JP2012088126A - Flaw inspection method and flaw inspection device of magnetic component - Google Patents

Flaw inspection method and flaw inspection device of magnetic component Download PDF

Info

Publication number
JP2012088126A
JP2012088126A JP2010233991A JP2010233991A JP2012088126A JP 2012088126 A JP2012088126 A JP 2012088126A JP 2010233991 A JP2010233991 A JP 2010233991A JP 2010233991 A JP2010233991 A JP 2010233991A JP 2012088126 A JP2012088126 A JP 2012088126A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic component
component
flaw
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010233991A
Other languages
Japanese (ja)
Inventor
Asayuki Ishimine
朝之 伊志嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2010233991A priority Critical patent/JP2012088126A/en
Publication of JP2012088126A publication Critical patent/JP2012088126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flaw inspection method and a flaw inspection device of a magnetic component, capable of certainly carrying out total number inspection about the presence/absence of a flaw of the magnetic component, and enabling in-lining.SOLUTION: A flaw inspection device 1 comprises a magnetic holder 10, an induction coil 20, magnetization characteristic measuring means 30, and discriminating means 40. A magnetic component 100 is attached to a magnetic holder 10, and the magnetic holder 10 is combined with the magnetic component 100 to form a closed magnetic circuit. The induction coil 20 applies a magnetic field on the closed magnetic circuit. The magnetic characteristic measuring means 30 measures the magnetization characteristics of the closed magnetic circuit when the magnetic field is applied on the closed magnetic circuit. The discriminating means 40 obtains the measured magnetization characteristics of the closed magnetic circuit from the magnetization characteristic measuring means 30, and discriminates the presence/absence of a flaw of the magnetic component 100 on the basis of the measured magnetization characteristics.

Description

本発明は、磁性部品の傷検査方法および傷検査装置に関する。特に、磁性部品の検査工程において、磁性部品の製造工程で生じた傷(亀裂)の有無を短時間に確実に全数検査することができ、かつインライン化が可能な磁性部品の傷検査方法および傷検査装置に関する。   The present invention relates to a scratch inspection method and a scratch inspection apparatus for magnetic parts. In particular, in the inspection process of magnetic parts, it is possible to reliably inspect in a short time all the presence or absence of scratches (cracks) generated in the manufacturing process of magnetic parts, and the inspecting method and scratches of magnetic parts that can be inlined It relates to an inspection device.

従来、チョークコイルや電磁弁などを構成する部品として磁性材料からなる磁性部品(「鉄心」、「磁心」、「コア」と呼ばれることもある)が使用されている。磁性部品には、フェライト材を用いたものや、金属磁性粉末の表面を絶縁し、加圧成形した圧粉磁心を用いたものが知られている。   Conventionally, magnetic parts made of a magnetic material (sometimes referred to as “iron core”, “magnetic core”, and “core”) are used as parts constituting a choke coil, a solenoid valve, and the like. As magnetic parts, those using a ferrite material and those using a dust core in which the surface of a metal magnetic powder is insulated and pressed are known.

上記した磁性部品は、金型での大量生産が可能であり、通常、金型で目的形状に成形することで製造されている。最近では、小型で、かつ複雑形状に一体成形したものもある。なお、ここでいう「複雑形状」とは、板状や柱状(棒状)、筒状といった単純形状ではなく、例えば、屈曲部を有する形状、凸部や凹部を有する形状、開口部を有し、側壁部と底壁部とを有する容器形状などの所謂3次元形状をいう。   The above-described magnetic component can be mass-produced with a mold, and is usually manufactured by molding into a target shape with a mold. Recently, there is a small one that is integrally formed into a complicated shape. In addition, the “complex shape” here is not a simple shape such as a plate shape, a column shape (bar shape), or a cylinder shape, for example, a shape having a bent portion, a shape having a convex portion or a concave portion, an opening portion, It refers to a so-called three-dimensional shape such as a container shape having a side wall portion and a bottom wall portion.

製造された磁性部品は、最終検査工程において傷(亀裂)の有無を検査する探傷検査が行われる。探傷検査は、品質保証の観点からすれば、非破壊での全数検査が望ましい。磁性部品に対する探傷検査の代表的な手法としては、「渦流探傷法」(例えば、特許文献1参照)、「超音波探傷法」(例えば、特許文献2参照)、「磁粉探傷法」(例えば、特許文献3参照)などが挙げられる。   The manufactured magnetic component is subjected to flaw detection inspection for inspecting the presence or absence of scratches (cracks) in the final inspection process. From the viewpoint of quality assurance, the flaw detection inspection is preferably a non-destructive inspection. Typical methods for flaw detection inspection on magnetic parts include “eddy current flaw detection method” (for example, refer to Patent Document 1), “ultrasonic flaw detection method” (for example, refer to Patent Document 2), and “magnetic particle flaw detection method” (for example, (See Patent Document 3).

特開2002‐350406号公報Japanese Patent Laid-Open No. 2002-350406 特開2004‐138392号公報JP 2004-138392 A 特開平11‐223610号公報JP-A-11-223610

しかし、従来の磁性部品の傷検査方法では、以下のような問題がある。   However, the conventional method for inspecting scratches on magnetic parts has the following problems.

渦流探傷法は、検査対象となる磁性部品の表面に渦電流を発生させ、その渦電流の変化を検出して、傷の有無を検査する。この方法は、取り扱いが容易で、短時間に検査することが可能であり、インライン化も実現し易い。しかし、渦電流は検査対象となる磁性部品の表面にしか流れないため、検査範囲が表面近傍に限定され、内部の傷を検出するのに不適である。つまり、この方法では、磁性部品の内部に存在する傷の有無を確実に検出できない問題がある。   In the eddy current flaw detection method, an eddy current is generated on the surface of a magnetic component to be inspected, a change in the eddy current is detected, and the presence or absence of a flaw is inspected. This method is easy to handle, can be inspected in a short time, and can be easily inlined. However, since eddy currents flow only on the surface of the magnetic component to be inspected, the inspection range is limited to the vicinity of the surface and is not suitable for detecting internal flaws. That is, with this method, there is a problem that the presence or absence of scratches present inside the magnetic component cannot be reliably detected.

超音波探傷法は、超音波の反射を利用して、内部に存在する傷を検出する。具体的には、検査対象となる磁性部品の表面に超音波を入射する送信用プローブと超音波を受信する受信用プローブとを配置し、送信用プローブから入射した超音波が表面と内部の欠陥で反射して受信用プローブに到達する時間差を測定して、傷の有無を検査する。この方法は、磁性部品の内部まで検査することが可能である。しかし、精度の高い検査には、探傷する際に、磁性部品を溶媒液中に浸漬することが不可欠であるため、構成が煩雑になる上、インライン化には不向きである。また、上記フェライト材や圧粉磁心を用いた磁性部品では、粉末粒子界面が存在し、この粒子界面での超音波の反射がノイズとして作用するため、検出感度が著しく低下する懸念がある。   In the ultrasonic flaw detection method, flaws existing inside are detected by using reflection of ultrasonic waves. Specifically, a transmitting probe that receives ultrasonic waves and a receiving probe that receives ultrasonic waves are arranged on the surface of the magnetic component to be inspected, and the ultrasonic waves incident from the transmitting probe are defective on the surface and inside. The time difference between the reflection and the arrival at the receiving probe is measured, and the presence or absence of scratches is inspected. This method can inspect the inside of the magnetic component. However, since it is indispensable to immerse a magnetic component in a solvent solution for flaw detection for a highly accurate inspection, the configuration becomes complicated and unsuitable for in-line implementation. Moreover, in the magnetic component using the ferrite material or the dust core, there is a concern that the detection sensitivity is remarkably lowered because the powder particle interface exists and the reflection of the ultrasonic wave at the particle interface acts as noise.

磁粉探傷法は、検査対象となる磁性部品を磁化し、磁粉を付着させ、付着した磁粉模様の変化を観察して、傷の有無を検査する。この方法は、構成が煩雑であり、手間、時間、コストがかかることから全数検査が困難である。また、複雑形状に一体成形した磁性部品の場合、製造上、特に継ぎ目に相当する箇所に傷が生じ易い傾向があるが、磁粉模様を観察する際、この箇所が陰になり易く見逃し易い。   In the magnetic particle flaw detection method, a magnetic component to be inspected is magnetized, magnetic powder is adhered, and the presence or absence of a flaw is inspected by observing a change in the adhered magnetic powder pattern. This method is complicated in configuration, and requires labor, time, and cost, so that 100% inspection is difficult. In addition, in the case of a magnetic part integrally molded into a complicated shape, there is a tendency that a part corresponding to a joint is likely to be damaged in manufacturing. However, when observing a magnetic powder pattern, this part is easily hidden and easily overlooked.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、磁性部品の傷の有無を短時間に確実に全数検査することができ、かつインライン化が可能な磁性部品の傷検査方法および傷検査装置を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a magnetic component capable of inspecting all the presence or absence of scratches on a magnetic component in a short time and capable of being inlined. It is to provide a wound inspection method and a wound inspection apparatus.

本発明の磁性部品の傷検査方法は、磁性材料からなる磁性部品の傷の有無を検査する方法であり、次の工程を備えることを特徴とする。
検査対象となる磁性部品を磁性材料からなる磁性ホルダーに取り付け、磁性部品と磁性ホルダーとで閉磁路を形成する工程。
閉磁路に磁界を印加して、磁化特性を測定する工程。
測定した磁化特性に基づいて、磁性部品の傷の有無を判別する工程。
The method for inspecting a flaw of a magnetic component according to the present invention is a method for inspecting a flaw of a magnetic component made of a magnetic material, and includes the following steps.
A process of attaching a magnetic component to be inspected to a magnetic holder made of a magnetic material and forming a closed magnetic path with the magnetic component and the magnetic holder.
A step of applying a magnetic field to the closed magnetic path and measuring the magnetization characteristics.
A step of determining the presence or absence of scratches on the magnetic component based on the measured magnetization characteristics.

本発明の磁性部品の傷検査装置は、磁性材料からなる磁性部品の傷の有無を検査する装置であり、磁性ホルダーと、誘導コイルと、磁化特性測定手段と、判別手段と、を備えることを特徴とする。磁性ホルダーは、検査対象となる磁性部品が取り付けられ、磁性部品と組み合わされることで閉磁路を形成する。誘導コイルは、閉磁路に磁界を印加する。磁化特性測定手段は、閉磁路の磁化特性を測定する。判別手段は、測定した磁化特性に基づいて、磁性部品の傷の有無を判別する。   A scratch inspection apparatus for magnetic parts according to the present invention is an apparatus for inspecting the presence or absence of scratches on a magnetic part made of a magnetic material, and includes a magnetic holder, an induction coil, magnetization characteristic measurement means, and discrimination means. Features. The magnetic holder is attached with a magnetic component to be inspected and is combined with the magnetic component to form a closed magnetic path. The induction coil applies a magnetic field to the closed magnetic circuit. The magnetization characteristic measuring means measures the magnetization characteristic of the closed magnetic circuit. The discriminating unit discriminates the presence or absence of a scratch on the magnetic component based on the measured magnetization characteristics.

本発明の磁性部品の傷検査方法および傷検査装置によれば、磁性部品を磁性ホルダーに取り付け、閉磁路を形成し、閉磁路の磁化特性を測定して、測定した磁化特性に基づいて磁性部品の傷の有無を判別することができる。磁化特性を測定する簡易な構成によって傷の有無を検査することができ、短時間での検査が可能であり、全数検査に好適である。また、低コストで実現でき、検査工程の自動化、インライン化も可能である。さらに、磁性部品の表面、内部に存在する傷の有無を確実に検出することができ、単純形状から複雑形状の磁性部品まで対応可能である。   According to the scratch inspection method and the scratch inspection apparatus for a magnetic component of the present invention, the magnetic component is attached to the magnetic holder, the closed magnetic circuit is formed, the magnetization characteristic of the closed magnetic circuit is measured, and the magnetic component is based on the measured magnetization characteristic. The presence or absence of scratches can be determined. With a simple configuration for measuring the magnetization characteristics, the presence or absence of scratches can be inspected, and inspection in a short time is possible, which is suitable for 100% inspection. Moreover, it can be realized at low cost, and the inspection process can be automated and inlined. Furthermore, it is possible to reliably detect the presence or absence of scratches on the surface and inside of the magnetic component, and it is possible to deal with magnetic components of simple shapes to complex shapes.

本発明では、磁性部品の傷の有無によって、磁性部品(閉磁路)の磁化特性が変化することを利用している。磁性部品の傷の有無の判別は、基準となる磁化特性(基準値)と測定した磁化特性(測定値)とを比較することで、検査対象の磁性部品が傷の有る不良品であるか、傷の無い良品であるかを判別することができる。基準となる磁化特性は、例えば、傷の無い良品を用いたときの磁化特性に基づいて決定したり、磁性部品の設計データから算出した理論上の磁化特性に基づいて決定することが挙げられる。なお、ここでいう「磁化特性」とは、例えば、磁界(H)と磁束密度(B)との関係を示した磁化曲線(B‐H曲線)、透磁率(μ)(具体例、最大透磁率(μm)、初透磁率(μi)など)、ある磁界を印加したときの磁束密度(具体例、50エルステッド(Oe)の磁界を印加したときの磁束密度B50、100エルステッド(Oe)の磁界を印加したときの磁束密度B100)が挙げられる。透磁率(μ)は、磁化曲線の傾きを求めることで得られる。磁化特性は、傷の有無の判別の指標となるので、傷の有無によって変化が大きい(即ち、基準値と測定値との間に差が生じ易い)ものが望ましく、例えば最大透磁率(μm)を選択することが好適である。   The present invention utilizes the fact that the magnetization characteristics of the magnetic component (closed magnetic path) change depending on the presence or absence of scratches on the magnetic component. Whether or not the magnetic component is scratched is determined by comparing the reference magnetization characteristic (reference value) with the measured magnetization characteristic (measured value). It is possible to determine whether the product is a good product without a scratch. For example, the reference magnetization characteristics may be determined based on the magnetization characteristics when a non-defective non-defective product is used, or determined based on the theoretical magnetization characteristics calculated from the design data of the magnetic component. The “magnetization characteristics” referred to here are, for example, a magnetization curve (BH curve) showing the relationship between the magnetic field (H) and the magnetic flux density (B), permeability (μ) (specific example, maximum permeability). Magnetic permeability (μm), initial permeability (μi, etc.), magnetic flux density when a certain magnetic field is applied (specific example, magnetic flux density B50 when applying a magnetic field of 50 Oersted (Oe), magnetic field of 100 Oersted (Oe) Is a magnetic flux density B100). The magnetic permeability (μ) can be obtained by determining the slope of the magnetization curve. Since the magnetization characteristics serve as an index for determining the presence or absence of a flaw, it is desirable that the change be large depending on the presence or absence of a flaw (that is, a difference easily occurs between a reference value and a measured value). For example, the maximum magnetic permeability (μm) It is preferable to select

磁性ホルダーは、磁性部品と同様に磁性材料からなり、磁性部品と組み合わされることで閉磁路を形成するものであれば、特に限定されるものではない。この磁性ホルダーは、磁性部品と同等以上の磁気特性(例えば、透磁率や飽和磁束密度など)を有する材料で形成することが好ましく、例えば磁性部品と同じ材料で形成することが挙げられる。   The magnetic holder is not particularly limited as long as it is made of a magnetic material like the magnetic component and forms a closed magnetic path by being combined with the magnetic component. The magnetic holder is preferably formed of a material having a magnetic property equivalent to or higher than that of the magnetic component (for example, magnetic permeability, saturation magnetic flux density, etc.), for example, formed of the same material as the magnetic component.

本発明の傷検査方法の一形態としては、磁性部品が取り付けられる磁性ホルダーの取り付け面に、非磁性材料からなるギャップ部材を配置することが挙げられる。   As one form of the flaw inspection method of the present invention, a gap member made of a non-magnetic material is disposed on the mounting surface of a magnetic holder to which a magnetic component is mounted.

本発明の傷検査装置の一形態としては、磁性部品が取り付けられる磁性ホルダーの取り付け面に配置される非磁性材料からなるギャップ部材を備えることが挙げられる。   As one form of the flaw inspection apparatus of this invention, providing the gap member which consists of a nonmagnetic material arrange | positioned at the attachment surface of the magnetic holder in which a magnetic component is attached is mentioned.

閉磁路の磁化特性は、閉磁路に存在するギャップの大きさによっても変化する。磁性部品を磁性ホルダーに直接取り付けた場合、磁性部品の製造上のバラツキなどが原因で、磁性部品と磁性ホルダーとの取り付け状態(接触状態)が変化し、両者の間に不可避的な意図しない隙間が形成されることがあり、閉磁路にこの隙間によるギャップが存在すると測定される磁化特性に影響を与える。上記構成によれば、磁性部品を磁性ホルダーに取り付け、両者を組み合わせた際に、閉磁路にギャップ部材によるギャップが形成されることから、閉磁路全体のギャップが大きくなり、閉磁路に存在するギャップにおける隙間によるギャップが相対的に小さくなる。つまり、測定毎に磁性部品と磁性ホルダーとの接触状態が変化する、即ち隙間の大きさが変化するようなことがあっても、接触状態によって変化し易い隙間によるギャップの影響を小さくすることができるので、測定毎の測定精度を安定させることができる。   The magnetization characteristics of the closed magnetic circuit also change depending on the size of the gap existing in the closed magnetic circuit. When a magnetic part is directly attached to the magnetic holder, the mounting state (contact state) between the magnetic part and the magnetic holder changes due to variations in manufacturing of the magnetic part, and an inevitable unintended gap between the two. If there is a gap due to this gap in the closed magnetic circuit, the measured magnetization characteristics are affected. According to the above configuration, when the magnetic component is attached to the magnetic holder and the two are combined, the gap by the gap member is formed in the closed magnetic path, so that the gap of the entire closed magnetic path becomes large, and the gap existing in the closed magnetic path The gap due to the gap is relatively small. In other words, even if the contact state between the magnetic component and the magnetic holder changes with each measurement, that is, the size of the gap may change, the effect of the gap due to the gap that easily changes depending on the contact state can be reduced. Therefore, the measurement accuracy for each measurement can be stabilized.

ギャップ部材は、非磁性材料からなるものであれば、特に限定されるものではない。例えば、ギャップ部材に樹脂製の粘着テープ(具体例、セロハンテープやポリイミドテープ)を用い、磁性ホルダーの取り付け面に貼り付けることで配置してもよい。その他、ギャップ部材は、アルミナなどのセラミックやポリイミド、ガラスエポキシなどの樹脂を用いて形成してもよい。ここで、ギャップ部材の厚さは、漏れ磁束が大きくなり過ぎないように適宜設定すればよく、例えば1μm〜1000μmとすることが挙げられる。   The gap member is not particularly limited as long as it is made of a nonmagnetic material. For example, a resin adhesive tape (specific example, cellophane tape or polyimide tape) may be used as the gap member, and the gap member may be attached to the attachment surface of the magnetic holder. In addition, the gap member may be formed using a ceramic such as alumina, or a resin such as polyimide or glass epoxy. Here, the thickness of the gap member may be set as appropriate so that the leakage magnetic flux does not become too large, for example, 1 μm to 1000 μm.

本発明の傷検査方法の一形態としては、磁性ホルダーに対して磁性部品を押し付けることが挙げられる。   One form of the flaw inspection method of the present invention includes pressing a magnetic component against a magnetic holder.

本発明の傷検査装置の一形態としては、磁性ホルダーに対して磁性部品を押し付ける押し付け手段を備えることが挙げられる。   As one form of the flaw inspection apparatus of this invention, providing the pressing means which presses a magnetic component with respect to a magnetic holder is mentioned.

上述したように、測定毎に磁性部品と磁性ホルダーとの接触状態が変化するようなことがあると、測定毎の測定精度が安定しない。上記構成によれば、磁性部品と磁性ホルダーとの接触状態を安定して維持することができるので、測定毎の測定精度を安定させることができる。   As described above, if the contact state between the magnetic component and the magnetic holder changes for each measurement, the measurement accuracy for each measurement is not stable. According to the above configuration, the contact state between the magnetic component and the magnetic holder can be stably maintained, so that the measurement accuracy for each measurement can be stabilized.

押し付け手法(手段)は、磁性ホルダーに対して磁性部品を押し付ける、即ち磁性部品と磁性ホルダーとを密着させるように作用するものであれば、特に限定されるものではない。例えば、錘による重力やバネによる弾性力によって少なくとも一方を他方に向かって付勢することで実現することができる。   The pressing method (means) is not particularly limited as long as the magnetic component is pressed against the magnetic holder, that is, the magnetic component and the magnetic holder are brought into close contact with each other. For example, it can be realized by urging at least one toward the other by gravity by a weight or elastic force by a spring.

本発明の傷検査方法の一形態としては、磁性部品を圧粉磁心とすることが挙げられる。   One aspect of the flaw inspection method of the present invention is to use a magnetic component as a dust core.

圧粉磁心は、フェライト材を用いた場合に比べ磁束密度が高く、チョークコイルや電磁弁などの磁性部品に好適である。   The dust core has a higher magnetic flux density than when a ferrite material is used, and is suitable for magnetic parts such as a choke coil and an electromagnetic valve.

本発明の磁性部品の傷検査方法および傷検査装置は、磁性部品の傷の有無を短時間に確実に全数検査することができ、かつインライン化が可能である。   The method and apparatus for inspecting a flaw of a magnetic part according to the present invention can reliably inspect all the flaws of a magnetic part in a short time and can be inlined.

本発明の実施の形態1で用いた磁性部品を説明する概略図であり、(A)は、磁性部品の斜視図、(B)は、磁性部品の縦断面図である。It is the schematic explaining the magnetic component used in Embodiment 1 of this invention, (A) is a perspective view of a magnetic component, (B) is a longitudinal cross-sectional view of a magnetic component. 本発明の実施の形態1に係る傷検査装置を説明する概略斜視図である。It is a schematic perspective view explaining the wound inspection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る傷検査装置を説明する概略構成図である。It is a schematic block diagram explaining the wound inspection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る傷検査装置を説明する概略構成図である。It is a schematic block diagram explaining the wound inspection apparatus which concerns on Embodiment 2 of this invention.

本発明の実施の形態を、図を用いて説明する。ここでは、図1に示す形状の磁性部品を検査対象とした場合を例に説明する。   Embodiments of the present invention will be described with reference to the drawings. Here, a case where a magnetic component having the shape shown in FIG. 1 is an inspection target will be described as an example.

<実施の形態1>
(磁性部品)
図1に示す磁性部品100は、略円筒状の内壁部101と、同じく略円筒状の外壁部102と、これら内外両壁部の一端側を連結する略円環状の底壁部103と、を有する。この磁性部品100は、内壁部101と外壁部102とが二重になっており、内壁部101と外壁部102と底壁部103とで囲まれ、内外両壁部の他端側に開口部を有する空間が形成された容器形状である。
<Embodiment 1>
(Magnetic parts)
A magnetic component 100 shown in FIG. 1 includes a substantially cylindrical inner wall portion 101, a substantially cylindrical outer wall portion 102, and a substantially annular bottom wall portion 103 that connects one end sides of both the inner and outer wall portions. Have. This magnetic component 100 has a double inner wall portion 101 and outer wall portion 102, is surrounded by the inner wall portion 101, the outer wall portion 102, and the bottom wall portion 103, and has an opening at the other end of both the inner and outer wall portions. It is the container shape in which the space which has was formed.

磁性部品100は、圧粉磁心であり、金型により一体成形することで製造されている。この磁性部品100は、所謂複雑形状であるため、製造上、継ぎ目に相当する箇所(この例では、内壁部101と底壁部103との連結箇所、外壁部102と底壁部103との連結箇所。図1(B)中、点線で囲む箇所)に傷(亀裂)が生じ易い。   The magnetic component 100 is a dust core and is manufactured by integrally molding with a mold. Since the magnetic component 100 has a so-called complicated shape, it corresponds to a seam in manufacturing (in this example, a connection portion between the inner wall portion 101 and the bottom wall portion 103, a connection portion between the outer wall portion 102 and the bottom wall portion 103). A part (a part surrounded by a dotted line in FIG. 1B) is easily damaged (cracked).

(傷検査装置)
図2、3に示す実施の形態1に係る傷検査装置1は、磁性ホルダー10と、誘導コイル20と、磁化特性測定手段30と、判別手段40と、を備える。以下、装置1の構成を詳しく説明する。なお、図3においては、磁性部品100および磁性ホルダー10を断面で示している(後述する図4においても同様である)。
(Scratch inspection device)
The wound inspection apparatus 1 according to Embodiment 1 shown in FIGS. 2 and 3 includes a magnetic holder 10, an induction coil 20, a magnetization characteristic measurement unit 30, and a determination unit 40. Hereinafter, the configuration of the apparatus 1 will be described in detail. In FIG. 3, the magnetic component 100 and the magnetic holder 10 are shown in cross section (the same applies to FIG. 4 described later).

磁性ホルダー10は、磁性部品100と同じ圧粉磁心で形成されており、磁性部品100と組み合わされることで閉磁路を形成する。この例では、磁性ホルダー10が円環状であり、磁性部品100の底壁部103側を上側とし開口部側を下側として、磁性部品100の内壁部101及び外壁部102の端面が磁性ホルダー10の上面に接触するように取り付けられる。つまり、磁性ホルダー10の上面に磁性部品100の取り付け面11が設けられる。また、磁性ホルダー10の上面には、図3に示すように、磁性部品100の開口部に対応する箇所に溝12が形成されており、後述する誘導コイル20が一部収納されるようになっている。磁性ホルダー10は、図2に示すように、ステージ50の上に固定されている。   The magnetic holder 10 is formed of the same powder magnetic core as the magnetic component 100, and forms a closed magnetic path when combined with the magnetic component 100. In this example, the magnetic holder 10 has an annular shape, with the bottom wall 103 side of the magnetic component 100 being the upper side and the opening side being the lower side, and the end surfaces of the inner wall 101 and the outer wall 102 of the magnetic component 100 are the magnetic holder 10. It attaches so that it may touch the upper surface of. That is, the attachment surface 11 of the magnetic component 100 is provided on the upper surface of the magnetic holder 10. Further, as shown in FIG. 3, a groove 12 is formed on the upper surface of the magnetic holder 10 at a location corresponding to the opening of the magnetic component 100, and a part of the induction coil 20 described later is accommodated. ing. The magnetic holder 10 is fixed on the stage 50 as shown in FIG.

閉磁路は、図3に示すように、磁性部品100が磁性ホルダー10に取り付けられ、両者が組み合わされることで形成される。この例では、磁束が、磁性部品100の外壁部102、底壁部103、内壁部101を通り、磁性ホルダー10を通って、外壁部102に戻る閉磁路が形成される(図3中の矢印は磁束の方向を示す)。なお、磁束の方向は、誘導コイル20による印加磁界によって変わる。   As shown in FIG. 3, the closed magnetic path is formed by attaching the magnetic component 100 to the magnetic holder 10 and combining them. In this example, a closed magnetic path is formed in which the magnetic flux passes through the outer wall 102, the bottom wall 103, and the inner wall 101 of the magnetic component 100, passes through the magnetic holder 10, and returns to the outer wall 102 (arrow in FIG. 3). Indicates the direction of the magnetic flux). Note that the direction of the magnetic flux varies depending on the magnetic field applied by the induction coil 20.

誘導コイル20は、閉磁路に磁界を印加する手段である。誘導コイル20は、図示しない電源に接続されており、電源から電流が供給される。この例では、誘導コイル20が直流電源に接続され、電源からの供給電流を調整することで、印加磁界の強さを可変にすることができる。誘導コイル20は、磁性部品100が磁性ホルダー10に取り付けられ、両者が組み合わされた際、磁性部品100(内壁部101、外壁部102および底壁部103)と磁性ホルダー10とで囲まれた内部空間に収納された状態となる。   The induction coil 20 is means for applying a magnetic field to the closed magnetic circuit. The induction coil 20 is connected to a power source (not shown), and current is supplied from the power source. In this example, the induction coil 20 is connected to a DC power supply, and the intensity of the applied magnetic field can be varied by adjusting the current supplied from the power supply. When the magnetic component 100 is attached to the magnetic holder 10 and the induction coil 20 is combined, the induction coil 20 is surrounded by the magnetic component 100 (the inner wall portion 101, the outer wall portion 102 and the bottom wall portion 103) and the magnetic holder 10. It will be in the state stored in space.

この誘導コイル20は、導体の表面に絶縁被覆を施した巻線を巻回することで形成されている。誘導コイル20の巻数や導体径(導体断面積)は、磁化特性を測定するのに必要な印加磁界に応じて適宜決定する。磁界は巻数と電流に比例することから、巻数を増やす、或いは導体径を大きくして電流を流れ易くすることで、測定に必要な印加磁界強度を得易い。この例では、誘導コイル20の収納スペースも考慮して、直径0.35mmの丸線導体の表面にエナメル被覆を施した巻線を50回巻回して誘導コイル20を形成している。誘導コイル20は、図2に示すように、ボビン21に巻回され保持されている。   The induction coil 20 is formed by winding a winding having an insulating coating on the surface of a conductor. The number of turns of the induction coil 20 and the conductor diameter (conductor cross-sectional area) are appropriately determined according to the applied magnetic field necessary for measuring the magnetization characteristics. Since the magnetic field is proportional to the number of turns and the current, it is easy to obtain the applied magnetic field strength necessary for measurement by increasing the number of turns or increasing the conductor diameter to facilitate the flow of current. In this example, in consideration of the storage space of the induction coil 20, the induction coil 20 is formed by winding 50 turns of a wire having a diameter of 0.35 mm on which the enamel coating is applied. The induction coil 20 is wound and held around a bobbin 21 as shown in FIG.

磁化特性測定手段30は、閉磁路に磁界を印加したときの閉磁路の磁化特性を測定する手段である。この例では、磁化特性測定手段30にB‐Hアナライザを用いている。この磁化特性測定手段30は、図示しない検出コイルを備えており、検出コイルが閉磁路に発生した磁界を検出するように構成されている。この検出コイルに発生する誘起電圧を測定することによって磁化曲線を測定する。また、磁化特性測定手段30は、この磁化曲線から、最大透磁率(μm)、初透磁率(μi)、B50およびB100などの各種磁化特性も求めることができる。   The magnetization characteristic measuring means 30 is a means for measuring the magnetization characteristic of the closed magnetic path when a magnetic field is applied to the closed magnetic path. In this example, a BH analyzer is used as the magnetization characteristic measuring means 30. This magnetization characteristic measuring means 30 includes a detection coil (not shown), and is configured such that the detection coil detects a magnetic field generated in a closed magnetic path. The magnetization curve is measured by measuring the induced voltage generated in the detection coil. Further, the magnetization characteristic measuring means 30 can also obtain various magnetization characteristics such as maximum magnetic permeability (μm), initial magnetic permeability (μi), B50 and B100 from the magnetization curve.

検出コイルは、誘導コイル20と同様、巻線を巻回することで形成されている。この例では、誘導コイル20の外周に、誘導コイル20と同じ巻線を10回巻回して検出コイルを形成している。   Like the induction coil 20, the detection coil is formed by winding a winding. In this example, the same coil as the induction coil 20 is wound 10 times on the outer periphery of the induction coil 20 to form a detection coil.

判別手段40は、測定した閉磁路の磁化特性を磁化特性測定手段30から取得し、測定した磁化特性(測定値)に基づいて、磁性部品100の傷の有無を判別する手段である。この例では、判別手段40に電子計算機(コンピュータ)を用いている。この判別手段40には磁化特性の基準値が記憶されており、判別手段40はこの基準値と測定値とを比較することで磁性部品100の傷の有無を判別する。また、この例では、傷の有無の判別の指標となる磁化特性として最大透磁率(μm)を選択して、予め良品であることが確認された磁性部品を用いたときの最大透磁率に基づいて決定した基準値と比較し、基準値の規定範囲内であれば良品、この範囲外であれば不良品と判別する。   The discriminating unit 40 is a unit that obtains the measured magnetization characteristic of the closed magnetic circuit from the magnetization characteristic measuring unit 30 and discriminates whether or not the magnetic component 100 is damaged based on the measured magnetization characteristic (measured value). In this example, an electronic computer (computer) is used as the discrimination means 40. The discriminating means 40 stores a reference value of the magnetization characteristic, and the discriminating means 40 discriminates whether or not the magnetic component 100 is scratched by comparing the reference value with the measured value. Also, in this example, the maximum permeability (μm) is selected as the magnetization characteristic that serves as an index for determining the presence or absence of scratches, and based on the maximum permeability when using a magnetic component that has been confirmed to be good in advance. If the value is within the specified range of the reference value, it is determined as a non-defective product.

さらに、装置1は、磁性ホルダー10に対して磁性部品100を押し付ける押し付け手段を備える。この例では、図2に示すように、磁性部品100を磁性ホルダー10に取り付けた後、その上(磁性部品100の底壁部103側の面)に載せられる錘55が押し付け手段を構成している。また、錘55には、ステージ50から上方に延びるガイド軸51に挿通されるガイド孔56が形成されており、錘55がスライド可能にガイドされる。このガイドにより、磁性部品100に作用する荷重が偏ることなく均等にかかり易い。この例では、錘55に銅製の重さ4kgのものを用いている。   Furthermore, the apparatus 1 includes a pressing unit that presses the magnetic component 100 against the magnetic holder 10. In this example, as shown in FIG. 2, after attaching the magnetic component 100 to the magnetic holder 10, a weight 55 placed on the magnetic component 100 (the surface on the bottom wall 103 side of the magnetic component 100) constitutes a pressing means. Yes. Further, the weight 55 is formed with a guide hole 56 inserted through a guide shaft 51 extending upward from the stage 50, and the weight 55 is slidably guided. By this guide, the load acting on the magnetic component 100 is easily applied evenly without being biased. In this example, the weight 55 made of copper and having a weight of 4 kg is used.

[実施例1]
図1に示す磁性部品100を5つ製造し、これらを試料1〜5とした。そして、各試料を用いて、実施の形態1に係る傷検査装置1を評価した。具体的には、各試料について、傷の有無の検査を複数回行い、それぞれの検査での測定により得られた最大透磁率(μm)を調べた。最大透磁率(μm)の測定値の範囲とその平均値を表1に示す。
[Example 1]
Five magnetic parts 100 shown in FIG. 1 were manufactured, and these were used as samples 1 to 5. And the flaw inspection apparatus 1 which concerns on Embodiment 1 was evaluated using each sample. Specifically, each sample was inspected for damage several times, and the maximum magnetic permeability (μm) obtained by measurement in each inspection was examined. Table 1 shows the range of measured values of the maximum magnetic permeability (μm) and the average value.

Figure 2012088126
Figure 2012088126

また、検査後の各試料について、断面観察により傷の有無を確認した。その結果、試料1については傷が確認されなかったが、試料2〜5についてはいずれも外壁部102と底壁部103との連結箇所に亀裂が確認された。試料2〜5における亀裂の長さを測定したところ、試料2:0.3mm、試料3:0.8mm、試料4:1.6mm、試料5:2.2mmであった。   Moreover, the presence or absence of a flaw was confirmed about each sample after an inspection by cross-sectional observation. As a result, no scratch was confirmed for sample 1, but cracks were confirmed at the connection between outer wall 102 and bottom wall 103 for samples 2-5. When the crack lengths in Samples 2 to 5 were measured, they were as follows: Sample 2: 0.3 mm, Sample 3: 0.8 mm, Sample 4: 1.6 mm, and Sample 5: 2.2 mm.

以上の結果から、磁性部品100の傷の有無によって測定される磁化特性(この場合は最大透磁率(μm))に差異が認められ、また、傷の大きさによっても磁化特性が変動することが分かる。このことから、磁性部品100を磁性ホルダー10に取り付けたときの磁性部品100と磁性ホルダー10とで形成される閉磁路の磁化特性を測定することで、磁性部品100の傷の有無を判別することができることが分かる。例えばこの例では、傷検査装置1の判別手段40において、基準値の範囲を320±2と設定すれば、磁性部品100の傷の有無を判別することができる。   From the above results, there is a difference in the magnetization characteristics (in this case, maximum magnetic permeability (μm)) measured depending on the presence or absence of scratches on the magnetic component 100, and the magnetization characteristics may also vary depending on the size of the scratches. I understand. From this, it is possible to determine the presence or absence of scratches on the magnetic component 100 by measuring the magnetization characteristics of the closed magnetic circuit formed by the magnetic component 100 and the magnetic holder 10 when the magnetic component 100 is attached to the magnetic holder 10. You can see that For example, in this example, if the discriminating means 40 of the flaw inspection apparatus 1 sets the reference value range to 320 ± 2, the presence or absence of flaws on the magnetic component 100 can be determined.

<実施の形態2>
図4に示す実施の形態2に係る傷検査装置2は、磁性ホルダー10の取り付け面に非磁性材料からなるギャップ部材13を配置した点が、図3に示す実施の形態1に係る傷検査装置1と相違する。この例では、ギャップ部材13にポリイミドテープを用い、磁性ホルダー10の取り付け面に貼り付けることで配置している。ギャップ部材13の厚さは、約40μmである。
<Embodiment 2>
The flaw inspection apparatus 2 according to the second embodiment shown in FIG. 4 is that the gap member 13 made of a nonmagnetic material is arranged on the mounting surface of the magnetic holder 10 according to the flaw inspection apparatus according to the first embodiment shown in FIG. Different from 1. In this example, a polyimide tape is used for the gap member 13, and the gap member 13 is disposed by being attached to the mounting surface of the magnetic holder 10. The thickness of the gap member 13 is about 40 μm.

ギャップ部材13の有無が測定精度に与える影響を検証した。具体的には、同じ磁性部品100を用いて、ギャップ部材13を配置した場合と配置しない場合の両方で傷の有無の検査を10回行い、それぞれの検査での測定により得られた最大透磁率(μm)を調べた。最大透磁率(μm)の各測定値を表2に示す。   The effect of the presence or absence of the gap member 13 on the measurement accuracy was verified. Specifically, using the same magnetic component 100, the maximum magnetic permeability obtained by performing the inspection for the presence or absence of flaws 10 times both when the gap member 13 is arranged and when it is not arranged, and by measurement in each inspection (Μm) was examined. Table 2 shows each measured value of the maximum magnetic permeability (μm).

Figure 2012088126
Figure 2012088126

表2の結果から、ギャップ部材を配置した場合、ギャップ部材を配置しない場合に比較して、測定毎の測定値のばらつきが小さいことが分かる。このことから、ギャップ部材13を配置することで、測定精度を安定させることができることが分かる。   From the results of Table 2, it can be seen that when the gap member is arranged, the variation in the measured value for each measurement is small as compared with the case where the gap member is not arranged. From this, it can be seen that the measurement accuracy can be stabilized by arranging the gap member 13.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、磁性部品および磁性ホルダーの形状やサイズ、材質、並びに、指標となる磁化特性を適宜変更することが可能である。また、誘導コイルに交流電流を供給し、閉磁路に交流磁界を印加して閉磁路の磁化特性を測定してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the shape and size of the magnetic component and the magnetic holder, the material, and the magnetization characteristics serving as an index can be changed as appropriate. Alternatively, an alternating current may be supplied to the induction coil, and an alternating magnetic field may be applied to the closed magnetic circuit to measure the magnetization characteristics of the closed magnetic circuit.

本発明の磁性部品の傷検査方法および傷検査装置は、磁性部品の検査に好適に利用することができる。   The flaw inspection method and flaw inspection apparatus for magnetic parts of the present invention can be suitably used for inspection of magnetic parts.

1,2 傷検査装置
10 磁性ホルダー
11 取り付け面 12 溝 13 ギャップ部材
20 誘導コイル 21 ボビン
30 B‐Hアナライザ(磁化特性測定手段)
40 電子計算機(判別手段)
50 ステージ 51 ガイド軸
55 錘(押し付け手段) 56 ガイド孔
100 磁性部品
101 内壁部 102 外壁部 103 底壁部
1,2 Scratch inspection device
10 Magnetic holder
11 Mounting surface 12 Groove 13 Gap member
20 induction coil 21 bobbin
30 BH Analyzer (Measuring characteristic measurement means)
40 Electronic computer (discrimination means)
50 Stage 51 Guide shaft
55 Weight (pressing means) 56 Guide hole
100 Magnetic parts
101 Inner wall 102 Outer wall 103 Bottom wall

Claims (7)

磁性材料からなる磁性部品の傷の有無を検査する磁性部品の傷検査方法であって、
検査対象となる前記磁性部品を磁性材料からなる磁性ホルダーに取り付け、前記磁性部品と前記磁性ホルダーとで閉磁路を形成する工程と、
前記閉磁路に磁界を印加して、磁化特性を測定する工程と、
測定した前記磁化特性に基づいて、前記磁性部品の傷の有無を判別する工程と、
を備えることを特徴とする磁性部品の傷検査方法。
A method for inspecting magnetic parts for inspecting the presence or absence of scratches on magnetic parts made of a magnetic material,
Attaching the magnetic component to be inspected to a magnetic holder made of a magnetic material, and forming a closed magnetic path with the magnetic component and the magnetic holder;
Applying a magnetic field to the closed magnetic path to measure magnetization characteristics;
Determining the presence or absence of scratches on the magnetic component based on the measured magnetization characteristics;
A method for inspecting a flaw of a magnetic component, comprising:
前記磁性部品が取り付けられる前記磁性ホルダーの取り付け面に、非磁性材料からなるギャップ部材を配置することを特徴とする請求項1に記載の磁性部品の傷検査方法。   The method for inspecting a flaw of a magnetic component according to claim 1, wherein a gap member made of a nonmagnetic material is disposed on a mounting surface of the magnetic holder to which the magnetic component is mounted. 前記磁性ホルダーに対して前記磁性部品を押し付けることを特徴とする請求項1又は2に記載の磁性部品の傷検査方法。   The method for inspecting a flaw of a magnetic component according to claim 1 or 2, wherein the magnetic component is pressed against the magnetic holder. 前記磁性部品を圧粉磁心とすることを特徴とする請求項1〜3のいずれか一項に記載の磁性部品の傷検査方法。   The method for inspecting a flaw of a magnetic component according to any one of claims 1 to 3, wherein the magnetic component is a dust core. 磁性材料からなる磁性部品の傷の有無を検査する磁性部品の傷検査装置であって、
検査対象となる前記磁性部品が取り付けられ、前記磁性部品と組み合わされることで閉磁路を形成する磁性ホルダーと、
前記閉磁路に磁界を印加する誘導コイルと、
前記閉磁路の磁化特性を測定する磁化特性測定手段と、
測定した前記磁化特性に基づいて、前記磁性部品の傷の有無を判別する判別手段と、
を備えることを特徴とする磁性部品の傷検査装置。
A magnetic component scratch inspection apparatus for inspecting the presence or absence of scratches on a magnetic component made of a magnetic material,
The magnetic part to be inspected is attached, and a magnetic holder that forms a closed magnetic path by being combined with the magnetic part;
An induction coil for applying a magnetic field to the closed magnetic path;
Magnetization characteristic measuring means for measuring the magnetization characteristic of the closed magnetic path;
Discriminating means for discriminating the presence or absence of scratches on the magnetic component based on the measured magnetization characteristics;
A flaw inspection apparatus for magnetic parts, comprising:
前記磁性部品が取り付けられる前記磁性ホルダーの取り付け面に配置される非磁性材料からなるギャップ部材を備えることを特徴とする請求項5に記載の磁性部品の傷検査装置。   6. The apparatus for inspecting a flaw of a magnetic part according to claim 5, further comprising a gap member made of a non-magnetic material disposed on an attachment surface of the magnetic holder to which the magnetic part is attached. 前記磁性ホルダーに対して前記磁性部品を押し付ける押し付け手段を備えることを特徴とする請求項5又は6に記載の磁性部品の傷検査装置。   The flaw inspection device for a magnetic part according to claim 5 or 6, further comprising pressing means for pressing the magnetic part against the magnetic holder.
JP2010233991A 2010-10-18 2010-10-18 Flaw inspection method and flaw inspection device of magnetic component Pending JP2012088126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233991A JP2012088126A (en) 2010-10-18 2010-10-18 Flaw inspection method and flaw inspection device of magnetic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233991A JP2012088126A (en) 2010-10-18 2010-10-18 Flaw inspection method and flaw inspection device of magnetic component

Publications (1)

Publication Number Publication Date
JP2012088126A true JP2012088126A (en) 2012-05-10

Family

ID=46259900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233991A Pending JP2012088126A (en) 2010-10-18 2010-10-18 Flaw inspection method and flaw inspection device of magnetic component

Country Status (1)

Country Link
JP (1) JP2012088126A (en)

Similar Documents

Publication Publication Date Title
CN108226277A (en) The outer detection probe of a kind of leakage field, electromagnetic acoustic and vortex composite pipeline
US8928315B2 (en) Eddy current flaw detection probe
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
CN102927895B (en) Quick gap electromagnetic measurement method and sensor device
US20120153944A1 (en) Method for inspecting an austenitic stainless steel weld
CN101311714A (en) High-sensitivity vortex flow dot type probe
CN104833720A (en) Method for single-coil electromagnetic resonance detection of metal pipeline damage
JP2011203092A (en) Sensor, testing apparatus and testing method
CN112444219B (en) Non-contact ultrasonic electromagnetic coating thickness measuring method and detection device thereof
CN113155977A (en) Electromagnetic ultrasonic surface wave transducer for high-temperature metal detection and detection method
JPH07115033A (en) Discrimination method of direction of layered ceramic capacitor
US7295003B2 (en) Non-destructive testing system and method utilizing a magnetic field to identify defects in a layer of a laminated material
JP5557645B2 (en) Barkhausen noise inspection system
CN202885773U (en) Gap type quick electromagnetic measurement sensor device
CN106404900A (en) Device for detecting steel plate surface defect
JP2012088126A (en) Flaw inspection method and flaw inspection device of magnetic component
Ramirez-Pacheco et al. Defect detection in aluminium with an eddy currents sensor
Touil et al. Simple Giant Magnetoresistance Probe Based Eddy Current System of Defect Characterization for Non-Destructive Testing
TWI414788B (en) Eddy current detector using magnetic gap
Pelkner et al. MR-based eddy current probe design for hidden defects
CN211426354U (en) Sensor for detecting defect of fillet area
JP4328066B2 (en) Film thickness inspection apparatus and film thickness inspection method
JP3223991U (en) Nondestructive inspection equipment
KR101364684B1 (en) Unit for Detecting Magnetic Leakage Flux Using Electromagnetic Induction and Non-destructive Testing System and Method Using th Same
CN113777154B (en) Method for enhancing coil sensitivity of eddy current sensor