JP2012091322A - High thermal conductive laminate - Google Patents

High thermal conductive laminate Download PDF

Info

Publication number
JP2012091322A
JP2012091322A JP2010238167A JP2010238167A JP2012091322A JP 2012091322 A JP2012091322 A JP 2012091322A JP 2010238167 A JP2010238167 A JP 2010238167A JP 2010238167 A JP2010238167 A JP 2010238167A JP 2012091322 A JP2012091322 A JP 2012091322A
Authority
JP
Japan
Prior art keywords
resin
prepreg
resin sheet
laminate
laminated board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238167A
Other languages
Japanese (ja)
Inventor
Tomoaki Sawada
知昭 澤田
Daizo Baba
大三 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010238167A priority Critical patent/JP2012091322A/en
Publication of JP2012091322A publication Critical patent/JP2012091322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate and print circuit board that can achieve high thermal conductivity while maintaining strength, and can secure insulation reliability.SOLUTION: The laminate is obtained by sticking metal foils on a topmost layer and heating and molding, in which configuration a prepreg is sandwiched with resin sheets, or the plurality of configurations are laminated. The prepreg is a prepreg obtained by impregnating a glass substrate with a thermal curing resin, and there is a portion that is not filled with a resin in a gap of a warp thread and weft thread of the glass substrate. The resin sheet is a high thermal conductive resin sheet where the resin sheet is formed by applying and drying a filler high-filling resin including an inorganic filler of 60-95 mass% in the thermal curing resin on the metal foil or an organic film.

Description

本発明は、高熱伝導性積層板およびそれを用いたプリント配線板に関する。   The present invention relates to a highly heat-conductive laminate and a printed wiring board using the same.

近年、電子機器においては高性能化、小型化、軽量化等に伴い半導体パッケージの高密度実装化、LSIの高集積化及び高速化等が進み、電子部品において単位面積あたりの発熱量が増大している。そのため、電子部品から熱を外部へ効果的に放散させるべく熱伝導性を向上させることが重要な課題になっている。   In recent years, in electronic devices, with higher performance, smaller size, lighter weight, etc., higher density mounting of semiconductor packages, higher integration of LSIs, higher speeds, etc., the amount of heat generated per unit area in electronic components has increased. ing. Therefore, it is an important issue to improve the thermal conductivity in order to effectively dissipate heat from the electronic component to the outside.

このような課題に対しては、一般的に、熱伝導性の高いアルミナなどの無機フィラーを高充填させた樹脂を基材として用いることによって、熱伝導性の向上が図られている(例えば、特許文献1)。   For such a problem, in general, improvement of thermal conductivity is achieved by using a resin highly filled with an inorganic filler such as alumina having high thermal conductivity as a base material (for example, Patent Document 1).

特開2009−274929号公報JP 2009-274929 A

しかしながら、ガラス基材にフィラー高充填した樹脂を含浸させるとガラス基材の中まで含浸させるのが難しく、積層板としての絶縁信頼性に問題がある。その為、フィラーの高充填には限界がある。   However, when the glass substrate is impregnated with a resin with a high filler content, it is difficult to impregnate the glass substrate, and there is a problem in insulation reliability as a laminated plate. Therefore, there is a limit to the high filling of the filler.

一方、ガラス基材を使用しない樹脂シートや銅箔付き樹脂シートでは、積層板とした時に剛性に欠け、プリント板の強度が不足してしまうという課題がある。   On the other hand, a resin sheet that does not use a glass substrate or a resin sheet with a copper foil has a problem in that it lacks rigidity when used as a laminated board, and the strength of the printed board is insufficient.

本発明はかかる事情に鑑みてなされたものであって、強度を維持したまま高い熱伝導率を実現し、かつ絶縁信頼性を確保できる積層板並びにプリント配線板を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the laminated board and printed wiring board which can implement | achieve high heat conductivity, maintaining insulation reliability, and ensuring insulation reliability.

本発明者は、前記課題を解決すべく鋭意検討した結果、以下の手段により前記課題を解決できることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has found that the above problems can be solved by the following means.

すなわち、本発明の積層板は、プリプレグを樹脂シートで挟んだ構成、又は前記構成を複数層重ねた構成で、最表層に金属箔を貼り合わせ、加熱成型して得られる積層板であって、前記プリプレグが、ガラス基材に熱硬化樹脂を含浸してなるプリプレグであって、ガラス基材の経糸と緯糸の空隙に樹脂が充填されていない部分があるプリプレグであること、並びに、前記樹脂シートが、熱硬化樹脂に無機フィラーを60〜95質量%含有させたフィラー高充填樹脂を、金属箔又は有機フィルム上に塗布し乾燥して形成される高熱伝導性樹脂シートであることを特徴とする。さらに、本発明は、前記積層板を加工して得られるプリント配線板を提供する。   That is, the laminated board of the present invention is a laminated board obtained by laminating a prepreg with a resin sheet, or by laminating a plurality of the above-described structures, and by bonding metal foil to the outermost layer and heat molding, The prepreg is a prepreg formed by impregnating a glass base material with a thermosetting resin, wherein the gap between the warp and the weft of the glass base material is not filled with resin, and the resin sheet Is a highly thermally conductive resin sheet formed by applying a filler high-filling resin containing 60 to 95% by mass of an inorganic filler in a thermosetting resin on a metal foil or organic film and drying it. . Furthermore, this invention provides the printed wiring board obtained by processing the said laminated board.

本発明によれば、成型性が良好で、高い熱伝導率を示しながらも絶縁信頼性を確保できる積層板およびプリント配線板、並びにその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the moldability and the laminated board and printed wiring board which can ensure insulation reliability while showing high heat conductivity, and its manufacturing method can be provided.

図1は孔空きプリプレグの空隙部を説明するための図である。FIG. 1 is a view for explaining a void portion of a perforated prepreg. 図2は、本発明の一実施形態である、プリプレグ1枚に対して樹脂シート2枚を挟んだ構成の積層板の断面概略図である。FIG. 2 is a schematic cross-sectional view of a laminate having a configuration in which two resin sheets are sandwiched between one prepreg, which is an embodiment of the present invention. 図3は、本発明の一実施形態である、プリプレグ1枚に対して樹脂シート2枚を挟んだ構成を複数重ねた積層板の断面概略図である。FIG. 3 is a schematic cross-sectional view of a laminated board in which a plurality of structures each having two resin sheets sandwiched between one prepreg, which is an embodiment of the present invention.

[積層板]
本発明の本発明の積層板は、プリプレグを樹脂シートで挟んだ構成、又は前記構成を複数層重ねた構成で、最表層に金属箔を貼り合わせ、加熱成型して得られる積層板であって、前記プリプレグが、ガラス基材に熱硬化樹脂を含浸してなるプリプレグであって、ガラス基材の経糸と緯糸の空隙に樹脂が充填されていない部分があるプリプレグであること、並びに、前記樹脂シートが、熱硬化樹脂に無機フィラーを60〜95質量%含有させたフィラー高充填樹脂を、金属箔又は有機フィルム上に塗布し乾燥して形成される高熱伝導性樹脂シートであることを特徴とする。
[Laminated board]
The laminated board of the present invention of the present invention is a laminated board obtained by laminating a metal foil on the outermost layer in a configuration in which a prepreg is sandwiched between resin sheets, or a configuration in which a plurality of the above-described configurations are stacked, and heat molding. The prepreg is a prepreg obtained by impregnating a glass base material with a thermosetting resin, wherein the gap between the warp and the weft of the glass base material is not filled with the resin, and the resin The sheet is a highly thermally conductive resin sheet formed by applying a filler high-filling resin containing 60 to 95% by mass of an inorganic filler in a thermosetting resin on a metal foil or an organic film and drying. To do.

このように、無機フィラーを高充填した高熱伝導性樹脂シートで、ガラス繊維の経糸と緯糸の網目の空隙に樹脂が充填されていない孔空きプリプレグを挟んだ構成、もしくはこの構成を重ねた多層構成で加熱成型してなる積層板を作製することにより、孔空きプリプレグの空隙部に高熱伝導樹脂シートの樹脂が充填されることで厚み方向に高い熱伝導を持ち、絶縁信頼性の優れたフィラー高充填した高熱伝導性積層板を得ることができる。   In this way, a highly heat conductive resin sheet highly filled with inorganic filler, a structure in which a perforated prepreg not filled with resin is sandwiched between the glass fiber warp and weft mesh gaps, or a multilayer structure in which this structure is stacked By making a laminated board that is heat-molded with a high-conductivity resin sheet that has high heat conduction in the thickness direction by filling the voids of the perforated prepreg with the resin of the high thermal conductive resin sheet, and having high insulation reliability A filled high thermal conductive laminate can be obtained.

以下、本発明の積層板を構成するプリプレグ及び樹脂シートについてそれぞれ詳述する。   Hereinafter, each of the prepreg and the resin sheet constituting the laminate of the present invention will be described in detail.

〔プリプレグ〕
本発明において用いられるプリプレグは孔空きプリプレグである。孔空きプリプレグとは、ガラス基材に熱硬化樹脂を含浸してなるプリプレグにおいて、ガラス繊維の経糸と緯糸の網目の空隙部に樹脂が完全に充填されていない(充填されていない部分がある)プリプレグであり、孔の形状や大きさなどは特に制限はないが、孔が大きいほど本発明効果が著しい。
[Prepreg]
The prepreg used in the present invention is a perforated prepreg. A perforated prepreg is a prepreg formed by impregnating a glass substrate with a thermosetting resin, and the resin is not completely filled in the voids of the warp and weft meshes of glass fiber (there is an unfilled part) Although it is a prepreg and there is no restriction | limiting in particular in the shape of a hole, a magnitude | size, etc., the effect of this invention is so remarkable that a hole is large.

本発明において、ガラス繊維の経糸と緯糸の網目の空隙部に樹脂が完全に充填されていないとは、下記式1に示す空隙率XがX>0を満たすことをいう。   In the present invention, the fact that the resin is not completely filled in the gap between the glass fiber warp and weft mesh means that the porosity X shown in the following formula 1 satisfies X> 0.

式1:X=1−Y/(s×t)
(式中、X:空隙率(樹脂未充填部)、Y:経糸と緯糸に囲まれた部分の樹脂充填面積、s及びt:図1に示す辺長さ)。
Formula 1: X = 1-Y / (s * t)
(In the formula, X: porosity (resin unfilled portion), Y: resin-filled area of a portion surrounded by warps and wefts, s and t: side length shown in FIG. 1).

前記空隙率Xは0より大きければ特に限定はされないが、好ましくは、0.3以上、より好ましくは0.5以上である。上限は特に限定されず、大きければ大きいほど好ましく、理論的には100%でも可能である。   The porosity X is not particularly limited as long as it is larger than 0, but is preferably 0.3 or more, more preferably 0.5 or more. The upper limit is not particularly limited, and the upper limit is preferably as large as possible, and theoretically 100% is possible.

上記のプリプレグに使用されるガラス基材としては、特に制限はないが、図1(a)に示すような空隙部2が大きいガラス基材が好ましく、一般的な開繊処理がされていないガラス基材が好ましい。   Although there is no restriction | limiting in particular as a glass base material used for said prepreg, The glass base material with a large space | gap part 2 as shown to Fig.1 (a) is preferable, and the glass which has not performed the general fiber opening process A substrate is preferred.

具体的なガラス基材としては、ガラスクロス、有機繊維クロス等が挙げられるが、なかでも、ガラス繊維径が6〜9μm程度のガラスクロスが好ましい。   Specific examples of the glass substrate include glass cloth and organic fiber cloth. Among them, glass cloth having a glass fiber diameter of about 6 to 9 μm is preferable.

上記プリプレグに使用される熱硬化樹脂については、特に制限はないが、好ましくはエポキシ樹脂、尿素樹脂、メラミン樹脂、フェノール樹脂等であり、中でもエポキシ樹脂を用いることが特に好ましい。これらを単独又は複数組合せて用いることもできる。   Although there is no restriction | limiting in particular about the thermosetting resin used for the said prepreg, Preferably they are an epoxy resin, a urea resin, a melamine resin, a phenol resin, etc., It is especially preferable to use an epoxy resin especially. These can be used alone or in combination.

上記エポキシ樹脂は、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル樹脂、グリシジルアミン樹脂、複素環式エポキシ樹脂(トリグリシジルイソシアヌレート、ジグリシジルヒダントイン等)及びこれらを種々の材料で変性した変性エポキシ樹脂等が使用できる。また、これらの臭素化物、塩素化物等のハロゲン化物も使用できる。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene diol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak. Type epoxy resins, cycloaliphatic epoxy resins, glycidyl ester resins, glycidyl amine resins, heterocyclic epoxy resins (triglycidyl isocyanurate, diglycidyl hydantoin, etc.) and modified epoxy resins modified with various materials can be used. . In addition, halides such as bromides and chlorides can also be used.

さらに、これらのエポキシ樹脂を2種類以上適宜組合せて使用することもできる。特に、電気電子材料用途に適用できる高い耐熱性や信頼性を絶縁層に付与できることから、フェノールノボラック型エポキシ樹脂また箔レゾールノボラック型エポキシ樹脂又はビスフェノールAノボラック型エポキシ樹脂もしくはこれらのハロゲン化物を用いることが望ましい。   Furthermore, two or more of these epoxy resins can be used in appropriate combination. In particular, use of phenol novolac type epoxy resin, foil resole novolak type epoxy resin, bisphenol A novolak type epoxy resin or their halides, because high heat resistance and reliability applicable to electrical and electronic materials can be imparted to the insulating layer. Is desirable.

また、加工性改良、添加した樹脂の硬化促進等の目的で、上記樹脂に硬化剤を添加してもよい。硬化剤としては、フェノール系、アミン系、シアネート系化合物等の公知の硬化剤を単独又は複数組合せて用いることができる。   Moreover, you may add a hardening | curing agent to the said resin for the objective of workability improvement, hardening acceleration of the added resin, etc. As a hardening | curing agent, well-known hardening | curing agents, such as a phenol type, an amine type, a cyanate type compound, can be used individually or in combination.

より具体的には、フェノールノボラック、クレゾールノボラック、ビスフェノールA、ビスフェノールF、ビスフェノールS、メラミン変性ノボラック型フェ−ノール樹脂等のフェノール性水酸基を有するフェノール系硬化剤又は、これらのハロゲン化された硬化剤、ジシアンジアミド等アミン系硬化剤等が挙げられる。   More specifically, phenolic curing agents having a phenolic hydroxyl group such as phenol novolak, cresol novolak, bisphenol A, bisphenol F, bisphenol S, melamine-modified novolak type phenol resin, or halogenated curing agents thereof. And amine-based curing agents such as dicyandiamide.

なお、樹脂に硬化剤を加える場合、前記硬化剤の配合量は、樹脂組成物全体に対して0.1〜5質量%の範囲とすることが好ましい。   In addition, when adding a hardening | curing agent to resin, it is preferable that the compounding quantity of the said hardening | curing agent shall be the range of 0.1-5 mass% with respect to the whole resin composition.

さらに、本発明の樹脂には、硬化反応を促進するために硬化促進剤を加えてもよい。硬化促進剤としては上述した樹脂成分と前記硬化剤との硬化反応を促進することができるものであれば、特に限定なく使用することができる。具体的には、例えば、2−エチル−4−メチルイミダゾール、シアノエチル−2−エチル−4−メチルイミダゾール等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。   Furthermore, a curing accelerator may be added to the resin of the present invention in order to accelerate the curing reaction. Any curing accelerator can be used without particular limitation as long as it can accelerate the curing reaction between the above-described resin component and the curing agent. Specific examples include 2-ethyl-4-methylimidazole, cyanoethyl-2-ethyl-4-methylimidazole, and the like. These may be used alone or in combination of two or more.

本発明において硬化促進剤を含有する場合には、樹脂組成物全量中に、0.001〜0.01質量%程度であることが好ましい。   In the present invention, when a curing accelerator is contained, it is preferably about 0.001 to 0.01% by mass in the total amount of the resin composition.

本発明の樹脂組成物は、さらに、本発明の効果を損なわない範囲でその他の添加剤、例えば、難燃剤、難燃助剤、レベリング剤、着色剤等を必要に応じて含有してもよい。   The resin composition of the present invention may further contain other additives, for example, a flame retardant, a flame retardant aid, a leveling agent, a colorant and the like, as necessary, within a range not impairing the effects of the present invention. .

本発明において、前記樹脂は、通常、その他の添加剤(前記硬化剤など)を含む樹脂組成物としてワニス状に調製されて用いられる。このようなワニスは、例えば、以下のようにして調製される。   In the present invention, the resin is usually prepared and used in the form of a varnish as a resin composition containing other additives (such as the curing agent). Such a varnish is prepared as follows, for example.

つまり、上述した樹脂に必要に応じてその他の添加剤及び有機溶剤などを添加して、ボールミル、ビーズミル、ミキサー、ブレンダー等を用いて均一に分散・混合し、ワニス状に調製することができる。   That is, other additives, organic solvents, and the like can be added to the above-described resin as necessary, and uniformly dispersed and mixed using a ball mill, bead mill, mixer, blender, or the like to prepare a varnish.

そして、前記ワニス状の樹脂組成物を上述したようなガラス基材に含浸して加熱乾燥させることによりプリプレグを得ることができる。   And a prepreg can be obtained by impregnating the glass substrate as mentioned above with the varnish-like resin composition and drying by heating.

本発明のプリプレグの具体的な製造方法については、上述したように、ガラス繊維の経糸と緯糸の網目の空隙に樹脂が充填されていない部分が残るような方法であれば、特に限定されず、従来と同様のものとして、あるいはその改良としての各種の手段であってよい。   As described above, the specific method for producing the prepreg of the present invention is not particularly limited as long as it is a method in which a portion not filled with resin remains in the gap between the warp and weft meshes of glass fiber, Various means may be used in the same manner as in the past or as an improvement thereof.

より具体的には、例えば、まず、前記ワニス状樹脂中に、前記基材を浸漬するなどして、ワニス状樹脂を基材に含浸させる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能である。またこの際に組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする組成および樹脂量に調整することも可能である。さらにこの際に、例えば、ガラス基材への樹脂の塗布量を極端に少なくすることによって、本発明の孔空きプリプレグを得ることができる。   More specifically, for example, the substrate is first impregnated with the varnish resin by immersing the substrate in the varnish resin. Impregnation is performed by dipping or coating. The impregnation can be repeated a plurality of times as necessary. In this case, it is also possible to repeat the impregnation using a plurality of solutions having different compositions and concentrations, and finally adjust the desired composition and resin amount. Further, at this time, for example, the perforated prepreg of the present invention can be obtained by extremely reducing the amount of resin applied to the glass substrate.

次に、ワニス状樹脂組成物が含浸された基材を、その後、所望の加熱条件(例えば、120〜170℃で2〜15分間)で加熱乾燥し、樹脂成分を半硬化(Bステージ化)させて、プリプレグを得る。このときプリプレグ中の樹脂量は、プリプレグ全量に対して30〜99.9質量%であることが好ましい。   Next, the base material impregnated with the varnish-like resin composition is then heat-dried under desired heating conditions (for example, at 120 to 170 ° C. for 2 to 15 minutes), and the resin component is semi-cured (B-stage). To obtain a prepreg. At this time, it is preferable that the resin amount in a prepreg is 30-99.9 mass% with respect to the prepreg whole quantity.

なお、得られるプリプレグの厚みは特に制限されるものではないが、通常、0.04〜0.3mmの範囲のものが好ましい。   In addition, the thickness of the prepreg obtained is not particularly limited, but a thickness in the range of 0.04 to 0.3 mm is usually preferable.

〔樹脂シート〕
本発明の樹脂シートは、高熱伝導性樹脂シートであり、熱伝導性の高い無機フィラーを高充填させた樹脂を用いて得られる。
[Resin sheet]
The resin sheet of the present invention is a high thermal conductivity resin sheet, and is obtained using a resin highly filled with an inorganic filler having high thermal conductivity.

本発明の樹脂シートに用いられる熱硬化樹脂としては、特に制限はなく、上述したようなプリプレグに用いられる熱硬化樹脂と同様の樹脂を用いることができる。   There is no restriction | limiting in particular as a thermosetting resin used for the resin sheet of this invention, Resin similar to the thermosetting resin used for the above prepregs can be used.

さらに、上述したようなプリプレグに用いられ得る硬化剤、硬化促進剤などの添加剤を樹脂シート用熱硬化樹脂にも配合することもできる。   Furthermore, additives such as curing agents and curing accelerators that can be used in the prepreg as described above can also be blended in the thermosetting resin for resin sheets.

上記樹脂シートに使用される無機フィラーとしては、特にその種類は限定されるものではないが、例えば酸化アルミニウム(Al23)粉末や、窒化アルミニウム(AlN)粉末、酸化珪素(SiO2)粉末、窒化珪素(SiN)粉末、窒化ホウ素(BN)粉末など、高熱伝導率を有し、電気絶縁性の高いものを用いるのが好ましい。これらのなかでも特に、酸化アルミニウム粉末がこのましい。窒化アルミニウム粉末の場合には表面を酸化処理して酸化アルミニウムの酸化層を形成することによって、耐湿性を向上させたものが有用である。また無機粉末には樹脂との相溶性をよくするために、カップリング処理などの表面処理を行うようにしてもよい。また、上記の化合物を複数組合せて用いてもよい。 The type of inorganic filler used in the resin sheet is not particularly limited. For example, aluminum oxide (Al 2 O 3 ) powder, aluminum nitride (AlN) powder, silicon oxide (SiO 2 ) powder is used. It is preferable to use a silicon nitride (SiN) powder, boron nitride (BN) powder, or the like having high thermal conductivity and high electrical insulation. Of these, aluminum oxide powder is particularly preferable. In the case of aluminum nitride powder, it is useful to improve the moisture resistance by oxidizing the surface to form an oxide layer of aluminum oxide. The inorganic powder may be subjected to a surface treatment such as a coupling treatment in order to improve the compatibility with the resin. Further, a plurality of the above compounds may be used in combination.

上記樹脂シートに充填される無機フィラーの配合量は、樹脂組成物全体に対して60〜95質量%であり、より好ましくは、75〜95%である。無機フィラーの平均粒径と配合割合を適度に組み合せることによって、樹脂に無機フィラーを60〜95質量%の含有量で配合することができる。無機フィラーの含有量が60質量%未満では、無機フィラーを配合することによる効果を期待することができない。また無機フィラーの含有量が95質量%を超えると、成型時の樹脂の粘度が過度に高くなるおそれがある。   The compounding quantity of the inorganic filler with which the said resin sheet is filled is 60-95 mass% with respect to the whole resin composition, More preferably, it is 75-95%. By appropriately combining the average particle size and blending ratio of the inorganic filler, the inorganic filler can be blended with the resin in a content of 60 to 95% by mass. If content of an inorganic filler is less than 60 mass%, the effect by mix | blending an inorganic filler cannot be expected. Moreover, when content of an inorganic filler exceeds 95 mass%, there exists a possibility that the viscosity of resin at the time of shaping | molding may become high too much.

また前記無機フィラーには、樹脂との相溶性をよくするために、カップリング処理などの表面処理を行ったり、分散剤などを添加して樹脂組成物中への分散性を向上させたりしてもよい。また、複数の無機フィラーを組合せて用いてもよい。   In addition, in order to improve the compatibility with the resin, the inorganic filler is subjected to a surface treatment such as a coupling treatment, or a dispersant is added to improve the dispersibility in the resin composition. Also good. A plurality of inorganic fillers may be used in combination.

このように樹脂に無機フィラーを高充填させた高熱伝導性樹脂を用いることにより、きわめて高い熱伝導性を有する樹脂シートを得ることができる。   In this way, a resin sheet having extremely high thermal conductivity can be obtained by using a high thermal conductive resin in which an inorganic filler is highly filled in the resin.

さらに、本発明の樹脂シート用の熱伝導性樹脂にも、本発明の効果を損なわない範囲でその他の添加剤、例えば、難燃剤、難燃助剤、レベリング剤、着色剤等を必要に応じて含有させてもよい。   Furthermore, other additives such as a flame retardant, a flame retardant aid, a leveling agent, a colorant and the like are also added to the heat conductive resin for the resin sheet of the present invention as long as the effects of the present invention are not impaired. May be included.

本発明において、前記熱伝導性樹脂は、通常、上述したような無機フィラー及び必要に応じてその他の添加剤(前記硬化剤など)を含む樹脂組成物としてワニス状に調製されて用いられる。このようなワニスは、例えば、以下のようにして調製される。   In the present invention, the heat conductive resin is usually prepared and used in a varnish form as a resin composition containing the inorganic filler as described above and other additives (such as the curing agent) as necessary. Such a varnish is prepared as follows, for example.

つまり、上述した樹脂に無機フィラー並びに必要に応じてその他の添加剤及び有機溶剤などを添加して、ボールミル、ビーズミル、ミキサー、ブレンダー等を用いて均一に分散・混合し、ワニス状に調製することができる。   In other words, an inorganic filler and, if necessary, other additives and an organic solvent are added to the above-mentioned resin, and the mixture is uniformly dispersed and mixed using a ball mill, a bead mill, a mixer, a blender, etc. to prepare a varnish. Can do.

そして、本発明の樹脂シートは、上述のワニス状の高熱伝導性樹脂組成物を金属箔又は有機フィルム等の上に形成して加熱乾燥することで、Bステージ状態の樹脂シートとして得ることができる。   And the resin sheet of this invention can be obtained as a resin sheet of a B stage state by forming the above-mentioned varnish-like highly heat conductive resin composition on a metal foil or an organic film and drying it by heating. .

上記樹脂シートの製造方法についても特に制限はなく、例えば、上述のプリプレグの製造方法と同様の方法で製造することができる。ただし、金属箔又は有機フィルム上に塗布する樹脂組成物の量を、上述の孔空きプリプレグの場合のように少なくする必要はない。   There is no restriction | limiting in particular also about the manufacturing method of the said resin sheet, For example, it can manufacture by the method similar to the manufacturing method of the above-mentioned prepreg. However, it is not necessary to reduce the amount of the resin composition applied on the metal foil or the organic film as in the case of the above-described perforated prepreg.

なお、得られる樹脂シートの厚みは特に制限されるものではないが、通常、0.04〜0.3mmの範囲のものが好ましい。   In addition, the thickness of the resin sheet to be obtained is not particularly limited, but usually a thickness in the range of 0.04 to 0.3 mm is preferable.

[積層板]
上述のようにして得られた樹脂シート及び孔空きプリプレグを用いて金属張積層板を作成する方法としては、上記プリプレグと樹脂シートを積層成型する構成として、図2のようにプリプレグ1枚に対して樹脂シートを2枚で挟んだ構成、あるいは、これらの材料を多数構成する例えば図3のような構成で積層成型できる。
[Laminated board]
As a method of creating a metal-clad laminate using the resin sheet and perforated prepreg obtained as described above, as a configuration in which the prepreg and the resin sheet are laminated and formed, one prepreg as shown in FIG. Thus, it is possible to perform lamination molding with a structure in which two resin sheets are sandwiched or a structure as shown in FIG.

積層成形、積層接着のための方法、装置、それらの条件については従来と同様のものとして、あるいはその改良としての各種の手段であってよい。   The method and apparatus for laminating and laminating and bonding, and the conditions thereof may be the same as those in the past or various means for improving the same.

具体的には、例えば、前記のようなプリプレグ1枚に対して樹脂シートを2枚で挟んだ構成を1枚、又は複数枚重ね、さらにその最表面に金属箔を重ね、これを加熱加圧成形して積層一体化することによって、金属箔張りの積層体を作製する方法が挙げられる。なお、前記金属箔は前記構成の上下の両面または片面に重ねることができ、それに応じて、両面金属箔張りまたは片面金属箔張りの積層体を作製することができる。加熱加圧条件は、製造する積層板の厚みやプリプレグの樹脂組成物の種類等により適宜設定することができるが、例えば、温度を160〜180℃、圧力を2〜4MPa、時間を60〜120分間とすることができる。   Specifically, for example, one or a plurality of the structures in which a resin sheet is sandwiched between two prepregs as described above are stacked, and a metal foil is stacked on the outermost surface, and this is heated and pressed. A method of producing a laminated body of metal foil by forming and laminating and integrating is mentioned. In addition, the said metal foil can be piled up on the upper and lower surfaces or single side | surface of the said structure, and according to it, the laminated body of double-sided metal foil tension or single-sided metal foil tension can be produced. The heating and pressing conditions can be appropriately set depending on the thickness of the laminate to be produced, the type of the resin composition of the prepreg, etc. For example, the temperature is 160 to 180 ° C., the pressure is 2 to 4 MPa, and the time is 60 to 120. Can be minutes.

金属箔としては、銅、アルミニウム、ニッケル、鉄などを材料とする箔の他、これらの合金の箔、複合箔を用いることができる。金属箔は厚みが5〜400μmの範囲のものを用いることが好ましい。   As the metal foil, a foil made of copper, aluminum, nickel, iron, or the like, a foil of these alloys, or a composite foil can be used. It is preferable to use a metal foil having a thickness in the range of 5 to 400 μm.

このようにして得られた本発明の積層板は、熱伝導性にきわめて優れており、後述の実施例における式2によって求められる熱伝導率が、3W/m・K以上であることを特徴の一つとする。   The laminate of the present invention thus obtained is extremely excellent in thermal conductivity, and the thermal conductivity obtained by the formula 2 in the examples described later is 3 W / m · K or more. One.

[多層プリント配線板]
上述のようにして作製された積層体の表面の金属箔をエッチング加工等して回路形成をすることによって、積層体の表面に回路として導体パターンを設けたプリント配線板を得ることができる。
[Multilayer printed wiring board]
A printed wiring board provided with a conductor pattern as a circuit on the surface of the laminate can be obtained by forming a circuit by etching the metal foil on the surface of the laminate produced as described above.

このようにして得られるプリント配線板は、強度を維持しながらも熱伝導性にきわめて優れている。   The printed wiring board thus obtained is extremely excellent in thermal conductivity while maintaining strength.

以下に、本発明について、実施例によりさらに具体的に説明する。なお、本発明は以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited at all by the following examples.

はじめに、本実施例で用いた原材料をまとめて示す。   First, the raw materials used in this example are shown together.

〈エポキシ樹脂〉
・「エピクロン840S」(DIC(株)製、ビスフェノールA型液状エポキシ樹脂)
・「VG3101」(三井石油化学社製、3官能エポキシ樹脂)
〈硬化剤成分〉
・ジシアンジアミド(試薬)
〈硬化促進剤〉
・「2E4MZ」(四国化成工業(株)製、イミダゾール)
〈無機フィラー〉
・「CB−A20S」(平均粒子径20μmアルミナ、昭和電工社製)
・「CB−A05S」(平均粒子径5μmアルミナ、昭和電工社製)。
<Epoxy resin>
・ "Epiclon 840S" (DIC Corporation, bisphenol A type liquid epoxy resin)
・ "VG3101" (Mitsui Petrochemical Co., Ltd., trifunctional epoxy resin)
<Curing agent component>
・ Dicyandiamide (reagent)
<Curing accelerator>
・ "2E4MZ" (manufactured by Shikoku Chemicals Co., Ltd., imidazole)
<Inorganic filler>
・ “CB-A20S” (average particle size 20 μm alumina, Showa Denko)
"CB-A05S" (average particle size 5 μm alumina, Showa Denko)

(実施例1)
エポキシワニスを下記表1の配合比で混合し、厚み60μmの1080タイプのEガラス繊維織布(ガラス繊維径5μm,織込み本数:縦60本/25mm,横46本/25mm)に含浸させ、120〜160℃で5〜10分間加熱乾燥させて空隙率Xが75%の孔空きプリプレグを作製した。
Example 1
Epoxy varnish was mixed at the blending ratio shown in Table 1 below, and impregnated into a 1080-type E glass fiber woven fabric having a thickness of 60 μm (glass fiber diameter: 5 μm, number of weaves: vertical 60/25 mm, horizontal 46/25 mm), 120 A perforated prepreg having a porosity X of 75% was prepared by heating and drying at ˜160 ° C. for 5 to 10 minutes.

一方、アルミナ粉末を下記表2の配合比で混合し、表2の配合比で混合したエポキシワニスにアルナミ粉末が90重量%であるエポキシ樹脂ワニスを調整する。このワニスを75μm厚みのPETフィルムに塗布し120〜140℃で5〜10分間加熱乾燥し、樹脂厚みが100μmのBステージ状態の樹脂シートを得た。   On the other hand, an alumina powder is mixed at a blending ratio shown in Table 2 below, and an epoxy resin varnish containing 90% by weight of an arnami powder is adjusted to the epoxy varnish mixed at the blending ratio shown in Table 2. This varnish was applied to a 75 μm-thick PET film and dried by heating at 120 to 140 ° C. for 5 to 10 minutes to obtain a B-stage resin sheet having a resin thickness of 100 μm.

上記プリプレグ1枚と樹脂シート2枚を前述の図2の構成に組み合わせて、その表層両側に35μmの銅箔を配し、温度180℃、圧力40kg/cmの条件で90分加熱加圧成型して積層板を得た。 Combining one prepreg and two resin sheets with the configuration shown in FIG. 2 above, a 35 μm copper foil is placed on both sides of the surface layer, and heating and pressure molding is performed for 90 minutes at a temperature of 180 ° C. and a pressure of 40 kg / cm 2 To obtain a laminate.

(実施例2)
エポキシワニスを表1の配合比で混合し、厚み200μmの7628タイプのEガラス繊維織布(ガラス繊維径9μm,織込み本数:縦60本/25mm,横47本/25mm)を用いた以外は実施例1と同様にして空隙率が75%の孔空きプリプレグを作製した。
(Example 2)
Implemented except that the epoxy varnish was mixed at the compounding ratio shown in Table 1 and a 7628 type E glass fiber woven fabric with a thickness of 200 μm (glass fiber diameter: 9 μm, number of weaves: length 60/25 mm, width 47/25 mm) In the same manner as in Example 1, a perforated prepreg having a porosity of 75% was produced.

一方、アルミナ粉末を表2の粒径と配合比で混合し、表2の配合比で混合したエポキシワニスを用いた以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, a resin sheet was obtained in the same manner as in Example 1 except that the alumina powder was mixed at the particle size and the mixing ratio shown in Table 2 and the epoxy varnish mixed at the mixing ratio shown in Table 2 was used.

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

(実施例3)
エポキシワニスを表1の配合比で混合し、厚み60μmの1080タイプのEガラス繊維織布(ガラス繊維径5μm,織込み本数:縦60本/25mm,横46本/25mm)を用いた以外は実施例1と同様にして空隙率が75%の孔空きプリプレグを作製した。
(Example 3)
Implemented except that the epoxy varnish was mixed in the blending ratio shown in Table 1 and a 60-μm-thick 1080 type E glass fiber woven fabric (glass fiber diameter: 5 μm, number of weaves: length 60/25 mm, width 46/25 mm) In the same manner as in Example 1, a perforated prepreg having a porosity of 75% was produced.

一方、アルミナ粉末を表2の粒径と配合比で混合し、表2の配合比で混合したエポキシワニスにアルナミ粉末が94重量%であるエポキシ樹脂ワニスを調整した以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, the alumina powder was mixed at the particle size and mixing ratio shown in Table 2, and the epoxy resin varnish containing 94% by weight of the arnami powder was adjusted to the epoxy varnish mixed at the mixing ratio shown in Table 2. Thus, a resin sheet was obtained.

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

(実施例4)
エポキシワニスを表1の配合比で混合し、厚み60μmの1080タイプのEガラス繊維織布(ガラス繊維径5μm,織込み本数:縦60本/25mm,横46本/25mm)を用いた以外は実施例1と同様にして空隙率が75%の孔空きプリプレグを作製した。
Example 4
Implemented except that the epoxy varnish was mixed in the blending ratio shown in Table 1 and a 60-μm-thick 1080 type E glass fiber woven fabric (glass fiber diameter: 5 μm, number of weaves: length 60/25 mm, width 46/25 mm) In the same manner as in Example 1, a perforated prepreg having a porosity of 75% was produced.

一方、アルミナ粉末を表2の粒径と配合比で混合し、表2の配合比で混合したエポキシワニスを用いた以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, a resin sheet was obtained in the same manner as in Example 1 except that the alumina powder was mixed at the particle size and the mixing ratio shown in Table 2 and the epoxy varnish mixed at the mixing ratio shown in Table 2 was used.

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

(比較例1)
エポキシワニスを表1の配合比で混合し、厚み60μmの1080タイプのEガラス繊維織布(ガラス繊維径5μm,織込み本数:縦60本/25mm,横46本/25mm)を用いた以外は実施例1と同様にして空隙率が0%の孔空きプリプレグを作製した。
(Comparative Example 1)
Implemented except that the epoxy varnish was mixed in the blending ratio shown in Table 1 and a 60-μm-thick 1080 type E glass fiber woven fabric (glass fiber diameter: 5 μm, number of weaves: length 60/25 mm, width 46/25 mm) In the same manner as in Example 1, a perforated prepreg having a porosity of 0% was produced.

一方、アルミナ粉末を配合せずに、表2の配合比で混合したエポキシワニスにアルナミ粉末が0重量%であるエポキシ樹脂ワニスを調整した以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, a resin sheet was obtained in the same manner as in Example 1 except that the epoxy resin varnish containing 0% by weight of the arnami powder was adjusted to the epoxy varnish mixed at the mixing ratio shown in Table 2 without blending the alumina powder. .

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

(比較例2)
エポキシワニスを表1の配合比で混合し、比較例1と同様にして空隙率が0%の孔空きプリプレグを作製した。
(Comparative Example 2)
Epoxy varnish was mixed at a blending ratio shown in Table 1, and a perforated prepreg having a porosity of 0% was produced in the same manner as in Comparative Example 1.

一方、アルミナ粉末を表2の粒径と配合比で混合し、表2の配合比で混合したエポキシワニスにアルナミ粉末が90重量%であるエポキシ樹脂ワニスを調整した以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, the alumina powder was mixed at the particle size and mixing ratio shown in Table 2, and the epoxy resin varnish containing 90% by weight of the arami powder was adjusted to the epoxy varnish mixed at the mixing ratio shown in Table 2. Thus, a resin sheet was obtained.

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

(比較例3)
エポキシワニスを表1の配合比で混合し、厚み60μmの1080タイプのEガラス繊維織布(ガラス繊維径5μm,織込み本数:縦60本/25mm,横46本/25mm)を用いた以外は実施例1と同様にして空隙率が75%の孔空きプリプレグを作製した。
(Comparative Example 3)
Implemented except that the epoxy varnish was mixed in the blending ratio shown in Table 1 and a 60-μm-thick 1080 type E glass fiber woven fabric (glass fiber diameter: 5 μm, number of weaves: length 60/25 mm, width 46/25 mm) In the same manner as in Example 1, a perforated prepreg having a porosity of 75% was produced.

一方、アルミナ粉末を表2の粒径と配合比で混合し、表2の配合比で混合したエポキシワニスにアルナミ粉末が90重量%であるエポキシ樹脂ワニスを調整した以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, the alumina powder was mixed at the particle size and mixing ratio shown in Table 2, and the epoxy resin varnish containing 90% by weight of the arami powder was adjusted to the epoxy varnish mixed at the mixing ratio shown in Table 2. Thus, a resin sheet was obtained.

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

(比較例4)
エポキシワニスを表1の配合比で混合し、厚み60μmの1080タイプのEガラス繊維織布(ガラス繊維径5μm,織込み本数:縦60本/25mm,横46本/25mm)を用いた以外は実施例1と同様にして空隙率が75%の孔空きプリプレグを作製した。
(Comparative Example 4)
Implemented except that the epoxy varnish was mixed in the blending ratio shown in Table 1 and a 60-μm-thick 1080 type E glass fiber woven fabric (glass fiber diameter: 5 μm, number of weaves: length 60/25 mm, width 46/25 mm) In the same manner as in Example 1, a perforated prepreg having a porosity of 75% was produced.

一方、アルミナ粉末を表2の粒径と配合比で混合し、表2の配合比で混合したエポキシワニスにアルナミ粉末が96重量%であるエポキシ樹脂ワニスを調整した以外は、実施例1と同様にして樹脂シートを得た。   On the other hand, the alumina powder was mixed at the particle size and mixing ratio shown in Table 2, and the epoxy resin varnish containing 96% by weight of the arnami powder was adjusted to the epoxy varnish mixed at the mixing ratio shown in Table 2. Thus, a resin sheet was obtained.

次に、上記プリプレグ1枚と樹脂シート2枚を用いて、実施例1と同様の方法で積層板を得た。   Next, a laminate was obtained in the same manner as in Example 1 using one prepreg and two resin sheets.

Figure 2012091322
Figure 2012091322

Figure 2012091322
Figure 2012091322

<評価>
上記の実施例1〜4と比較例1〜4において得られた積層板について、硬化物中のボイド(空隙)の存在、熱伝導率、絶縁信頼性を評価した。
<Evaluation>
About the laminated board obtained in said Examples 1-4 and Comparative Examples 1-4, presence of the void (space | gap) in hardened | cured material, thermal conductivity, and insulation reliability were evaluated.

(硬化物中の空隙)
基板の端と中央部分を任意にそれぞれ5点ずつ採取し、断面を観察し空隙の有無を確認した。断面の長さは20mmとした。
(Voids in the cured product)
The edge and center part of the substrate were arbitrarily sampled at 5 points each, and the cross section was observed to confirm the presence or absence of voids. The length of the cross section was 20 mm.

(熱伝導率)
レーザーフラッシュ法による熱拡散率測定を実施し、以下の式2より熱伝導率を算出した。
(式2)熱伝導率(W/m・K)=密度(kg/m)×比熱(J/kg・K)×熱拡散率(m/s)
なお、式中の密度は水中置換法、比熱はDSC法によるものである。
(Thermal conductivity)
The thermal diffusivity was measured by the laser flash method, and the thermal conductivity was calculated from the following formula 2.
(Equation 2) Thermal conductivity (W / m · K) = density (kg / m 3 ) × specific heat (J / kg · K) × thermal diffusivity (m 2 / s)
In addition, the density in a formula is based on the substitution method in water, and specific heat is based on DSC method.

(絶縁信頼性)
上記で得られた各積層板の中央の銅箔を一部残し、残りの銅箔をエッチングによって除去して前記残した銅箔を電極接続部とし、85℃85%の加湿熱条件下にて50Vの電圧を印加し、厚み方向の抵抗値を測定し、絶縁信頼性の評価とした。尚、評価基準は、1000時間経過後の抵抗値が1×10(Ω)以上のものを合格とした。
(Insulation reliability)
A part of the copper foil at the center of each laminate obtained as described above is left, the remaining copper foil is removed by etching, and the remaining copper foil is used as an electrode connection portion, under a humidified heat condition of 85 ° C. and 85%. A voltage of 50 V was applied, the resistance value in the thickness direction was measured, and the insulation reliability was evaluated. In addition, the evaluation criteria set that the resistance value after 1000 hours passed was 1 × 10 8 (Ω) or more.

以上の評価の結果を表3に示した。   The results of the above evaluation are shown in Table 3.

Figure 2012091322
Figure 2012091322

これらの結果からも明らかなように、本発明の積層板は、成型性が良好で高い熱伝導率を示しながらも絶縁信頼性を確保できることが明らかとなった。さらに、本発明の積層板の製造方法は、高熱伝導性の積層板を得る手法として有用であることを示すことができた。   As is clear from these results, it was revealed that the laminated board of the present invention has good moldability and can ensure insulation reliability while exhibiting high thermal conductivity. Furthermore, the manufacturing method of the laminated board of this invention has shown that it was useful as a method of obtaining the highly thermally conductive laminated board.

以上、説明したように、本発明の一局面である積層板は、プリプレグを樹脂シートで挟んだ構成、又は前記構成を複数層重ねた構成で、最表層に金属箔を貼り合わせ、加熱成型して得られる積層板であって、前記プリプレグが、ガラス基材に熱硬化樹脂を含浸してなるプリプレグであって、ガラス基材の経糸と緯糸の空隙に樹脂が充填されていない部分があるプリプレグであること、並びに、前記樹脂シートが、熱硬化樹脂に無機フィラーを60〜95質量%含有させたフィラー高充填樹脂を、金属箔又は有機フィルム上に塗布し乾燥して形成される高熱伝導性樹脂シートであることを特徴とするものである。   As described above, the laminated board according to one aspect of the present invention has a configuration in which a prepreg is sandwiched between resin sheets, or a configuration in which a plurality of the above-described configurations are stacked, and a metal foil is bonded to the outermost layer and heat-molded. A prepreg obtained by impregnating a glass base material with a thermosetting resin, wherein the gap between the warp and the weft of the glass base material is not filled with the resin. In addition, the resin sheet is formed by applying a highly filled resin containing 60 to 95% by mass of an inorganic filler to a thermosetting resin on a metal foil or an organic film and drying it. It is a resin sheet.

このような構成により、強度を保ちながらも、高い熱伝導性および優れた絶縁信頼性を達成する積層板を得ることができる。   With such a configuration, it is possible to obtain a laminated plate that achieves high thermal conductivity and excellent insulation reliability while maintaining strength.

また、前記ガラス基材が開繊処理を施していないガラス基材であることが好ましく、そのような構成により、強度を保ちながらも、高い熱伝導性および優れた絶縁信頼性を達成する積層板をより確実に得ることができる。   In addition, the glass substrate is preferably a glass substrate that has not been subjected to fiber opening treatment, and with such a configuration, a laminate that achieves high thermal conductivity and excellent insulation reliability while maintaining strength Can be obtained more reliably.

さらに、前記無機フィラーが、酸化アルミニウム、窒化アルミニウム、酸化ケイ素、窒化ケイ素、又は窒化ホウ素から選択される少なくとも1種であることが好ましい。それにより、顕著な優れた熱伝導性および絶縁信頼性をより確実に達成し得る。   Furthermore, the inorganic filler is preferably at least one selected from aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, or boron nitride. Thereby, remarkable excellent thermal conductivity and insulation reliability can be achieved more reliably.

また、前記積層板は、熱伝導率が3W/m・K以上であることが好ましい。   The laminated plate preferably has a thermal conductivity of 3 W / m · K or more.

さらに、本発明の他の局面であるプリント配線板は、前記積層板の表面の金属箔を部分的に除去することにより回路形成して得られたことを特徴とする。   Furthermore, a printed wiring board according to another aspect of the present invention is obtained by forming a circuit by partially removing the metal foil on the surface of the laminated board.

また、本発明には、さらなる局面として、ガラス基材に熱硬化樹脂を含浸し、ガラス基材の経糸と緯糸の空隙に樹脂が充填されていない部分が残るようにしてプリプレグを得る工程と、熱硬化樹脂に無機フィラーを60〜95質量%含有させたフィラー高充填樹脂を、金属箔又は有機フィルム上に塗布し乾燥して高熱伝導性樹脂シートを形成する工程と、前記プリプレグを前記高熱伝導性樹脂シートで挟んだ構成、又は前記構成を複数層重ねた構成で、最表層に金属箔を貼り合わせ、加熱成型して積層板を得る工程とを含む、積層板の製造方法が包含される。このような構成により、本発明の積層板の製造方法によれば、強度を保ちながらも、高い熱伝導性および優れた絶縁信頼性を有する積層板を得ることができる。   Further, in the present invention, as a further aspect, a step of impregnating a glass substrate with a thermosetting resin and obtaining a prepreg so that a portion not filled with resin remains in the gap between the warp and the weft of the glass substrate; and A step of forming a highly heat conductive resin sheet by applying a highly filled resin containing 60 to 95% by mass of an inorganic filler to a thermosetting resin on a metal foil or an organic film, and drying the prepreg. Including a step of obtaining a laminated sheet by laminating a metal foil on the outermost layer and heat-molding the laminated structure with a plurality of layers of the above-described structure, which is sandwiched between conductive resin sheets. . With such a configuration, according to the method for manufacturing a laminated board of the present invention, it is possible to obtain a laminated board having high thermal conductivity and excellent insulation reliability while maintaining strength.

Claims (5)

プリプレグを樹脂シートで挟んだ構成、又は前記構成を複数層重ねた構成で、最表層に金属箔を貼り合わせ、加熱成型して得られる積層板であって、
前記プリプレグが、ガラス基材に熱硬化樹脂を含浸してなるプリプレグであって、ガラス基材の経糸と緯糸の空隙に樹脂が充填されていない部分があるプリプレグであること、並びに、
前記樹脂シートが、熱硬化樹脂に無機フィラーを60〜95質量%含有させたフィラー高充填樹脂を、金属箔又は有機フィルム上に塗布し乾燥して形成される高熱伝導性樹脂シートであることを特徴とする、積層板。
In a configuration in which a prepreg is sandwiched between resin sheets, or a configuration in which a plurality of the above-described configurations are stacked, a metal foil is bonded to the outermost layer, and the laminate is obtained by heat molding,
The prepreg is a prepreg obtained by impregnating a glass base material with a thermosetting resin, and there is a part of the glass base material where the resin is not filled in the space between the warp and the weft, and
The resin sheet is a highly thermally conductive resin sheet formed by applying a filler high-filling resin containing 60 to 95% by mass of an inorganic filler in a thermosetting resin on a metal foil or an organic film and drying. A laminated board characterized.
前記ガラス基材が開繊処理を施していないガラス基材である、請求項1に記載の積層板。   The laminated board of Claim 1 which is a glass base material in which the said glass base material has not performed the fiber-opening process. 前記無機フィラーが、酸化アルミニウム、窒化アルミニウム、酸化ケイ素、窒化ケイ素、又は窒化ホウ素から選択される少なくとも1種である、請求項1又は2に記載の積層板。   The laminate according to claim 1 or 2, wherein the inorganic filler is at least one selected from aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, or boron nitride. 熱伝導率が3W/m・K以上である、請求項1〜3のいずれかに記載の積層板。   The laminated board in any one of Claims 1-3 whose heat conductivity is 3 W / m * K or more. 請求項1〜4のいずれかに記載の積層板を加工してなるプリント配線板。   The printed wiring board formed by processing the laminated board in any one of Claims 1-4.
JP2010238167A 2010-10-25 2010-10-25 High thermal conductive laminate Pending JP2012091322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238167A JP2012091322A (en) 2010-10-25 2010-10-25 High thermal conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238167A JP2012091322A (en) 2010-10-25 2010-10-25 High thermal conductive laminate

Publications (1)

Publication Number Publication Date
JP2012091322A true JP2012091322A (en) 2012-05-17

Family

ID=46385255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238167A Pending JP2012091322A (en) 2010-10-25 2010-10-25 High thermal conductive laminate

Country Status (1)

Country Link
JP (1) JP2012091322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182600A1 (en) * 2014-05-30 2015-12-03 ポリマテック・ジャパン株式会社 Thermally conductive sheet and production method for thermally conductive sheet
JP2019155666A (en) * 2018-03-09 2019-09-19 Tdk株式会社 Resin substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224269A (en) * 2006-01-27 2007-09-06 Shin Kobe Electric Mach Co Ltd Prepreg for heat- and press-molding, and laminated board
JP2009019152A (en) * 2007-07-13 2009-01-29 Panasonic Corp Heat transfer prepreg and method for producing the same and heat transfer printed circuit board using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224269A (en) * 2006-01-27 2007-09-06 Shin Kobe Electric Mach Co Ltd Prepreg for heat- and press-molding, and laminated board
JP2009019152A (en) * 2007-07-13 2009-01-29 Panasonic Corp Heat transfer prepreg and method for producing the same and heat transfer printed circuit board using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182600A1 (en) * 2014-05-30 2015-12-03 ポリマテック・ジャパン株式会社 Thermally conductive sheet and production method for thermally conductive sheet
CN106414569A (en) * 2014-05-30 2017-02-15 保力马科技(日本)株式会社 Thermally conductive sheet and production method for thermally conductive sheet
JPWO2015182600A1 (en) * 2014-05-30 2017-05-25 ポリマテック・ジャパン株式会社 Thermally conductive sheet and method for producing thermally conductive sheet
JP2020128086A (en) * 2014-05-30 2020-08-27 積水ポリマテック株式会社 Thermally conductive sheet and method for producing thermally conductive sheet
JP2019155666A (en) * 2018-03-09 2019-09-19 Tdk株式会社 Resin substrate
JP7124355B2 (en) 2018-03-09 2022-08-24 Tdk株式会社 Resin substrate

Similar Documents

Publication Publication Date Title
CN107614608B (en) Thermosetting resin composition for semiconductor encapsulation and prepreg using same
US9278505B2 (en) Thermosetting resin composition and prepreg and metal clad laminate using the same
KR101677736B1 (en) Thermosetting resin composition for semiconductor package and Prepreg and Metal Clad laminate using the same
JP5338187B2 (en) Inorganic filler-containing resin composition, prepreg, laminate and wiring board
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JP5308409B2 (en) Method for producing sheet-shaped epoxy resin composition material for electronic component sealing and electronic component
JP6604564B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board
JP6778889B2 (en) Prepreg, metal-clad laminate and printed wiring board
JP6624545B2 (en) Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate
JP2012091322A (en) High thermal conductive laminate
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP5716698B2 (en) Resin sheet, laminated board and printed wiring board
JP2008208183A (en) Resin composition, prepreg and laminate
JP4765975B2 (en) Laminated board and printed wiring board using the same
JP2015076589A (en) Laminate sheet
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP2003213021A (en) Prepreg, metal-clad laminated plate and printed wiring plate using the same
JP6989086B6 (en) Thermosetting resin composition for semiconductor packaging and prepreg using this
JP2011088950A (en) Prepreg, metal-clad laminate and printed circuit board using them
JP3901134B2 (en) Thermosetting resin composition, prepreg, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
JP2020528471A6 (en) Thermosetting resin composition for semiconductor packaging and prepreg using this
JP7124355B2 (en) Resin substrate
JP5988220B2 (en) Prepreg, metal-clad laminate, printed wiring board, multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715