JP2012090623A - Renewable energy multi-stage usage system - Google Patents
Renewable energy multi-stage usage system Download PDFInfo
- Publication number
- JP2012090623A JP2012090623A JP2011070028A JP2011070028A JP2012090623A JP 2012090623 A JP2012090623 A JP 2012090623A JP 2011070028 A JP2011070028 A JP 2011070028A JP 2011070028 A JP2011070028 A JP 2011070028A JP 2012090623 A JP2012090623 A JP 2012090623A
- Authority
- JP
- Japan
- Prior art keywords
- water
- power generation
- methane
- carbon dioxide
- renewable energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/04—Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/18—Open ponds; Greenhouse type or underground installations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/36—Means for collection or storage of gas; Gas holders
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/12—Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
- C12M41/18—Heat exchange systems, e.g. heat jackets or outer envelopes
- C12M41/24—Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M43/00—Combinations of bioreactors or fermenters with other apparatus
- C12M43/08—Bioreactors or fermenters combined with devices or plants for production of electricity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/18—Gas cleaning, e.g. scrubbers; Separation of different gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/59—Biological synthesis; Biological purification
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Molecular Biology (AREA)
- Clinical Laboratory Science (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、太陽光発電装置の発電効率を向上させるとともに、微細藻類を嫌気性発酵させてメタンを生成し、同時に生成する二酸化炭素を微細藻類に供給することで、再生可能エネルギーを多段利用するシステムに関する。
詳細には、人工池の水面上に設置した太陽光発電装置の受光面を冷却して発電効率を向上させ、あわせて太陽光発電装置の周辺で微細藻類を培養することで土地の多段利用を図り、更には、培養した微細藻類を発酵させて生成したメタンを燃料として利用し、同時に生成する二酸化炭素を前記微細藻類に供給することでバイオマス栽培の促進と二酸化炭素の固定化を行う、再生可能エネルギーの多段利用システムに関する。
The present invention improves the power generation efficiency of the photovoltaic power generation apparatus, and anaerobically ferment microalgae to generate methane, and simultaneously supply the generated carbon dioxide to the microalgae, thereby using renewable energy in multiple stages. About the system.
Specifically, the light-receiving surface of a photovoltaic power generation device installed on the surface of an artificial pond is cooled to improve power generation efficiency, and microalgae are cultured around the solar power generation device, thereby enabling multistage use of land. In addition, methane produced by fermenting cultured microalgae is used as a fuel, and at the same time, carbon dioxide produced is supplied to the microalgae to promote biomass cultivation and fix carbon dioxide. The present invention relates to a multistage utilization system of possible energy.
人間の社会的活動に伴って、発電所、工場、自動車等から大気中に排出される二酸化炭素は地球温暖化の主たる原因であることが知られており、近年、この二酸化炭素の排出量を削減することが地球環境の保護の大きな課題となっている。かかる背景に鑑み、二酸化炭素の排出を増大させることなくエネルギーを得る方法として、太陽光発電や風力発電、地熱発電、ミニ水力発電あるいは波力発電等の自然エネルギーを利用した発電や、バイオマスを活用した発電やメタン、メタノール等の燃料製造など、再生可能エネルギーに関する技術開発が行われている。 It is known that carbon dioxide discharged into the atmosphere from power plants, factories, automobiles, etc. due to human social activities is the main cause of global warming. Reduction is a major issue in protecting the global environment. In view of this background, power generation using natural energy such as solar power generation, wind power generation, geothermal power generation, mini hydroelectric power generation or wave power generation, and biomass are used as methods for obtaining energy without increasing carbon dioxide emissions. Technology development related to renewable energy, such as power generation and fuel production such as methane and methanol, is underway.
太陽光発電においては、温度が発電効率に大きな影響を与え、太陽電池の温度が上昇すると発電量が低下することが知られている。例えば、シリコン系の太陽電池の場合、温度が80℃になると、25℃の定格状態と比較して、光電変換効率が2割以上低下することがある。また、太陽電池の温度が急激に上昇すると、太陽光発電装置の構成部材に熱負荷が掛かり、太陽電池が劣化するという問題が生じる場合もある。そこで、太陽光発電装置を空冷方式や水冷方式で冷却することが提案されている(例えば、特許文献1〜3参照)。 In solar power generation, it is known that the temperature greatly affects the power generation efficiency, and the amount of power generation decreases as the temperature of the solar cell increases. For example, in the case of a silicon-based solar cell, when the temperature reaches 80 ° C., the photoelectric conversion efficiency may decrease by 20% or more compared to the rated state of 25 ° C. Moreover, when the temperature of a solar cell rises rapidly, the heat load will be applied to the structural member of a solar power generation device, and the problem that a solar cell deteriorates may arise. Therefore, it has been proposed to cool the solar power generation apparatus by an air cooling method or a water cooling method (for example, see Patent Documents 1 to 3).
一方、藻類の嫌気性発酵によってメタンや二酸化炭素を生成し、二酸化炭素を藻類に供給する方法も提案されている(特許文献4、5参照)。しかしながら、栽培で得られるバイオマスは、調達量が非常に大きく、太陽光や風力と比較すると安価という利点はあるが、単位土地(栽培)面積当たりの得られるエネルギーは、他のRPS電源に比べて著しく低いという問題点があり、エネルギー密度は太陽光の1/50〜1/100程度である。 On the other hand, a method of generating methane and carbon dioxide by anaerobic fermentation of algae and supplying the carbon dioxide to algae has also been proposed (see Patent Documents 4 and 5). However, the biomass obtained by cultivation has a very large procurement amount and has the advantage of being cheap compared to solar and wind power, but the energy obtained per unit land (cultivation) area is more than that of other RPS power sources. There is a problem that it is remarkably low, and the energy density is about 1/50 to 1/100 that of sunlight.
ところで、自然エネルギーを利用した発電とバイオマスを組合せて、再生可能なエネルギーを得る方法として、例えば、特許文献6には、太陽光発電や風力発電により得られた電力を利用して、バイオマスを発酵させメタンガスを製造する方法が開示されており、特許文献7には、太陽光発電や風力発電により得られた電力を利用して水を電気分解して水素を製造し、この水素をバイオマスのガス化により生じる生成ガスと反応させてメタノールを得る方法が開示されている。 By the way, as a method of obtaining renewable energy by combining power generation using natural energy and biomass, for example, Patent Document 6 discloses fermenting biomass using electric power obtained by solar power generation or wind power generation. A method for producing methane gas is disclosed, and Patent Document 7 discloses the production of hydrogen by electrolyzing water using electric power obtained by solar power generation or wind power generation. A method is disclosed in which methanol is obtained by reacting with the product gas generated by the conversion.
特許文献6あるいは特許文献7に開示された方法は、太陽光や風力といった自然エネルギーと再生可能なエネルギーであるバイオマスを融合させるものであるが、太陽光あるいは風力による発電を実施する場所とバイオマスを入手する場所を同じ場所に限定するものではなく、また、単位面積から得られる再生可能なエネルギー総量の増大を図ろうとするものではない。 The method disclosed in Patent Document 6 or Patent Document 7 combines natural energy such as sunlight and wind power with biomass that is renewable energy. The place to obtain is not limited to the same place, nor is it intended to increase the total amount of renewable energy obtained from the unit area.
本発明は、水を貯留する特定の場所に太陽光発電装置を設置し、そこで微細藻類を培養するとともに、太陽光発電装置の発電効率を上げ、かつ微細藻類を発酵させ燃料として活用することができ、しかも、発酵で発生する二酸化炭素の排出量を増大させることなく、単位面積から得られる再生可能なエネルギー総量を増大させることができる再生可能エネルギー多段利用システムを提供することを目的とする。 The present invention is to install a solar power generation device in a specific place for storing water, in which microalgae are cultured, increase the power generation efficiency of the solar power generation device, and the microalgae can be fermented and used as fuel. Another object of the present invention is to provide a renewable energy multistage utilization system that can increase the total amount of renewable energy obtained from a unit area without increasing the amount of carbon dioxide emitted during fermentation.
上記目的を達成するため、本発明は、下記の構成のシステムを提供する。
(1)水を貯留する人工池に太陽光発電装置が設置されるとともに、前記人工池で微細藻類が培養され、該微細藻類が発酵されてメタンと二酸化炭素が生成され、該二酸化炭素が前記微細藻類に固定化される再生可能エネルギー多段利用システムであって、
太陽光発電装置の受光面に水を散布する散水装置と、
人工池で培養した微細藻類を分離する固液分離装置と、
分離した微細藻類を発酵させるメタン発酵槽と、
メタン発酵槽の加温熱源として人工池の水を該メタン発酵槽に循環させる循環系統と、
メタン発酵槽から排出されるメタンガスを二酸化炭素と分離するメタンガス精製装置と、
メタンガス精製装置で分離された二酸化炭素を前記人工池に供給する移送手段と、
を有することを特徴とする再生可能エネルギー多段利用システム。
(2)前記散水装置に、太陽光発電装置の受光面に設置された温度センサの検知温度に連動して散水装置の電源をオンオフできる制御装置を付設したことを特徴とする上記(1)に記載の再生可能エネルギー多段利用システム。
(3)前記制御装置が、温度センサの検知温度が第1の所定温度を越えた場合に前記受光面への水の散布を開始し、温度センサの検知温度が第2の所定温度以下になった場合に水の散布を停止することを特徴とする上記(2)に記載の再生可能エネルギー多段利用システム。
(4)前記散水装置の動力源ならびに前記制御装置の電源として、太陽光発電装置の発電電力を用いることを特徴とする上記(2)又は(3)に記載の再生可能エネルギー多段利用システム。
(5)前記太陽光発電装置の発電電力を蓄電する蓄電池を設置し、蓄電した電力を、前記散水装置の動力源ならびに前記制御装置の電源に供給することを特徴とする上記(2)〜(4)のいずれかに記載の再生可能エネルギー多段利用システム。
(6)前記人工池の水を撹拌できる撹拌装置を備え、該撹拌装置の動力源として、前記太陽光発電装置による発電電力又は前記蓄電池による放電電力を用いることを特徴とする上記(5)に記載の再生可能エネルギー多段利用システム。
In order to achieve the above object, the present invention provides a system having the following configuration.
(1) A solar power generation device is installed in an artificial pond that stores water, microalgae are cultured in the artificial pond, the microalgae are fermented to produce methane and carbon dioxide, and the carbon dioxide is A renewable energy multistage utilization system immobilized on microalgae,
A watering device for spraying water on the light receiving surface of the solar power generation device;
A solid-liquid separation device for separating microalgae cultured in an artificial pond;
A methane fermenter for fermenting the separated microalgae,
A circulation system for circulating the water of the artificial pond to the methane fermentation tank as a heating heat source of the methane fermentation tank;
A methane gas refining device that separates methane gas discharged from the methane fermentation tank from carbon dioxide,
Transfer means for supplying the artificial pond with carbon dioxide separated by a methane gas purification device;
A renewable energy multistage utilization system characterized by comprising:
(2) In the above (1), the watering device is provided with a control device capable of turning on and off the watering device in conjunction with the temperature detected by a temperature sensor installed on the light receiving surface of the photovoltaic power generation device. The renewable energy multistage utilization system described.
(3) When the temperature detected by the temperature sensor exceeds the first predetermined temperature, the control device starts spraying water on the light receiving surface, and the temperature detected by the temperature sensor becomes equal to or lower than the second predetermined temperature. The renewable energy multistage use system according to (2) above, wherein the spraying of water is stopped in the event of a failure.
(4) The renewable energy multistage use system according to (2) or (3) above, wherein the power generated by the photovoltaic power generation device is used as a power source for the watering device and a power source for the control device.
(5) The above (2) to (2), wherein a storage battery for storing the generated power of the solar power generation device is installed, and the stored power is supplied to a power source of the watering device and a power source of the control device. 4) The renewable energy multistage utilization system according to any one of 4).
(6) In the above (5), characterized in that a stirring device capable of stirring the water in the artificial pond is provided, and the power generated by the solar power generation device or the discharge power from the storage battery is used as a power source of the stirring device. The renewable energy multistage utilization system described.
本発明の再生可能エネルギーの多段利用システムによれば、水を貯留する人工池に太陽光発電装置を設置し、かつ太陽光発電装置の受光面に水を散布することで太陽光発電装置の光電変換効率の低下を防止するとともに、人工池の中で微細藻類を栽培することにより、太陽光発電装置からは電力として、微細藻類からはバイオマス燃料として、夫々再生可能エネルギーを得ることができるため、単位面積から得られる再生可能エネルギーの総量を増大させることが可能となる。太陽光発電装置は、池の中に設置されているので地面への設置と比較して太陽光の照り返しによる輻射熱が抑えられ、受光面の温度上昇が抑制される。 According to the multistage utilization system of renewable energy of the present invention, a photovoltaic power generation device is installed by installing a photovoltaic power generation device in an artificial pond that stores water and spraying water on a light receiving surface of the photovoltaic power generation device. As well as preventing reduction in conversion efficiency and cultivating microalgae in artificial ponds, renewable energy can be obtained from solar power generation devices as power and from microalgae as biomass fuel, respectively. It becomes possible to increase the total amount of renewable energy obtained from the unit area. Since the solar power generation device is installed in the pond, compared to the installation on the ground, the radiant heat due to the reflection of sunlight is suppressed, and the temperature rise of the light receiving surface is suppressed.
また、微細藻類の発酵で得られるメタンは燃料として利用でき、同時生成する二酸化炭素を微細藻類に供給することで、固定化と栽培促進を同時に行うことができる。生成する二酸化炭素は微細藻類に供給するので、二酸化炭素発生量が増大しない。 In addition, methane obtained by fermentation of microalgae can be used as a fuel, and by simultaneously supplying carbon dioxide generated to microalgae, immobilization and cultivation promotion can be performed simultaneously. Since the generated carbon dioxide is supplied to microalgae, the amount of carbon dioxide generated does not increase.
更に、散水排水又は貯留した水の温度を、微細藻類の栽培及びメタン発酵槽の発酵に適した温度範囲に制御することにより、メタン発酵槽の加温熱源として利用することができる。 Furthermore, it can utilize as a heating heat source of a methane fermentation tank by controlling the temperature of sprinkling drainage or the stored water to the temperature range suitable for cultivation of a micro algae and fermentation of a methane fermentation tank.
以下、本発明に係る再生可能エネルギー多段利用システムの好ましい実施形態を、図面を参照しながら詳細に説明する。 Hereinafter, a preferred embodiment of a renewable energy multistage utilization system according to the present invention will be described in detail with reference to the drawings.
図1は、再生可能エネルギー多段利用システムの好ましい一例を示す概略図、図2は、同システムにおける太陽光発電装置と微細藻類の栽培を示す概略図、図3は、太陽光発電装置周辺の各装置の接続を示す概略図である。なお、図1〜図3において同一の装置に対しては同じ番号を付与している。 FIG. 1 is a schematic diagram showing a preferable example of a renewable energy multistage utilization system, FIG. 2 is a schematic diagram showing cultivation of a solar power generation device and microalgae in the system, and FIG. It is the schematic which shows the connection of an apparatus. 1 to 3, the same numbers are assigned to the same devices.
図1に示すように、本発明の再生可能エネルギー多段利用システムは、水を貯留する人工池1の中に太陽光発電装置2、太陽光発電装置2の受光面を冷却するための水を散布する散水装置3が設置され、人工池1の外からポンプ4及び水供給配管5を介して散水装置3に水が供給される。ポンプ4と水供給配管5とから、水供給装置が構成されている。散水装置3には、水供給配管5が接続されている。人工池1の中には、人工池1の水を撹拌するとともに、水中へ光合成に必要な二酸化炭素を十分に補給するための撹拌装置6が設置され、太陽光発電装置2の周囲の水中では微細藻類7が培養される。8は微細藻類7に必要な栄養素を供給するための栄養素供給配管であり、必要に応じて設置される。そして、図1には図示していないが、人工池1の周辺には、太陽光発電装置2による発電電力を蓄電するための蓄電池9ならびにポンプ4の駆動を制御するための制御装置12が付設されており、また太陽光発電装置2の受光面には温度センサ11が取り付けられている。 As shown in FIG. 1, the renewable energy multistage utilization system of the present invention sprays water for cooling a solar power generation device 2 and a light receiving surface of the solar power generation device 2 into an artificial pond 1 for storing water. The watering device 3 is installed, and water is supplied from the outside of the artificial pond 1 to the watering device 3 through the pump 4 and the water supply pipe 5. The pump 4 and the water supply pipe 5 constitute a water supply device. A water supply pipe 5 is connected to the watering device 3. In the artificial pond 1, an agitator 6 for agitating the water of the artificial pond 1 and sufficiently supplying carbon dioxide necessary for photosynthesis to the water is installed. Microalgae 7 is cultured. 8 is a nutrient supply pipe for supplying nutrients necessary for the microalgae 7, and is installed as necessary. Although not shown in FIG. 1, a storage battery 9 for storing the power generated by the solar power generation device 2 and a control device 12 for controlling the drive of the pump 4 are attached around the artificial pond 1. The temperature sensor 11 is attached to the light receiving surface of the photovoltaic power generator 2.
太陽光発電装置2は、人工池1に設置された架台2aにより水面より上に載置される。架台2aの形状は任意であり、太陽光発電装置2の受光面が効果的に日照を受けるように適当な傾斜をつけた傾斜架台とするのが好ましい。太陽光発電装置2の設置台数は特に限定されず、人工池1の広さに応じて決定しても良いし、あるいは逆に目標とする発電量から必要な太陽光発電装置2の台数を求め、それに応じて人工池の広さを決定しても良い。また池の形状は、広さに応じて適時決定するが、撹拌の効率を考慮すると、円形もしくは楕円形(レースウェイ)などが好ましい。 The solar power generation device 2 is placed above the water surface by a gantry 2 a installed in the artificial pond 1. The shape of the gantry 2a is arbitrary, and it is preferable that the gantry is an inclined gantry with an appropriate inclination so that the light-receiving surface of the solar power generation device 2 is effectively exposed to sunlight. The number of installed solar power generation devices 2 is not particularly limited, and may be determined according to the size of the artificial pond 1, or conversely, the required number of solar power generation devices 2 is obtained from the target power generation amount. The size of the artificial pond may be determined accordingly. The shape of the pond is determined as appropriate according to the size, but considering the efficiency of stirring, a circular shape or an elliptical shape (raceway) is preferable.
散水装置3としては、特に限定されるものではなく、図1に示したように、所定の間隔で複数の孔を開けた管を、個々の太陽光発電装置2の受光面の上部に固定して配置し、受光面上に水を流し出す方式の散水装置を用いても良い。あるいは、図2に示したように、複数の孔を開けた管を、モーターなどの動力源で水平方向に回転させながら水を周辺の複数の太陽光発電装置2の受光面に散布する方式の散水装置を用いても良い。 The watering device 3 is not particularly limited. As shown in FIG. 1, a tube having a plurality of holes at predetermined intervals is fixed to the upper part of the light receiving surface of each solar power generation device 2. It is also possible to use a watering device of a type in which water is poured out on the light receiving surface. Alternatively, as shown in FIG. 2, water is sprayed on the light-receiving surfaces of a plurality of surrounding solar power generation devices 2 while rotating a tube having a plurality of holes in a horizontal direction with a power source such as a motor. A watering device may be used.
太陽光が照射されると太陽光発電装置2の受光面の温度が上昇するとともに、人工池1から水が蒸発して池の水位が低下する。太陽光発電装置2の受光面には温度センサ11が設置されているので、温度センサ11により検知された受光面の温度が、予め設定された温度を越えると、制御装置12が作動してポンプ4を駆動させ散水装置3より水を受光面に散布する。 When sunlight is irradiated, the temperature of the light receiving surface of the photovoltaic power generator 2 rises, and water evaporates from the artificial pond 1 to lower the pond water level. Since the temperature sensor 11 is installed on the light receiving surface of the solar power generation device 2, when the temperature of the light receiving surface detected by the temperature sensor 11 exceeds a preset temperature, the control device 12 is activated and the pump is activated. 4 is driven and water is sprinkled from the water sprinkler 3 on the light receiving surface.
水としては河川水、工業用水、地下水、水道水が挙げられる。水は、ポンプ4を用いて水供給配管5を介して、散水装置3から太陽光発電装置2の受光面に散布する方法で供給することにより、受光面の冷却水として活用できるとともに、水位が低下した人工池1に新たな水を補給することができるので、微細藻類7を培養するために添加した栄養素が水の蒸発により濃縮されるのを防止することができる。また、新たに供給する水源が渇水等で供給困難な場合には、散水装置3より散布する水として人工池1の水を使用することができ、この場合は、ポンプ4を用いて人工池1の水を汲み上げて散布し、太陽光発電装置2の受光面を冷却する。人工池1の水を汲み上げるポンプ4には適宜ろ過装置を取り付け、培養されている微細藻類7が吸入されることを防止するのが良い。 Examples of water include river water, industrial water, groundwater, and tap water. Water can be used as cooling water for the light receiving surface by supplying water by a method of spraying from the water sprinkler 3 to the light receiving surface of the solar power generation device 2 through the water supply pipe 5 using the pump 4, and the water level is Since fresh water can be replenished to the lowered artificial pond 1, it is possible to prevent the nutrient added for culturing the microalgae 7 from being concentrated by evaporation of water. In addition, when a newly supplied water source is difficult to supply due to drought or the like, the water of the artificial pond 1 can be used as the water sprayed from the sprinkler 3, and in this case, the artificial pond 1 using the pump 4. The water is pumped up and sprayed to cool the light receiving surface of the solar power generation device 2. The pump 4 that pumps up the water in the artificial pond 1 may be appropriately fitted with a filtration device to prevent inhalation of the cultured microalgae 7.
微細藻類7の培養に必要な栄養素を追加する必要がある場合には、前記栄養素を必要量池面に添加することができる。この場合、散水装置3とは別に太陽光パネル下部に設置した栄養素供給配管8から散水量に応じて滴下して池に供給することも可能である。栄養素供給配管8は、所定の間隔で複数の孔を開けた管から栄養素含有水を水面に向けて散布する方式の管などで良く、太陽光パネルの受光面に塩分が析出するのを防止するため、太陽光パネル下部に設置する。 When it is necessary to add nutrients necessary for culturing the microalgae 7, the nutrients can be added to the required pond surface. In this case, it is also possible to drop and supply to the pond according to the amount of water sprayed from the nutrient supply pipe 8 installed in the lower part of the solar panel separately from the water spray device 3. The nutrient supply pipe 8 may be a pipe of a system in which nutrient-containing water is sprayed from a pipe having a plurality of holes at predetermined intervals toward the water surface, and prevents salt from depositing on the light receiving surface of the solar panel. Therefore, it is installed at the bottom of the solar panel.
また海産性微細藻を培養する場合は、散水量に応じて塩もしくは濃い塩水を散水管とは別途設けた太陽光パネル下部に設置した塩分添加用配管などから池面へ直接添加することができる。 When cultivating marine microalgae, salt or concentrated salt water can be added directly to the pond surface from a salt addition pipe installed at the bottom of the solar panel provided separately from the sprinkler pipe according to the amount of water .
上記の栄養素としては、主に窒素、リン酸、カリウム分と微量ミネラル分が添加され、例えば硝酸カリウム、リン酸水素2カリウム、硫酸マグネシウム、塩化カルシウム、クエン酸第2鉄、塩化コバルト、ホウ酸、塩化マンガン、硫酸亜鉛、硫酸銅、モリブデンナトリウムなどが挙げられる。 As the above nutrients, nitrogen, phosphoric acid, potassium and trace minerals are mainly added. For example, potassium nitrate, dipotassium hydrogen phosphate, magnesium sulfate, calcium chloride, ferric citrate, cobalt chloride, boric acid, Manganese chloride, zinc sulfate, copper sulfate, sodium molybdenum and the like can be mentioned.
撹拌装置6は、微細藻類7が培養される水を撹拌する。これにより、太陽光発電装置2による日陰部分に微細藻類7が滞留することを防止し、また人工池1の底に微細藻類7が沈降することを防ぐことができるので、培養を効率的に行うことができる。撹拌装置6の形状は特に限定されず、例えば回転翼式の撹拌機などが挙げられる。撹拌装置6は、気温が低下する夜間においても運転することにより、昼間に上昇した人工池1の水温を効果的に下げることができる。 The stirring device 6 stirs water in which the microalgae 7 are cultured. Thereby, it is possible to prevent the microalgae 7 from staying in the shaded portion by the solar power generation device 2 and to prevent the microalgae 7 from sinking to the bottom of the artificial pond 1, so that the culture is efficiently performed. be able to. The shape of the stirring device 6 is not particularly limited, and examples thereof include a rotary blade type stirrer. The stirrer 6 can effectively lower the water temperature of the artificial pond 1 that has risen during the daytime by operating even at night when the temperature decreases.
本発明に用いる微細藻類7としては、スピルリナ、ドナリエラ、クロレラ、セネデスムス、ボトリオコッカス、シネココッカス、シネコシスティス、クラミドモナス、デスモデスムス、ナンノクロロプシス、ナンノクロリス、テトラセルミス、ユーグレナ、シュードコリシスティス、クロステリウム、ミクロシスチス、アンキストロデスムス、ゴレンキニア、セレナストルム、プロトシフォン、ボルボックス、クロロコックム、ヘマトコッカス、アナベナ、ミクロキスティス、フォルミディウムなどが挙げられる。微細藻類7の生育に必要な栄養素は予め人工池1の水に添加しておくことができる。所定の期間培養した後に、微細藻類7は水とともにポンプ等で抜き出し、ベルトプレス等の固液分離装置16を用いて分離した後、メタン発酵槽17に導入する。また、微細藻類7から色素やDHA、EPA、アスタキサンチン、グルタミン酸などの生理活性物質を抽出し、残った微細藻残渣をメタン発酵槽17に導入しても良い。 As the microalgae 7 used in the present invention, Spirulina, Donariella, Chlorella, Senedesmus, Botryococcus, Synecococcus, Synecocystis, Chlamydomonas, Desmodemusmus, Nannochloropsis, Nannochloris, Tetracellmis, Euglena, Pseudocollistis, Clostellium, Microcystis , Anxtrodesmus, Gorenkinia, Serenastrum, Protochiffon, Volbox, Chlorococum, Hematococcus, Anabena, Microkistis, Formidium and the like. Nutrients necessary for the growth of the microalgae 7 can be added to the water of the artificial pond 1 in advance. After culturing for a predetermined period, the microalgae 7 is extracted together with water by a pump or the like, separated using a solid-liquid separator 16 such as a belt press, and then introduced into the methane fermentation tank 17. Further, pigments, physiologically active substances such as DHA, EPA, astaxanthin, and glutamic acid may be extracted from the microalgae 7 and the remaining microalgae residue may be introduced into the methane fermentation tank 17.
固液分離装置16で分離された微細藻類7は、メタン発酵槽17に導入される。メタン発酵槽17では、従来公知の製造法を任意に適用することができる。微細藻類7は直接メタン発酵槽17に導入してもよいし、または必要に応じて、例えば、メタン発酵槽17の前流に混合槽を設け、該混合槽において、微細藻類7に水を加え、水分80%〜90%程度の濃度に希釈したものを、メタン発酵槽17に導入し発酵温度37〜55℃でメタン発酵させる方法が挙げられる。また、乾式発酵法を採用した場合は、含水量の少ない紙ゴミなどを適宜添加して発酵温度37〜55℃でメタン発酵させる方法が挙げられる。 The microalgae 7 separated by the solid-liquid separator 16 is introduced into the methane fermentation tank 17. In the methane fermentation tank 17, a conventionally known production method can be arbitrarily applied. The microalgae 7 may be introduced directly into the methane fermentation tank 17, or, if necessary, for example, a mixing tank is provided in the upstream of the methane fermentation tank 17, and water is added to the microalgae 7 in the mixing tank. A method in which a product diluted to a concentration of about 80% to 90% moisture is introduced into the methane fermentation tank 17 and subjected to methane fermentation at a fermentation temperature of 37 to 55 ° C. Moreover, when employ | adopting a dry-type fermentation method, the method of adding paper waste etc. with little water content suitably, and carrying out methane fermentation at the fermentation temperature of 37-55 degreeC is mentioned.
メタン発酵槽17では、公知のメタン生成菌による微細藻類7の分解反応によって、主として、メタンガスと二酸化炭素を含む気体が生成する。メタン発酵槽17では、加温熱源として人工池1の水を利用する。そのため、本発明の再生可能エネルギー多段利用システムでは、人工池1の水をメタン発酵槽17に循環させる循環系統18を有している。人工池1の水を循環させる場合、人工池1から水を汲み上げ、循環系統18に配置された熱交換器(図示せず)等を通して、水温をメタン発酵槽17の発酵に適した温度に制御する。また、人工池1の水温が低い場合には、散水装置3から流れ出た排水(温水)を循環系統18に直接導いても良い。 In the methane fermenter 17, a gas mainly containing methane gas and carbon dioxide is generated by the decomposition reaction of the microalgae 7 by known methane-producing bacteria. In the methane fermentation tank 17, the water of the artificial pond 1 is used as a heating heat source. Therefore, the renewable energy multistage utilization system of the present invention has a circulation system 18 for circulating the water of the artificial pond 1 to the methane fermentation tank 17. When the water in the artificial pond 1 is circulated, water is drawn from the artificial pond 1 and the water temperature is controlled to a temperature suitable for fermentation in the methane fermentation tank 17 through a heat exchanger (not shown) arranged in the circulation system 18. To do. Moreover, when the water temperature of the artificial pond 1 is low, the waste water (warm water) flowing out from the sprinkler 3 may be directly led to the circulation system 18.
メタン発酵槽17から排出されるメタンガスは、メタンガス精製装置19において二酸化炭素と分離される。メタンガス精製装置19としては、例えば、メタン発酵槽17の排ガスを0.55〜2.0MPaに加圧する圧縮機と、加圧された排ガスと水とを接触させて該水に二酸化炭素を溶解させるための吸収塔と、該吸収塔で二酸化炭素が溶解された水を大気圧状態に戻す減圧タンクとを有するものが挙げられる。吸収塔の内部を加圧条件とすることで、大気圧下における飽和濃度以上の二酸化炭素を水に溶解させ、排ガスからの二酸化炭素を除去し、高純度のメタンガスを吸収塔から排出させる。また、減圧タンクで吸収塔からの排水を大気圧状態に減圧し、過飽和に溶解している二酸化炭素の過飽和分を放出させた後の飽和炭酸水を排出できるように形成されているメタンガス精製装置19を用いることができる。 The methane gas discharged from the methane fermentation tank 17 is separated from carbon dioxide in the methane gas purification device 19. As the methane gas purification device 19, for example, a compressor that pressurizes the exhaust gas from the methane fermentation tank 17 to 0.55 to 2.0 MPa, and the pressurized exhaust gas and water are brought into contact with each other to dissolve carbon dioxide in the water. And a decompression tank for returning water in which carbon dioxide is dissolved in the absorption tower to an atmospheric pressure state. By setting the inside of the absorption tower to a pressurized condition, carbon dioxide having a saturation concentration or higher under atmospheric pressure is dissolved in water, carbon dioxide from the exhaust gas is removed, and high-purity methane gas is discharged from the absorption tower. In addition, the methane gas purifier is configured to discharge the saturated carbonated water after discharging the supersaturated portion of carbon dioxide dissolved in supersaturation by depressurizing the waste water from the absorption tower to atmospheric pressure with a decompression tank. 19 can be used.
吸収塔から排出されるガスは、高純度に精製されたメタンガスであるので、除湿器等を通過させて乾燥した後、ガスタンク(メタンホルダー)20に貯留して燃料として利用することができる。 Since the gas discharged from the absorption tower is methane gas purified to a high purity, it can be passed through a dehumidifier or the like and dried, then stored in a gas tank (methane holder) 20 and used as fuel.
減圧タンクで大気圧状態に戻されることで、過度に溶解されていた二酸化炭素が放出されるので、二酸化炭素ガス及び水に溶解された二酸化炭素(炭酸水)は、移送手段21を介して人工池1に供給される。人工池1で培養されている微細藻類7は、二酸化炭素が供給されることで栽培が促進される。メタン発酵槽17で発生した二酸化炭素は、微細藻類7に固定化されるため、二酸化炭素量が増加することはない。 Since the carbon dioxide that has been dissolved excessively is released by returning to the atmospheric pressure state in the decompression tank, the carbon dioxide dissolved in the carbon dioxide gas and water (carbonated water) is artificially transferred via the transfer means 21. Supplied to pond 1 The cultivation of the microalgae 7 cultured in the artificial pond 1 is promoted by supplying carbon dioxide. Since carbon dioxide generated in the methane fermentation tank 17 is immobilized on the microalgae 7, the amount of carbon dioxide does not increase.
次に、図3を参照して、本発明の再生可能エネルギー多段利用システムにおける各装置の接続について説明する。 Next, with reference to FIG. 3, the connection of each apparatus in the renewable energy multistage utilization system of this invention is demonstrated.
太陽光発電装置2は、双方向コンバータ10を介して系統電源14と接続されており、双方向コンバータ10の出力側と系統電源14の接続点には、スイッチ13を介してポンプ4が接続されている。スイッチ13の開閉は制御装置12により制御される。また撹拌装置6がスイッチ13と並列に接続されている。 The photovoltaic power generation apparatus 2 is connected to the system power supply 14 via the bidirectional converter 10, and the pump 4 is connected to the connection point between the output side of the bidirectional converter 10 and the system power supply 14 via the switch 13. ing. Opening and closing of the switch 13 is controlled by the control device 12. A stirring device 6 is connected in parallel with the switch 13.
双方向コンバータ10の入力側には蓄電池9が接続される。複数の太陽光発電装置2を設置する場合、それぞれの太陽光発電装置2に対応して蓄電池9を設置しても良いが、複数の太陽光発電装置2を共通の1台の蓄電池9と並列に接続するのがシステムをコンパクト化できるので好ましい。 A storage battery 9 is connected to the input side of the bidirectional converter 10. When installing a plurality of photovoltaic power generation devices 2, storage batteries 9 may be installed corresponding to each photovoltaic power generation device 2, but the plurality of photovoltaic power generation devices 2 are arranged in parallel with one common storage battery 9. It is preferable to connect to the system because the system can be made compact.
太陽光発電装置2の受光面には温度センサ11が設置され、温度センサ11は制御装置12との間に接続回路を有し、温度センサ11により検知された受光面の温度が、予め設定された第1の所定温度を越えると、制御装置12はスイッチ13をオンにしてポンプ4を駆動させ散水装置3より水を受光面に散布する。受光面が冷却され、温度センサ11により検知された受光面の温度が予め設定された第2の所定温度以下に低下すると、制御装置12はスイッチ13をオフにしポンプ4の駆動を停止する。第1の所定温度は、通常40〜75℃程度の範囲内で設定される。第2の所定温度は、第1の所定温度より低く設定され、通常20〜35℃程度の範囲内で設定される。 A temperature sensor 11 is installed on the light receiving surface of the solar power generation device 2, and the temperature sensor 11 has a connection circuit between the temperature sensor 11 and the temperature of the light receiving surface detected by the temperature sensor 11 is set in advance. When the temperature exceeds the first predetermined temperature, the control device 12 turns on the switch 13 to drive the pump 4 to spray water from the water sprinkler 3 onto the light receiving surface. When the light receiving surface is cooled and the temperature of the light receiving surface detected by the temperature sensor 11 falls below a second predetermined temperature set in advance, the control device 12 turns off the switch 13 and stops driving the pump 4. The first predetermined temperature is usually set within a range of about 40 to 75 ° C. The second predetermined temperature is set lower than the first predetermined temperature, and is usually set within a range of about 20 to 35 ° C.
太陽光発電装置2により発電された電力は蓄電池9に充電されるとともに、ポンプ4及び撹拌装置6の動力源及び制御装置12の電源として使用される。また蓄電池9の放電電力もポンプ4及び撹拌装置6の動力源及び制御装置12の電源として使用されるので、太陽光発電装置2が発電状態にあり、かつ蓄電池9が放電状態にあり、ポンプ4ならびに撹拌装置6を駆動するのに必要な電力よりも余剰となる電力は、系統電源14に逆潮流される。 The electric power generated by the solar power generation device 2 is charged to the storage battery 9 and used as a power source for the pump 4 and the stirring device 6 and a power source for the control device 12. Further, since the discharge power of the storage battery 9 is also used as the power source of the pump 4 and the agitating device 6 and the power source of the control device 12, the solar power generation device 2 is in the power generation state and the storage battery 9 is in the discharge state. In addition, the power surplus than that required to drive the stirring device 6 is reversely flowed to the system power supply 14.
太陽光発電装置2の受光面に太陽光が照射され、発電が行われるとともに温度が上昇してくるが、受光面に設置された温度センサ11が温度を検知し、前記第1の所定温度を越えた時点で制御装置12が作動しスイッチ13をオンにすることでポンプ4が駆動して散水装置3より受光面に水が散布されるので、太陽光発電装置2の光電変換効率が低下するのを防ぐことができる。そして、受光面が冷却され前記第2の所定温度以下になった時点で制御装置12によってスイッチ13がオフになりポンプ4の駆動が停止されるので、無駄な電力を使用することなく効率的に受光面を冷却することができる。 The light receiving surface of the solar power generation device 2 is irradiated with sunlight, and power is generated and the temperature rises. The temperature sensor 11 installed on the light receiving surface detects the temperature, and the first predetermined temperature is set. Since the control device 12 is activated and the switch 13 is turned on at the time of exceeding, the pump 4 is driven and water is scattered from the water spray device 3 to the light receiving surface, so that the photoelectric conversion efficiency of the solar power generation device 2 is lowered. Can be prevented. Since the switch 13 is turned off by the control device 12 and the pump 4 is stopped when the light receiving surface is cooled down to the second predetermined temperature or lower, it is efficiently performed without using wasted power. The light receiving surface can be cooled.
なお、太陽光発電装置2ならびに蓄電池9は、双方向コンバータ10を介して系統電源14と接続されているので、気象状況によって太陽光発電装置2の出力が蓄電池9を充電するのに不十分な場合は、系統電源14の交流を直流に変換して蓄電池9の充電が行われる。太陽光発電装置2と双方向コンバータ10の間には、逆流防止ダイオード15が配置されている。また、太陽光発電装置2による発電のない夜間において、撹拌装置6を運転する場合で、蓄電池9の蓄電量が放電下限値に近く、蓄電池9からの放電で運転できない場合には系統電源14の電力により運転される。 In addition, since the solar power generation device 2 and the storage battery 9 are connected to the system power supply 14 via the bidirectional converter 10, the output of the solar power generation device 2 is insufficient to charge the storage battery 9 depending on weather conditions. In this case, the accumulator 9 is charged by converting the alternating current of the system power supply 14 into direct current. Between the solar power generation device 2 and the bidirectional converter 10, a backflow prevention diode 15 is disposed. Further, in the case where the stirring device 6 is operated at night when there is no power generation by the solar power generation device 2, when the storage amount of the storage battery 9 is close to the discharge lower limit value and cannot be operated by the discharge from the storage battery 9, Operated by electric power.
以上、本発明によれば、太陽光発電装置の発電電力の一部を利用して、太陽光発電装置の受光面の冷却を行うことにより発電効率の向上が図れ、同時に微細藻類を培養してメタン発酵させ、生成するメタンをバイオマス燃料として活用できるので、単位面積から得られる再生可能エネルギーの総量を増大させることができる。また、メタン発酵槽の加温熱源として人工池の水(温水)を回収して利用できるので、省エネルギーである。メタン発酵槽で発生する二酸化炭素は、人工池に戻して微細藻類の培養に利用できるので、二酸化炭素の発生をゼロにできる。 As described above, according to the present invention, it is possible to improve the power generation efficiency by cooling the light receiving surface of the solar power generation device using a part of the generated power of the solar power generation device, and at the same time culturing microalgae. Since the methane produced by methane fermentation can be used as biomass fuel, the total amount of renewable energy obtained from the unit area can be increased. Moreover, since the water (hot water) of an artificial pond can be collect | recovered and utilized as a heating heat source of a methane fermentation tank, it is energy saving. Carbon dioxide generated in the methane fermenter can be returned to the artificial pond and used for culturing microalgae, so that carbon dioxide generation can be reduced to zero.
以下、試験例によりメタン発酵の一例を具体的に説明するが、本発明は以下の例に限定されるものではない。 Hereinafter, although an example of methane fermentation will be specifically described with test examples, the present invention is not limited to the following examples.
(試験例)
250mlのねじ口ビンと、ビン内に貫通するプラスチックを取り付けたプラスチック製のキャップ(BOLA G−L45(ドイツfinemech社製))を準備し、ビンの中に乾燥したクロレラ10gおよび水100mlを入れ、土壌から分離したメタン発酵菌群を加えた後、キャップで蓋をした。キャップに取り付けたプラスチック管の端をガス捕集用のアルミニウムバッグ(ジーエルサイエンス(株)製)に導入し、恒温水槽(タイテック(株)製、SJ−07N)にねじ口ビンを浸漬し、40℃で静置培養を行った。培養開始後、8日目、15日目、21日目、28日目および36日目に、それぞれアルミニウムバッグを交換し、取り外したアルミニウムバッグについて、100mlのガラス製注射筒でバッグ内のガスを抜き出してガス容積を測定するとともに、抜き出したガス中のメタン濃度をガスクロマトグラフィー(島津製作所(株)製、GC2010、検出器FID、カラムZB−1)で測定し、メタンの累積生成量を求めた。結果を図−4に示す。
(Test example)
Prepare a 250 ml screw cap and a plastic cap (BOLA G-L45 (Finemech, Germany)) with a plastic penetrating into the bottle, and put 10 g of dried chlorella and 100 ml of water in the bottle. After adding the methane fermentation bacteria group separated from the soil, it was covered with a cap. The end of the plastic tube attached to the cap is introduced into an aluminum bag for gas collection (manufactured by GL Sciences Inc.), and a screw bottle is immersed in a constant temperature water bath (manufactured by Taitec Co., Ltd., SJ-07N). Static culture was performed at 0 ° C. On the 8th, 15th, 21st, 28th and 36th days after the start of the culture, the aluminum bag was replaced, and the removed aluminum bag was filled with gas in the bag with a 100 ml glass syringe. While extracting and measuring the gas volume, the concentration of methane in the extracted gas is measured by gas chromatography (manufactured by Shimadzu Corporation, GC2010, detector FID, column ZB-1) to determine the cumulative amount of methane produced. It was. The results are shown in Fig.4.
図−4に示すように、36日間で、10gのクロレラから約400mgのメタンが生成することが分る。 As shown in FIG. 4, it is understood that about 400 mg of methane is produced from 10 g of chlorella in 36 days.
本発明の再生可能エネルギー多段利用システムによれば、微細藻類の栽培と太陽光発電を同じ場所で同時に実施することができ、しかも太陽光発電装置の受光面の冷却により発電効率の向上も図れるので、単位面積から得られる再生可能エネルギーの総量を増大させるシステムとして極めて有用である。 According to the renewable energy multistage utilization system of the present invention, the cultivation of microalgae and photovoltaic power generation can be performed simultaneously in the same place, and the power generation efficiency can be improved by cooling the light receiving surface of the photovoltaic power generation device. It is extremely useful as a system for increasing the total amount of renewable energy obtained from a unit area.
1 人工池
2 太陽光発電装置
2a 架台
3 散水装置
4 ポンプ
5 水供給配管
6 撹拌装置
7 微細藻類
8 栄養素供給配管
9 蓄電池
10 双方向コンバータ
11 温度センサ
12 制御装置
13 スイッチ
14 系統電源
15 逆流防止ダイオード
16 固液分離装置
17 メタン発酵槽
18 循環系統
19 メタンガス精製装置
20 ガスタンク(メタンホルダー)
21 移送手段
DESCRIPTION OF SYMBOLS 1 Artificial pond 2 Solar power generation device 2a Mounting frame 3 Water sprinkling device 4 Pump 5 Water supply piping 6 Stirring device 7 Microalgae 8 Nutrient supply piping 9 Storage battery 10 Bidirectional converter 11 Temperature sensor 12 Control device 13 Switch 14 System power supply 15 Backflow prevention diode 16 Solid-liquid separator 17 Methane fermentation tank 18 Circulation system 19 Methane gas purification device 20 Gas tank (methane holder)
21 Transfer means
Claims (6)
太陽光発電装置の受光面に水を散布する散水装置と、
人工池で培養した微細藻類を分離する固液分離装置と、
分離した微細藻類を発酵させるメタン発酵槽と、
メタン発酵槽の加温熱源として人工池の水を該メタン発酵槽に循環させる循環系統と、
メタン発酵槽から排出されるメタンガスを二酸化炭素と分離するメタンガス精製装置と、
メタンガス精製装置で分離された二酸化炭素を前記人工池に供給する移送手段と、
を有することを特徴とする再生可能エネルギー多段利用システム。 A solar power generation device is installed in an artificial pond that stores water, microalgae are cultured in the artificial pond, the microalgae are fermented to produce methane and carbon dioxide, and the carbon dioxide is converted into the microalgae. A fixed renewable energy multi-stage system,
A watering device for spraying water on the light receiving surface of the solar power generation device;
A solid-liquid separation device for separating microalgae cultured in an artificial pond;
A methane fermenter for fermenting the separated microalgae,
A circulation system for circulating the water of the artificial pond to the methane fermentation tank as a heating heat source of the methane fermentation tank;
A methane gas refining device that separates methane gas discharged from the methane fermentation tank from carbon dioxide,
Transfer means for supplying the artificial pond with carbon dioxide separated by a methane gas purification device;
A renewable energy multistage utilization system characterized by comprising:
The regenerator according to claim 5, further comprising a stirring device capable of stirring the water in the artificial pond, wherein the power generated by the solar power generation device or the discharge power from the storage battery is used as a power source of the stirring device. Energy multistage use system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070028A JP5737567B2 (en) | 2010-09-27 | 2011-03-28 | Renewable energy multistage utilization system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010214733 | 2010-09-27 | ||
JP2010214733 | 2010-09-27 | ||
JP2011070028A JP5737567B2 (en) | 2010-09-27 | 2011-03-28 | Renewable energy multistage utilization system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012090623A true JP2012090623A (en) | 2012-05-17 |
JP5737567B2 JP5737567B2 (en) | 2015-06-17 |
Family
ID=46384743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011070028A Expired - Fee Related JP5737567B2 (en) | 2010-09-27 | 2011-03-28 | Renewable energy multistage utilization system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5737567B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016001954A (en) * | 2014-06-11 | 2016-01-07 | 日産自動車株式会社 | Mobile-body power feed system and mobile-body power feed method |
KR101912992B1 (en) * | 2015-11-09 | 2018-10-29 | 현대중공업 주식회사 | Electronic propulsion system using gas turbine and a ship having the same |
JP2018174781A (en) * | 2017-04-11 | 2018-11-15 | 大和ハウス工業株式会社 | Culture apparatus of microalga |
CN113249191A (en) * | 2021-05-26 | 2021-08-13 | 山东建筑大学 | In-situ anaerobic fermentation integrated device and urban and rural river and lake water surface algae pollution prevention and control planning method |
WO2023276841A1 (en) | 2021-06-30 | 2023-01-05 | Ntn株式会社 | Water filtration system |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06350119A (en) * | 1993-06-10 | 1994-12-22 | Tatsuo Yagishita | Solar bioenergy converter |
JPH0787984A (en) * | 1993-09-27 | 1995-04-04 | Mitsubishi Heavy Ind Ltd | Process for producing ethanol from fine alga |
JP2002018473A (en) * | 2000-07-03 | 2002-01-22 | Ishigaki Co Ltd | Apparatus for cleaning pond water and the like |
JP2002170974A (en) * | 2000-11-30 | 2002-06-14 | Canon Inc | Solar cell module provided with air-cooled cooling mechanism |
JP2002193858A (en) * | 2000-12-28 | 2002-07-10 | Mitsubishi Heavy Ind Ltd | Method and plant for producing methanol using biomass feedstock |
JP2003199377A (en) * | 2001-12-27 | 2003-07-11 | Panahome Corp | Solarlight power generator |
JP2004259797A (en) * | 2003-02-25 | 2004-09-16 | Furukawa Electric Co Ltd:The | Method of cooling solar power generation module and solar power generation system |
JP2007313427A (en) * | 2006-05-25 | 2007-12-06 | Chugoku Electric Power Co Inc:The | System for converting biomass into fuel and control method thereof |
JP3143087U (en) * | 2008-04-11 | 2008-07-10 | 林健峯 | Oily microalgae culture apparatus |
US20090047722A1 (en) * | 2005-12-09 | 2009-02-19 | Bionavitas, Inc. | Systems, devices, and methods for biomass production |
JP2010034108A (en) * | 2008-07-25 | 2010-02-12 | Daido Gakuen | Cooling device and cooling method for solar cell panel |
JP2010088368A (en) * | 2008-10-09 | 2010-04-22 | Kobelco Eco-Solutions Co Ltd | Algae culturing apparatus and algae culturing method |
-
2011
- 2011-03-28 JP JP2011070028A patent/JP5737567B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06350119A (en) * | 1993-06-10 | 1994-12-22 | Tatsuo Yagishita | Solar bioenergy converter |
JPH0787984A (en) * | 1993-09-27 | 1995-04-04 | Mitsubishi Heavy Ind Ltd | Process for producing ethanol from fine alga |
JP2002018473A (en) * | 2000-07-03 | 2002-01-22 | Ishigaki Co Ltd | Apparatus for cleaning pond water and the like |
JP2002170974A (en) * | 2000-11-30 | 2002-06-14 | Canon Inc | Solar cell module provided with air-cooled cooling mechanism |
JP2002193858A (en) * | 2000-12-28 | 2002-07-10 | Mitsubishi Heavy Ind Ltd | Method and plant for producing methanol using biomass feedstock |
JP2003199377A (en) * | 2001-12-27 | 2003-07-11 | Panahome Corp | Solarlight power generator |
JP2004259797A (en) * | 2003-02-25 | 2004-09-16 | Furukawa Electric Co Ltd:The | Method of cooling solar power generation module and solar power generation system |
US20090047722A1 (en) * | 2005-12-09 | 2009-02-19 | Bionavitas, Inc. | Systems, devices, and methods for biomass production |
JP2007313427A (en) * | 2006-05-25 | 2007-12-06 | Chugoku Electric Power Co Inc:The | System for converting biomass into fuel and control method thereof |
JP3143087U (en) * | 2008-04-11 | 2008-07-10 | 林健峯 | Oily microalgae culture apparatus |
JP2010034108A (en) * | 2008-07-25 | 2010-02-12 | Daido Gakuen | Cooling device and cooling method for solar cell panel |
JP2010088368A (en) * | 2008-10-09 | 2010-04-22 | Kobelco Eco-Solutions Co Ltd | Algae culturing apparatus and algae culturing method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016001954A (en) * | 2014-06-11 | 2016-01-07 | 日産自動車株式会社 | Mobile-body power feed system and mobile-body power feed method |
KR101912992B1 (en) * | 2015-11-09 | 2018-10-29 | 현대중공업 주식회사 | Electronic propulsion system using gas turbine and a ship having the same |
JP2018174781A (en) * | 2017-04-11 | 2018-11-15 | 大和ハウス工業株式会社 | Culture apparatus of microalga |
CN113249191A (en) * | 2021-05-26 | 2021-08-13 | 山东建筑大学 | In-situ anaerobic fermentation integrated device and urban and rural river and lake water surface algae pollution prevention and control planning method |
CN113249191B (en) * | 2021-05-26 | 2023-08-15 | 山东建筑大学 | In-situ anaerobic fermentation integrated device and urban and rural river and lake water surface algae pollution prevention and control planning method |
WO2023276841A1 (en) | 2021-06-30 | 2023-01-05 | Ntn株式会社 | Water filtration system |
Also Published As
Publication number | Publication date |
---|---|
JP5737567B2 (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dasan et al. | Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis | |
Hindersin et al. | Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors | |
ES2623842T3 (en) | Fermenter for the production of biogas from pumpable organic material | |
Zhang et al. | Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria | |
CN101920258B (en) | Energy utilization system of organic wastes with zero emission of carbon dioxide | |
EP2220004B1 (en) | Method and device for converting biomass into methane | |
JP5737567B2 (en) | Renewable energy multistage utilization system | |
US20130115688A1 (en) | Laminar photobioreactor for the production of microalgae | |
CN105695310A (en) | Organic waste stepped-conversion and energy-generation system and method | |
CN101314780A (en) | Method for producing methyl hydride and electricity with solar energy | |
CN202465466U (en) | Livestock excrement biogas power generating system | |
CN206641153U (en) | Realize the intelligent pig raising field of cogeneration on the spot using pig manure | |
CN105347500A (en) | All-weather-running temperature control efficient algae pond system for purifying rural domestic sewage | |
JP2011172541A (en) | Multistage utilization system for recyclable energy | |
CN105624026A (en) | Low-carbon zero-emission circulating hydrogen preparing device | |
JP2011240238A (en) | Anaerobic bioreactor | |
CN107043693A (en) | It is a kind of from oxygen uptake formula tubular type bioreactor | |
CN201817491U (en) | Synergy device of solar photoelectrical generation system applied to methane pool | |
CN101330156A (en) | Method for implementing blue algae resource | |
JP2004113087A (en) | Circulative biomass energy recovery system and method for recovering biomass energy | |
CN205005553U (en) | Promote multi -functional shallow of photosynthetic response in big -arch shelter | |
CN209338341U (en) | A kind of pig farm waste recycling of water resource suitable for cold district utilizes system | |
TWI434449B (en) | Organism auxiliary live system with combination of microbial fuel cell and illuminating device | |
US20240200017A1 (en) | Integrated process for the sustainable and autonomous co2-emission-free production of hydrogen and related system | |
CN204022811U (en) | A kind of open raceway pond improving both culturing microalgae efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5737567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |