JP2012088149A - Squareness error calculation method for front face property measurement machine, and calibration jig - Google Patents

Squareness error calculation method for front face property measurement machine, and calibration jig Download PDF

Info

Publication number
JP2012088149A
JP2012088149A JP2010234535A JP2010234535A JP2012088149A JP 2012088149 A JP2012088149 A JP 2012088149A JP 2010234535 A JP2010234535 A JP 2010234535A JP 2010234535 A JP2010234535 A JP 2010234535A JP 2012088149 A JP2012088149 A JP 2012088149A
Authority
JP
Japan
Prior art keywords
angle
center coordinates
measured
drive mechanism
calibration jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010234535A
Other languages
Japanese (ja)
Inventor
Kotaro Hirano
宏太郎 平野
Naoyuki Hinomoto
直之 樋野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2010234535A priority Critical patent/JP2012088149A/en
Publication of JP2012088149A publication Critical patent/JP2012088149A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a squareness error calculation method for a front face property measurement machine, which can easily and highly accurately calculate a squareness error by using a simple and inexpensive calibration jig, and to provide the calibration jig.SOLUTION: A calibration jig 60 where three reference spheres 62A-62C are arranged at right angles on a calibration plate 61 is arranged on a table 16, so as to obtain center coordinates of the three reference spheres by a contact type detector 20 (a first measurement process). Then, an intersection angle θ1 formed by two straight lines connecting the center coordinates is calculated (a first angle calculation process). Secondly, the calibration jig is rotated by 90 degrees on the same plane and arranged on the table, so as to obtain center coordinates of the three reference spheres by the contact type detector (a second measurement process). Then, an intersection angle θ2 formed by two straight lines connecting the center coordinates is calculated (a second angle calculation process). Finally, a squareness error between the movement direction of a Y-axis drive mechanism 17 and the movement direction of an X-axis drive mechanism 48 is calculated based on the intersection angles θ1, θ2 (a squareness error calculation process).

Description

本発明は、被測定物の表面形状や表面粗さ等を測定する表面性状測定機の直角度誤差算出方法およびこれに用いる校正用治具に関する。   The present invention relates to a method for calculating the squareness error of a surface texture measuring instrument that measures the surface shape, surface roughness, and the like of an object to be measured, and a calibration jig used therefor.

被測定物の表面にスタイラスを接触させた状態において、スタイラスを被測定物の表面に沿って移動させ、このとき、被測定物の表面形状や表面粗さによって生じるスタイラスの変位を検出し、このスタイラスの変位から被測定物の表面形状や表面粗さ等の表面性状を測定する表面性状測定機が知られている(例えば、特許文献1参照)。   While the stylus is in contact with the surface of the object to be measured, the stylus is moved along the surface of the object to be measured. At this time, the displacement of the stylus caused by the surface shape and surface roughness of the object to be measured is detected. 2. Description of the Related Art A surface property measuring machine that measures surface properties such as a surface shape and surface roughness of an object to be measured from a stylus displacement is known (see, for example, Patent Document 1).

従来、この種の表面性状測定機のなかには、被測定物を複数並べて自動測定したり、あるいは、1つの測定面を何箇所か測定するために、被測定物を載置したテーブルをスタイラスの移動方向(X軸方向)に対して直交する方向(Y軸方向)へ移動させる駆動機構を内蔵したテーブルユニットを、表面性状測定機のベースに対して着脱可能かつ固定可能に取り付けられるようにした表面性状測定機も知られている。
このような表面性状測定機では、X軸方向位置およびY軸方向位置を変えて水平面内の測定点を取り込めば、この取り込んだ測定点に対して、2次元の寸法や形状の評価を行うことができる。
Conventionally, in this type of surface texture measuring instrument, a plurality of objects to be measured are automatically arranged, or the table on which the object is measured is moved by a stylus to measure several measurement surfaces. A table unit with a built-in drive mechanism that moves in a direction (Y-axis direction) perpendicular to the direction (X-axis direction) can be detachably and fixedly attached to the base of the surface texture measuring instrument Property measuring machines are also known.
In such a surface texture measuring device, if the measurement point in the horizontal plane is captured by changing the position in the X-axis direction and the position in the Y-axis direction, two-dimensional dimensions and shapes can be evaluated for the captured measurement point. Can do.

特開平5−87562号公報JP-A-5-87562

上述したテーブルユニットを着脱可能に構成した表面性状測定機では、ベースに位置決めレールを配置し、この位置決めレールにテーブルユニットの基準面を突き当てて、X軸(スタイラスの移動方向)とY軸(テーブルの移動方向)との直角位置決めを行っている。
しかし、この方法では、突き当て方法や作業者によってばらつきが大きい。そのため、一旦、テーブルユニットを表面性状測定機から外し、再度取り付けたときの直角度は、それ以前の状態から大きく変化してしまう。
In the above-described surface texture measuring machine configured so that the table unit is detachable, a positioning rail is arranged on the base, the reference surface of the table unit is abutted against the positioning rail, and the X axis (stylus movement direction) and Y axis ( Positioning at right angles to the table movement direction).
However, this method has a large variation depending on the abutting method and the operator. For this reason, the perpendicularity when the table unit is once removed from the surface texture measuring machine and attached again changes greatly from the previous state.

そこで、テーブルユニットを取り外し、取り付ける度に、XY軸間の直角度測定作業が余儀なくされることになるが、例えば、直角スコヤと電気マイクロメータを使用して直角度測定作業を行う方法では、直角スコヤや電気マイクロメータなどの高価な設備が必要で、しかも、直角スコヤの平行出しや電気マイクロメータのセッティングに時間がかかる。   Therefore, each time the table unit is removed and attached, the perpendicularity measurement work between the XY axes is inevitably performed. For example, in the method of performing the perpendicularity measurement work using a right angle skewer and an electric micrometer, the right angle measurement work is performed. Expensive equipment such as a skewer and an electric micrometer is required, and it takes time to set up a right angle skewer and set an electric micrometer.

本発明の目的は、簡易でかつ安価な校正用治具を用いて直角度誤差を簡易にかつ高精度に算出することができる表面性状測定機の直角度誤差算出方法および校正用治具を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a squareness error calculation method and calibration jig for a surface texture measuring machine capable of easily and accurately calculating a squareness error using a simple and inexpensive calibration jig. There is to do.

本発明の表面性状測定機の直角度誤差算出方法は、ベースと、被測定物を載置したテーブルおよびこのテーブルを水平面内の一方向へ往復移動させる第1駆動機構を有し、前記ベースの上面に着脱可能かつ固定可能に取り付けられたテーブルユニットと、前記被測定物の表面に接触されるスタイラスを有しこのスタイラスの変位を検出する検出器と、この検出器を前記テーブルの移動方向に対して直交する方向へ移動させる第2駆動機構とを備え、前記被測定物の形状または表面粗さを測定する表面性状測定機の直角度誤差算出方法において、外形形状から中心が求まる3つの基準要素を校正プレートに直角に配置した校正用治具を、前記テーブル上に配置し、前記検出器によって前記3つの基準要素を測定して3つの基準要素の中心座標を求める第1測定工程と、この第1測定工程で求められた中心座標のうち、前記直角配置の角部に位置する基準要素の中心座標と他の2つの基準要素の中心座標とを結ぶ2つの直線を求め、この2つの直線の交差角度θ1を算出する第1角度算出工程と、前記校正用治具を、同一面内で90度回転させて前記テーブル上に配置し、前記検出器によって前記3つの基準要素を測定して3つの基準要素の中心座標を求める第2測定工程と、この第2測定工程で求められた中心座標のうち、前記直角配置の角部に位置する基準要素の中心座標と他の2つの基準要素の中心座標とを結ぶ2つの直線を求め、この2つの直線の交差角度θ2を算出する第2角度算出工程と、前記第1角度算出工程で算出された交差角度θ1と、前記第2角度算出工程で算出された交差角度θ2とから前記第1駆動機構の移動方向と前記第2駆動機構の移動方向との直角度誤差を算出する直角度誤差算出工程と、を備えることを特徴とする。   The perpendicularity error calculation method for a surface texture measuring machine according to the present invention includes a base, a table on which an object to be measured is placed, and a first drive mechanism that reciprocates the table in one direction in a horizontal plane. A table unit that is detachably and fixedly attached to the upper surface, a detector that has a stylus in contact with the surface of the object to be measured, and that detects the displacement of the stylus, and that the detector is moved in the direction of movement of the table. And a second drive mechanism that moves in a direction orthogonal to the surface. In the perpendicularity error calculation method of the surface texture measuring instrument that measures the shape or surface roughness of the object to be measured, three standards for obtaining the center from the outer shape A calibration jig in which elements are arranged at right angles to the calibration plate is arranged on the table, and the three reference elements are measured by the detector to determine the center coordinates of the three reference elements. 2 connecting the center coordinates of the reference element located at the corner of the right angle arrangement and the center coordinates of the other two reference elements among the center coordinates obtained in the first measurement process. The first angle calculating step for obtaining two straight lines and calculating the crossing angle θ1 of the two straight lines and the calibration jig are rotated on the same plane by 90 degrees and arranged on the table. A second measurement step of measuring the three reference elements to determine center coordinates of the three reference elements, and of the reference coordinates located at the corners of the right angle arrangement among the center coordinates obtained in the second measurement step; A second angle calculation step of obtaining two straight lines connecting the central coordinates and the central coordinates of the other two reference elements, and calculating an intersection angle θ2 of the two straight lines; and the intersection calculated in the first angle calculation step Calculated by the angle θ1 and the second angle calculation step. Characterized in that the crossing angle θ2 Prefecture and a squareness error calculation step of calculating the squareness error between the moving direction of the moving direction and the second driving mechanism of the first drive mechanism.

このような構成によれば、まず、外形形状から中心が求まる3つの基準要素を校正プレートに直角に配置した校正用治具を、テーブル上に配置し、検出器によって3つの基準要素を測定して3つの基準要素の中心座標を求める(第1測定工程)。続いて、これによって求められた中心座標のうち、直角配置の角部に位置する基準要素の中心座標と他の2つの基準要素の中心座標とを結ぶ2つの直線を求め、この2つの直線の交差角度θ1を算出する(第1角度算出工程)。
次に、校正用治具を、同一面内で90度回転させてテーブル上に配置し、検出器によって3つの基準要素を測定して3つの基準要素の中心座標を求める(第2測定工程)。続いて、これによって求められた中心座標のうち、直角配置の角部に位置する基準要素の中心座標と他の2つの基準要素の中心座標とを結ぶ2つの直線を求め、この2つの直線の交差角度θ2を算出する(第2角度算出工程)。
最後に、第1角度算出工程で算出された交差角度θ1と、第2角度算出工程で算出された交差角度θ2とから第1駆動機構の移動方向と第2駆動機構の移動方向との直角度誤差を算出する(直角度誤差算出工程)。
従って、外形形状から中心が求まる3つの基準要素を校正プレートに直角に配置した簡易でかつ安価な校正用治具を用いて、第1駆動機構の移動方向と第2駆動機構の移動方向との直角度誤差を求めることができるから、直角度の校正を簡易にかつ高精度に行うことができる。
According to such a configuration, first, a calibration jig in which three reference elements whose centers are obtained from the outer shape are arranged at right angles to the calibration plate is arranged on the table, and the three reference elements are measured by the detector. The center coordinates of the three reference elements are obtained (first measurement step). Subsequently, out of the center coordinates thus obtained, two straight lines connecting the center coordinates of the reference element located at the corner of the right angle arrangement and the center coordinates of the other two reference elements are obtained. The intersection angle θ1 is calculated (first angle calculation step).
Next, the calibration jig is rotated 90 degrees in the same plane and placed on the table, and the three reference elements are measured by the detector to obtain the center coordinates of the three reference elements (second measurement step). . Subsequently, out of the center coordinates thus obtained, two straight lines connecting the center coordinates of the reference element located at the corner of the right angle arrangement and the center coordinates of the other two reference elements are obtained. The intersection angle θ2 is calculated (second angle calculation step).
Finally, the perpendicularity between the moving direction of the first drive mechanism and the moving direction of the second drive mechanism from the intersecting angle θ1 calculated in the first angle calculating step and the intersecting angle θ2 calculated in the second angle calculating step. An error is calculated (perpendicularity error calculation step).
Therefore, using a simple and inexpensive calibration jig in which three reference elements whose centers are obtained from the outer shape are arranged at right angles to the calibration plate, the movement direction of the first drive mechanism and the movement direction of the second drive mechanism are determined. Since the squareness error can be obtained, the squareness calibration can be performed easily and with high accuracy.

本発明の校正用治具は、ベースと、被測定物を載置したテーブルおよびこのテーブルを水平面内の一方向へ往復移動させる第1駆動機構を有し、前記ベースの上面に着脱可能かつ固定可能に取り付けられたテーブルユニットと、前記被測定物の表面に接触されるスタイラスを有しこのスタイラスの変位を検出する検出器と、この検出器を前記テーブルの移動方向に対して直交する方向へ移動させる第2駆動機構とを備え、前記被測定物の形状または表面粗さを測定する表面性状測定機の直角度誤差算出方法に用いられる校正用治具であって、校正プレートと、この校正プレートに直角に配置され、外形形状から中心が求まる3つの基準要素とを含んで構成されている、ことを特徴とする。   The calibration jig of the present invention has a base, a table on which the object to be measured is placed, and a first drive mechanism that reciprocates the table in one direction in a horizontal plane, and is detachably fixed to the upper surface of the base. A table unit that can be mounted; a detector having a stylus that is in contact with the surface of the object to be measured; and a detector that detects the displacement of the stylus; and the detector in a direction perpendicular to the moving direction of the table. A calibration jig used in a perpendicularity error calculation method of a surface texture measuring machine for measuring the shape or surface roughness of the object to be measured, the calibration plate, and a calibration plate It is characterized by including three reference elements that are arranged at right angles to the plate and whose center is determined from the outer shape.

このような構成の校正用治具によれば、校正プレートと、この校正プレートに直角に配置され、外形形状から中心が求まる3つの基準要素とを含んで構成されているから、簡易でかつ安価に構成できる。   According to the calibration jig having such a configuration, since it is configured to include a calibration plate and three reference elements that are arranged at right angles to the calibration plate and whose center is obtained from the outer shape, it is simple and inexpensive. Can be configured.

本発明の校正用治具において、前記基準要素は、基準球によって構成されている、ことが好ましい。
このような構成によれば、校正プレートに3つの球体を直角に配置すればよいから、校正用治具を簡単に製造できる。
In the calibration jig according to the present invention, it is preferable that the reference element is constituted by a reference sphere.
According to such a configuration, it is only necessary to arrange three spheres at right angles on the calibration plate, so that the calibration jig can be easily manufactured.

本発明の一実施形態に係る表面性状測定機を示す斜視図。The perspective view which shows the surface texture measuring machine which concerns on one Embodiment of this invention. 同上実施形態において、ベースとテーブルユニットとの取付構造を示す図。The figure which shows the attachment structure of a base and a table unit in embodiment same as the above. 同上実施形態において、制御装置とその周辺機構を示すブロック図。The block diagram which shows a control apparatus and its peripheral mechanism in embodiment same as the above. 同上実施形態において、校正用治具を示す斜視図。The perspective view which shows the jig | tool for calibration in embodiment same as the above. 同上実施形態において、第1測定工程を示す図。The figure which shows a 1st measurement process in embodiment same as the above. 同上実施形態において、第2測定工程を示す図。The figure which shows a 2nd measurement process in embodiment same as the above. 同上実施形態において、直角度誤差の算出原理を示す図。The figure which shows the calculation principle of a squareness error in embodiment same as the above.

<表面性状測定機の説明(図1〜図3参照)>
本実施形態に係る表面性状測定機は、図1〜図3に示すように、ベース1と、このベース1の上面一側に着脱可能かつ固定可能に取り付けられ被測定物を水平面内の一方向(ここでは、Y軸方向)へ移動させるテーブルユニットとしてのY軸テーブルユニット10と、被測定物の表面に接触されるスタイラス24を有する接触式検出器20と、被測定物の表面画像を撮像する画像プローブ30と、これら接触式検出器20および画像プローブ30をY軸方向に対して直交するZ軸方向およびX軸方向に移動させるZ軸駆動手段40およびX軸駆動手段46と、これらを制御する制御装置50(図3参照)とを備える。
<Description of surface texture measuring instrument (see FIGS. 1 to 3)>
As shown in FIGS. 1 to 3, the surface texture measuring instrument according to the present embodiment is detachably and fixedly attached to one side of the upper surface of the base 1 and the object to be measured is unidirectional in a horizontal plane. A Y-axis table unit 10 as a table unit to be moved (here, in the Y-axis direction), a contact detector 20 having a stylus 24 in contact with the surface of the object to be measured, and a surface image of the object to be measured. An image probe 30, a Z-axis drive means 40 and an X-axis drive means 46 for moving the contact detector 20 and the image probe 30 in the Z-axis direction and the X-axis direction orthogonal to the Y-axis direction, and The control apparatus 50 (refer FIG. 3) to control is provided.

ベース1には、前後方向中央位置に断面が逆T字形状の取付溝2がX軸方向に沿って形成されているとともに、この取付溝2より後方位置に断面矩形状の位置決めレール3がX軸方向と平行に取り付けられている。   A mounting groove 2 having a reverse T-shaped cross section is formed along the X-axis direction at the center position in the front-rear direction of the base 1, and a positioning rail 3 having a rectangular cross section is positioned behind the mounting groove 2 in the X direction. It is mounted parallel to the axial direction.

Y軸テーブルユニット10は、矩形枠状の本体ケース11と、この本体ケース11内にY軸方向へ移動可能に支持され上面に被測定物を載置するテーブル16と、このテーブル16をY軸方向へ移動させる第1駆動機構としてのY軸駆動機構17とを含んで構成されている。
本体ケース11には、底面にベース1の位置決めレール3に突き当てられる基準面12が形成されているとともに、側面に取付溝2に挿入されたボルト4およびこれに螺合されるナット5を利用して本体ケース11をベース1に固定するフランジ部13が形成されている。また、本体ケース11の上面には、テーブル16の移動範囲に渡って開口14が形成されているとともに、この開口14とテーブル16との隙間に蛇腹状カバー15が取り付けられている。
Y軸駆動機構17は、例えば、モータ18と、このモータ18によって回転駆動されテーブル16をY軸方向へ進退移動させる送りねじ19などによって構成されている。
The Y-axis table unit 10 includes a rectangular frame-shaped main body case 11, a table 16 that is supported in the main body case 11 so as to be movable in the Y-axis direction, and places an object to be measured on the upper surface thereof. And a Y-axis drive mechanism 17 as a first drive mechanism that moves in the direction.
The main body case 11 is formed with a reference surface 12 that abuts against the positioning rail 3 of the base 1 on the bottom surface, and uses a bolt 4 inserted into the mounting groove 2 on the side surface and a nut 5 that is screwed thereto. Thus, a flange portion 13 for fixing the main body case 11 to the base 1 is formed. An opening 14 is formed on the upper surface of the main body case 11 over the range of movement of the table 16, and a bellows-like cover 15 is attached to a gap between the opening 14 and the table 16.
The Y-axis drive mechanism 17 includes, for example, a motor 18 and a feed screw 19 that is rotationally driven by the motor 18 to move the table 16 forward and backward in the Y-axis direction.

Z軸駆動手段40は、ベース1の上面に立設されたコラム41と、このコラム41に上下方向(Z軸方向)へ移動可能に設けられたZスライダ42と、このZスライダ42を上下方向へ昇降させるZ軸駆動機構43とを含んで構成されている。
X軸駆動手段46は、Zスライダ42にY軸方向およびZ軸方向に対して直交する方向(X軸方向)へ移動可能に設けられたXスライダ47と、このXスライダ47をX軸方向へ移動させる第2駆動機構としてのX軸駆動機構48とを含んで構成されている。
なお、これらY軸駆動機構43およびZ軸駆動機構48は、図示省略されているが、例えば、ボールねじ軸と、このボールねじ軸に螺合され可動側部材に固定されたナット部材とを有する送りねじ機構によって構成されている。
The Z-axis driving means 40 includes a column 41 erected on the upper surface of the base 1, a Z slider 42 provided on the column 41 so as to be movable in the vertical direction (Z-axis direction), and the Z slider 42 in the vertical direction. And a Z-axis drive mechanism 43 that moves up and down.
The X-axis drive means 46 is provided on the Z slider 42 so as to be movable in the Y-axis direction and the direction orthogonal to the Z-axis direction (X-axis direction), and this X-slider 47 in the X-axis direction. An X-axis drive mechanism 48 as a second drive mechanism to be moved is included.
The Y-axis drive mechanism 43 and the Z-axis drive mechanism 48 are not shown in the figure, but include, for example, a ball screw shaft and a nut member that is screwed to the ball screw shaft and fixed to the movable member. It is constituted by a feed screw mechanism.

接触式検出器20は、Xスライダ47に吊り下げ支持された検出器本体21と、この検出器本体21に揺動可能に支持され先端にスタイラス24を有するアーム25と、このアーム25の揺動量を検出する検出部(図示省略)とから構成されている。   The contact-type detector 20 includes a detector main body 21 that is suspended and supported by an X slider 47, an arm 25 that is swingably supported by the detector main body 21 and that has a stylus 24 at the tip, and a swing amount of the arm 25. It is comprised from the detection part (illustration omitted) which detects this.

画像プローブ30は、Xスライダ47に接触式検出器20とともに一体的に連結された筒状のプローブ本体32と、このプローブ本体32の先端に下向きに支持されたプローブヘッド33とを備える。プローブヘッド33は、図示省略したが、対物レンズと、この対物レンズの外周に配置された光源としてのLEDと、対物レンズを透過した被測定物からの反射光を受光し被測定物の画像を撮像するCCDセンサとを含んで構成されている、 The image probe 30 includes a cylindrical probe body 32 integrally connected to the X slider 47 together with the contact detector 20, and a probe head 33 supported downward at the tip of the probe body 32. Although not shown, the probe head 33 receives an object lens, an LED as a light source arranged on the outer periphery of the object lens, and reflected light from the object to be measured that has passed through the object lens, and displays an image of the object to be measured. Comprising a CCD sensor for imaging,

制御装置50には、図3に示すように、X軸駆動機構48、Y軸駆動機構17、Z軸駆動機構43、接触式検出器20、画像プローブ30のほかに、入力装置51、表示装置52、記憶装置53が接続されている。
入力装置51は、例えば、携帯型のキーボードやジョイスティックなどによって構成され、各種動作指令やデータ入力を行う。
表示装置52には、画像プローブ30で取得した画像が表示されるとともに、接触式検出器20によって得られた形状や粗さデータが表示される。
記憶装置53には、測定プログラム等を記憶したプログラム記憶部54、後述する直角度誤差などの補正データを記憶する補正データ記憶部55、および、測定時に取り込んだ画像データや測定データなどを記憶する測定データ記憶部56などが設けられている。
As shown in FIG. 3, the control device 50 includes an input device 51, a display device, in addition to the X-axis drive mechanism 48, the Y-axis drive mechanism 17, the Z-axis drive mechanism 43, the contact detector 20, and the image probe 30. 52 and a storage device 53 are connected.
The input device 51 is composed of, for example, a portable keyboard or joystick, and performs various operation commands and data input.
The display device 52 displays the image acquired by the image probe 30 and the shape and roughness data obtained by the contact detector 20.
The storage device 53 stores a program storage unit 54 that stores a measurement program and the like, a correction data storage unit 55 that stores correction data such as a squareness error, which will be described later, and image data and measurement data captured during measurement. A measurement data storage unit 56 and the like are provided.

制御装置50は、測定プログラムの実行によって得られた測定データを測定データ記憶部56に記憶し、この測定データを補正データ記憶部55に記憶された補正データで補正して測定値として出力する機能のほかに、画像プローブ30によって取り込まれた被測定物の画像から被測定物のエッジを検出するエッジ検出機能や、被測定物の高さ方向(Z軸方向)の面に対物レンズの焦点位置が一致するように、対物レンズを高さ方向へ変位させて、この変位量から被測定物の高さ方向の位置を検出するオートフォーカス機能を備える。   The control device 50 stores measurement data obtained by executing the measurement program in the measurement data storage unit 56, corrects the measurement data with the correction data stored in the correction data storage unit 55, and outputs the measurement data as a measurement value. In addition to the above, an edge detection function for detecting the edge of the object to be measured from the image of the object to be measured captured by the image probe 30, and the focal position of the objective lens on the surface in the height direction (Z-axis direction) of the object to be measured Is provided with an auto-focus function that detects the position of the object to be measured in the height direction from the amount of displacement by displacing the objective lens in the height direction so as to match.

<校正用治具の説明(図4参照)>
校正用治具60は、上述した表面性状測定機において、Y軸駆動機構17の移動方向とX軸駆動機構48の移動方向との直角度誤差を算出する際に用いられる校正用治具であって、校正プレート61と、この校正プレート61に直角に配置された基準要素としての3つの基準球62A,62B,62Cとを含んで構成されている。
校正プレート61は、所定の厚みを有する略正方形の板材によって構成されている。
3つの基準球62A,62B,62Cは、円盤状の基準球取付部材63を介して、校正プレート61の3つの角部に埋設されている。つまり、基準球62A,62B,62Cが基準球取付部材63の中心に一部露出するように埋設され、3つの基準球62A,62B,62Cが直角になるように、基準球取付部材63が校正プレート61の角部に位置調整されて接着固定されている。
これにより、基準球62Aの中心と基準球62Bの中心とを結ぶ直線と、基準球62A,の中心と基準球62Cの中心とを結ぶ直線とのなす角度(交差角度)が直角になるように構成されている。
<Description of calibration jig (see FIG. 4)>
The calibration jig 60 is a calibration jig used when calculating the squareness error between the movement direction of the Y-axis drive mechanism 17 and the movement direction of the X-axis drive mechanism 48 in the surface texture measuring instrument described above. The calibration plate 61 includes three reference spheres 62A, 62B, and 62C as reference elements disposed at right angles to the calibration plate 61.
The calibration plate 61 is made of a substantially square plate material having a predetermined thickness.
The three reference spheres 62 </ b> A, 62 </ b> B, and 62 </ b> C are embedded in three corners of the calibration plate 61 via a disk-shaped reference sphere mounting member 63. That is, the reference sphere mounting member 63 is calibrated so that the reference spheres 62A, 62B, and 62C are embedded so as to be partially exposed at the center of the reference sphere mounting member 63, and the three reference spheres 62A, 62B, and 62C are at right angles. The position of the plate 61 is adjusted and bonded and fixed.
Thereby, an angle (intersection angle) formed by a straight line connecting the center of the reference sphere 62A and the center of the reference sphere 62B and a straight line connecting the center of the reference sphere 62A and the center of the reference sphere 62C is a right angle. It is configured.

<直角度誤差算出方法の説明(図5〜図7参照)>
表面性状測定機において、Y軸駆動機構17の移動方向とX軸駆動機構48の移動方向との直角度誤差を算出するには、次のようにして行う。
(a)まず、校正用治具60をテーブル16上に配置したのち、接触式検出器20によって3つの基準球62A,62B,62Cの中心座標を求める(第1測定工程)。
これには、図5に示すように、各基準球62A,62B,62C毎に、接触式検出器20のスタイラス24が基準球62A,62B,62Cの円形輪郭線を交差するようにY軸駆動機構17およびX軸駆動機構48を移動させ、基準球62A,62B,62Cの円形輪郭線のうち少なくとも3点以上の位置データを取得し、この取得された位置データに円を当てはめて円の中心座標、つまり、基準球62A,62B,62Cの中心座標P1,P2,P3を求める。
<Description of perpendicularity error calculation method (see FIGS. 5 to 7)>
In the surface texture measuring machine, the squareness error between the moving direction of the Y-axis driving mechanism 17 and the moving direction of the X-axis driving mechanism 48 is calculated as follows.
(A) First, after placing the calibration jig 60 on the table 16, the center coordinates of the three reference spheres 62A, 62B, 62C are obtained by the contact detector 20 (first measurement step).
As shown in FIG. 5, for each reference sphere 62A, 62B, 62C, the Y-axis drive is performed so that the stylus 24 of the contact detector 20 intersects the circular outlines of the reference spheres 62A, 62B, 62C. The mechanism 17 and the X-axis drive mechanism 48 are moved to acquire position data of at least three points of the circular outlines of the reference spheres 62A, 62B, and 62C, and a circle is applied to the acquired position data to obtain the center of the circle. The coordinates, that is, the center coordinates P1, P2, P3 of the reference spheres 62A, 62B, 62C are obtained.

(b)続いて、第1測定工程で測定された中心座標P1〜P3のうち、直角配置の角部に位置する基準球62Aの中心座標P1と他の2つの基準球62B,62Cの中心座標P2,P3とを結ぶ2つの直線を求め、この2つの直線の交差角度を算出する(第1角度算出工程)。
具体的には、基準球62Aの中心座標P1と基準球62Bの中心座標P2を結ぶ直線L1と、基準球62Aの中心座標P1と基準球62Cの中心座標P3とを結ぶ直線L2とを求め、この2つの直線L1,L2の交差角度θ1を算出する。
(B) Subsequently, among the center coordinates P1 to P3 measured in the first measurement step, the center coordinates P1 of the reference sphere 62A located at the corners arranged at right angles and the center coordinates of the other two reference spheres 62B and 62C. Two straight lines connecting P2 and P3 are obtained, and an intersection angle between the two straight lines is calculated (first angle calculating step).
Specifically, a straight line L1 connecting the center coordinates P1 of the reference sphere 62A and the center coordinates P2 of the reference sphere 62B, and a straight line L2 connecting the center coordinates P1 of the reference sphere 62A and the center coordinates P3 of the reference sphere 62C are obtained. The intersection angle θ1 between the two straight lines L1 and L2 is calculated.

(c)次に、図6に示すように、校正用治具60を、同一面内で90度回転させた状態でテーブル16上に配置し、接触式検出器20によって3つの基準球62A,62B,62Cの中心座標P4,P5,P6を求める(第2測定工程)。なお、基準球62A,62B,62Cの中心座標P4,P5,P6を求めるには、第1測定工程と同じようにして行う。 (C) Next, as shown in FIG. 6, the calibration jig 60 is arranged on the table 16 in a state of being rotated 90 degrees in the same plane, and three reference spheres 62 </ b> A, The center coordinates P4, P5, and P6 of 62B and 62C are obtained (second measurement step). The center coordinates P4, P5, and P6 of the reference spheres 62A, 62B, and 62C are obtained in the same manner as in the first measurement process.

(d)続いて、第2測定工程で測定された中心座標P4,P5,P6のうち、直角配置の角部に位置する基準球62Aの中心座標P4と他の2つの基準球62B,62Cの中心座標P5,P6とを結ぶ2つの直線を求め、この2つの直線の交差角度θ2を算出する(第2角度算出工程)
具体的には、基準球62Aの中心座標P4と基準球62Aの中心座標P5を結ぶ直線L3と、基準球62Aの中心座標P4と基準球62Cの中心座標P6とを結ぶ直線L4とを求め、この2つの直線L3,L4の交差角度θ2を算出する。
(D) Subsequently, among the center coordinates P4, P5 and P6 measured in the second measurement step, the center coordinates P4 of the reference sphere 62A located at the corner of the right angle arrangement and the other two reference spheres 62B and 62C. Two straight lines connecting the central coordinates P5 and P6 are obtained, and an intersection angle θ2 between the two straight lines is calculated (second angle calculating step).
Specifically, a straight line L3 connecting the center coordinate P4 of the reference sphere 62A and the center coordinate P5 of the reference sphere 62A, and a straight line L4 connecting the center coordinate P4 of the reference sphere 62A and the center coordinate P6 of the reference sphere 62C are obtained. The intersection angle θ2 between the two straight lines L3 and L4 is calculated.

(e)最後に、第1角度算出工程で算出された交差角度θ1と、第2角度算出工程で算出された交差角度θ2とから、Y軸駆動機構17の移動方向とX軸駆動機構48の移動方向との直角度誤差を算出する(直角度誤差算出工程)。
つまり、第1角度算出工程で算出された交差角度θ1と、第2角度算出工程で算出された交差角度θ2は、図7に示すように、校正用治具60に配置された基準球62A、62B,62Cの位置により不変のθに対して、直角度誤差δを持っているから、次の式から直角度誤差δを算出できる。
(E) Finally, based on the intersection angle θ1 calculated in the first angle calculation step and the intersection angle θ2 calculated in the second angle calculation step, the moving direction of the Y-axis drive mechanism 17 and the X-axis drive mechanism 48 A squareness error with respect to the moving direction is calculated (squareness error calculation step).
That is, the crossing angle θ1 calculated in the first angle calculation step and the crossing angle θ2 calculated in the second angle calculation step are the reference spheres 62A arranged in the calibration jig 60, as shown in FIG. Since there is a squareness error δ with respect to θ that does not change depending on the positions of 62B and 62C, the squareness error δ can be calculated from the following equation.

θ1=θ−δ ……(1)
θ2=θ+δ ……(2)
δ=(θ2−θ1)/2 ……(3)
θ1 = θ−δ (1)
θ2 = θ + δ (2)
δ = (θ2−θ1) / 2 (3)

このようにして算出した直角度誤差δを補正データ記憶部55に記憶しておくと、制御装置50は、測定プログラムの実行によって得られた測定データを測定データ記憶部56に記憶し、この測定データを補正データ記憶部55に記憶された補正データで補正して測定値として出力することができるから、Y軸駆動機構17の移動方向とX軸駆動機構48の移動方向との直角度誤差を補正することができる。   When the squareness error δ calculated in this way is stored in the correction data storage unit 55, the control device 50 stores the measurement data obtained by executing the measurement program in the measurement data storage unit 56, and this measurement is performed. Since the data can be corrected with the correction data stored in the correction data storage unit 55 and output as a measured value, the squareness error between the movement direction of the Y-axis drive mechanism 17 and the movement direction of the X-axis drive mechanism 48 can be reduced. It can be corrected.

<実施形態の効果>
本実施形態によれば、3つの基準球62A,62B,62Cを校正プレート61に直角に配置した校正用治具60を用いて、Y軸駆動機構17の移動方向とX軸駆動機構48の移動方向との直角度誤差を算出することができるから、この直角度誤差を補正値として測定値を補正すれば、直角度の校正を簡易にかつ高精度に行うことができる。
<Effect of embodiment>
According to the present embodiment, the movement direction of the Y-axis drive mechanism 17 and the movement of the X-axis drive mechanism 48 are performed using the calibration jig 60 in which the three reference spheres 62A, 62B, 62C are arranged at right angles to the calibration plate 61. Since the squareness error with respect to the direction can be calculated, if the measurement value is corrected using this squareness error as a correction value, the squareness can be calibrated easily and with high accuracy.

従って、使用者自身がY軸テーブルユニット10を取り外し、取り付けた場合でも、Y軸駆動機構17の移動方向とX軸駆動機構48の移動方向との直角度精度を簡易に校正できるから、高精度で使用できる。とくに、Y軸およびX軸の複合精度の信頼性が向上するため、斜め測定などでも高精度な測定が期待できる。
また、校正用治具60は、校正プレート61と、この校正プレート61の角部に配置された3つの基準球62A,62B,62Cとから構成されているから、簡易でかつ安価に製造できる。
Therefore, even when the user himself removes and attaches the Y-axis table unit 10, the squareness accuracy between the moving direction of the Y-axis drive mechanism 17 and the moving direction of the X-axis drive mechanism 48 can be easily calibrated. Can be used in In particular, since the reliability of the combined accuracy of the Y-axis and the X-axis is improved, high-precision measurement can be expected even in oblique measurement.
Further, the calibration jig 60 is composed of the calibration plate 61 and the three reference spheres 62A, 62B, and 62C arranged at the corners of the calibration plate 61, so that it can be manufactured easily and inexpensively.

また、画像プローブ30を備えているので、画像プローブ30の単独使用による測定も可能である。例えば、画像プローブ30によって取得した画像から、線幅や孔径などを測定することができるほか、画像プローブ30のオートフォーカス機能を用いて、対物レンズの光軸方向の寸法(段差寸法)なども測定できる。   In addition, since the image probe 30 is provided, measurement using the image probe 30 alone is also possible. For example, the line width and the hole diameter can be measured from the image acquired by the image probe 30, and the dimension (step size) of the objective lens in the optical axis direction is also measured using the autofocus function of the image probe 30. it can.

<変形例>
本発明は、前述の実施形態に限定されるものでなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。
<Modification>
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

前記実施形態では、校正用治具60の3つの基準球62A,62B,62Cを接触式検出器20で測定して、これら基準球62A,62B,62Cの中心座標を算出するようにしたが、画像プローブ30によって基準球62A,62B,62Cの円形輪郭線のうち少なくとも3箇所の位置をエッジ検出し、この3つの位置から円を当てはめて円の中心座標、つまり、基準球62A,62B,62Cの中心座標を求めるようにしてもよい。 In the embodiment, the three reference spheres 62A, 62B, and 62C of the calibration jig 60 are measured by the contact detector 20, and the center coordinates of these reference spheres 62A, 62B, and 62C are calculated. The image probe 30 detects edges of at least three positions of the circular outlines of the reference spheres 62A, 62B, and 62C, and applies circles from these three positions to obtain the center coordinates of the circles, that is, the reference spheres 62A, 62B, and 62C. Alternatively, the center coordinates may be obtained.

前記実施形態では、校正プレート61に3つの基準球62A,62B,62Cを直角に配置した校正用治具60を用いたが、これに限られない。例えば、半球状の基準要素を配置した構成でもよい。あるいは、校正プレート61の3つの角部に凹球面形状の窪みを形成した構成でもよい。要するに、外形形状から中心座標を特定できる形状であれば、前記実施形態に限られない。   In the embodiment, the calibration jig 60 in which the three reference spheres 62A, 62B, and 62C are arranged at right angles on the calibration plate 61 is used. However, the present invention is not limited to this. For example, a configuration in which hemispherical reference elements are arranged may be used. Alternatively, a configuration in which concave spherical shaped depressions are formed at three corners of the calibration plate 61 may be used. In short, the present invention is not limited to the above embodiment as long as the center coordinates can be specified from the outer shape.

前記実施形態では、画像プローブ30を備える構成であったが、画像プローブ30は特に備えていなくてもよい。 In the embodiment, the image probe 30 is provided. However, the image probe 30 may not be particularly provided.

本発明は、例えば、表面粗さ測定機や形状測定機などに利用できる。   The present invention can be used for, for example, a surface roughness measuring machine and a shape measuring machine.

1…ベース、
10…Y軸テーブルユニット、
16…テーブル、
17…Y軸駆動機構(第1駆動機構)、
20…接触式検出器、
48…X軸駆動機構(第2駆動機構)、
60…校正用治具、
61…校正プレート、
62A〜62C…基準球(基準要素)、
P1〜P3、P4〜P6…中心座標、
L1〜L4…直線、
θ1,θ2…交差角度、
δ…直角度誤差。
1 ... Base,
10 ... Y-axis table unit,
16 ... table,
17 ... Y-axis drive mechanism (first drive mechanism),
20 ... contact type detector,
48 ... X-axis drive mechanism (second drive mechanism),
60 ... Calibration jig,
61 ... Calibration plate,
62A-62C ... reference sphere (reference element),
P1 to P3, P4 to P6 ... center coordinates,
L1-L4 ... straight line,
θ1, θ2 ... crossing angle,
δ: Squareness error.

Claims (3)

ベースと、被測定物を載置したテーブルおよびこのテーブルを水平面内の一方向へ往復移動させる第1駆動機構を有し、前記ベースの上面に着脱可能かつ固定可能に取り付けられたテーブルユニットと、前記被測定物の表面に接触されるスタイラスを有しこのスタイラスの変位を検出する検出器と、この検出器を前記テーブルの移動方向に対して直交する方向へ移動させる第2駆動機構とを備え、前記被測定物の形状または表面粗さを測定する表面性状測定機の直角度誤差算出方法において、
外形形状から中心が求まる3つの基準要素を校正プレートに直角に配置した校正用治具を、前記テーブル上に配置し、前記検出器によって前記3つの基準要素を測定して3つの基準要素の中心座標を求める第1測定工程と、
この第1測定工程で求められた中心座標のうち、前記直角配置の角部に位置する基準要素の中心座標と他の2つの基準要素の中心座標とを結ぶ2つの直線を求め、この2つの直線の交差角度θ1を算出する第1角度算出工程と、
前記校正用治具を、同一面内で90度回転させて前記テーブル上に配置し、前記検出器によって前記3つの基準要素を測定して3つの基準要素の中心座標を求める第2測定工程と、
この第2測定工程で求められた中心座標のうち、前記直角配置の角部に位置する基準要素の中心座標と他の2つの基準要素の中心座標とを結ぶ2つの直線を求め、この2つの直線の交差角度θ2を算出する第2角度算出工程と、
前記第1角度算出工程で算出された交差角度θ1と、前記第2角度算出工程で算出された交差角度θ2とから前記第1駆動機構の移動方向と前記第2駆動機構の移動方向との直角度誤差を算出する直角度誤差算出工程と、
を備えることを特徴とする表面性状測定機の直角度誤差算出方法。
A base, a table on which the object to be measured is placed, and a table unit having a first drive mechanism for reciprocating the table in one direction in a horizontal plane, and detachably and fixably attached to the upper surface of the base; A detector having a stylus in contact with the surface of the object to be measured and detecting the displacement of the stylus; and a second drive mechanism for moving the detector in a direction perpendicular to the moving direction of the table. In the method for calculating the perpendicularity error of a surface texture measuring machine that measures the shape or surface roughness of the object to be measured,
A calibration jig in which three reference elements whose centers are obtained from the outer shape are arranged at right angles to the calibration plate is arranged on the table, and the three reference elements are measured by the detector to measure the centers of the three reference elements. A first measuring step for obtaining coordinates;
Of the center coordinates obtained in the first measurement step, two straight lines connecting the center coordinates of the reference element located at the corner of the right angle arrangement and the center coordinates of the other two reference elements are obtained, and the two A first angle calculating step of calculating a crossing angle θ1 of the straight line;
A second measuring step in which the calibration jig is rotated 90 degrees in the same plane and arranged on the table, and the three reference elements are measured by the detector to obtain the center coordinates of the three reference elements; ,
Among the center coordinates obtained in the second measurement step, two straight lines connecting the center coordinates of the reference element located at the corner of the right angle arrangement and the center coordinates of the other two reference elements are obtained, and the two A second angle calculating step of calculating a crossing angle θ2 of the straight lines;
From the intersecting angle θ1 calculated in the first angle calculating step and the intersecting angle θ2 calculated in the second angle calculating step, there is a direct difference between the moving direction of the first drive mechanism and the moving direction of the second drive mechanism. A squareness error calculating step for calculating an angle error;
A method for calculating the squareness error of a surface texture measuring machine.
ベースと、被測定物を載置したテーブルおよびこのテーブルを水平面内の一方向へ往復移動させる第1駆動機構を有し、前記ベースの上面に着脱可能かつ固定可能に取り付けられたテーブルユニットと、前記被測定物の表面に接触されるスタイラスを有しこのスタイラスの変位を検出する検出器と、この検出器を前記テーブルの移動方向に対して直交する方向へ移動させる第2駆動機構とを備え、前記被測定物の形状または表面粗さを測定する表面性状測定機の直角度誤差算出方法に用いられる校正用治具であって、
校正プレートと、
この校正プレートに直角に配置され、外形形状から中心が求まる3つの基準要素とを含んで構成されている、
ことを特徴とする校正用治具。
A base, a table on which the object to be measured is placed, and a table unit having a first drive mechanism for reciprocating the table in one direction in a horizontal plane, and detachably and fixably attached to the upper surface of the base; A detector having a stylus in contact with the surface of the object to be measured and detecting the displacement of the stylus; and a second drive mechanism for moving the detector in a direction perpendicular to the moving direction of the table. A calibration jig used in a squareness error calculation method of a surface texture measuring machine for measuring the shape or surface roughness of the object to be measured,
A calibration plate;
It is arranged at right angles to the calibration plate and includes three reference elements whose center is obtained from the outer shape.
A calibration jig characterized by that.
請求項2に記載の校正用治具において、
前記基準要素は、基準球によって構成されている、ことを特徴とする校正用治具。
The calibration jig according to claim 2,
A calibration jig, wherein the reference element is constituted by a reference sphere.
JP2010234535A 2010-10-19 2010-10-19 Squareness error calculation method for front face property measurement machine, and calibration jig Pending JP2012088149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234535A JP2012088149A (en) 2010-10-19 2010-10-19 Squareness error calculation method for front face property measurement machine, and calibration jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234535A JP2012088149A (en) 2010-10-19 2010-10-19 Squareness error calculation method for front face property measurement machine, and calibration jig

Publications (1)

Publication Number Publication Date
JP2012088149A true JP2012088149A (en) 2012-05-10

Family

ID=46259923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234535A Pending JP2012088149A (en) 2010-10-19 2010-10-19 Squareness error calculation method for front face property measurement machine, and calibration jig

Country Status (1)

Country Link
JP (1) JP2012088149A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081341A (en) * 2012-10-18 2014-05-08 Mitsutoyo Corp Measuring instrument and measuring force adjustment method
CN109605265A (en) * 2018-12-21 2019-04-12 珠海达明科技有限公司 A kind of assembly method of high-precision dot gluing equipment
CN111539073A (en) * 2020-03-25 2020-08-14 帕博检测技术服务有限公司 Large-diameter steel pipe end face verticality calculation method, system and device and storage medium
CN114937397A (en) * 2022-05-24 2022-08-23 西安航空学院 Verticality tolerance detection teaching aid
CN115365861A (en) * 2022-08-17 2022-11-22 昆山国方模具有限公司 Multifunctional correcting clamp for mold flatness, perpendicularity and squareness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081341A (en) * 2012-10-18 2014-05-08 Mitsutoyo Corp Measuring instrument and measuring force adjustment method
CN109605265A (en) * 2018-12-21 2019-04-12 珠海达明科技有限公司 A kind of assembly method of high-precision dot gluing equipment
CN109605265B (en) * 2018-12-21 2023-08-29 珠海市运泰利自动化设备有限公司 Assembling method of high-precision dispensing equipment
CN111539073A (en) * 2020-03-25 2020-08-14 帕博检测技术服务有限公司 Large-diameter steel pipe end face verticality calculation method, system and device and storage medium
CN111539073B (en) * 2020-03-25 2023-12-12 帕博检测技术服务有限公司 Method, system, device and storage medium for calculating verticality of end face of large-caliber steel pipe
CN114937397A (en) * 2022-05-24 2022-08-23 西安航空学院 Verticality tolerance detection teaching aid
CN114937397B (en) * 2022-05-24 2024-01-09 西安航空学院 Perpendicularity tolerance detection teaching aid
CN115365861A (en) * 2022-08-17 2022-11-22 昆山国方模具有限公司 Multifunctional correcting clamp for mold flatness, perpendicularity and squareness
CN115365861B (en) * 2022-08-17 2024-02-23 昆山国方模具有限公司 Multifunctional correction clamp for flatness, perpendicularity and straight angle of die

Similar Documents

Publication Publication Date Title
US11563931B2 (en) System and method for calibrating a vision system with respect to a touch probe
US9228816B2 (en) Method of determining a common coordinate system for an articulated arm coordinate measurement machine and a scanner
EP3054265B1 (en) Coordinate measuring machine
US8363904B2 (en) Offset amount calibrating method and surface texture measuring machine
JP5236962B2 (en) Measuring method for front and back of measured object
US8654351B2 (en) Offset amount calibrating method and surface profile measuring machine
CN105571488B (en) A kind of image detection device and detection method of hole group position degree
JP2006231509A (en) Method for measuring program control type machine tool
JP5294949B2 (en) Measuring device for rotating body thickness etc.
CN110220483A (en) Three axial plane degree detection systems of one kind and its detection method
JP2012088149A (en) Squareness error calculation method for front face property measurement machine, and calibration jig
TWM516714U (en) Angular error correction device for machine tools
JP4705792B2 (en) Inter-axis angle correction method
JP2017150993A (en) Inner wall measurement device and offset amount calculation method
EP3322959B1 (en) Method for measuring an artefact
JP4570437B2 (en) Surface roughness / contour shape measuring device
JP2005121370A (en) Surface shape measuring apparatus and method
JP2005037353A (en) Width measuring method and surface property measuring equipment
TWI378843B (en)
JP2016191663A (en) Calibration method of optical sensor, and three-dimensional coordinate measuring instrument
JP6757391B2 (en) Measuring method
JP2010185804A (en) Shape measuring apparatus, shape measuring method, and program
TWI495839B (en) Scanning touch probe with 5-axis measuring functions
JP2005037355A (en) Width measuring method and surface property measuring equipment
JP4377267B2 (en) Axis movement command converter