JP2012086406A - Method of manufacturing biodegradable container, and biodegradable container manufactured by the method - Google Patents

Method of manufacturing biodegradable container, and biodegradable container manufactured by the method Download PDF

Info

Publication number
JP2012086406A
JP2012086406A JP2010233627A JP2010233627A JP2012086406A JP 2012086406 A JP2012086406 A JP 2012086406A JP 2010233627 A JP2010233627 A JP 2010233627A JP 2010233627 A JP2010233627 A JP 2010233627A JP 2012086406 A JP2012086406 A JP 2012086406A
Authority
JP
Japan
Prior art keywords
biodegradable
opening edge
container
mold
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010233627A
Other languages
Japanese (ja)
Other versions
JP4865080B1 (en
Inventor
Takashi Jingu
剛史 神宮
Tetsuji Hoyama
哲司 鋒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Co Ltd
Original Assignee
Nissei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Co Ltd filed Critical Nissei Co Ltd
Priority to JP2010233627A priority Critical patent/JP4865080B1/en
Application granted granted Critical
Publication of JP4865080B1 publication Critical patent/JP4865080B1/en
Publication of JP2012086406A publication Critical patent/JP2012086406A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a biodegradable container, capable of foaming and baking a biodegradable material in a short time while preventing half-baking of an opening edge.SOLUTION: The method of manufacturing a biodegradable container comprises a step of molding a container-shaped foam base material layer by use of a foam molding mold 6 composed of a pair of mutually fittable male die 4 and female die 5, each of the dies containing a heater and being electrically connected to a high frequency oscillator, by mutually fitting the male die 4 and the female die 5 with a biodegradable material containing water interposed therebetween, and baking the biodegradable material while steam-foaming the biodegradable material by heating from the heaters and induction heating by application of high-frequency wave and diffusing steam to the outside through a portion corresponding to the opening edge. The mold 6 is formed to have a dimension such that the thickness of an opening edge 1a is smaller than the thicknesses of a bottom portion and a body portion. The step of molding the container-shaped foam base material layer by steam-foaming the biodegradable material includes a step of collectively applying the high-frequency wave to the thin opening edge 1a to collectively heat the opening edge.

Description

この発明は、生分解性容器の製造方法およびその方法により製造された生分解性容器に関し、詳しくは水分を含んだ生分解性材料を金型内で効率よく加熱して発泡成形する方法とその方法により製造された生分解性容器に関する。   The present invention relates to a method for producing a biodegradable container and a biodegradable container produced by the method, and more specifically, a method for efficiently foaming a biodegradable material containing moisture in a mold and the method The present invention relates to a biodegradable container manufactured by the method.

この発明に関連する従来技術としては、澱粉、パルプおよび水が混練されてなるドウ状の生分解性材料を所定温度に加熱された金型に投入し、投入された生分解性材料に高周波を印加して誘電加熱し金型内で水蒸気発泡させて焼成することにより容器状の発泡成形物を成形する方法が知られている(例えば、特許文献1参照)。   As a prior art related to the present invention, a dough-like biodegradable material obtained by kneading starch, pulp and water is put into a mold heated to a predetermined temperature, and a high frequency is applied to the put biodegradable material. A method is known in which a container-like foamed molded product is formed by applying and dielectric heating, foaming and steaming in a mold and firing (see, for example, Patent Document 1).

特許第3961421号公報Japanese Patent No. 3961421

二酸化炭素の削減や資源循環型社会の構築など、近年の環境問題に対する意識の高まりをうけ、使い捨て容器の分野においても石油資源に頼らない製品が求められている。
そのような中、植物由来のバイオマスを原料とした生分解性の容器が注目されている。植物由来のバイオマスは大気中の二酸化炭素を吸収して成長しているため、廃棄後の生分解や焼却の際に二酸化炭素が排出されても、それは原料のバイオマスに吸収されていた二酸化炭素が再び大気中に排出されたこととなり、製造から廃棄までをトータルでみると大気中の二酸化炭素を増加させることにはならない。このような性質はカーボンニュートラルと呼ばれ、環境問題を考えるうえで重要なキーワードとなっている。
In response to growing environmental awareness in recent years, such as the reduction of carbon dioxide and the establishment of a resource recycling society, products that do not rely on petroleum resources are also required in the field of disposable containers.
Under such circumstances, biodegradable containers using plant-derived biomass as a raw material have attracted attention. Plant-derived biomass absorbs carbon dioxide in the atmosphere and grows. Therefore, even if carbon dioxide is discharged during biodegradation or incineration after disposal, it is absorbed by the raw material biomass. It was discharged into the atmosphere again, and the total amount of carbon dioxide in the atmosphere does not increase from the total production to disposal. Such a property is called carbon neutral and is an important keyword when considering environmental issues.

バイオマスを原料とする生分解性容器の製造方法としては、特許文献1に記載されているように、澱粉、パルプおよび水が混練されてなるドウ状の生分解性材料を所定温度に加熱された金型に投入し、金型内で該生分解性材料を誘電加熱し水蒸気発泡させて焼成する方法が知られている。
このような方法によれば、金型からの加熱に加え、誘電加熱によって生分解性材料そのものを発熱させるので、生分解性材料を速やかに水蒸気発泡させて焼成することができる。しかし、生分解性容器の生産性を向上させるため、生分解性材料の発泡・焼成に要する時間の更なる短縮が求められている。
As described in Patent Document 1, as a method for producing a biodegradable container using biomass as a raw material, a dough-like biodegradable material obtained by kneading starch, pulp and water was heated to a predetermined temperature. There is known a method in which a biodegradable material is placed in a mold, dielectrically heated in the mold, and steam-foamed and fired.
According to such a method, since the biodegradable material itself generates heat by dielectric heating in addition to the heating from the mold, the biodegradable material can be rapidly foamed and fired. However, in order to improve the productivity of the biodegradable container, there is a demand for further shortening of the time required for foaming and baking of the biodegradable material.

一般に、生分解性材料の発泡・焼成に用いられる金型は、発泡・焼成時に発生する水蒸気を金型の外部へ放出させるため、生分解性容器の開口縁部と対応する箇所に蒸気抜き用の孔が形成されている。   In general, molds used for foaming and firing of biodegradable materials are designed to release steam at the location corresponding to the opening edge of the biodegradable container in order to release water vapor generated during foaming and firing to the outside of the mold. Holes are formed.

つまり、生分解性材料に含まれる水分は、生分解性容器の開口縁部に対応する箇所を通って外部へ放出される。このため、焼成途上の生分解性容器はその開口縁部に最後まで多くの水分を含むこととなり、より短時間で焼成しようとすると開口縁部の水分が完全に抜けきらず生焼けが発生し易い。   That is, moisture contained in the biodegradable material is released to the outside through a location corresponding to the opening edge of the biodegradable container. For this reason, the biodegradable container in the course of baking contains a large amount of moisture at the opening edge until the end, and when trying to bake in a shorter time, the moisture at the opening edge is not completely removed, and a raw burn is likely to occur.

このような開口縁部の生焼けを防止するためには、誘電加熱時に印加する高周波の出力を増大させるなどの手法が考えられる。しかしながら、開口縁部以外の底部や胴部などの焼成が済んでいるにも関わらず大きな出力の高周波を印加し続けると、先に焼成の済んでいる底部や胴部などに焦げが発生し易くなり、場合によっては金型と被加熱物である生分解性材料との間や、金型内の被加熱物が介在しない部分においてスパークが発生し、高周波の印加自体が継続できなくなる。   In order to prevent such burning of the edge of the opening, a method of increasing the output of the high frequency applied at the time of dielectric heating can be considered. However, if high-frequency, high-frequency power continues to be applied even though the bottom and body other than the opening edge have been fired, scorching is likely to occur on the previously fired bottom and body. In some cases, sparks are generated between the mold and the biodegradable material that is the object to be heated, or in the part where the object to be heated is not present in the mold, and high-frequency application itself cannot be continued.

このため、単に印加する高周波の出力を増大させるといった方法では開口縁部の生焼けを防止できない。また、底部や胴部の焼成が済んだ時点で焦げやスパークが発生しない程度まで印加する高周波の出力を低くするといった方法も考えられるが、そうすると本来の目的である短時間での焼成ができなくなる。   For this reason, the burning of the opening edge cannot be prevented by simply increasing the output of the high frequency applied. In addition, there is a method of reducing the output of the high frequency applied to the extent that no scorching or sparking occurs when the bottom part or the body part has been baked, but then it becomes impossible to fire in a short time which is the original purpose. .

この発明は以上のような事情を考慮してなされたもので、開口縁部の生焼けを防止しつつより短時間で生分解性材料を発泡・焼成することを可能とする生分解性容器の製造方法を提供するものである。   The present invention has been made in view of the above circumstances, and is capable of producing a biodegradable container that can foam and fire a biodegradable material in a shorter time while preventing the burnt edge of the opening. A method is provided.

この発明は、底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は開口縁部の厚みが底部および胴部の厚みよりも薄くなる寸法を有するように形成されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、厚みの薄い開口縁部に高周波を集中して印加し開口縁部を集中的に加熱する工程を含むことを特徴とする第1の生分解性容器の製造方法を提供するものである。   The present invention relates to a method for manufacturing a biodegradable container having a bottom, a body, and an opening edge, and includes a pair of male and female molds that can be fitted and are electrically connected to a high-frequency oscillator. Using a mold for foam molding, a biodegradable material containing moisture is interposed, a male mold and a female mold are fitted, and the biodegradable material is steamed by heating from a heater and dielectric heating by applying high frequency. The mold includes a step of forming a container-like foamed base material layer by firing while dissipating water vapor from the portion corresponding to the opening edge to the outside, and the mold has a thickness of the bottom edge and the body of the opening edge. In the process of forming a container-like foam base material layer by steam-foaming a biodegradable material, high frequency is applied to the opening edge with a small thickness. Including intensively heating the opening edge. There is provided a method for manufacturing the first biodegradable containers and symptoms.

また、この発明は、底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は生分解性容器の開口縁部と対応する部分に開口縁部を集中的に加熱する局部加熱用ヒータが内蔵されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、局部加熱用ヒータからの加熱により開口縁部を集中的に加熱する工程を含むことを特徴とする第2の生分解性容器の製造方法を提供するものでもある。   The present invention also relates to a method for manufacturing a biodegradable container having a bottom portion, a body portion, and an opening edge, and includes a pair of matable male and female members that have a built-in heater and are electrically connected to a high-frequency oscillator. Using a mold for foam molding, a biodegradable material containing moisture is interposed between a male mold and a female mold, and the biodegradable material is heated by a heater and dielectrically heated by applying high frequency. And forming the container-like foam base material layer by firing while steam is diffused to the outside from the location corresponding to the opening edge by steam foaming, the mold corresponds to the opening edge of the biodegradable container The local heating heater that intensively heats the edge of the opening is built in the part to be formed, and the step of forming the container-shaped foam base layer by steam-foaming the biodegradable material is performed from the local heating heater. The process of intensively heating the opening edge by heating Also provides a second method of manufacturing a biodegradable container characterized by Mukoto.

さらに、この発明は、底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は生分解性容器の開口縁部と対応する部分が底部および胴部と対応する部分よりも熱伝導性の高い材料で形成されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、熱伝導性の高い材料で形成された前記部分により開口縁部を集中的に加熱する工程を含むことを特徴とする第3の生分解性容器の製造方法を提供するものでもある。   Furthermore, the present invention is a method of manufacturing a biodegradable container having a bottom, a body, and an opening edge, and includes a pair of matable male and female that have a built-in heater and are electrically connected to a high-frequency oscillator. Using a mold for foam molding, a biodegradable material containing moisture is interposed between a male mold and a female mold, and the biodegradable material is heated by a heater and dielectrically heated by applying high frequency. And forming the container-like foam base material layer by firing while steam is diffused to the outside from the location corresponding to the opening edge by steam foaming, the mold corresponds to the opening edge of the biodegradable container The step of forming the container-shaped foam base layer by steam-foaming the biodegradable material is formed of a material having higher thermal conductivity than the portion corresponding to the bottom portion and the body portion. Opening edge due to the part made of high quality material Also provides a method for producing a third biodegradable container characterized in that it comprises the step of heating intensively.

この発明の第1の生分解性容器の製造方法によれば、開口縁部の厚みが底部および胴部の厚みよりも薄くなる寸法を有するように形成された金型が用いられるので、金型内の生分解性材料に高周波を印加して誘電加熱する際に、厚みが薄く絶縁距離の短い開口縁部に高周波が集中して印加されるようになり、開口縁部を集中的に加熱できる。   According to the first method for producing a biodegradable container of the present invention, since the mold formed so that the thickness of the opening edge is thinner than the thickness of the bottom and the trunk is used, When applying high frequency to the biodegradable material inside and heating dielectrically, high frequency is concentrated and applied to the opening edge with a small thickness and short insulation distance, and the opening edge can be heated intensively. .

また、この発明の第2の生分解性容器の製造方法によれば、開口縁部を局部的に加熱する局部加熱用ヒータを内蔵した金型が用いられるので、金型内の生分解性材料を加熱する際に開口縁部を集中的に加熱できる。   Further, according to the second method for producing a biodegradable container of the present invention, since a mold incorporating a local heating heater for locally heating the opening edge is used, the biodegradable material in the mold is used. The opening edge portion can be heated intensively when heating.

さらに、この発明の第3の生分解性容器の製造方法によれば、生分解性容器の開口縁部に対応する部分が底部および胴部と対応する部分よりも熱伝導性の高い材料で形成された金型が用いられるので、金型内の生分解性材料を加熱する際に開口縁部を集中的に加熱できる。   Furthermore, according to the third method for producing a biodegradable container of the present invention, the part corresponding to the opening edge of the biodegradable container is formed of a material having higher thermal conductivity than the parts corresponding to the bottom part and the body part. Since the molded mold is used, the opening edge can be heated intensively when the biodegradable material in the mold is heated.

つまり、この発明による第1、第2および第3の生分解性容器の製造方法によれば、いずれも金型内で生分解性材料を水蒸気発泡させて焼成する際に開口縁部を集中的に加熱でき、開口縁部に含まれる水分を速やかに気化させて焼成を促進できる。このため、焼成の最後まで比較的多くの水分を含む開口縁部と、底部および胴部との焼成が略同じタイミングで完了するようになり、開口縁部の生焼けを防止しつつ生分解性材料の発泡と焼成に要する時間を短縮できる。   That is, according to the first, second, and third biodegradable container manufacturing methods according to the present invention, the opening edge is concentrated when the biodegradable material is steam-foamed and fired in the mold. It is possible to quickly heat, and moisture contained in the opening edge can be quickly vaporized to promote firing. For this reason, firing of the opening edge portion containing a relatively large amount of water, the bottom portion, and the body portion is completed at substantially the same timing until the end of firing, and the biodegradable material is prevented while preventing burning of the opening edge portion. The time required for foaming and firing can be shortened.

本発明の実施形態1に係る製造方法により製造された生分解性容器の断面図である。It is sectional drawing of the biodegradable container manufactured by the manufacturing method which concerns on Embodiment 1 of this invention. 図1のA部拡大図である。It is the A section enlarged view of FIG. 図1のB部拡大図である。It is the B section enlarged view of FIG. 本発明の実施形態1に係る生分解性容器の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the biodegradable container which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る生分解性容器の製造方法を説明する工程図である。It is process drawing explaining the manufacturing method of the biodegradable container which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る生分解性容器の製造方法で用いられる高周波誘電加熱装置の電気回路図である。It is an electric circuit diagram of the high frequency dielectric heating apparatus used with the manufacturing method of the biodegradable container which concerns on Embodiment 1 of this invention. 図6に示されるインピーダンス整合回路の制御特性を示すグラフである。It is a graph which shows the control characteristic of the impedance matching circuit shown by FIG. 本発明の実施形態1に係る生分解性容器の製造方法で用いられる金型の変形例を示す斜視図である。It is a perspective view which shows the modification of the metal mold | die used with the manufacturing method of the biodegradable container which concerns on Embodiment 1 of this invention. 図8のC−C矢視断面図である。It is CC sectional view taken on the line of FIG. 本発明の実施形態2に係る生分解性容器の製造方法で用いられる金型の断面図である。It is sectional drawing of the metal mold | die used with the manufacturing method of the biodegradable container which concerns on Embodiment 2 of this invention. 図10に示される雄型の平面図である。It is a top view of the male type | mold shown by FIG. 図10に示される雌型の平面図である。It is a top view of the female type | mold shown by FIG. 本発明の実施形態2に係る生分解性容器の製造方法で用いられる金型の変形例を示す断面図である。It is sectional drawing which shows the modification of the metal mold | die used with the manufacturing method of the biodegradable container which concerns on Embodiment 2 of this invention. 図13に示される雌型の平面図である。It is a top view of the female type | mold shown by FIG. 本発明の実施形態2に係る生分解性容器の製造方法で用いられる金型の変形例を示す断面図である。It is sectional drawing which shows the modification of the metal mold | die used with the manufacturing method of the biodegradable container which concerns on Embodiment 2 of this invention. 図15に示される雌型の平面図である。It is a top view of the female type | mold shown by FIG. 本発明の実施形態3に係る生分解性容器の製造方法で用いられる金型の断面図である。It is sectional drawing of the metal mold | die used with the manufacturing method of the biodegradable container which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る生分解性容器の製造方法で用いられる金型の変形例を示す断面図である。It is sectional drawing which shows the modification of the metal mold | die used with the manufacturing method of the biodegradable container which concerns on Embodiment 3 of this invention. 従来のインピーダンス整合回路の制御特性を示すグラフ図である。It is a graph which shows the control characteristic of the conventional impedance matching circuit.

この発明による第1の生分解性容器の製造方法は、底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は開口縁部の厚みが底部および胴部の厚みよりも薄くなる寸法を有するように形成されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、厚みの薄い開口縁部に高周波を集中して印加し開口縁部を集中的に加熱する工程を含むことを特徴とする。   A first biodegradable container manufacturing method according to the present invention is a method for manufacturing a biodegradable container having a bottom part, a body part, and an opening edge part, and is a fitting that incorporates a heater and is electrically connected to a high-frequency oscillator. Using a mold for foam molding consisting of a pair of male and female molds that can be mated, with a biodegradable material containing moisture interposing the male and female molds, heating from the heater and high frequency The mold has a step of foaming the biodegradable material by dielectric heating by application and forming the container-like foamed base material layer by baking while dissipating the water vapor from the portion corresponding to the opening edge to the outside. The step of forming the container-shaped foam base layer by steam-foaming the biodegradable material is formed so that the thickness of the edge portion is smaller than the thickness of the bottom portion and the trunk portion, Concentrate and apply high frequency to the thin opening edge Characterized in that it comprises the step of heating intensively.

また、この発明による第2の生分解性容器の製造方法は、底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は生分解性容器の開口縁部と対応する部分に開口縁部を集中的に加熱する局部加熱用ヒータが内蔵されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、局部加熱用ヒータからの加熱により開口縁部を集中的に加熱する工程を含むことを特徴とする。   A second biodegradable container manufacturing method according to the present invention is a method for manufacturing a biodegradable container having a bottom part, a body part, and an opening edge part, and has a built-in heater and is electrically connected to a high-frequency oscillator. Using a mold for foam molding consisting of a pair of male and female molds that can be fitted, the biodegradable material containing moisture is interposed, the male mold and female mold are fitted, and heating from the heater is performed. A step of forming a container-like foamed base material layer by baking the biodegradable material by steam heating by dielectric heating by applying a high frequency and dissipating water vapor from the portion corresponding to the opening edge to the outside, Has a built-in local heater that heats the opening edge in a portion corresponding to the opening edge of the biodegradable container, and steam-foams the biodegradable material to form a container-like foam base material layer. The molding step is performed by heating from a local heater. Characterized in that it comprises a step of heating the opening edge portion in a concentrated manner.

さらに、この発明による第3の生分解性容器の製造方法は、底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は生分解性容器の開口縁部と対応する部分が底部および胴部と対応する部分よりも熱伝導性の高い材料で形成されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、熱伝導性の高い材料で形成された前記部分により開口縁部を集中的に加熱する工程を含むことを特徴とする。   Furthermore, a third method for manufacturing a biodegradable container according to the present invention is a method for manufacturing a biodegradable container having a bottom portion, a body portion, and an opening edge, and is electrically connected to a high-frequency oscillator incorporating a heater. Using a mold for foam molding consisting of a pair of male and female molds that can be fitted, the biodegradable material containing moisture is interposed, the male mold and female mold are fitted, and heating from the heater is performed. A step of forming a container-like foamed base material layer by baking the biodegradable material by steam heating by dielectric heating by applying a high frequency and dissipating water vapor from the portion corresponding to the opening edge to the outside, The part corresponding to the opening edge of the biodegradable container is formed of a material having higher thermal conductivity than the part corresponding to the bottom and the trunk, and the biodegradable material is steam-foamed to form a container-like foam base. The step of forming the material layer is a material having high thermal conductivity. The formed said portion, characterized in that it comprises the step of heating intensively the opening edge portion.

この発明による第1、第2および第3の生分解性容器の製造方法において、発泡成形用の金型とは、嵌合可能な一対の雄型と雌型とからなり、生分解性材料を加熱し発泡させた際に生じるガスや水蒸気をキャビティから外部へ適宜放出させることができるように構成された金型を意味する。
また、この発明による第1、第2および第3の生分解性容器の製造方法において、生分解性材料とは生分解性容器の骨格をなす発泡基材層の材料であって、水分を含んで調製されたものを意味する。
In the first, second, and third biodegradable container manufacturing methods according to the present invention, the foam molding mold includes a pair of male and female molds that can be fitted, and a biodegradable material is used. It means a mold configured so that gas or water vapor generated when heated and foamed can be appropriately discharged from the cavity to the outside.
In the first, second, and third biodegradable container manufacturing methods according to the present invention, the biodegradable material is a material for the foamed base material layer that forms the skeleton of the biodegradable container and contains moisture. Means the one prepared in

また、この発明による第1、第2および第3の生分解性容器の製造方法において、開口縁部とは、生分解性容器の開口とその近傍に占める部分であって、金型内で生分解性材料を水蒸気発泡させて焼成する際に水蒸気が最後に抜けていく部分を意味する。
また、この発明による第1、第2および第3の生分解性容器の製造方法において、開口縁部を集中的に加熱するとは、金型内において開口縁部が単位体積あたりで底部および胴部よりも大きな熱量を有するように加熱することを意味する。
In the first, second, and third biodegradable container manufacturing methods according to the present invention, the opening edge portion is a portion that occupies the opening of the biodegradable container and the vicinity thereof, and is formed in the mold. It means a portion where water vapor finally escapes when the decomposable material is foamed with water vapor and fired.
Further, in the first, second, and third biodegradable container manufacturing methods according to the present invention, the intensive heating of the opening edge means that the opening edge has a bottom part and a body part per unit volume in the mold. It means heating to have a larger amount of heat.

この発明による第1の生分解性容器の製造方法において、前記金型は開口縁部の厚みが底部と胴部の厚みの平均値の約60〜90%となる寸法を有するように形成されてなることが好ましい。   In the first method for producing a biodegradable container according to the present invention, the mold is formed so that the thickness of the opening edge is about 60 to 90% of the average thickness of the bottom and the trunk. It is preferable to become.

というのは、開口縁部の厚みが底部と胴部の厚みの平均値の約60%よりも小さくなると、金型内における開口縁部の絶縁間隔が底部や胴部と比較して小さくなり過ぎ、高周波の印加時に高周波が開口縁部に過度に集中し、生分解性材料全体を誘電加熱することが難しくなるからである。
一方、開口縁部の厚みが底部と胴部の厚みの平均値の約90%よりも大きくなると金型内における開口縁部の絶縁間隔が底部や胴部と比較して大差ないものとなり開口縁部に高周波を集中させ難くなる。
よって、金型は、開口縁部の厚みが底部と胴部の厚みの平均値の60〜90%程度となる寸法を有するように形成されていることが好ましい。
This is because when the thickness of the opening edge is smaller than about 60% of the average thickness of the bottom and the body, the insulating interval of the opening edge in the mold becomes too small compared to the bottom and the body. This is because, when a high frequency is applied, the high frequency is excessively concentrated on the edge of the opening, making it difficult to dielectrically heat the entire biodegradable material.
On the other hand, when the thickness of the opening edge is larger than about 90% of the average thickness of the bottom and the body, the insulating interval of the opening edge in the mold is not much different from that of the bottom and the body, and the opening edge It becomes difficult to concentrate high frequency on the part.
Therefore, the mold is preferably formed so that the thickness of the opening edge portion is about 60 to 90% of the average value of the thickness of the bottom portion and the trunk portion.

この発明による第2の生分解性容器の製造方法は、上述の通り、金型が開口縁部を集中的に加熱する局部加熱用ヒータを内蔵する。
ここで、局部加熱用ヒータは少なくとも雄型および雌型のいずれか一方に内蔵されていればよいが、開口縁部を効率よく集中的に加熱するためには雄型と雌型の双方にそれぞれ内蔵されていることが好ましい。
As described above, the second biodegradable container manufacturing method according to the present invention incorporates a local heating heater in which the mold heats the opening edge in a concentrated manner.
Here, the local heater may be incorporated in at least one of the male and female dies, but in order to heat the opening edge efficiently and intensively, both the male and female dies are respectively provided. It is preferably built in.

局部加熱用ヒータの構成としては、特に限定されるものではないが、例えば、金型を分割可能に構成し単一又は複数の棒状ヒータを開口縁部と対応する部分の近傍に埋設する構成、金型を分割可能に構成し単一又は複数の面状発熱体(ラバーヒータ)を開口縁部と対応する部分の近傍に介挿する構成、金型内において開口縁部と対応する部分の近傍に通路を形成し、形成された通路に加熱されたオイルを循環させる構成、或いはこれらの併用などを挙げることができる。   The configuration of the local heater is not particularly limited, for example, a configuration in which the mold can be divided and a single or a plurality of bar heaters are embedded in the vicinity of the portion corresponding to the opening edge, A structure in which the mold is separable and a single or a plurality of planar heating elements (rubber heaters) are inserted in the vicinity of the part corresponding to the opening edge, in the vicinity of the part corresponding to the opening edge in the mold The structure which forms a channel | path and circulates the heated oil to the formed channel | path, or these combined use can be mentioned.

上述の通り、生分解性容器の開口縁部は、金型内で生分解性材料を水蒸気発泡させて焼成する際に水蒸気の出口となる部分であり、焼成の最後まで比較的多くの水分を含むため、金型は開口縁部に含まれる水分を気化させる際に熱を奪われ、開口縁部と対応する部分において温度低下を引き起こし易い。
しかし、この発明による第2の生分解性容器の製造方法では、上述の通り、金型が開口縁部を集中的に加熱する局部加熱用ヒータを内蔵しているので、開口縁部と対応する部分における温度低下が抑制される。
このため、開口縁部を効率よく集中的に加熱でき、開口縁部に含まれる水分を速やかに気化させて焼成を促進できる。
As described above, the opening edge of the biodegradable container is a portion that becomes an outlet of water vapor when the biodegradable material is foamed and fired in the mold, and a relatively large amount of water is consumed until the end of firing. For this reason, the mold is deprived of heat when the moisture contained in the opening edge is vaporized, and the temperature is likely to decrease at a portion corresponding to the opening edge.
However, in the second method for producing a biodegradable container according to the present invention, as described above, since the mold incorporates the local heating heater that intensively heats the opening edge, it corresponds to the opening edge. The temperature drop in the portion is suppressed.
For this reason, an opening edge part can be heated efficiently and intensively, the water | moisture content contained in an opening edge part can be vaporized quickly, and baking can be accelerated | stimulated.

この発明による第3の生分解性容器の製造方法は、上述の通り、金型のうち開口縁部と対応する部分が底部および胴部と対応する部分よりも熱伝導性の高い材料で形成される。
ここで、開口縁部と対応する部分を熱伝導性の高い材料で形成する構成としては、特に限定されるものではないが、例えば、開口縁部と対応する部分を熱伝導性に優れた銅や真鍮で形成し、底部および胴部と対応する部分をアルミニウムで形成する構成や、金型全体をアルミニウムで形成し、開口縁部と対応する部分の表面のみを熱伝導性の優れた他の金属、例えば金でメッキする構成などを挙げることができる。
According to the third method for producing a biodegradable container according to the present invention, as described above, the part of the mold corresponding to the opening edge is formed of a material having higher thermal conductivity than the part corresponding to the bottom part and the body part. The
Here, the structure corresponding to the opening edge portion is formed of a material having high thermal conductivity, but is not particularly limited. For example, the portion corresponding to the opening edge portion is copper having excellent thermal conductivity. It is made of brass or brass, and the part corresponding to the bottom and the body is made of aluminum, or the entire mold is made of aluminum, and only the surface of the part corresponding to the opening edge is made of other materials having excellent thermal conductivity. The structure plated with metal, for example gold | metal | money, etc. can be mentioned.

これらの構成によれば、金型のうち開口縁部と対応する部分において熱伝導性が高められるので、前述した理由により開口縁部と対応する部分が温度低下をきたしても、隣接する部分から速やかに熱が伝わり開口縁部と対応する部分において温度低下が抑制される。
このため、上述の第2の生分解性容器の製造方法と同様に、開口縁部を効率よく集中的に加熱でき、開口縁部に含まれる水分を速やかに気化させて焼成を促進できる。
According to these configurations, since the thermal conductivity is increased in the portion corresponding to the opening edge portion of the mold, even if the temperature corresponding to the opening edge portion is lowered due to the above-described reason, from the adjacent portion. Heat is quickly transmitted and temperature drop is suppressed at the portion corresponding to the opening edge.
For this reason, similarly to the above-described method for producing the second biodegradable container, the opening edge can be heated efficiently and intensively, and moisture contained in the opening edge can be quickly vaporized to promote firing.

この発明による第1、第2および第3の生分解性容器の製造方法は、組み合わせて用いられることが、生分解性材料をより短時間で発泡・焼成するうえで好ましい。
つまり、生分解性材料をより短時間で発泡・焼成するために、この発明による第1および第2の生分解性容器の製造方法が組み合わせて用いられてもよいし、この発明による第1および第3の生分解性容器の製造方法が組み合わせて用いられてもよい。或いは、この発明による第2および第3の生分解性容器の製造方法が組み合わせて用いられてもよいし、この発明による第1、第2および第3の生分解性容器の製造方法が組み合わせて用いられてもよく、第1、第2および第3の生分解性容器の製造方法の組み合わせは任意に選択できる。
The first, second and third biodegradable container manufacturing methods according to the present invention are preferably used in combination for foaming and firing the biodegradable material in a shorter time.
That is, in order to foam and fire the biodegradable material in a shorter time, the first and second biodegradable container manufacturing methods according to the present invention may be used in combination. The manufacturing method of the third biodegradable container may be used in combination. Or the manufacturing method of the 2nd and 3rd biodegradable container by this invention may be used in combination, and the manufacturing method of the 1st, 2nd and 3rd biodegradable container by this invention is combined. The combination of the manufacturing method of the 1st, 2nd and 3rd biodegradable container can be selected arbitrarily.

例えば、この発明による第1、第2および第3の生分解性容器の製造方法が組み合わせて用いられた場合、具体的には第1の生分解性容器の製造方法の特徴である開口縁部の厚みが底部および胴部の厚みよりも薄くなる寸法を有するように形成された金型に、第2の生分解性容器の特徴である局部加熱用ヒータを内蔵させ、さらに第3の生分解性容器の特徴である開口縁部と対応する部分の熱伝導性を向上させる構成を組み合わせて適用することとなる。このような金型を用いると、開口縁部を非常に効率よく集中的に加熱することができ、より短時間での発泡・焼成が可能となる。   For example, when the first, second, and third biodegradable container manufacturing methods according to the present invention are used in combination, an opening edge that is specifically a feature of the first biodegradable container manufacturing method A local heater, which is a feature of the second biodegradable container, is incorporated in a mold formed so that the thickness of the mold is smaller than the thickness of the bottom portion and the trunk portion. The structure which improves the heat conductivity of the part corresponding to the opening edge part which is the characteristic of a conductive container will be applied in combination. When such a mold is used, the opening edge can be heated very efficiently and intensively, and foaming / firing can be performed in a shorter time.

この発明による第1、第2および第3の生分解性容器の製造方法において、前記金型は生分解性容器の胴部と対応する部分の表面に所定の高低差を有する起伏が胴部の周方向に沿うように反復して形成されていてもよい。
このような構成によれば、金型内において生分解性材料の流動方向が定まり、加熱時に生分解性材料が生分解性容器の底部から開口縁部へ向かって速やかに発泡するようになる。
これにより、生分解性材料の発泡と焼成に要する時間をより一層短縮できる。
In the first, second and third biodegradable container manufacturing methods according to the present invention, the mold has a undulation having a predetermined height difference on the surface of a part corresponding to the body part of the biodegradable container. It may be formed repeatedly along the circumferential direction.
According to such a configuration, the flow direction of the biodegradable material is determined in the mold, and the biodegradable material quickly foams from the bottom of the biodegradable container toward the opening edge during heating.
Thereby, the time required for foaming and baking of the biodegradable material can be further shortened.

また、この発明による第1、第2および第3の生分解性容器の製造方法において、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、高周波の印加開始直後に高周波発振器からの出力電流が所定のピーク値に達するように高周波を印加し、所定時間前記ピーク値を維持した後、直ちに高周波の印加を止める工程を含んでいてもよい。   Further, in the first, second and third biodegradable container manufacturing methods according to the present invention, the step of forming the container-like foamed base material layer by steam-foaming the biodegradable material starts the application of high frequency. Immediately after this, a step of applying a high frequency so that the output current from the high frequency oscillator reaches a predetermined peak value, maintaining the peak value for a predetermined time, and immediately stopping the application of the high frequency may be included.

このような構成によれば、高周波の印加に要する時間が従来よりも大幅に短縮され、結果として生分解性材料の発泡・焼成に要する時間を大幅に短縮できる。   According to such a configuration, the time required for applying the high frequency is significantly shortened as compared with the conventional case, and as a result, the time required for foaming / firing of the biodegradable material can be greatly shortened.

つまり、従来は高周波を印加して被加熱物を誘電加熱するにあたり、印加開始後、高周波発振器からの出力を徐々に高め、出力が所定のピーク値に達した後、徐々に出力を低くして印加を終えるという手法がとられてきた。このような手法で高周波が印加された場合、出力電流値のグラフは緩やかな山形を描く。   In other words, in the past, when applying a high frequency to dielectrically heat an object to be heated, the output from the high frequency oscillator is gradually increased after the start of application, and after the output reaches a predetermined peak value, the output is gradually decreased. The technique of finishing the application has been taken. When a high frequency is applied by such a method, the graph of the output current value draws a gentle mountain shape.

上記のような手法が採用されてきたのは、以下のような理由による。
(1)印加開始直後に高周波発振器からの出力を一気に高めると制御不能の状態に陥り、スパークが発生する。
(2)出力が所定のピーク値に達し被加熱物に含まれる水分が減少していくにも関わらず、ピーク値を維持しようとすると反射波が高くなり、被加熱物の焦げ、スパークにつながる。
(3)出力を変化させずに印加開始から印加終了まで反射波を問題のないレベルに抑えることが実質困難である。
The above-described method has been adopted for the following reason.
(1) Immediately after the start of application, if the output from the high-frequency oscillator is increased all at once, it falls into an uncontrollable state and spark is generated.
(2) Even if the output reaches a predetermined peak value and the moisture contained in the object to be heated is reduced, the reflected wave becomes high when trying to maintain the peak value, which leads to scorching and sparking of the object to be heated. .
(3) It is substantially difficult to suppress the reflected wave to a level at which there is no problem from the start of application to the end of application without changing the output.

ここで、印加開始直後に高周波発振器の出力を所定のピーク値まで一気に高め、所定時間そのピーク値を維持した後、直ちに高周波の印加を止めるようにして、出力電流値が台形状のグラフを描くような印加方法をとることにより、高周波の印加に要する時間を短縮することが考えられる。
しかし、出力電流値が台形状のグラフを描くような印加方法を実現するには上記(1)〜(3)の問題を解決しなければならない。
Here, immediately after the start of application, the output of the high frequency oscillator is increased to a predetermined peak value at once, and after maintaining the peak value for a predetermined time, the application of the high frequency is stopped immediately, and a graph with a trapezoidal output current value is drawn. By adopting such an application method, it is conceivable to reduce the time required for applying a high frequency.
However, in order to realize an application method in which the output current value draws a trapezoidal graph, the above problems (1) to (3) must be solved.

そこで、本願発明者は鋭意工夫を行い、高周波発振器のインピーダンスと被加熱物のインピーダンスを整合させるインピーダンス整合回路において、キャパシタンスCp,CsおよびインダクタンスLを固定せずに個別に制御することで制御精度を向上させると共に、インダクタを高速で動作させることができるように構造上の改善を実施し、上記のような台形状のグラフを描く印加方法を実施可能にした。   Therefore, the inventor of the present application devised and improved the control accuracy by individually controlling the capacitances Cp and Cs and the inductance L without fixing them in the impedance matching circuit for matching the impedance of the high frequency oscillator and the impedance of the object to be heated. In addition to the improvement, structural improvements were made so that the inductor could be operated at high speed, and the application method for drawing the trapezoidal graph as described above could be implemented.

このような改善により、インピーダンス整合回路が被加熱物である生分解性材料の水分値等の変化に小刻みに追従して応答できるようになり、焦げやスパークの発生、制御不能状態に陥ることを回避できるようになった。
これにより、印加開始直後に出力電流値をピーク値まで一気に高め、所定時間そのピーク値を維持した後、直ちに高周波の印加を止めるという、出力電流値が台形状のグラフを描くような印加方法が可能となり、高周波の印加に要する時間の大幅な短縮を図ることが可能となったのである。
This improvement enables the impedance matching circuit to respond to changes in the moisture content of the biodegradable material, which is the object to be heated, in small increments, resulting in scoring, sparking, and an uncontrollable state. It can be avoided.
As a result, there is an application method in which the output current value draws a trapezoidal graph in which the output current value is increased immediately to the peak value immediately after the start of application, and after the peak value is maintained for a predetermined time, the application of high frequency is stopped immediately. This has made it possible to significantly reduce the time required to apply a high frequency.

この発明による第1、第2および第3の生分解性容器の製造方法において、前記生分解性材料は澱粉とパルプを含有することが好ましい。   In the first, second and third biodegradable container manufacturing methods according to the present invention, the biodegradable material preferably contains starch and pulp.

というのは、澱粉とパルプは植物由来の材料であって生分解性に優れ、燃焼させても燃焼カロリーが低いからである。   This is because starch and pulp are plant-derived materials that are excellent in biodegradability and low in calories burned even when burned.

ここで、澱粉とは、澱粉またはその誘導体を意味し、特に限定されるものではないが、例えば、馬鈴薯、トウモロコシ、タピオカ、米、小麦、さつまいもなど、主要穀物として世界的に生産されている農産物から得られる澱粉を挙げることができ、特定の農産物から製造されたものであってもよいし、複数の農産物から製造されたものを混合したものであってもよい。
また、上記の澱粉の誘導体は、生分解性を阻害しない範囲で澱粉を修飾したものを指し、例えば、α化澱粉、架橋澱粉、変性澱粉等を挙げることができる。
さらに、上記の修飾されていない澱粉と上記の澱粉の誘導体とを混合した混合物が用いられてもよい。
Here, starch means starch or a derivative thereof, and is not particularly limited. For example, potato, corn, tapioca, rice, wheat, sweet potato, and other agricultural products that are produced worldwide as main grains. The starch obtained from can be mentioned, The thing manufactured from the specific agricultural product may be used, and the thing manufactured from the several agricultural products may be mixed.
Further, the starch derivatives mentioned above refer to those obtained by modifying starch within a range that does not inhibit biodegradability, and examples thereof include pregelatinized starch, crosslinked starch, and modified starch.
Furthermore, a mixture obtained by mixing the unmodified starch and the starch derivative may be used.

また、パルプとは、植物由来の繊維の集合体を意味し、特に限定されるものではないが、例えば、木材パルプや非木材パルプを挙げることができる。   The pulp means an aggregate of plant-derived fibers and is not particularly limited, and examples thereof include wood pulp and non-wood pulp.

この発明は別の観点からみると、この発明による上述の製造方法によって製造された生分解性容器であって、開口を形成する開口縁部の厚みが底部および胴部の厚みよりも薄く形成されてなる生分解性容器を提供するものでもある。   From another viewpoint, the present invention is a biodegradable container manufactured by the above-described manufacturing method according to the present invention, wherein the opening edge portion forming the opening is formed thinner than the bottom portion and the trunk portion. It also provides a biodegradable container.

以下、図面に基づいてこの発明の実施形態に係る生分解性容器の製造方法について説明する。なお、以下に説明する複数の実施形態において同じ部材には同じ符号を付して説明する。   Hereinafter, the manufacturing method of the biodegradable container which concerns on embodiment of this invention based on drawing is demonstrated. In addition, in the several embodiment demonstrated below, the same code | symbol is attached | subjected and demonstrated to the same member.

実施形態1
本発明の実施形態1に係る生分解性容器の製造方法について図1〜9に基づいて説明する。図1は本発明の実施形態1に係る製造方法により製造された生分解性容器の断面図、図2は図1のA部拡大図、図3は図1のB部拡大図である。
Embodiment 1
The manufacturing method of the biodegradable container which concerns on Embodiment 1 of this invention is demonstrated based on FIGS. 1 is a cross-sectional view of a biodegradable container manufactured by the manufacturing method according to Embodiment 1 of the present invention, FIG. 2 is an enlarged view of part A in FIG. 1, and FIG. 3 is an enlarged view of part B in FIG.

図1〜3に示されるように、本発明の実施形態1に係る製造方法によって製造された生分解性容器1は、生分解性容器1の骨格をなす発泡基材層2と、発泡基材層2の内面と外面の両方の表面を被覆する疎水性の生分解性フィルム3とから構成されている。
発泡基材層2の内面と外面の両方の表面が生分解性フィルム3で被覆されることにより、生分解性容器1は耐湿性と長期保存性に優れ、また、発泡基材層2の優れた断熱性により熱湯などを入れて使用することも可能な構成となっている。
As shown in FIGS. 1 to 3, the biodegradable container 1 manufactured by the manufacturing method according to Embodiment 1 of the present invention includes a foam base material layer 2 that forms the skeleton of the biodegradable container 1, and a foam base material. It consists of a hydrophobic biodegradable film 3 that covers both the inner and outer surfaces of the layer 2.
By covering both the inner and outer surfaces of the foam base material layer 2 with the biodegradable film 3, the biodegradable container 1 is excellent in moisture resistance and long-term storage, and the foam base material layer 2 is excellent. Due to its heat insulation properties, it can also be used with hot water.

図1に示されるように、生分解性容器1は、開口を形成する開口縁部1aと、底部1bと、開口縁部1aと底部1bとの間に延びる胴部1cとから構成されている。
ここで、本実施形態において開口縁部1aとは、具体的には図3に示されるように、胴部1cの上端から外方へ広がるように屈曲する屈曲部1dを経て開口端部1eへ至る部分のことである。図3では、開口縁部1aに相当する部分を一点鎖線で囲んで示している。
As shown in FIG. 1, the biodegradable container 1 includes an opening edge 1a that forms an opening, a bottom 1b, and a body 1c that extends between the opening edge 1a and the bottom 1b. .
Here, in the present embodiment, the opening edge 1a is specifically, as shown in FIG. 3, via the bent portion 1d that bends outward from the upper end of the body 1c to the opening end 1e. It ’s all about. In FIG. 3, a portion corresponding to the opening edge 1 a is surrounded by a dashed line.

図1に示されるように、本実施形態において、開口縁部1aの厚みT1は約1.7mm、底部1bと胴部1cの厚みT2,T3はいずれも約2.0mmであり、開口縁部1aの厚みT1が底部1bや胴部1cの厚みT2,T3よりも薄くなるように構成されている。
つまり、本実施形態において、開口縁部1aの厚みT1は底部1bと胴部1cの厚みT2,T3の平均値(約2.0mm)の約85%に設定されている。
なお、本実施形態では開口縁部1aを構成する屈曲部1dの厚みT4は約1.91mmとされ、胴部1cのうち屈曲部1dに繋がる上端部はその厚みが約2.0mmから約1.91mmへ徐々に薄くなるように構成されている。
As shown in FIG. 1, in this embodiment, the thickness T1 of the opening edge 1a is about 1.7 mm, and the thicknesses T2 and T3 of the bottom 1b and the body 1c are both about 2.0 mm. The thickness T1 of 1a is configured to be thinner than the thicknesses T2 and T3 of the bottom 1b and the trunk 1c.
That is, in the present embodiment, the thickness T1 of the opening edge 1a is set to about 85% of the average value (about 2.0 mm) of the thicknesses T2 and T3 of the bottom 1b and the body 1c.
In the present embodiment, the thickness T4 of the bent portion 1d constituting the opening edge portion 1a is about 1.91 mm, and the upper end portion of the body portion 1c connected to the bent portion 1d has a thickness of about 2.0 mm to about 1 mm. It is configured to gradually become thinner to 91 mm.

以下、図1に示される生分解性容器1の製造方法について図4および図5に基づいて説明する。図4および図5は実施形態1に係る生分解性容器の製造方法を説明する工程図である。   Hereinafter, a method for manufacturing the biodegradable container 1 shown in FIG. 1 will be described with reference to FIGS. 4 and 5. 4 and 5 are process diagrams illustrating a method for manufacturing a biodegradable container according to Embodiment 1. FIG.

本実施形態では、図4(a)に示されるように、成形すべき容器の形状に対応したキャビティ9(図5(c)参照)を形成するための一対の雄型4と雌型5とからなる発泡成形用の金型6が用いられる。雄型4と雌型5はいずれもアルミニウム製で図示しない電熱ヒータを内蔵しており、以下の工程においていずれも約130〜160℃に維持される。   In this embodiment, as shown in FIG. 4A, a pair of male mold 4 and female mold 5 for forming a cavity 9 (see FIG. 5C) corresponding to the shape of the container to be molded, A mold 6 for foam molding is used. The male mold 4 and the female mold 5 are both made of aluminum and have a built-in electric heater (not shown), and both are maintained at about 130 to 160 ° C. in the following steps.

雄型4と雌型5は、金型6によって成形された生分解性容器1の開口縁部1a、底部1bおよび胴部1cがそれぞれ上述の厚みT1,T2,T3を有するような寸法と形状に形成されている。
また、図5(c)に示されるように、雄型4と雌型5は、金型6内に供給された被加熱物である生分解性材料7を誘電加熱することができるよう、インダクタンスやキャパシタンスを可変としたインピーダンス整合回路11を介して高周波発振器10に接続されている。
そして、雄型4と雌型5との当接箇所、すなわち生分解性容器1の開口縁部1aと対応する箇所にはキャビティ9内で生分解性材料7から発生した水蒸気を外部へ放出させるための蒸気抜き孔(図示せず)が形成されている。
The male mold 4 and the female mold 5 have dimensions and shapes such that the opening edge 1a, the bottom 1b, and the body 1c of the biodegradable container 1 formed by the mold 6 have the above-described thicknesses T1, T2, and T3, respectively. Is formed.
Further, as shown in FIG. 5C, the male mold 4 and the female mold 5 have inductances so that the biodegradable material 7 that is a heated object supplied into the mold 6 can be dielectrically heated. And is connected to the high-frequency oscillator 10 through an impedance matching circuit 11 with variable capacitance.
Then, the water vapor generated from the biodegradable material 7 in the cavity 9 is released to the outside at the contact point between the male mold 4 and the female mold 5, that is, the position corresponding to the opening edge 1a of the biodegradable container 1. Vapor vent holes (not shown) are formed.

まず、図4(a)に示されるように、生分解性材料7を枠体8に張られた2枚の生分解性フィルム3の間に挟みつけた状態で雌型5の上方に配置する。
なお、2枚の生分解性フィルムは製造工程中に互いに貼り付くことがないよう、それらの対向面に予め二酸化チタンの粉末が塗布される。
また、生分解性材料7を挟んだ生分解性フィルム3は、雌型5の上方に配置されると同時に約100〜150℃(熱風吹き出し口温度)の熱風により、生分解性フィルム3の表面温度で100〜120℃程度まで加熱・軟化される。この生分解性フィルム3の予備加熱は雄型4と雌型5の嵌合が完了するまで継続される。
First, as shown in FIG. 4A, the biodegradable material 7 is disposed above the female mold 5 with the biodegradable material 7 sandwiched between two biodegradable films 3 stretched on a frame 8. .
The two biodegradable films are preliminarily coated with titanium dioxide powder on their facing surfaces so that they do not stick to each other during the manufacturing process.
The biodegradable film 3 sandwiching the biodegradable material 7 is disposed above the female mold 5 and at the same time, the surface of the biodegradable film 3 is heated by hot air of about 100 to 150 ° C. (hot air outlet temperature). It is heated and softened to a temperature of about 100 to 120 ° C. This preheating of the biodegradable film 3 is continued until the fitting between the male mold 4 and the female mold 5 is completed.

発泡基材層2(図2参照)の材料となる上記の生分解性材料7は、パルプおよび水の溶解物に澱粉を混合した後、加熱してα化したものである。前記澱粉には生分解性容器1の材料として最適な性質を示すように適量の二酸化チタンおよびゼラチンが混合されていてもよい。本実施形態において、生分解性材料7に占める水の比率(水分値)は約50〜65重量%であり、生分解性材料7の性状はドウ状である。
一方、生分解性フィルム3は生分解性芳香族ポリエステル樹脂(バイオマックス(登録商標))を2軸延伸してフィルム状に成形したものであり、その厚さは約25〜75μmである。
Said biodegradable material 7 used as the material of the foaming base material layer 2 (refer FIG. 2) mixes starch with the melt | dissolution of a pulp and water, Then, it heats and gelatinizes. An appropriate amount of titanium dioxide and gelatin may be mixed with the starch so as to exhibit optimum properties as a material of the biodegradable container 1. In this embodiment, the ratio (moisture value) of water in the biodegradable material 7 is about 50 to 65% by weight, and the property of the biodegradable material 7 is dough.
On the other hand, the biodegradable film 3 is obtained by biaxially stretching a biodegradable aromatic polyester resin (Biomax (registered trademark)) and forming it into a film shape, and the thickness thereof is about 25 to 75 μm.

次いで、図4(b)に示されるように、雄型4を雌型5へ向かって下降させ雄型4で枠体8に張られた生分解性フィルム3を延伸する。   Next, as shown in FIG. 4B, the male mold 4 is lowered toward the female mold 5, and the biodegradable film 3 stretched on the frame body 8 is stretched by the male mold 4.

次いで、図5(c)に示されるように、雄型4をさらに下降させて雌型5と嵌合させると、生分解性フィルム3が完全に延伸されると共に生分解性材料7が加圧され雄型4と雌型5により形成されたキャビティ9内に徐々に満注する。
そして、雄型4と雌型5の嵌合から約8.5秒が経過した時点で高周波発振器10からインピーダンス整合回路11と、雄型4および雌型5とを介してキャビティ9内の生分解性材料7に高周波の印加を開始し、前記生分解性材料7を約4〜10秒間にわたって誘電加熱する。
Next, as shown in FIG. 5C, when the male mold 4 is further lowered and fitted with the female mold 5, the biodegradable film 3 is completely stretched and the biodegradable material 7 is pressurized. Then, the inside of the cavity 9 formed by the male mold 4 and the female mold 5 is gradually filled.
Then, when about 8.5 seconds have passed since the male mold 4 and the female mold 5 are fitted, the biodegradation in the cavity 9 is performed from the high frequency oscillator 10 via the impedance matching circuit 11 and the male mold 4 and the female mold 5. Application of a high frequency to the material 7 is started, and the biodegradable material 7 is dielectrically heated for about 4 to 10 seconds.

この際、高周波発振器10からの出力電流が一定となるようにインピーダンス整合回路11によって高周波発振器10と被加熱物である生分解性材料7とのインピーダンスの整合がとられ、効率よく高周波が印加される。
図6は図5に示されるインピーダンス整合回路11の電気回路図、図7は生分解性材料7に高周波を印加する際の出力電流Ip、第1および第2可変コンデンサCp,Csのキャパシタンスおよび可変インダクタLsのインダクタンスLの時間tに対する変化を示すグラフである。
At this time, impedance matching between the high frequency oscillator 10 and the biodegradable material 7 to be heated is performed by the impedance matching circuit 11 so that the output current from the high frequency oscillator 10 is constant, and high frequency is efficiently applied. The
6 is an electric circuit diagram of the impedance matching circuit 11 shown in FIG. 5, and FIG. 7 is an output current Ip when applying a high frequency to the biodegradable material 7, the capacitances of the first and second variable capacitors Cp and Cs, and the variable It is a graph which shows the change with respect to time t of the inductance L of the inductor Ls.

図6に示されるように、インピーダンス整合回路11は、高周波発振器10に並列に接続された第1可変コンデンサCpと、高周波発振器10の出力を雄型4と雌型5を介して生分解性材料7に印加する第2可変コンデンサCsと可変インダクタLsとの直列回路とを備える。
そして、図7に示されるように、高周波発振器10からの出力電流Ipが、高周波の印加開始から直ちに設定値Icまで直線的に立ち上がり、約4〜15秒間にわたってこの設定値Icを維持した後、直ちに高周波の印加を終えるように、インピーダンス整合回路11の第1および第2可変コンデンサCp,Csのキャパシタンスおよび可変インダクタLsのインダクタンスLがそれぞれ個別に制御される。
As shown in FIG. 6, the impedance matching circuit 11 includes a first variable capacitor Cp connected in parallel to the high-frequency oscillator 10, and an output of the high-frequency oscillator 10 via a male mold 4 and a female mold 5. 7 is provided with a series circuit of a second variable capacitor Cs to be applied to 7 and a variable inductor Ls.
Then, as shown in FIG. 7, after the output current Ip from the high frequency oscillator 10 rises linearly from the start of high frequency application to the set value Ic and maintains this set value Ic for about 4 to 15 seconds, The capacitances of the first and second variable capacitors Cp and Cs of the impedance matching circuit 11 and the inductance L of the variable inductor Ls are individually controlled so that the application of the high frequency is immediately finished.

このような印加手法によれば、高周波発振器10からの出力電流Ipの値は台形状のグラフを描くようになり、図19に示すような出力電流Ipの値が緩やかな山形のグラフを描く従来の印加手法と比較して大幅な印加時間の短縮が図られる。
なお、図7においてFWは入射波、RWは反射波を示している。インピーダンス整合回路11の上記制御により高周波の印加開始から印加終了まで入射波FWが一定の値を示す一方で、反射波RWが極めて低い値に抑えられていることから、高周波が効率よく生分解性材料7に印加されていることが分かる。
According to such an application method, the value of the output current Ip from the high-frequency oscillator 10 is drawn in a trapezoidal graph, and a conventional graph in which the value of the output current Ip is gentle as shown in FIG. Compared with the application method, the application time can be greatly shortened.
In FIG. 7, FW indicates an incident wave, and RW indicates a reflected wave. While the incident wave FW shows a constant value from the start of application of high frequency to the end of application by the above control of the impedance matching circuit 11, the reflected wave RW is suppressed to an extremely low value, so that the high frequency is efficiently biodegradable. It can be seen that the material 7 is applied.

ところで、反射波RWを十分に低い値に抑えつつ、出力電流Ipの値が台形状のグラフを描くような印加手法を実現するには、第1および第2可変コンデンサCp,Csのキャパシタンス、並びに、可変インダクタLsのインダクタンスLを個別に制御することに加え、第1および第2可変コンデンサCp,Cs、並びに、可変インダクタLsの応答速度を向上させる必要がある。   By the way, in order to realize an application method in which the value of the output current Ip draws a trapezoidal graph while suppressing the reflected wave RW to a sufficiently low value, the capacitances of the first and second variable capacitors Cp and Cs, and In addition to individually controlling the inductance L of the variable inductor Ls, it is necessary to improve the response speed of the first and second variable capacitors Cp and Cs and the variable inductor Ls.

そこで、図示しないが本実施形態では第1および第2可変コンデンサCp,Cs、並びに、可変インダクタLsの電極間距離を変化させるモータの駆動速度を従来よりも高めると共に、電極を安定して高速移動させることができるように電極の取付精度と取付強度を高めるという構造上の改善を図っている。
これにより、生分解性材料7に含まれる水分値の変化に逐次対応した小刻みな制御が可能となり、出力電流Ipの値が台形状のグラフを描く印加手法を実現させて高周波の印加に要する時間の大幅な短縮を図っている。
Therefore, although not shown, in the present embodiment, the motor driving speed for changing the distance between the electrodes of the first and second variable capacitors Cp and Cs and the variable inductor Ls is increased as compared with the prior art, and the electrodes are stably moved at high speed. Therefore, the structural improvement of increasing the mounting accuracy and mounting strength of the electrodes is attempted.
As a result, it is possible to perform minute control that sequentially corresponds to a change in the moisture value contained in the biodegradable material 7, and realize an application method in which the value of the output current Ip draws a trapezoidal graph, and the time required to apply a high frequency. Is greatly shortened.

さて、キャビティ9内に満注した生分解性材料7、すなわち焼成途上の発泡基材層2は、上述のとおり開口縁部1aに相当する部分の厚みT1(図1参照)が、底部1bや胴部1cの厚みT2,T3よりも薄い。
このため、焼成途上の発泡基材層2は開口縁部1aに相当する部分において絶縁距離が短くなり底部1bや胴部1cよりも高周波が集中して印加される。
この結果、開口縁部1aは底部1bや胴部1cよりも集中的に加熱されて焼成が促進されることとなり、短時間で焼成を行う場合に水分が残り易い開口縁部1aを速やかに焼成することができる。
The biodegradable material 7 filled in the cavity 9, that is, the foamed base material layer 2 in the course of firing, has a thickness T1 (see FIG. 1) corresponding to the opening edge 1a as described above, and the bottom 1b or It is thinner than the thicknesses T2 and T3 of the body 1c.
For this reason, the foaming base material layer 2 in the course of firing has a shorter insulation distance at a portion corresponding to the opening edge 1a, and a higher frequency is applied more concentratedly than the bottom 1b and the body 1c.
As a result, the opening edge portion 1a is heated more intensively than the bottom portion 1b and the body portion 1c, and firing is promoted, and when the firing is performed in a short time, the opening edge portion 1a that easily retains moisture is quickly fired. can do.

つまり、生分解性材料7に含まれる水分は、金型6から受ける加熱と高周波の印加による誘電加熱により気化して水蒸気となり、金型6に形成された蒸気抜き孔(図示せず)から外部へ放散される。
ここで、蒸気抜き孔は上述の通り雄型4と雌型5との当接箇所であって開口縁部1aに対応する箇所に形成されているため、生分解性材料7に含まれる水分は必ず開口縁部1aを通って外部へ放散されることとなる。
このため、開口縁部1aは焼成の最後まで比較的多くの水分を含み、底部1bや胴部1cと比較して生焼けとなり易い。これは短時間で焼成しようとする場合に生じ易く、底部1bや胴部1cの焼成が完了しているにもかかわらず高周波の印加を継続すると既に焼成が完了している底部1bや胴部1cに焦げが発生したり、場合によってはスパークが発生して高周波の印加継続が困難となる。
That is, the moisture contained in the biodegradable material 7 is vaporized by the heating received from the mold 6 and the dielectric heating due to the application of high frequency to become water vapor, and is externally supplied from a vapor vent (not shown) formed in the mold 6. Escaped to.
Here, since the steam vent is formed at a position where the male mold 4 and the female mold 5 are in contact with each other and corresponding to the opening edge 1a as described above, the moisture contained in the biodegradable material 7 is It will be surely diffused outside through the opening edge 1a.
For this reason, the opening edge 1a contains a relatively large amount of moisture until the end of firing, and is more likely to be burnt compared to the bottom 1b and the body 1c. This is likely to occur when firing is performed in a short time. When firing of the bottom portion 1b and the body portion 1c is completed, if the application of high frequency is continued, the bottom portion 1b and body portion 1c that has already been fired. Burning occurs, and in some cases sparks occur, making it difficult to continue applying high frequency.

しかし、本実施形態によれば、上述の通り、生焼けとなり易い開口縁部1aの厚みT1が底部1bや胴部1cの厚みT2,T3よりも薄く設定されるので、絶縁間隔の短い開口縁部1aに高周波が集中して印加され、水分を多く含む開口縁部1aを集中的に加熱して焼成を促進できる。
この結果、開口縁部1aの焼成に要する時間と、底部1bや胴部1cの焼成に要する時間とが略等しくなり、生分解性材料7の発泡・焼成に要する時間が短縮される。
However, according to the present embodiment, as described above, the thickness T1 of the opening edge 1a that is likely to be burnt is set to be thinner than the thicknesses T2 and T3 of the bottom 1b and the trunk 1c. High frequency is concentrated and applied to 1a, and the opening edge 1a containing a large amount of moisture can be intensively heated to promote firing.
As a result, the time required for firing the opening edge portion 1a and the time required for firing the bottom portion 1b and the body portion 1c become substantially equal, and the time required for foaming and firing the biodegradable material 7 is shortened.

誘電加熱によりキャビティ9内の生分解性材料7そのものが発熱すると、キャビティ9内で生分解性材料7が速やかに水蒸気発泡して焼成され、容器状の発泡基材層2が形成される。この水蒸気発泡と焼成の際に、金型6内で熱と圧力を受けた生分解性フィルム3が発泡基材層2の表面に形成された微細な凹凸にアンカー効果により密着し、発泡基材層2の内側と外側の表面がそれぞれ生分解性フィルム3で被覆される。発泡基材層2の内側と外側の表面を生分解性フィルム3で被覆するにあたり接着剤は必要なく、生分解性フィルム3は加圧と加熱によるアンカー効果のみで発泡基材層2の表面に密着する。   When the biodegradable material 7 itself in the cavity 9 generates heat due to the dielectric heating, the biodegradable material 7 is rapidly foamed and fired in the cavity 9 to form the container-like foamed base material layer 2. During the steam foaming and firing, the biodegradable film 3 that has received heat and pressure in the mold 6 is brought into close contact with the fine irregularities formed on the surface of the foam base material layer 2 by the anchor effect. The inner and outer surfaces of the layer 2 are each coated with a biodegradable film 3. No adhesive is required to coat the inner and outer surfaces of the foam base material layer 2 with the biodegradable film 3, and the biodegradable film 3 can be applied to the surface of the foam base material layer 2 only by an anchor effect by pressure and heating. In close contact.

本実施形態では、雄型4と雌型5が嵌合してから高周波の印加を開始するまでの時間(印加遅延時間)を約8.5秒としたが、この時間は生分解性材料7の流動性の程度に応じて嵌合後即〜10秒程度の範囲で適切に選択できる。   In this embodiment, the time (application delay time) from when the male mold 4 and the female mold 5 are fitted to when high-frequency application is started is about 8.5 seconds. This time is the biodegradable material 7. Depending on the degree of fluidity, it can be appropriately selected within a range of about 10 seconds immediately after fitting.

つまり、金型6内に供給された生分解性材料7は、雄型4と雌型5が嵌合してから徐々に金型6のキャビティ9内に伸びていき満注状態、若しくはそれに近い状態となる。
このため、ある程度の印加遅延時間を設定すると、生分解性材料7がキャビティ9内に満注、若しくはそれに近い状態となったところで高周波の印加を開始できることとなり、高周波印加時にインピーダンスの整合がとり易くなることから焼成状態が安定し、キャビティ9内における生分解性材料7の伸びや発泡の状態をコントロールし易くなる。
That is, the biodegradable material 7 supplied into the mold 6 gradually extends into the cavity 9 of the mold 6 after the male mold 4 and the female mold 5 are fitted together, or close to it. It becomes a state.
For this reason, when a certain application delay time is set, the application of high frequency can be started when the biodegradable material 7 is fully filled in or close to the cavity 9, and impedance matching can be easily achieved at the time of high frequency application. Thus, the firing state is stabilized, and the elongation and foaming state of the biodegradable material 7 in the cavity 9 can be easily controlled.

しかし、印加遅延時間を長く設定すると、それだけ生分解性材料7の発泡・焼成に要する時間が長くなるため、生分解性材料7の発泡・焼成に要する時間を短縮する観点からすれば、印加遅延時間はなるべく短い方がよい。
したがって、印加遅延時間はキャビティ9内における生分解性材料7の伸びや発泡状態を考慮したうえで適切に設定されればよく、印加遅延時間を適宜設定することによりキャビティ9内における生分解性材料7の伸びや発泡状態を任意に選択することが可能になる。
However, if the application delay time is set longer, the time required for foaming / firing of the biodegradable material 7 becomes longer. Therefore, from the viewpoint of shortening the time required for foaming / firing of the biodegradable material 7, the application delay is increased. The time should be as short as possible.
Therefore, the application delay time may be appropriately set in consideration of the elongation and foaming state of the biodegradable material 7 in the cavity 9, and the biodegradable material in the cavity 9 can be set appropriately by setting the application delay time. It is possible to arbitrarily select the elongation and foaming state of 7.

最後に、図5(d)に示されるように、金型6を開放して内側と外側の表面がそれぞれ生分解性フィルム3で被覆された発泡基材層2を枠体8と共に取出し、余分な生分解性フィルム3を切り取ると図1に示される生分解性容器1が得られる。   Finally, as shown in FIG. 5 (d), the mold 6 is opened, and the foamed base material layer 2 whose inner and outer surfaces are covered with the biodegradable film 3 is taken out together with the frame 8, and the excess When the biodegradable film 3 is cut, the biodegradable container 1 shown in FIG. 1 is obtained.

以上、詳細に説明したように、本実施形態によれば、焼成の最後まで比較的多くの水分を含む開口縁部1aに集中して高周波を印加することにより、開口縁部1aを集中的に加熱して焼成を促進できるので、底部1bおよび胴部1cの焼成に要する時間と開口縁部1aの焼成に要する時間とを略等しくすることができ、発泡基材層2全体を短時間で良好に焼成できる。   As described above in detail, according to the present embodiment, the opening edge 1a is concentrated by applying a high frequency to the opening edge 1a containing a relatively large amount of moisture until the end of baking. Since the firing can be promoted by heating, the time required for firing the bottom 1b and the body 1c and the time required for firing the opening edge 1a can be made substantially equal, and the entire foam base material layer 2 is good in a short time. Can be fired.

なお、本実施形態では、開口縁部1aの厚みT1を底部1bおよび胴部1cの厚みT2,T3の平均値の約85%に設定したが、開口縁部1aの厚みT1は底部1bおよび胴部1cの厚みT2,T3の平均値の約60〜90%となる範囲内で適切に設定でき、この範囲内であれば開口縁部1aに高周波を適度に集中させて開口縁部1aの焼成を促進できる。   In the present embodiment, the thickness T1 of the opening edge 1a is set to about 85% of the average value of the thicknesses T2 and T3 of the bottom 1b and the body 1c, but the thickness T1 of the opening edge 1a is set to the bottom 1b and the body 1c. The opening 1a can be appropriately set within a range of about 60 to 90% of the average value of the thicknesses T2 and T3 of the portion 1c, and within this range, the high frequency is appropriately concentrated on the opening edge 1a. Can be promoted.

実施形態1の変形例
実施形態1に係る生分解性容器の製造方法で用いられる金型の変形例について図8および図9に基づいて説明する。図8は変形例に係る金型の斜視図、図9は図8に示される金型のC−C矢視断面図である。
Modified Example of First Embodiment A modified example of the mold used in the method for manufacturing a biodegradable container according to the first embodiment will be described with reference to FIGS. FIG. 8 is a perspective view of a mold according to a modified example, and FIG. 9 is a cross-sectional view of the mold shown in FIG.

図8および図9に示されるように、実施形態1の変形例に係る金型16は、電熱ヒータ(図示せず)を内蔵したアルミニウム製の雄型14と雌型15とからなる。変形例に係る金型16も上述の金型6と同様に、雄型14と雌型15との当接箇所であって生分解性容器1の開口縁部1a(図1参照)と対応する箇所に蒸気抜き孔(図示せず)が形成される。   As shown in FIGS. 8 and 9, the mold 16 according to the modification of the first embodiment includes an aluminum male mold 14 and a female mold 15 each including an electric heater (not shown). Similarly to the above-described mold 6, the mold 16 according to the modified example is a contact portion between the male mold 14 and the female mold 15 and corresponds to the opening edge 1 a (see FIG. 1) of the biodegradable container 1. A steam vent (not shown) is formed at the location.

雄型14と雌型15のうち、生分解性容器1の胴部1c(図1参照)と対応する部分の表面には0.1〜0.3mm程度の高低差を有する起伏14a,15aが前記部分の周方向に沿って反復して形成される。
そして、起伏14a,15aを形成する各凹凸は、生分解性容器1の底部1bと対応する部分から開口縁部1aと対応する部分へ向かって延びるように形成される。
Of the male mold 14 and the female mold 15, undulations 14 a and 15 a having a height difference of about 0.1 to 0.3 mm are formed on the surface of the portion corresponding to the body portion 1 c (see FIG. 1) of the biodegradable container 1. It is formed repeatedly along the circumferential direction of the portion.
And each unevenness | corrugation which forms the undulations 14a and 15a is formed so that it may extend toward the part corresponding to the opening edge part 1a from the part corresponding to the bottom part 1b of the biodegradable container 1. FIG.

これにより、金型16内における生分解性材料7の流動方向が定まり、誘電加熱時に生分解性材料7は底部1bから開口縁部1aへ向かって速やかに発泡するようになる。
なお、図8および図9に示される起伏14a,15aは説明を容易にするために高低差を強調して描いたものであり、実際には上述のとおり0.1〜0.3mm程度の微細な高低差であるため目視ではほとんど確認されない。あまり、大きな高低差を設けると、キャビティ内において部分的に絶縁間隔の短い部分が生まれ、該部分に高周波が集中して印加されるようになり均一な焼成を妨げる恐れがあるので、0.1〜0.3mm程度の僅かな高低差が適切である。
Thereby, the flow direction of the biodegradable material 7 in the mold 16 is determined, and the biodegradable material 7 quickly foams from the bottom 1b toward the opening edge 1a during dielectric heating.
Note that the undulations 14a and 15a shown in FIGS. 8 and 9 are drawn with emphasis on the height difference for ease of explanation, and actually have a fineness of about 0.1 to 0.3 mm as described above. The difference in height is hardly confirmed by visual inspection. If a large height difference is provided, a portion having a short insulation interval is partially created in the cavity, and high frequency is concentrated and applied to the portion, which may prevent uniform firing. A slight elevation difference of about ~ 0.3 mm is appropriate.

変形例に係る金型16によれば、開口縁部1aに高周波が集中して印加される作用に加え、雄型14と雌型15にそれぞれ形成された起伏14a,15aの作用により生分解性材料7を所定の方向に向かって速やかに発泡させることができ、発泡基材層2全体をより短時間で良好に焼成できるようになる。   According to the mold 16 according to the modified example, biodegradability is achieved by the action of the undulations 14a and 15a formed on the male mold 14 and the female mold 15, respectively, in addition to the action of high frequency being concentrated and applied to the opening edge 1a. The material 7 can be rapidly foamed in a predetermined direction, and the entire foam base material layer 2 can be fired satisfactorily in a shorter time.

実施形態2
本発明の実施形態2に係る生分解性容器の製造方法について図10〜16に基づいて説明する。図10は実施形態2に係る生分解性容器の製造方法で用いられる金型の断面図、図11は図10に示される雄型の平面図、図12は図10に示される雌型の平面図である。
Embodiment 2
The manufacturing method of the biodegradable container which concerns on Embodiment 2 of this invention is demonstrated based on FIGS. 10 is a cross-sectional view of a mold used in the method for producing a biodegradable container according to Embodiment 2, FIG. 11 is a plan view of the male mold shown in FIG. 10, and FIG. 12 is a plane of the female mold shown in FIG. FIG.

実施形態2に係る生分解性容器の製造方法では図10に示される金型26が用いられる。
図10に示される金型26も、上述の実施形態1に係る生分解性容器の製造方法で用いられる金型6と同様に電熱ヒータ(図示せず)を内蔵したアルミニウム製の雄型24と雌型25とからなり、雄型24と雌型25との当接箇所であって生分解性容器1の開口縁部1a(図1参照)と対応する箇所に蒸気抜き孔(図示せず)が形成される。
In the method for manufacturing a biodegradable container according to the second embodiment, a mold 26 shown in FIG. 10 is used.
The mold 26 shown in FIG. 10 also has an aluminum male mold 24 incorporating an electric heater (not shown) in the same manner as the mold 6 used in the method for manufacturing the biodegradable container according to the first embodiment. A steam release hole (not shown) is formed at a location corresponding to the opening edge 1a (see FIG. 1) of the biodegradable container 1 that is a contact portion between the male die 24 and the female die 25. Is formed.

但し、本実施形態において金型26を構成する雄型24と雌型25は、生分解性容器1の開口縁部1a,底部1bおよび胴部1cの厚みT1,T2,T3(図1参照)がそれぞれ同一の約2.0mmとなるような寸法と形状にそれぞれ形成されている。
このため、本実施形態では、高周波を印加して生分解性材料7を誘電加熱する際に、上述の実施形態1のように生分解性容器1の開口縁部1aに高周波を集中的に印加させる作用は得られない。
しかし、図10〜12に示されるように、本実施形態の金型26を構成する雄型24と雌型25には生分解性容器1の開口縁部1aを集中的に加熱するための局部加熱用ヒータ27,29がそれぞれ設けられている。
However, in this embodiment, the male mold 24 and the female mold 25 constituting the mold 26 are the thicknesses T1, T2, and T3 of the opening edge portion 1a, the bottom portion 1b, and the trunk portion 1c of the biodegradable container 1 (see FIG. 1). Are respectively formed in the same size and shape so as to be about 2.0 mm.
For this reason, in this embodiment, when high frequency is applied and the biodegradable material 7 is dielectrically heated, high frequency is intensively applied to the opening edge 1a of the biodegradable container 1 as in the first embodiment. The effect to make is not obtained.
However, as shown in FIGS. 10 to 12, the male mold 24 and the female mold 25 constituting the mold 26 of the present embodiment are locally provided for intensively heating the opening edge 1 a of the biodegradable container 1. Heating heaters 27 and 29 are provided, respectively.

詳しくは図10および図11に示されるように、雄型24の局部加熱用ヒータ27は複数の棒状電熱ヒータ28から構成され、雄型24は生分解性容器1の開口縁部1aと対応する部分に複数の棒状電熱ヒータ28を埋設して設けるために上部コア24aと下部コア24bとに分割可能な構成となっている。
つまり、複数の棒状電熱ヒータ28は、上部コア24aと下部コア24bとの間に形成される空間に互いに隣接するように埋設され、これにより複数の棒状電熱ヒータ28が生分解性容器1の開口縁部1aと対応する部分に並んで配置される。
Specifically, as shown in FIGS. 10 and 11, the local heating heater 27 of the male mold 24 is composed of a plurality of rod-shaped electric heaters 28, and the male mold 24 corresponds to the opening edge 1 a of the biodegradable container 1. In order to embed a plurality of rod-shaped electric heaters 28 in the portion, the upper core 24a and the lower core 24b can be divided.
That is, the plurality of rod-shaped electric heaters 28 are embedded so as to be adjacent to each other in a space formed between the upper core 24 a and the lower core 24 b, whereby the plurality of rod-shaped electric heaters 28 are opened in the biodegradable container 1. It arranges along with the part corresponding to the edge 1a.

一方、図10および図12に示されるように、雌型25の局部加熱用ヒータ29は通電により発熱する平らな発熱体をラバーで被覆したリング状のラバーヒータからなり、雌型25は生分解性容器1の開口縁部1aと対応する部分に局部加熱用ヒータ29を介挿して設けるために上部モールド25aと下部モールド25bとに分割可能な構成となっている。
つまり、平らなリング状の局部加熱用ヒータ29は、上部モールド25aと下部モールド25bとの間に形成される空間を埋めるように介挿され、これにより局部加熱用ヒータ29が生分解性容器1の開口縁部1aと対応する部分に配置される。
On the other hand, as shown in FIGS. 10 and 12, the local heater 29 of the female die 25 is a ring-shaped rubber heater in which a flat heating element that generates heat when energized is covered with rubber, and the female die 25 is biodegradable. Since the local heating heater 29 is interposed in a portion corresponding to the opening edge 1a of the conductive container 1, the upper mold 25a and the lower mold 25b can be divided.
That is, the flat ring-shaped local heating heater 29 is inserted so as to fill a space formed between the upper mold 25a and the lower mold 25b, whereby the local heating heater 29 is inserted into the biodegradable container 1. It arrange | positions in the part corresponding to the opening edge part 1a.

このように、本実施形態では生分解性容器1の開口縁部1aを集中的に加熱するための局部加熱用ヒータ27,29を雄型24と雌型25にそれぞれ設けた金型26が用いられるので、生分解性材料7を水蒸気発泡させて焼成する際に、焼成の最後まで比較的多くの水分を含む開口縁部1aを集中的に加熱して開口縁部1aの焼成を促進できる。
このため、底部1bおよび胴部1cの焼成に要する時間と開口縁部1aの焼成に要する時間とを略等しくすることができ、発泡基材層2全体を短時間で良好に焼成できる。その他の構成は高周波の印加を含め上述の実施形態1と同様である。
Thus, in this embodiment, the metal mold | die 26 which provided the heaters 27 and 29 for the local heating for heating the opening edge part 1a of the biodegradable container 1 intensively to the male type | mold 24 and the female type | mold 25, respectively is used. Therefore, when the biodegradable material 7 is baked by steam foaming, the opening edge 1a containing a relatively large amount of moisture can be intensively heated until the end of baking to promote the baking of the opening edge 1a.
For this reason, the time required for firing the bottom portion 1b and the body portion 1c and the time required for firing the opening edge portion 1a can be made substantially equal, and the entire foam base material layer 2 can be fired satisfactorily in a short time. Other configurations are the same as those in the first embodiment including application of high frequency.

実施形態2の第1変形例
実施形態2に係る生分解性容器の製造方法で用いられる金型の第1変形例について図13および図14に基づいて説明する。図13は第1変形例に係る金型の断面図、図14は図13に示される雌型の平面図である。
First Modification of Second Embodiment A first modification of a mold used in the method for manufacturing a biodegradable container according to the second embodiment will be described with reference to FIGS. FIG. 13 is a sectional view of a mold according to the first modification, and FIG. 14 is a plan view of the female mold shown in FIG.

図13および図14に示されるように、実施形態2の第1変形例に係る金型36は、雌型35の局部加熱用ヒータの構成を変更したものである。
第1変形例では、雌型35の局部加熱用ヒータ39が筒状のラバーヒータで構成されている。このため、第1変形例において局部加熱用ヒータ39は開口縁部1aと対応する部分に介挿されるのではなく、開口縁部1aの直下部分を取り囲むように埋設されている。
As shown in FIGS. 13 and 14, the mold 36 according to the first modification of the second embodiment is obtained by changing the configuration of the local heating heater of the female mold 35.
In the first modified example, the local heating heater 39 of the female die 35 is constituted by a cylindrical rubber heater. For this reason, in the first modification, the local heating heater 39 is not inserted in a portion corresponding to the opening edge 1a, but is embedded so as to surround a portion immediately below the opening edge 1a.

また、このような設置手法を実施するため、雌型35は上部モールド35aおよび下部モールド35bと、上部モールド35aと下部モールド35bとの間に挟まれる中間モールド35cとの3分割構成となっている。その他の構成は雄型34の構成を含め、上述の実施形態2と同様である。   Further, in order to carry out such an installation method, the female mold 35 has a three-part configuration of an upper mold 35a and a lower mold 35b and an intermediate mold 35c sandwiched between the upper mold 35a and the lower mold 35b. . Other configurations are the same as those of the second embodiment, including the configuration of the male mold 34.

実施形態2の第2変形例
実施形態2に係る生分解性容器の製造方法で用いられる金型の第2変形例について図15および図16に基づいて説明する。図15は第2変形例に係る金型の断面図、図16は図15に示される雌型の平面図である。
Second Modification of Second Embodiment A second modification of the mold used in the method for manufacturing a biodegradable container according to the second embodiment will be described with reference to FIGS. 15 and 16. 15 is a cross-sectional view of a mold according to a second modification, and FIG. 16 is a plan view of the female mold shown in FIG.

図15および図16に示されるように、実施形態3の第2変形例に係る金型46は、雌型45の局部加熱用ヒータの構成を変更したものである。
第2変形例では、雌型45の局部加熱用ヒータ49が、開口縁部1aの直下部分を取り囲むように形成された通路49aに加熱されたオイル(図示せず)を循環させるオイルヒータによって構成されている。
As shown in FIGS. 15 and 16, the mold 46 according to the second modification of the third embodiment is obtained by changing the configuration of the local heating heater of the female mold 45.
In the second modification, the local heating heater 49 of the female mold 45 is constituted by an oil heater that circulates heated oil (not shown) in a passage 49a formed so as to surround a portion immediately below the opening edge 1a. Has been.

通路49aは上部モールド45aと下部モールド45bとの間に形成され、通路49aの両端は雌型45の外へ開放されて流入口49bおよび排出口49cとなっている。加熱されたオイルは流入口49bから流入し、通路49aの周囲を熱した後、排出口49cから排出される。その他の構成は雄型44の構成を含め、上述の実施形態2と同様である。   The passage 49a is formed between the upper mold 45a and the lower mold 45b, and both ends of the passage 49a are opened to the outside of the female mold 45 to form an inlet 49b and an outlet 49c. The heated oil flows in from the inflow port 49b, heats the periphery of the passage 49a, and then is discharged from the discharge port 49c. Other configurations are the same as those of the second embodiment, including the configuration of the male mold 44.

以上、本実施形態では、局部加熱用ヒータの具体例として棒状電熱ヒータ、ラバーヒータおよびオイルヒータを例に説明したが、局部加熱用ヒータはこれらのヒータに限定されるものではなく、目的に応じて様々な構成の局部加熱用ヒータを採用できる。
また、本実施形態では棒状電熱ヒータとラバーヒータとの組み合わせ、棒状電熱ヒータとオイルヒータとの組み合わせを例に説明したが、局部加熱用ヒータの組み合わせはこれらに限定されるものではなく、その目的に応じて様々な組み合わせを採用できる。
As described above, in the present embodiment, the rod-shaped electric heater, the rubber heater, and the oil heater have been described as specific examples of the local heating heater. However, the local heating heater is not limited to these heaters, and depends on the purpose. Various heaters for local heating can be used.
Further, in the present embodiment, the combination of the rod-shaped electric heater and the rubber heater and the combination of the rod-shaped electric heater and the oil heater have been described as examples, but the combination of the local heating heaters is not limited to these, and the purpose Various combinations can be adopted depending on the situation.

実施形態3
本発明の実施形態3に係る生分解性容器の製造方法について図17および図18に基づいて説明する。図17は実施形態3に係る生分解性容器の製造方法で用いられる金型の断面図である。
Embodiment 3
The manufacturing method of the biodegradable container which concerns on Embodiment 3 of this invention is demonstrated based on FIG. 17 and FIG. FIG. 17 is a cross-sectional view of a mold used in the method for manufacturing a biodegradable container according to the third embodiment.

実施形態3に係る生分解性容器の製造方法では図17に示される金型56が用いられる。
図17に示される金型56も、上述の実施形態1に係る生分解性容器の製造方法で用いられる金型6と同様に電熱ヒータ(図示せず)を内蔵した雄型54と雌型55とからなり、雄型54と雌型55との当接箇所であって生分解性容器1の開口縁部1a(図1参照)と対応する箇所に蒸気抜き孔(図示せず)が形成される。
In the biodegradable container manufacturing method according to Embodiment 3, a mold 56 shown in FIG. 17 is used.
The mold 56 shown in FIG. 17 also has a male mold 54 and a female mold 55 that incorporate an electric heater (not shown) in the same manner as the mold 6 used in the biodegradable container manufacturing method according to the first embodiment. A steam vent (not shown) is formed at a position where the male mold 54 and the female mold 55 are in contact with each other and corresponding to the opening edge 1a (see FIG. 1) of the biodegradable container 1. The

但し、本実施形態において金型56を構成する雄型54と雌型55は、生分解性容器1の開口縁部1a,底部1bおよび胴部1cの厚みT1,T2,T3(図1参照)がそれぞれ同一の約2.0mmとなるような寸法と形状にそれぞれ形成されている。
このため、本実施形態では、高周波を印加して生分解性材料7を誘電加熱する際に、上述の実施形態1のように生分解性容器1の開口縁部1aに高周波を集中的に印加させる作用は得られない。
しかし、図17に示されるように、本実施形態の金型56を構成する雄型54と雌型55は、生分解性容器1の開口縁部1aを集中的に加熱することができるように、生分解性容器1の開口縁部1aと対応する部分が底部1bおよび胴部1cと対応する部分よりも熱伝導性の高い材料で形成されている。
However, the male mold 54 and the female mold 55 constituting the mold 56 in the present embodiment are the thicknesses T1, T2, and T3 of the opening edge 1a, the bottom 1b, and the trunk 1c of the biodegradable container 1 (see FIG. 1). Are respectively formed in the same size and shape so as to be about 2.0 mm.
For this reason, in this embodiment, when high frequency is applied and the biodegradable material 7 is dielectrically heated, high frequency is intensively applied to the opening edge 1a of the biodegradable container 1 as in the first embodiment. The effect to make is not obtained.
However, as shown in FIG. 17, the male mold 54 and the female mold 55 constituting the mold 56 of the present embodiment can intensively heat the opening edge 1 a of the biodegradable container 1. The portion corresponding to the opening edge portion 1a of the biodegradable container 1 is formed of a material having higher thermal conductivity than the portions corresponding to the bottom portion 1b and the trunk portion 1c.

詳しくは、図17に示されるように、雄型54は上部コア54aおよび下部コア54bと、上部コア54aと下部コア54bとの間に挟まれる中間コア54cとから構成されている。
下部コア54bは生分解性容器1の底部1bおよび胴部1cの内周面と接する部分でありアルミニウムで形成されるが、中間コア54cは生分解性容器1の開口縁部1aの内周面と接する部分であるため、下部コア54bを形成するアルミニウムよりも熱伝導性の高い銅によって形成されている。
なお、上部コア54aは生分解性容器1と接することのない部分であり、下部コア54bと同様にアルミニウムで形成されている。
Specifically, as shown in FIG. 17, the male mold 54 includes an upper core 54a and a lower core 54b, and an intermediate core 54c sandwiched between the upper core 54a and the lower core 54b.
The lower core 54b is a portion that is in contact with the inner peripheral surface of the bottom 1b and the body 1c of the biodegradable container 1, and is formed of aluminum, while the intermediate core 54c is an inner peripheral surface of the opening edge 1a of the biodegradable container 1. Therefore, it is made of copper having higher thermal conductivity than aluminum forming the lower core 54b.
The upper core 54a is a portion that does not come into contact with the biodegradable container 1, and is formed of aluminum similarly to the lower core 54b.

一方、図17に示されるように、雌型55は上部モールド55aと下部モールド55bとから構成されている。
下部モールド55bは生分解性容器1の底部1bおよび胴部1cの外周面に接する部分でありアルミニウムで形成されるが、上部モールド55aは生分解性容器1の開口縁部1aの外周面に接する部分であるため、下部モールド55bを形成するアルミニウムよりも熱伝導性の高い銅によって形成されている。
On the other hand, as shown in FIG. 17, the female mold 55 is composed of an upper mold 55a and a lower mold 55b.
The lower mold 55b is a portion that is in contact with the outer peripheral surface of the bottom portion 1b and the body portion 1c of the biodegradable container 1, and is formed of aluminum. The upper mold 55a is in contact with the outer peripheral surface of the opening edge portion 1a of the biodegradable container 1. Since it is a part, it is formed of copper having higher thermal conductivity than aluminum forming the lower mold 55b.

上述の実施形態1でも述べたように、生分解性容器1の開口縁部1aは焼成の最後まで比較的多くの水分を含む部分であるため、金型56は開口縁部1aと対応する部分において開口縁部1aに含まれる水分を気化させる際に熱を奪われ温度低下をきたしやすい。
しかし、本実施形態で用いる金型56は、上述のとおり生分解性容器1の開口縁部1aと対応する部分の熱伝導性が他の部分よりも高められているため、開口縁部1aに含まれる水分を気化させる際に熱を奪われても、奪われた熱は隣接する他の部分からの熱伝導によって速やかに補われ、開口縁部1aに対応する部分の温度低下を極力抑えることができる。
As described in the first embodiment, the opening edge 1a of the biodegradable container 1 is a portion that contains a relatively large amount of moisture until the end of baking, so that the mold 56 corresponds to the opening edge 1a. When the moisture contained in the opening edge 1a is vaporized, heat is lost and the temperature is likely to decrease.
However, as described above, the mold 56 used in the present embodiment has the thermal conductivity of the portion corresponding to the opening edge portion 1a of the biodegradable container 1 higher than that of the other portions. Even if heat is deprived when vaporizing contained moisture, the deprived heat is quickly compensated by heat conduction from other adjacent parts, and the temperature drop of the part corresponding to the opening edge 1a is suppressed as much as possible. Can do.

これにより、生分解性容器1の開口縁部1aにより多くの熱を与えることが可能となり、焼成の最後まで比較的多くの水分を含む開口縁部1aを集中的に加熱して開口縁部1aの焼成を促進できる。
この結果、底部1bおよび胴部1cの焼成に要する時間と開口縁部1aの焼成に要する時間とを略等しくすることができ、発泡基材層2全体を短時間で良好に焼成できる。その他の構成は高周波の印加を含め上述の実施形態1と同様である。
Thereby, it becomes possible to give more heat to the opening edge 1a of the biodegradable container 1, and the opening edge 1a containing a relatively large amount of moisture is intensively heated until the end of baking to open the opening edge 1a. Can be fired.
As a result, the time required for firing the bottom portion 1b and the body portion 1c and the time required for firing the opening edge portion 1a can be made substantially equal, and the entire foam base material layer 2 can be fired satisfactorily in a short time. Other configurations are the same as those in the first embodiment including application of high frequency.

実施形態3の変形例
実施形態3に係る生分解性容器の製造方法で用いられる金型の変形例について図18に基づいて説明する。図18は変形例に係る金型の断面図である。
Modification of Embodiment 3 A modification of the mold used in the method for manufacturing a biodegradable container according to Embodiment 3 will be described with reference to FIG. FIG. 18 is a cross-sectional view of a mold according to a modification.

図18に示されるように、実施形態3の変形例に係る金型66は、生分解性容器1の開口縁部1aと対応する部分の熱伝導性を高めるために、開口縁部1aと対応する部分の表面に熱伝導性に優れた金メッキ67,68を施したものである。金型66を構成する雄型64と雌型65は実施形態1と同様にアルミニウムで形成されている。
このように、雄型64と雌型65のうち、生分解性容器1の開口縁部1aと対応する部分の表面に熱伝導性に優れた金メッキ67,68を施すことによっても上述の実施形態3に係る金型56と同様の効果を奏することができ、生分解性材料7の発泡と焼成に要する時間を短縮することができる。
As shown in FIG. 18, the mold 66 according to the modification of the third embodiment corresponds to the opening edge 1 a in order to increase the thermal conductivity of the portion corresponding to the opening edge 1 a of the biodegradable container 1. Gold plating 67, 68 excellent in thermal conductivity is applied to the surface of the portion to be processed. The male mold 64 and the female mold 65 constituting the mold 66 are made of aluminum as in the first embodiment.
As described above, the above-described embodiment is also obtained by applying the gold platings 67 and 68 having excellent thermal conductivity to the surface of the male mold 64 and the female mold 65 corresponding to the opening edge 1a of the biodegradable container 1. 3 can be produced, and the time required for foaming and firing of the biodegradable material 7 can be shortened.

なお、説明を容易にするため、図18では金メッキ67,68の厚みを強調して描いているが、金メッキ67,68の厚み(膜厚)は3〜5μm程度であり、アルミニウムの地肌が露出した部分と金メッキ67,68が施された部分との境界に段差は形成されていない。   For ease of explanation, the thickness of the gold platings 67 and 68 is drawn with emphasis in FIG. 18, but the thickness (film thickness) of the gold platings 67 and 68 is about 3 to 5 μm, and the aluminum background is exposed. No step is formed at the boundary between the portion that has been subjected to gold plating 67 and 68.

以上、本実施形態では、生分解性容器1の開口縁部1aと対応する部分の熱伝導性を他の部分よりも高めるために、開口縁部1aと対応する部分を銅材または金メッキで形成し、他の部分をアルミニウムで形成する構成について説明したが、本実施形態はこれらに限定されるものではなく、目的に応じて様々な構成と材料を採用できる。
例えば、異種材料の組み込みとメッキは併用されても構わないし、或いは雄型と雌型の一方に熱伝導性に優れた異種材料を組み込み、他方に熱伝導性に優れたメッキを施すなど、様々な改変を行うことができる。
また、材料の組み合わせもアルミニウム、銅、金に限定されるものではなく、様々な材料の組み合わせを採用できる。
As mentioned above, in this embodiment, in order to raise the heat conductivity of the part corresponding to the opening edge part 1a of the biodegradable container 1 rather than another part, the part corresponding to the opening edge part 1a is formed with a copper material or gold plating. In addition, although the configuration in which other portions are formed of aluminum has been described, the present embodiment is not limited to these, and various configurations and materials can be employed depending on the purpose.
For example, dissimilar material incorporation and plating may be used together, or various types of materials such as incorporating a dissimilar material with excellent thermal conductivity in one of the male mold and female mold and plating with excellent thermal conductivity on the other, etc. Modifications can be made.
Moreover, the combination of materials is not limited to aluminum, copper, and gold, and various combinations of materials can be employed.

以上、詳細に説明したように、本発明によれば、焼成の最後まで比較的多くの水分を含む生分解性容器の開口縁部を集中的に加熱して焼成を促進することにより、底部および胴部の焼成に要する時間と開口縁部の焼成に要する時間とを略等しくすることができ、発泡基材層全体を短時間で良好に焼成できる。   As described above in detail, according to the present invention, by intensively heating the opening edge of the biodegradable container containing a relatively large amount of moisture until the end of baking to promote baking, The time required for firing the body portion and the time required for firing the opening edge portion can be made substantially equal, and the entire foam base material layer can be fired satisfactorily in a short time.

なお、本発明では、開口縁部を集中的に加熱する方法として、開口縁部の厚みが薄くなるよう形成された金型を用いて開口縁部に高周波を集中的に印加させる方法、開口縁部を集中的に加熱する局部加熱用ヒータを金型に設ける方法、金型のうち開口縁部と対応する部分を熱伝導性の高い材料で形成する方法をそれぞれ説明した。
しかし、これらの方法は組み合わせて用いられてもよく、むしろ組み合わせて用いられることが生分解性材料をより短時間で発泡・焼成するうえでは好ましい。
In the present invention, as a method of intensively heating the opening edge, a method of intensively applying a high frequency to the opening edge using a mold formed so as to reduce the thickness of the opening edge, A method of providing a local heater for heating the portion intensively in the mold and a method of forming a portion corresponding to the opening edge portion of the mold with a material having high thermal conductivity have been described.
However, these methods may be used in combination. Rather, it is preferable to use them in combination for foaming and baking the biodegradable material in a shorter time.

つまり、生分解性材料をより短時間で発泡・焼成するために、本発明の実施形態1および2に係る生分解性容器の製造方法が組み合わせて用いられてもよいし、本発明の実施形態1および3に係る生分解性容器の製造方法が組み合わせて用いられてもよい。或いは、本発明の実施形態2および3に係る生分解性容器の製造方法が組み合わせて用いられてもよいし、本発明の実施形態1、2および3に係る生分解性容器の製造方法が組み合わせて用いられてもよく、実施形態1、2および3に係る生分解性容器の製造方法の組み合わせは任意に選択できる。   That is, in order to foam and fire the biodegradable material in a shorter time, the biodegradable container manufacturing method according to Embodiments 1 and 2 of the present invention may be used in combination, or an embodiment of the present invention. The methods for producing biodegradable containers according to 1 and 3 may be used in combination. Or the manufacturing method of the biodegradable container which concerns on Embodiment 2 and 3 of this invention may be used in combination, and the manufacturing method of the biodegradable container which concerns on Embodiment 1, 2, and 3 of this invention is combined. The combination of the biodegradable container manufacturing methods according to Embodiments 1, 2, and 3 can be arbitrarily selected.

例えば、本発明の実施形態1、2および3に係る生分解性容器の製造方法が組み合わせて用いられた場合、具体的には実施形態1に係る生分解性容器の製造方法の特徴である開口縁部の厚みが底部および胴部の厚みよりも薄くなる寸法を有するように形成された金型に、実施形態2に係る生分解性容器の特徴である局部加熱用ヒータを内蔵させ、さらに実施形態3に係る生分解性容器の特徴である開口縁部と対応する部分の熱伝導性を向上させる構成を組み合わせて適用することとなる。このような金型を用いると、開口縁部を非常に効率よく集中的に加熱することができ、より短時間での発泡・焼成が可能となる。   For example, when the manufacturing method of the biodegradable container according to Embodiments 1, 2, and 3 of the present invention is used in combination, specifically, an opening that is a feature of the manufacturing method of the biodegradable container according to Embodiment 1 A local heating heater, which is a feature of the biodegradable container according to the second embodiment, is incorporated in a mold formed so that the thickness of the edge portion is smaller than the thickness of the bottom portion and the trunk portion, and further implemented. The structure which improves the heat conductivity of the part corresponding to the opening edge part which is the characteristic of the biodegradable container which concerns on form 3 will be applied combining. When such a mold is used, the opening edge can be heated very efficiently and intensively, and foaming / firing can be performed in a shorter time.

1 生分解性容器
1a 開口縁部
1b 底部
1c 胴部
1d 屈曲部
1e 開口端部
2 発泡基材層
3 生分解性フィルム
4,14,24,34,44,54,64 雄型
5,15,25,35,45,55,65 雌型
6,16,26,36,46,56,66 金型
7 生分解性材料
8 枠体
9 キャビティ
10 高周波発振器
11 インピーダンス整合回路
14a,15a 起伏
24a,54a 上部コア
24b,54b 下部コア
25a,35a,55a 上部モールド
25b,35b,55b 下部モールド
27,29,39,49 局部加熱用ヒータ
28 棒状電熱ヒータ
35c 中間モールド
49a 通路
49b 流入口
49c 排出口
54c 中間コア
67,68 金メッキ
Cp 第1可変コンデンサ
Cs 第2可変コンデンサ
Ls 可変インダクタ
DESCRIPTION OF SYMBOLS 1 Biodegradable container 1a Opening edge part 1b Bottom part 1c Trunk part 1d Bending part 1e Opening edge part 2 Foaming base material layer 3 Biodegradable film 4, 14, 24, 34, 44, 54, 64 Male type | mold 5, 15, 25, 35, 45, 55, 65 Female mold 6, 16, 26, 36, 46, 56, 66 Mold 7 Biodegradable material 8 Frame body 9 Cavity 10 High frequency oscillator 11 Impedance matching circuit 14a, 15a Concavity 24a, 54a Upper cores 24b, 54b Lower cores 25a, 35a, 55a Upper molds 25b, 35b, 55b Lower molds 27, 29, 39, 49 Local heater 28 Bar-shaped electric heater 35c Intermediate mold 49a Passage 49b Inlet 49c Outlet 54c Intermediate core 67, 68 Gold-plated Cp First variable capacitor Cs Second variable capacitor Ls Variable inductor

Claims (8)

底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は開口縁部の厚みが底部および胴部の厚みよりも薄くなる寸法を有するように形成されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、厚みの薄い開口縁部に高周波を集中して印加し開口縁部を集中的に加熱する工程を含むことを特徴とする生分解性容器の製造方法。   A method for manufacturing a biodegradable container having a bottom part, a body part, and an opening edge part, for foam molding comprising a pair of male and female molds that can be fitted and have a built-in heater and electrically connected to a high-frequency oscillator Using a metal mold, the biodegradable material containing water is interposed, the male and female molds are fitted, and the biodegradable material is steam-foamed by heating from the heater and dielectric heating by applying a high frequency to open the edge And a step of forming a container-shaped foamed base material layer by calcination while dissipating water vapor from the portion corresponding to the portion to the outside, and the thickness of the opening edge of the mold becomes thinner than the thickness of the bottom portion and the trunk portion The step of forming a container-shaped foamed base material layer by steam-foaming a biodegradable material is formed so as to have a size, and a high frequency is concentrated and applied to a thin opening edge. Characterized by the process of intensively heating Method for producing a disintegratable container. 前記金型は開口縁部の厚みが底部と胴部の厚みの平均値の60〜90%となる寸法を有するように形成されてなる請求項1に記載の生分解性容器の製造方法。   The method for producing a biodegradable container according to claim 1, wherein the mold is formed so that the thickness of the opening edge is 60 to 90% of the average value of the thickness of the bottom and the body. 底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は生分解性容器の開口縁部と対応する部分に開口縁部を集中的に加熱する局部加熱用ヒータが内蔵されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、局部加熱用ヒータからの加熱により開口縁部を集中的に加熱する工程を含むことを特徴とする生分解性容器の製造方法。   A method for manufacturing a biodegradable container having a bottom part, a body part, and an opening edge part, for foam molding comprising a pair of male and female molds that can be fitted and have a built-in heater and electrically connected to a high-frequency oscillator Using a metal mold, the biodegradable material containing water is interposed, the male and female molds are fitted, and the biodegradable material is steam-foamed by heating from the heater and dielectric heating by applying a high frequency to open the edge And a step of forming a container-like foamed base material layer by calcination while dissipating water vapor from the portion corresponding to the part to the outside, and the mold has an opening edge at a part corresponding to the opening edge of the biodegradable container The step of forming a container-shaped foamed base material layer by steam-foaming a biodegradable material is incorporated into the opening edge by heating from the local heating heater. Including a step of intensive heating Method of manufacturing a biodegradable container. 底部、胴部および開口縁部を有する生分解性容器の製造方法であって、ヒータを内蔵し高周波発振器と電気的に接続された嵌合可能な一対の雄型と雌型からなる発泡成形用の金型を用い、水分を含んだ生分解性材料を介在させて雄型と雌型を嵌合させ、ヒータからの加熱と高周波の印加による誘電加熱により生分解性材料を水蒸気発泡させ開口縁部と対応する箇所から水蒸気を外部へ放散させながら焼成して容器状の発泡基材層を成形する工程を備え、前記金型は生分解性容器の開口縁部と対応する部分が底部および胴部と対応する部分よりも熱伝導性の高い材料で形成されてなり、生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、熱伝導性の高い材料で形成された前記部分により開口縁部を集中的に加熱する工程を含むことを特徴とする生分解性容器の製造方法。   A method for manufacturing a biodegradable container having a bottom part, a body part, and an opening edge part, for foam molding comprising a pair of male and female molds that can be fitted and have a built-in heater and electrically connected to a high-frequency oscillator Using a metal mold, the biodegradable material containing water is interposed, the male and female molds are fitted, and the biodegradable material is steam-foamed by heating from the heater and dielectric heating by applying a high frequency to open the edge And a step of forming a container-shaped foamed base material layer by firing while dissipating water vapor from the portion corresponding to the portion to the outside, and the mold has a portion corresponding to the opening edge of the biodegradable container at the bottom and the body. The step of forming a container-shaped foam base layer by steam foaming the biodegradable material is formed of a material with high thermal conductivity. A process for intensively heating the opening edge by the above-mentioned portion. Method for producing a biodegradable container characterized in that it comprises a. 前記金型は生分解性容器の胴部と対応する部分の表面に所定の高低差を有する起伏が胴部の周方向に沿うように反復して形成されてなる請求項1〜4のいずれか1つに記載の生分解性容器の製造方法。   The said metal mold | die is formed repeatedly on the surface of the part corresponding to the trunk | drum of a biodegradable container so that the unevenness | corrugation which has a predetermined height difference may follow the circumferential direction of a trunk | drum. The manufacturing method of the biodegradable container as described in one. 生分解性材料を水蒸気発泡させて容器状の発泡基材層を成形する前記工程は、高周波の印加開始直後に高周波発振器からの出力電流が所定のピーク値に達するように高周波を印加し、所定時間前記ピーク値を維持した後、直ちに高周波の印加を止める工程を含む請求項1〜5のいずれか1つに記載の生分解性容器の製造方法。   The step of forming the container-shaped foam base layer by steam-foaming the biodegradable material applies a high frequency so that the output current from the high frequency oscillator reaches a predetermined peak value immediately after the start of the application of the high frequency, The method for producing a biodegradable container according to any one of claims 1 to 5, comprising a step of immediately stopping application of a high frequency after maintaining the peak value for a time. 前記生分解性材料は澱粉とパルプを含有する請求項1〜6のいずれか1つに記載の生分解性容器の製造方法。   The method for producing a biodegradable container according to any one of claims 1 to 6, wherein the biodegradable material contains starch and pulp. 請求項1〜7のいずれか1つに記載の製造方法によって製造された生分解性容器。   The biodegradable container manufactured by the manufacturing method as described in any one of Claims 1-7.
JP2010233627A 2010-10-18 2010-10-18 Biodegradable container manufacturing method and biodegradable container manufactured by the method Active JP4865080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233627A JP4865080B1 (en) 2010-10-18 2010-10-18 Biodegradable container manufacturing method and biodegradable container manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233627A JP4865080B1 (en) 2010-10-18 2010-10-18 Biodegradable container manufacturing method and biodegradable container manufactured by the method

Publications (2)

Publication Number Publication Date
JP4865080B1 JP4865080B1 (en) 2012-02-01
JP2012086406A true JP2012086406A (en) 2012-05-10

Family

ID=45781833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233627A Active JP4865080B1 (en) 2010-10-18 2010-10-18 Biodegradable container manufacturing method and biodegradable container manufactured by the method

Country Status (1)

Country Link
JP (1) JP4865080B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559101A (en) * 2020-05-15 2020-08-21 东莞中和生物材料科技有限公司 Process for producing drinking container made of biodegradable material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545482C2 (en) * 2021-11-05 2023-09-26 Pulpac AB A method for manufacturing a cellulose product and a cellulose product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276007A (en) * 1988-09-12 1990-03-15 Matsushita Electric Ind Co Ltd Display device for equipment
JPH0994876A (en) * 1995-10-03 1997-04-08 Kanegafuchi Chem Ind Co Ltd Mold and method for molding psp container becoming good in mouth shape
JP3874511B2 (en) * 1996-12-03 2007-01-31 日世株式会社 Method for producing starch biodegradable molding
AU8619601A (en) * 2000-09-13 2002-03-26 Nissei Kk Biodegradable molded articles, process for producing the smae and compositions for foam molding
JP2002144362A (en) * 2000-11-09 2002-05-21 Sekisui Koki Seisakusho:Kk Foam molding die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559101A (en) * 2020-05-15 2020-08-21 东莞中和生物材料科技有限公司 Process for producing drinking container made of biodegradable material

Also Published As

Publication number Publication date
JP4865080B1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US5004121A (en) Controlled heating baking pan
JP2009029518A (en) Manufacturing method for microwavable paper cup
JP4865080B1 (en) Biodegradable container manufacturing method and biodegradable container manufactured by the method
KR101145618B1 (en) Manufacturing method of hole noodlel
JP2008062990A (en) Susceptor mount board
JP3874511B2 (en) Method for producing starch biodegradable molding
US6136255A (en) Method and device for manufacturing biodegradable molded objects
NZ515097A (en) Improvements in and relating to bio-degradable foamed products
JP4865050B2 (en) Manufacturing method of biodegradable container
WO2004103687A8 (en) Making foamed bodies
KR100394832B1 (en) A manufacturing process of frypan using aluminum coating steel sheet
JP2011245852A (en) Method of manufacturing biodegradable container, and biodegradable container manufactured with the method
JP4101832B2 (en) Method for producing shaped baked confectionery
EP3094191B1 (en) Method of making snack foods
CN205994358U (en) Ware to steamed dumplings insulation
JP5577181B2 (en) Biodegradable container manufacturing method and dielectric heating apparatus used in the method
CN205018859U (en) A interior pot and ware of cooking for cooking ware
JP2005323511A (en) Method for making egg sunny-side up
JPS5823052B2 (en) Method of manufacturing rice crackers
JPS5823051B2 (en) Method of manufacturing rice crackers
JP2007090027A (en) Microwave absorbing exothermic ceramic
JP2012228224A (en) Method for producing molded baked confectionery
JP6684086B2 (en) Heating device and heating method
JP5961528B2 (en) Method for producing shaped baked confectionery
CN104302185A (en) Dough-based vase-shaped snack heatable by microwave

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250