JP2012087390A - Vapor deposition material - Google Patents

Vapor deposition material Download PDF

Info

Publication number
JP2012087390A
JP2012087390A JP2010236676A JP2010236676A JP2012087390A JP 2012087390 A JP2012087390 A JP 2012087390A JP 2010236676 A JP2010236676 A JP 2010236676A JP 2010236676 A JP2010236676 A JP 2010236676A JP 2012087390 A JP2012087390 A JP 2012087390A
Authority
JP
Japan
Prior art keywords
vapor deposition
silicon
deposition material
atoms
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010236676A
Other languages
Japanese (ja)
Other versions
JP5594051B2 (en
Inventor
Yusuke Kuwagata
友輔 鍬形
Toshiaki Yoshihara
俊昭 吉原
Junpei Hayashi
純平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010236676A priority Critical patent/JP5594051B2/en
Publication of JP2012087390A publication Critical patent/JP2012087390A/en
Application granted granted Critical
Publication of JP5594051B2 publication Critical patent/JP5594051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vapor deposition material which can suppress a splash phenomenon and impart a high gas barrier property in consideration that, since a vapor deposition material of metal silicon and silicon dioxide is hardly vaporized due to high vapor pressure in heating, a further large thermal impact is required because it is a melting type vapor deposition material, splash by scattering of the vapor deposition material is apt to occur, and further problems such as reduction in deposition rate and reduction in the barrier property of a deposited film exist.SOLUTION: The vapor deposition material is a heating type vapor deposition material containing metal silicon, silicon dioxide and magnesium oxide powder. The ratio of the number of oxygen atoms to the total number of silicon atoms and magnesium atoms [O/(Si+Mg)] is 1.0-1.8, and the ratio of the number of magnesium atoms to the number of silicon atoms (Mg/Si) is 0.02-0.50.

Description

本発明は、蒸着用材料に関するものである。   The present invention relates to a vapor deposition material.

本発明の蒸着用材料を使用したガスバリア性蒸着フィルムは、例えば太陽電池のバックシート、食品や医薬品等の包装分野、あるいは非包装分野で酸素および水蒸気を遮断する必要がある部材の分野に広く用いることができる。   The gas barrier vapor-deposited film using the vapor deposition material of the present invention is widely used, for example, in the field of components that need to block oxygen and water vapor in the back sheet of solar cells, the packaging field of foods and pharmaceuticals, or the non-packaging field. be able to.

ハードディスクや半導体モジュールなどの精密電子部品類、あるいは、食品や医薬品類の包装に用いられる包装材料は、内容物を保護することが必要である。特に、食品包装においては蛋白質や油脂などの酸化や変質を抑制し、味や鮮度を保持することが必要である。   It is necessary to protect the contents of precision electronic parts such as hard disks and semiconductor modules, or packaging materials used for packaging foods and pharmaceuticals. Particularly in food packaging, it is necessary to suppress the oxidation and alteration of proteins, fats and oils, and to maintain the taste and freshness.

また無菌状態での取り扱いが必要とされる医薬品類においては有効成分の変質を抑制し、効能を維持すること、さらに、精密電子部品類においては金属部分の腐食、絶縁不良などを防止するために、包装材料を透過する酸素や水蒸気、その他内容物を変質させる気体を遮断するガスバリア性を備える包装体が求められている。   In order to prevent the active ingredient from being altered and maintain its efficacy in pharmaceuticals that require handling under aseptic conditions, and to prevent corrosion of metal parts and poor insulation in precision electronic parts. There is a need for a package having a gas barrier property that blocks oxygen, water vapor, and other gases that alter the contents of the packaging material.

そのため、従来から温度、湿度などに影響されないアルミニウムなどの金属箔やアルミニウム蒸着フィルムあるいは、ポリビニルアルコール(PVA)、エチレン‐ビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン(PVDC)、ポリアクリロニトリル(PAN)などの樹脂フィルムやこれらの樹脂をラミネートまたはコーティングしたプラスチックフィルムなどが好んで用いられてきた。   Therefore, metal foils such as aluminum and aluminum deposited films that are not affected by temperature, humidity, etc., polyvinyl alcohol (PVA), ethylene-vinyl alcohol copolymer (EVOH), polyvinylidene chloride (PVDC), polyacrylonitrile (PAN). ) And plastic films laminated or coated with these resins have been used favorably.

ところが、アルミニウムなどの金属箔やアルミニウム蒸着フィルムを用いた包装材料は、ガスバリア性には優れるが、不透明であるため、包装材料を透過して内容物を識別することが難しいだけではなく、使用後の廃棄の際に不燃物として処理しなければならいない点や金属探知機による異物検査や、電子レンジでの加熱処理が出来ない点などの欠点を有していた。   However, packaging materials using metal foils such as aluminum and aluminum vapor-deposited films are excellent in gas barrier properties, but are opaque, so it is difficult not only to identify the contents through the packaging material, but also after use. However, it has the disadvantages that it must be treated as an incombustible material at the time of disposal, a foreign matter inspection using a metal detector, and a heat treatment in a microwave oven cannot be performed.

また、ガスバリア性樹脂フィルムやガスバリア性樹脂をコーティングしたフィルムは、温度依存性が大きく、高いガスバリア性を維持できない。さらに、使用後PVDCやPANなどは廃棄・焼却の際に有害物質が発生する原因となる可能性などの問題があった。   In addition, a gas barrier resin film or a film coated with a gas barrier resin is highly temperature dependent and cannot maintain high gas barrier properties. Furthermore, after use, PVDC, PAN, and the like have problems such as the possibility of causing harmful substances during disposal and incineration.

そこで、これらの欠点を克服した包装用材料として、最近では酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化珪素などの無機酸化物を透明な基材フィルム上に蒸着したガスバリア性フィルムが上市されている。   Therefore, as a packaging material that overcomes these drawbacks, a gas barrier film in which an inorganic oxide such as magnesium oxide, calcium oxide, aluminum oxide, or silicon oxide is vapor-deposited on a transparent base film has recently been put on the market.

これらのガスバリア性蒸着フィルムは透明性および酸素、水蒸気などのガス遮断性を有していることが知られ、金属箔などでは得ることの出来ない透明性、ガスバリア性の両方を有する包装材料として好適とされており、酸化珪素SiOxを蒸着したフィルムでは食品包装用フィルムとして用いられている。また、酸化珪素SiOxを蒸着用材料とした加熱方式による蒸着は非常に成膜速度が速く、生産性が高い。   These gas barrier vapor-deposited films are known to have transparency and gas barrier properties such as oxygen and water vapor, and are suitable as packaging materials having both transparency and gas barrier properties that cannot be obtained with metal foil or the like. In the film deposited with silicon oxide SiOx, it is used as a food packaging film. In addition, vapor deposition by a heating method using silicon oxide SiOx as a vapor deposition material has a very high film formation rate and high productivity.

しかし、ここで用いられている蒸着用材料の酸化珪素のSiOx(0<x<2)は、金属珪素と二酸化珪素を原料として真空蒸着により製造されるため、次に示すような欠点を有している。   However, the silicon oxide SiOx (0 <x <2), which is a deposition material used here, is manufactured by vacuum deposition using metal silicon and silicon dioxide as raw materials, and thus has the following drawbacks. ing.

真空蒸着法により製造する蒸着用材料の酸化珪素SiOx(0<x<2)は大量生産に適した製造方法ではないため、材料費が高く、製造コストが高くなるという問題がある。また、この蒸着用材料の酸化珪素SiOx(0<x<2)は真密度に近い密度を有し、非常に緻密な構造になっている。   Since silicon oxide SiOx (0 <x <2), which is a material for vapor deposition produced by vacuum vapor deposition, is not a production method suitable for mass production, there is a problem that the material cost is high and the production cost is high. Further, the silicon oxide SiOx (0 <x <2) of this vapor deposition material has a density close to the true density and has a very dense structure.

そのため、この蒸着用材料を蒸発させてバリアフィルムを製造した場合には、蒸着の際の加熱による熱衝撃や内部から発生するガスの圧力により、気化していない蒸着用材料が高温の粒子として飛散するスプラッシュという現象が発生するという問題がある。   Therefore, when a barrier film is produced by evaporating this deposition material, unvaporized deposition material is scattered as high-temperature particles due to thermal shock caused by heating during vapor deposition or the pressure of gas generated from the inside. There is a problem that a phenomenon called splash occurs.

高温の粒子が高分子フィルム上に到達した際には、ピンホールや異物が生じ、バリア性の低下および外観不良となる。さらに、上記記載の加熱方式、特に電子銃による加熱は、より大きい熱衝撃を蒸着用材料が受けることで上記のスプラッシュと異物の発生がより顕著に現れる。   When high-temperature particles reach the polymer film, pinholes and foreign matters are generated, resulting in a decrease in barrier properties and poor appearance. Further, in the heating method described above, particularly heating by an electron gun, the above-described splash and foreign matter are more noticeably generated when the deposition material receives a larger thermal shock.

これに対して金属珪素と二酸化珪素の混合蒸着用材料は、比較的安価であるが、加熱時に一酸化珪素よりも蒸気圧が高いために蒸発しにくく、さらに溶融型の蒸着用材料であるため、より大きい熱衝撃が必要となり、蒸着用材料が飛散してスプラッシュが発生しやすい。また、二酸化珪素の分解による酸素ガスの発生で成膜室内の圧力が上昇し、蒸着速度の低下、つまり生産性の低下が起こり、また蒸着膜密度の低下による蒸着膜のバリア性の低下を引き起こす問題もある。
公知技術としては、例えば下記の特許文献1〜2が挙げられる。
On the other hand, the mixed vapor deposition material of metal silicon and silicon dioxide is relatively inexpensive, but it is difficult to evaporate because it has a higher vapor pressure than silicon monoxide during heating, and it is a melt type vapor deposition material. Therefore, a larger thermal shock is required, and the vapor deposition material is scattered and splash is likely to occur. In addition, the generation of oxygen gas due to the decomposition of silicon dioxide increases the pressure in the film formation chamber, resulting in a decrease in deposition rate, that is, a decrease in productivity, and a decrease in barrier properties of the deposited film due to a decrease in deposited film density. There is also a problem.
Examples of known techniques include the following Patent Documents 1 and 2.

特許第3725200号公報Japanese Patent No. 3725200 特許第3267637号公報Japanese Patent No. 3267737

本発明は、以上の従来技術の問題を解決しようとするものであり、スプラッシュ現象の発生を抑制し、高いガスバリア性を付与できる蒸着用材料を提供することを目的とする。   The present invention is intended to solve the above-described problems of the prior art, and an object of the present invention is to provide a vapor deposition material that can suppress the occurrence of a splash phenomenon and can provide high gas barrier properties.

本発明は係る課題に鑑みなされたものであり、請求項1に記載の発明は、金属珪素と、二酸化珪素と、酸化マグネシウム粉末とを含有してなる加熱方式の蒸着用材料であって、珪素とマグネシウムの合計の原子数と、酸素の原子数の比(O/(Si+Mg))が1.0〜1.8であり、マグネシウムと珪素の原子数の比(Mg/Si)が0.02〜0.50であることを特徴とする蒸着用材料である。   The present invention has been made in view of the above problems, and the invention according to claim 1 is a heating type vapor deposition material containing metallic silicon, silicon dioxide, and magnesium oxide powder, And the ratio of the total number of atoms of magnesium and the number of oxygen atoms (O / (Si + Mg)) is 1.0 to 1.8, and the ratio of the number of magnesium and silicon atoms (Mg / Si) is 0.02. It is -0.50, It is a material for vapor deposition characterized by the above-mentioned.

請求項2に記載の発明は、嵩密度が0.9〜1.5g/cmの範囲であることを特徴とする請求項1に記載の蒸着用材料である。 Invention of Claim 2 is a vapor deposition material of Claim 1 whose bulk density is the range of 0.9-1.5 g / cm < 3 >.

請求項3に記載の発明は、前記金属珪素と前記二酸化珪素の合計に対し、前記金属珪素粉末の割合が5〜30重量%であり、前記酸化マグネシウムと前記金属珪素における珪素のmol比(MgO/Si)が0.1〜2.0であることを特徴とする請求項1に記載の蒸着用材料である。   In the invention according to claim 3, the ratio of the metal silicon powder to the total of the metal silicon and the silicon dioxide is 5 to 30% by weight, and the molar ratio of the silicon in the magnesium oxide and the metal silicon (MgO 2. The deposition material according to claim 1, wherein / Si) is 0.1 to 2.0.

請求項4に記載の発明は、前記酸化マグネシウム粉末の純度が99.9%以上であることを特徴とする請求項1に記載の蒸着用材料である。   The invention according to claim 4 is the vapor deposition material according to claim 1, wherein the magnesium oxide powder has a purity of 99.9% or more.

請求項5に記載の発明は、カルシウムの濃度が100ppm以下であり、かつ酸化マグネシウム粉末に含まれるカルシウムの濃度が1,000ppm以下であることを特徴とする請求項4に記載の蒸着用材料である。   The invention according to claim 5 is the vapor deposition material according to claim 4, wherein the concentration of calcium is 100 ppm or less and the concentration of calcium contained in the magnesium oxide powder is 1,000 ppm or less. is there.

本発明の蒸着用材料によれば、生産性向上のために高い出力での電子ビーム加熱蒸着法を利用した場合でもスプラッシュ現象を抑制でき、高いガスバリア性の蒸着フィルムを得ることができる。   According to the vapor deposition material of the present invention, a splash phenomenon can be suppressed even when an electron beam heating vapor deposition method with a high output is used to improve productivity, and a vapor deposition film having a high gas barrier property can be obtained.

以下に、本発明の実施の形態について説明する。
本発明で蒸着用材料として使用される金属珪素と、二酸化珪素と、酸化マグネシウム粉末とを含有してなる加熱方式の蒸着用材料は、珪素とマグネシウムの合計の原子数と酸素の原子数の比(O/(Si+Mg))、マグネシウムと珪素の原子数の比(Mg/Si)、および、好適には嵩密度を管理することで、電子ビームによる熱衝撃に対して破壊されにくく、即ち、耐熱衝撃性が向上し、スプラッシュ現象を抑制するものである。
Embodiments of the present invention will be described below.
In the present invention, the heating type vapor deposition material containing metallic silicon, silicon dioxide, and magnesium oxide powder used as the vapor deposition material is a ratio of the total number of atoms of silicon and magnesium to the number of oxygen atoms. (O / (Si + Mg)), the ratio of the number of atoms of magnesium and silicon (Mg / Si), and preferably by controlling the bulk density, it is difficult to be destroyed by thermal shock caused by an electron beam. The impact property is improved and the splash phenomenon is suppressed.

そして、電子ビーム加熱による蒸着の際には、好適には嵩密度を管理することで、緻密構造にならないようにして熱伝導性を低くすることと、低い熱伝導性を持つ二酸化珪素を混合したことにより、電子ビーム加熱による急激な温度上昇による突沸の発生を抑制し、スプラッシュ現象を低減させたものである。   And in the case of vapor deposition by electron beam heating, preferably by controlling the bulk density, the thermal conductivity is lowered so as not to become a dense structure, and silicon dioxide having a low thermal conductivity is mixed. As a result, the occurrence of bumping due to a rapid temperature rise due to electron beam heating is suppressed, and the splash phenomenon is reduced.

また、二酸化珪素が加熱されると酸素ガスが脱離し、加熱された金属珪素も二酸化珪素から発生した酸素ガスが近傍にあるため、突沸することなく反応しSiOx蒸気となる。また、酸化マグネシウムも蒸発しMgOy蒸気となることで、高分子基材フィルム上にSiOx・MgOy膜を形成できる。また、蒸着材料の表層には溶融した二酸化珪素が残ることでスプラッシュを抑制し、高いバリア性を持つ蒸着フィルムを形成できると考えられる。   Also, when silicon dioxide is heated, oxygen gas is desorbed, and the heated metal silicon reacts without bumping because it is in the vicinity of oxygen gas generated from silicon dioxide, and becomes SiOx vapor. Further, the magnesium oxide also evaporates into MgOy vapor, so that a SiOx / MgOy film can be formed on the polymer substrate film. Moreover, it is thought that the melted silicon dioxide remains on the surface layer of the vapor deposition material, thereby suppressing splash and forming a vapor deposition film having high barrier properties.

本発明の金属珪素と、二酸化珪素と、酸化マグネシウム粉末とを含有してなる加熱方式の蒸着用材料に関して、その珪素とマグネシウムの合計の原子数と、酸素の原子数の比(O/(Si+Mg))は1.0〜1.8が望ましい。前記のO/(Si+Mg)が1.0未満では、材料に含まれる二酸化珪素が少ないため、材料表層の溶融部分が少なく、スプラッシュが発生し易く、O/(Si+Mg)が1.8を超えると、酸素ガスの発生が多くなるため、成膜室内の圧力が上昇し、蒸着速度の低下、つまり生産性の低下が起こり、また蒸着膜密度の低下により蒸着膜のバリア性が低下する。   Regarding the heating-type vapor deposition material containing metal silicon, silicon dioxide and magnesium oxide powder of the present invention, the ratio of the total number of atoms of silicon and magnesium to the number of oxygen atoms (O / (Si + Mg )) Is preferably 1.0 to 1.8. When the above O / (Si + Mg) is less than 1.0, since the silicon dioxide contained in the material is small, the melted portion of the material surface layer is small, splash is likely to occur, and when O / (Si + Mg) exceeds 1.8. Since the generation of oxygen gas increases, the pressure in the deposition chamber increases, the deposition rate decreases, that is, the productivity decreases, and the deposited film density decreases, and the barrier property of the deposited film decreases.

また、金属珪素と、二酸化珪素と、酸化マグネシウム粉末とを含有してなる加熱方式の蒸着用材料に関して、そのマグネシウムと珪素の原子数の比(Mg/Si)は0.02〜0.50が望ましい。前記のMg/Siが0.02未満では、マグネシウム成分を添加することによるバリア性向上効果が得られず、Mg/Siが0.50を超えると、蒸着したフィルムに含まれるマグネシウムの量が多くなるため、フィルムの耐水性が低下する。   In addition, regarding a heating-type vapor deposition material containing metal silicon, silicon dioxide, and magnesium oxide powder, the ratio of the number of atoms of magnesium and silicon (Mg / Si) is 0.02 to 0.50. desirable. If the Mg / Si is less than 0.02, the effect of improving the barrier property by adding the magnesium component cannot be obtained. If Mg / Si exceeds 0.50, the amount of magnesium contained in the deposited film is large. Therefore, the water resistance of the film is lowered.

また、蒸着用材料の嵩密度は0.9〜1.5g/cmが好ましい。混合蒸着用材料の嵩密度が0.9g/cm未満では、蒸着用材料の割れや飛散が発生し易く、嵩密度が1.5g/cmを超えると、材料の蒸発に必要なエネルギーがより必要となるため、蒸発レートが低くなり、蒸着速度の低下、つまり生産性が低下する。 Further, the bulk density of the vapor deposition material is preferably 0.9 to 1.5 g / cm 3 . If the bulk density of the mixed vapor deposition material is less than 0.9 g / cm 3 , the vapor deposition material is likely to be cracked or scattered. If the bulk density exceeds 1.5 g / cm 3 , the energy required for evaporation of the material is increased. Since it is more necessary, the evaporation rate is lowered, and the deposition rate is lowered, that is, the productivity is lowered.

さらに、蒸着用材料はそれぞれ同程度の粒径を用いると混ざりやすく、1μm〜100μmの粉末を用いることで蒸着用材料の昇温プロセスが簡易になる。これは、金属珪素が蒸着用材料に均一に混合されることで、材料が温まり易く電子ビームのデフォーカスが起こりにくいためと考えられる。   Further, the vapor deposition materials are easily mixed when using the same particle size, and the temperature raising process of the vapor deposition material is simplified by using a powder of 1 μm to 100 μm. This is presumably because the metal silicon is uniformly mixed with the vapor deposition material, so that the material is easily heated and the electron beam is not easily defocused.

また本発明の蒸着用材料は、前記金属珪素と前記二酸化珪素の合計に対し、前記金属珪素粉末の割合が5〜30重量%であることが好ましい。酸化マグネシウムと金属珪素が共存することで、詳細は不明であるが、 酸化マグネシウムが金属珪素によって還元(金属珪素は酸化)され、安定した蒸発が得られかつ蒸発速度の低下など不具合なく好適であった。一般に珪素化合物系材料の蒸発温度に比べ、酸化マグネシウムは蒸発温度が高いが、共存させることで、混合材料において安定した蒸発が得られたと考えられる。特に、前記酸化マグネシウムと前記金属珪素における珪素のmol比(MgO/Si)が0.1〜2.0の場合、さらに望ましくは0.3〜1.5において安定した蒸発が得られ好適であった。   Moreover, it is preferable that the ratio of the said metal silicon powder is 5-30 weight% with respect to the sum total of the said metal silicon and the said silicon dioxide in the vapor deposition material of this invention. Although the details are unknown due to the coexistence of magnesium oxide and metal silicon, magnesium oxide is reduced by metal silicon (metal silicon is oxidized), stable evaporation is obtained, and it is suitable without problems such as a decrease in evaporation rate. It was. In general, magnesium oxide has a higher evaporation temperature than the evaporation temperature of a silicon compound-based material, but it is considered that stable evaporation was obtained in the mixed material by coexistence. In particular, when the molar ratio (MgO / Si) of the silicon in the magnesium oxide and the metal silicon is 0.1 to 2.0, it is more preferable that stable evaporation is obtained at 0.3 to 1.5. It was.

本発明で使用する蒸着用材料の、酸化マグネシウムの純度は95.0%以上が望ましく、さらには99.9%以上がより望ましい。酸化マグネシウムの純度が95.0%以下では、微量不純物による蒸着の妨げがおこり、バリア性が低下する。   The purity of magnesium oxide of the vapor deposition material used in the present invention is desirably 95.0% or more, and more desirably 99.9% or more. When the purity of magnesium oxide is 95.0% or less, vapor deposition is hindered by a trace amount of impurities, and the barrier property is lowered.

本発明で使用する蒸着用材料の、カルシウム濃度は100ppm以下が望ましく、かつ酸化マグネシウム粉末に含まれるカルシウムの濃度は1,000ppm以下が望ましい。蒸着用材料のカルシウム濃度および/または酸化マグネシウム粉末に含まれるカルシウムの濃度が上記範囲を満たさないと、カルシウム成分による蒸着の妨げがおこり、バリア性が低下し、さらにスプラッシュが発生しやすくなる。   The calcium concentration of the vapor deposition material used in the present invention is desirably 100 ppm or less, and the concentration of calcium contained in the magnesium oxide powder is desirably 1,000 ppm or less. If the calcium concentration of the material for vapor deposition and / or the concentration of calcium contained in the magnesium oxide powder does not satisfy the above range, the vapor deposition is hindered by the calcium component, the barrier property is lowered, and splash is more likely to occur.

本発明の蒸着用材料は、珪素とマグネシウムの合計の原子数と酸素の原子数の比(O/(Si+Mg))、マグネシウムと珪素の原子数の比(Mg/Si)、また好適には嵩密度を管理すること、酸化マグネシウムの純度を高純度にすること、また材料中のカルシウム濃度を抑制することで、従来の蒸着用材料に比べスプラッシュ現象を生じさせることなく、高いバリア性を持つ蒸着フィルムを形成できる蒸着用材料を得ることができる。   The vapor deposition material of the present invention comprises a ratio of the total number of atoms of silicon and magnesium to the number of atoms of oxygen (O / (Si + Mg)), a ratio of the number of atoms of magnesium and silicon (Mg / Si), and preferably a bulk. Evaporation with high barrier properties without causing a splash phenomenon compared to conventional deposition materials by controlling the density, increasing the purity of magnesium oxide, and suppressing the calcium concentration in the material An evaporation material capable of forming a film can be obtained.

以下に、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

<実施例1>
金属珪素には50μm以下の径を有する粉末が95%以上のものを使用し、二酸化珪素には結晶構造を95%含み、50μm以下の径を有する粉末が95%以上のものを使用し、酸化マグネシウムには純度99.9%かつカルシウム濃度が20ppmのものを使用した。珪素とマグネシウムの合計の原子数と酸素の原子数の比(O/(Si+Mg))が1.4となるようにし、マグネシウと珪素の原子数の比(Mg/Si)が0.13となるように混合した金属珪素と二酸化珪素と酸化マグネシウムからなる蒸着用材料を作製した。この蒸着用材料を坩堝に投入し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Example 1>
For metal silicon, a powder having a diameter of 50 μm or less is 95% or more, and for silicon dioxide, a crystal structure containing 95% is used, and a powder having a diameter of 50 μm or less is 95% or more. Magnesium having a purity of 99.9% and a calcium concentration of 20 ppm was used. The ratio of the total number of atoms of silicon and magnesium to the number of oxygen atoms (O / (Si + Mg)) is 1.4, and the ratio of the number of atoms of magnesium and silicon (Mg / Si) is 0.13. A vapor deposition material composed of metallic silicon, silicon dioxide, and magnesium oxide mixed as described above was produced. This vapor deposition material was put into a crucible and press-molded so that the bulk density was 1.0 g / cm 3 .

電子ビーム加熱方式の真空蒸着装置で、電子銃から放出する電子ビームを蒸着用材料に照射し蒸発させ、高分子フィルム基材上に成膜した。   In an electron beam heating type vacuum deposition apparatus, the deposition material was irradiated with an electron beam emitted from an electron gun and evaporated to form a film on a polymer film substrate.

<実施例2>
実施例1で作製した蒸着用材料と同様に、珪素とマグネシウムの合計の原子数と酸素の原子数の比(O/(Si+Mg))が1.2となるようにし、マグネシウと珪素の原子数の比(Mg/Si)が0.12となるように混合した金属珪素と二酸化珪素と酸化マグネシウムからなる蒸着用材料を作製した。この混合蒸着用材料を坩堝に投入し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Example 2>
Similar to the vapor deposition material produced in Example 1, the ratio of the total number of atoms of silicon and magnesium to the number of atoms of oxygen (O / (Si + Mg)) is 1.2, and the number of atoms of magnesium and silicon. An evaporation material made of metallic silicon, silicon dioxide, and magnesium oxide mixed so that the ratio (Mg / Si) was 0.12 was prepared. This mixed vapor deposition material was put into a crucible and press-molded so that the bulk density was 1.0 g / cm 3 .

以下に本発明の比較例について説明する。   Hereinafter, comparative examples of the present invention will be described.

<比較例1>
金属珪素には50μm以下の径を有する粉末が95%以上のものを使用し、二酸化珪素には結晶構造を95%含み、50μm以下の径を有する粉末が95%以上のものを使用した。珪素の原子数と酸素の原子数の比(O/Si)が1.5となるように混合した金属珪素と二酸化珪素からなる蒸着用材料を作製した。この蒸着用材料を坩堝に投入し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Comparative Example 1>
The metal silicon used was a powder having a diameter of 50 μm or less of 95% or more, and the silicon dioxide containing a crystal structure containing 95% and a powder having a diameter of 50 μm or less was 95% or more. An evaporation material made of metal silicon and silicon dioxide mixed so that the ratio of the number of silicon atoms to the number of oxygen atoms (O / Si) was 1.5 was prepared. This vapor deposition material was put into a crucible and press-molded so that the bulk density was 1.0 g / cm 3 .

<比較例2>
実施例1で作製した混合蒸着用材料と同様に、珪素とマグネシウムの合計の原子数と酸素の原子数の比(O/(Si+Mg))が1.3となるようにし、マグネシウと珪素の原子数の比(Mg/Si)が0.65となるように混合した金属珪素と二酸化珪素と酸化マグネシウムからなる混合蒸着用材料を作製した。この混合蒸着用材料を坩堝に投入し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Comparative example 2>
Similarly to the mixed vapor deposition material produced in Example 1, the ratio of the total number of atoms of silicon and magnesium to the number of oxygen atoms (O / (Si + Mg)) is 1.3, so that the atoms of magnesium and silicon A mixed vapor deposition material composed of metallic silicon, silicon dioxide, and magnesium oxide mixed so that the number ratio (Mg / Si) was 0.65 was produced. This mixed vapor deposition material was put into a crucible and press-molded so that the bulk density was 1.0 g / cm 3 .

実施例1から2、および、比較例1から2のガスバリア性蒸着フィルムについて、以下の方法で、スプラッシュの発生をチェックし、また、水蒸気透過率を測定評価した。
その結果を表1にまとめた。
About the gas-barrier vapor deposition film of Examples 1 and 2 and Comparative Examples 1 and 2, generation | occurrence | production of the splash was checked with the following method, and the water-vapor-permeation rate was measured and evaluated.
The results are summarized in Table 1.

<スプラッシュ>
実施例1から2、および比較例1から2のガスバリア性蒸着フィルム500mm幅100m長について、目視によって、スプラッシュによるピンホールや異物が無いかを調べた。スプラッシュによるピンホールや異物が無い場合を○とし、スプラッシュによるピンホールや異物が1から10個までを△とし、スプラッシュによるピンホールや異物が11個以上あるものを×とした。
<Splash>
The gas barrier vapor-deposited films of Examples 1 and 2 and Comparative Examples 1 and 2 were examined visually for the presence of pinholes and foreign matter due to splash by visual inspection. The case where there was no pinhole or foreign matter due to splash was marked as ◯, the number of pinholes or foreign matter due to splash was 1 to 10, and the case where there were 11 or more pinholes or foreign matter due to splash was marked as x.

<水蒸気透過率>
実施例1から2、および比較例1から2のガスバリア性蒸着フィルムの水蒸気透過率を水蒸気透過度測定装置(モダンコントロール社製 MOCON PERMATRAN 3/21)を用いて40℃90%RHの雰囲気で測定した。
<Water vapor transmission rate>
The water vapor permeability of the gas barrier vapor deposition films of Examples 1 and 2 and Comparative Examples 1 and 2 was measured in an atmosphere of 40 ° C. and 90% RH using a water vapor permeability measuring device (MOCON PERMATRAN 3/21 manufactured by Modern Control). did.

Figure 2012087390
Figure 2012087390

<比較結果>
酸化マグネシウムを蒸着用材料に加えることで顕著な水蒸気バリア性の向上がみられる。金属珪素と二酸化珪素の蒸着用材料からなる蒸着膜の水蒸気透過率が1g/m・dayより低いのに対し、酸化マグネシウムを加えた蒸着用材料からなる蒸着膜ではSiOxとMgOxの複合膜となることで1g/m・dayを超える水蒸気透過率が得られており、本発明の蒸着用材料は水蒸気バリア性が向上したと考えられる。
<Comparison result>
Significant improvement in water vapor barrier properties can be seen by adding magnesium oxide to the deposition material. The vapor transmission rate of the vapor deposition film made of the metal silicon and silicon dioxide vapor deposition material is lower than 1 g / m 2 · day, whereas the vapor deposition film made of the vapor deposition material added with magnesium oxide is composed of a composite film of SiOx and MgOx As a result, a water vapor transmission rate exceeding 1 g / m 2 · day was obtained, and the vapor deposition material of the present invention is considered to have improved water vapor barrier properties.

Claims (5)

金属珪素と、二酸化珪素と、酸化マグネシウム粉末とを含有してなる加熱方式の蒸着用材料であって、珪素とマグネシウムの合計の原子数と、酸素の原子数の比(O/(Si+Mg))が1.0〜1.8であり、マグネシウムと珪素の原子数の比(Mg/Si)が0.02〜0.50であることを特徴とする蒸着用材料。   A heating type vapor deposition material containing metal silicon, silicon dioxide, and magnesium oxide powder, wherein the ratio of the total number of atoms of silicon and magnesium to the number of oxygen atoms (O / (Si + Mg)) Is 1.0 to 1.8, and the ratio of the number of atoms of magnesium and silicon (Mg / Si) is 0.02 to 0.50. 嵩密度が0.9〜1.5g/cmの範囲であることを特徴とする請求項1に記載の蒸着用材料。 The material for vapor deposition according to claim 1, wherein the bulk density is in the range of 0.9 to 1.5 g / cm 3 . 前記金属珪素と前記二酸化珪素の合計に対し、前記金属珪素粉末の割合が5〜30重量%であり、前記酸化マグネシウムと前記金属珪素における珪素のmol比(MgO/Si)が0.1〜2.0であることを特徴とする請求項1に記載の蒸着用材料。   The ratio of the metal silicon powder to the total of the metal silicon and the silicon dioxide is 5 to 30% by weight, and the molar ratio (MgO / Si) of silicon in the magnesium oxide and the metal silicon is 0.1 to 2. The deposition material according to claim 1, wherein the deposition material is. 前記酸化マグネシウム粉末の純度が99.9%以上であることを特徴とする請求項1に記載の蒸着用材料。   The material for vapor deposition according to claim 1, wherein the purity of the magnesium oxide powder is 99.9% or more. カルシウムの濃度が100ppm以下であり、かつ酸化マグネシウム粉末に含まれるカルシウムの濃度が1,000ppm以下であることを特徴とする請求項4に記載の蒸着用材料。   5. The vapor deposition material according to claim 4, wherein the concentration of calcium is 100 ppm or less and the concentration of calcium contained in the magnesium oxide powder is 1,000 ppm or less.
JP2010236676A 2010-10-21 2010-10-21 Vapor deposition material Active JP5594051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236676A JP5594051B2 (en) 2010-10-21 2010-10-21 Vapor deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236676A JP5594051B2 (en) 2010-10-21 2010-10-21 Vapor deposition material

Publications (2)

Publication Number Publication Date
JP2012087390A true JP2012087390A (en) 2012-05-10
JP5594051B2 JP5594051B2 (en) 2014-09-24

Family

ID=46259337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236676A Active JP5594051B2 (en) 2010-10-21 2010-10-21 Vapor deposition material

Country Status (1)

Country Link
JP (1) JP5594051B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020137992A1 (en) * 2018-12-26 2021-11-18 Agc株式会社 Method for manufacturing a base material with a water-repellent oil-repellent layer, a vapor-deposited material, and a base material with a water-repellent oil-repellent layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353532A (en) * 1991-05-30 1992-12-08 Toyobo Co Ltd Material for coating plastics and coated plastic film
JPH0734224A (en) * 1993-07-20 1995-02-03 Shin Etsu Chem Co Ltd Material for vapor-depositing silicon oxide and vapor deposited film
JPH07331419A (en) * 1994-06-10 1995-12-19 Toyo Ink Mfg Co Ltd Vapor-deposition compact and vacuum deposition method using the compact
JPH08296036A (en) * 1995-04-26 1996-11-12 Sumitomo Sitix Corp Material for vapor deposition and production of its compact
JPH09143690A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JP2000517003A (en) * 1997-05-21 2000-12-19 アルスイス・テクノロジー・ウント・マネージメント・アクチェンゲゼルシャフト Forms of packaging and packaging aids
JP2010106307A (en) * 2008-10-29 2010-05-13 Nippon Steel Materials Co Ltd Vapor deposition raw material and method of preparing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353532A (en) * 1991-05-30 1992-12-08 Toyobo Co Ltd Material for coating plastics and coated plastic film
JPH0734224A (en) * 1993-07-20 1995-02-03 Shin Etsu Chem Co Ltd Material for vapor-depositing silicon oxide and vapor deposited film
JPH07331419A (en) * 1994-06-10 1995-12-19 Toyo Ink Mfg Co Ltd Vapor-deposition compact and vacuum deposition method using the compact
JPH08296036A (en) * 1995-04-26 1996-11-12 Sumitomo Sitix Corp Material for vapor deposition and production of its compact
JPH09143690A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JP2000517003A (en) * 1997-05-21 2000-12-19 アルスイス・テクノロジー・ウント・マネージメント・アクチェンゲゼルシャフト Forms of packaging and packaging aids
JP2010106307A (en) * 2008-10-29 2010-05-13 Nippon Steel Materials Co Ltd Vapor deposition raw material and method of preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020137992A1 (en) * 2018-12-26 2021-11-18 Agc株式会社 Method for manufacturing a base material with a water-repellent oil-repellent layer, a vapor-deposited material, and a base material with a water-repellent oil-repellent layer
JP7415951B2 (en) 2018-12-26 2024-01-17 Agc株式会社 Substrate with water- and oil-repellent layer, vapor deposition material, and manufacturing method of substrate with water- and oil-repellent layer

Also Published As

Publication number Publication date
JP5594051B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JPH05311412A (en) Production of feed material for vapor deposition and transparent barrier film
RU2010153907A (en) SEALING PLUGS ON A GLASS VESSEL
JP5549483B2 (en) Vapor deposition material, gas barrier vapor deposition film manufacturing method, and gas barrier vapor deposition film
JP5594051B2 (en) Vapor deposition material
JP5729072B2 (en) Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
TW201343940A (en) Sputtering targets and associated sputtering methods for forming hermetic barrier layers
WO2019031263A1 (en) Gas barrier laminate
JP5879789B2 (en) Vapor deposition material, gas barrier vapor deposition film, and gas barrier vapor deposition film manufacturing method
JP2012136734A (en) Vapor deposition material, and gas-barrier vapor deposition film
JP5866900B2 (en) Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
JP2011063826A (en) Vapor deposition material
JPWO2006025195A1 (en) SiO vapor deposition material, raw material Si powder and method for producing SiO vapor deposition material
JP6123351B2 (en) Vapor deposition material, gas barrier vapor deposition film, and gas barrier vapor deposition film manufacturing method
JP6102375B2 (en) Gas barrier vapor deposition film and method for producing gas barrier vapor deposition film
JP5510248B2 (en) Vapor deposition material
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
JP6047997B2 (en) Gas barrier film
JP2014058727A (en) Material for vapor deposition, and transparent gas barrier vapor deposition film
JP6171419B2 (en) Method for producing gas barrier film
JP2007261134A (en) Antistatic barrier film
JP2010222640A (en) Method of producing gas barrier film
JP4314642B2 (en) Vacuum deposition material
JP3956623B2 (en) High water vapor barrier film
JP6365528B2 (en) Gas barrier film
JP2012057237A (en) Method for producing gas barrier film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250