmission glass
JP2010260740A5 (en)
TW201144247A (en) Optical glass
JP2019511445A (en) Optical glass and optical element
JP2019019050A5 (en)
JP6721087B2 (en) Optical glass, preform for press molding and optical element
JP2014133699A5 (en)
JP2015127276A5 (en)
JP2012153558A (en) Optical glass
WO2014048295A1 (en) Optical glass for precision molding, prefabricated glass, optical element and optical instrument
JP2019043800A5 (en)
JP2018140925A5 (en)
JP2013028532A5 (en)
TW200833626A (en) Optical glass
JP5711464B2 (en) Optical glass, precision press-molding preform and optical element