JP2012086275A - Output control method of power source in consumable electrode arc welding - Google Patents

Output control method of power source in consumable electrode arc welding Download PDF

Info

Publication number
JP2012086275A
JP2012086275A JP2012024795A JP2012024795A JP2012086275A JP 2012086275 A JP2012086275 A JP 2012086275A JP 2012024795 A JP2012024795 A JP 2012024795A JP 2012024795 A JP2012024795 A JP 2012024795A JP 2012086275 A JP2012086275 A JP 2012086275A
Authority
JP
Japan
Prior art keywords
welding
power source
consumable electrode
speed
electrode arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012024795A
Other languages
Japanese (ja)
Inventor
Yuji Ueda
裕司 上田
Toshiro Uesono
敏郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2012024795A priority Critical patent/JP2012086275A/en
Publication of JP2012086275A publication Critical patent/JP2012086275A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve stability of a welding state in consumable electrode arc welding, when slow-speed welding for a thick plate is performed with a large-sized molten pool immediately below the arc, and when high-speed welding for a thin sheet is performed with a small-sized molten pool immediately below the arc.SOLUTION: This is an output control method of a power source in the consumable electrode arc welding, a method in which inclination Kr of the external properties of the welding power source is controlled in accordance with welding conditions and in which, as the characteristic, the welding conditions are wire deposition quantity Fr per unit welding length. By varying the inclination Kr of the external properties in accordance with the wire deposition quantity Fr per unit welding length, stable welding state can be obtained in the low-speed welding for a thick plate as well as high-speed welding for a thin sheet.

Description

本発明は、溶接条件に応じて溶接電源の外部特性の傾きを適正値に制御するための消耗電極アーク溶接電源の出力制御方法に関するものである。   The present invention relates to an output control method for a consumable electrode arc welding power source for controlling an inclination of an external characteristic of a welding power source to an appropriate value according to welding conditions.

図6は、消耗電極アーク溶接電源の外部特性を示す図である。同図の横軸は溶接電源の出力電流Iwを示し、縦軸は出力端子電圧である溶接電圧Vwを示す。外部特性L1、L2は、出力電流Iwと溶接電圧Vwとの関係を表すものであり、一般的に右下がりの略直線となる。したがって、外部特性は下式で表すことができる。
Vw=Kr×(Iw−Ir)+Vr …(1)式
但し、Kr[V/A]は傾き設定値、Ir[A]は出力電流基準値、Vr[V]は溶接電圧基準値である。これらの値を設定することによって外部特性を設定する。
FIG. 6 is a diagram showing external characteristics of the consumable electrode arc welding power source. In the figure, the horizontal axis indicates the output current Iw of the welding power source, and the vertical axis indicates the welding voltage Vw that is the output terminal voltage. The external characteristics L1 and L2 represent the relationship between the output current Iw and the welding voltage Vw, and are generally a straight line with a downward slope to the right. Therefore, the external characteristic can be expressed by the following formula.
Vw = Kr × (Iw−Ir) + Vr (1) where Kr [V / A] is the slope setting value, Ir [A] is the output current reference value, and Vr [V] is the welding voltage reference value. External characteristics are set by setting these values.

例えば、外部特性L1は傾き設定値Kr=−0.03V/Aの略定電圧特性の場合であり、外部特性L2は傾き設定値Kr=−0.1V/Aの垂下特性の場合である。消耗電極アーク溶接においては、種々の外乱が発生してもアーク長を適正値に維持することが良好な溶接品質を得るために重要である。この外乱に対してアーク長を適正値に維持する制御をアーク長制御と呼ぶ。外部特性の傾きはアーク長制御系のゲイン(利得)を決めるので、アーク長制御系の安定性と密接な関係にある。   For example, the external characteristic L1 is a case of a substantially constant voltage characteristic with a slope setting value Kr = −0.03 V / A, and the external characteristic L2 is a case of a drooping characteristic with a slope setting value Kr = −0.1 V / A. In consumable electrode arc welding, it is important to maintain the arc length at an appropriate value even when various disturbances occur in order to obtain good welding quality. Control for maintaining the arc length at an appropriate value against this disturbance is called arc length control. The slope of the external characteristic determines the gain of the arc length control system, and is closely related to the stability of the arc length control system.

したがって、外部特性の傾きは、溶接条件に応じてアーク長制御系が安定になるように設定される。従来から、溶接法、溶接ワイヤの直径、材質及び出力電流(ワイヤ送給速度)に応じて、外部特性の傾きを変化させることによって、アーク長制御系のゲインを調整して安定化を図ってきた。例えば、CO2/MAG溶接の場合にが、同図に示す外部特性L1のように、傾き設定値Kr=−0.03に設定する。他方、パルスアーク溶接の場合には、同図に示す外部特性L2のように、傾き設定値Kr=−0.1に設定する。こうすることによって、アーク長制御系が安定化し、アーク状態が良好になる(例えば、特許文献1参照)。   Therefore, the inclination of the external characteristic is set so that the arc length control system becomes stable according to the welding conditions. Conventionally, the gain of the arc length control system has been adjusted and stabilized by changing the slope of the external characteristics in accordance with the welding method, welding wire diameter, material and output current (wire feed speed). It was. For example, in the case of CO2 / MAG welding, the inclination set value Kr = −0.03 is set as in the external characteristic L1 shown in FIG. On the other hand, in the case of pulse arc welding, the inclination set value Kr = −0.1 is set as in the external characteristic L2 shown in FIG. By doing so, the arc length control system is stabilized and the arc state is improved (see, for example, Patent Document 1).

特開2002−254172号公報JP 2002-254172 A

溶接法をCO2溶接、溶接ワイヤの直径を1.2mm、材質を軟鋼、出力電流を300Aに設定したときの外部特性の傾きをKr=−0.03V/Aに設定した場合を例として考える。この条件で薄板高速溶接を行うと、良好な溶接品質を得ることができる。しかし、この条件で厚板低速溶接を行うと、スパッタの多い不安定な溶接状態になる。図7は、そのときの溶接電圧Vw及び出力電流Iwの波形図である。同図(A)に示すように、溶接電圧Vwは略一定値に制御されている。他方、同図(B)に示すように、出力電流Iwは周期的に大きく変動している。これは、外部特性の傾きKrが−0.03と定電圧特性でありアーク長制御系のゲインが大きいので、溶接電圧Vwが一定値に強く制御されるために、出力電流Iwはそれを補償するために変動する。図8は、そのときのアーク発生部を示す図である。同図(A)に示すように、溶接ワイヤ1と溶融池2aとの間にアーク3が発生している。同図(A)から同図(C)へと時間が経過するのに伴って溶接状態が変化していく。同図に示すように、溶融池2aが大きく揺動している。このために、スパッタが多く発生し溶接状態も不安定になる。この原因は、出力電流Iwが周期的に大きく変動するために、それに伴ってアーク力が変化し溶融池2aが揺動されるためである。   Consider the case where the welding method is CO2 welding, the diameter of the welding wire is 1.2 mm, the material is mild steel, and the slope of the external characteristic is set to Kr = −0.03 V / A when the output current is set to 300 A. When thin plate high-speed welding is performed under these conditions, good welding quality can be obtained. However, if thick plate low-speed welding is performed under these conditions, an unstable welding state with many spatters is obtained. FIG. 7 is a waveform diagram of the welding voltage Vw and the output current Iw at that time. As shown in FIG. 3A, the welding voltage Vw is controlled to a substantially constant value. On the other hand, the output current Iw fluctuates greatly periodically as shown in FIG. This is a constant voltage characteristic with a slope Kr of the external characteristic of −0.03, and the arc length control system has a large gain. Therefore, the welding voltage Vw is strongly controlled to a constant value, so the output current Iw compensates for it. To fluctuate. FIG. 8 is a diagram showing an arc generation unit at that time. As shown in FIG. 2A, an arc 3 is generated between the welding wire 1 and the molten pool 2a. As time elapses from FIG. 3A to FIG. 1C, the welding state changes. As shown in the figure, the molten pool 2a is largely swung. For this reason, many spatters are generated and the welding state becomes unstable. This is because the output current Iw fluctuates greatly periodically, the arc force changes accordingly, and the molten pool 2a is swung.

上述したように、溶接法、溶接ワイヤの直径、材質及び出力電流(ワイヤ送給速度)が同じ条件であっても、アーク3によって溶融池2aが揺動されるか否かによって溶接状態は大きく影響される。したがって、溶融池2aのサイズが大きく、アーク3によって揺動されるときは外部特性の傾きを変化させる必要がある。   As described above, even if the welding method, the diameter of the welding wire, the material, and the output current (wire feeding speed) are the same, the welding state is largely dependent on whether or not the molten pool 2a is swung by the arc 3. Affected. Therefore, when the size of the molten pool 2a is large and is swung by the arc 3, it is necessary to change the inclination of the external characteristics.

そこで、本発明は、溶融池のサイズが大きいときに、アーク力の変動による溶融池の揺動を抑制して安定した溶接状態を得ることができる消耗電極アーク溶接電源の出力制御方法を提供する。   Therefore, the present invention provides an output control method of a consumable electrode arc welding power source that can obtain a stable welding state by suppressing fluctuation of the molten pool due to fluctuations in arc force when the size of the molten pool is large. .

上述した課題を解決するために、請求項1の発明は、消耗電極アーク溶接に用いる溶接電源の外部特性の傾きを溶接条件に応じて制御する消耗電極アーク溶接電源の出力制御方法において、
前記溶接条件が単位溶接長さ当たりのワイヤ溶着量である、
ことを特徴とする消耗電極アーク溶接電源の出力制御方法である。
In order to solve the above-described problem, the invention of claim 1 is directed to an output control method for a consumable electrode arc welding power source that controls the inclination of the external characteristics of the welding power source used for consumable electrode arc welding according to welding conditions.
The welding condition is the amount of wire deposited per unit weld length,
An output control method for a consumable electrode arc welding power source.

請求項2の発明は、溶接ワイヤの半径及びワイヤ送給速度が一定であるときは、前記溶接条件が溶接速度である、
ことを特徴とする請求項1記載の消耗電極アーク溶接電源の出力制御方法である。
In the invention of claim 2, when the radius of the welding wire and the wire feeding speed are constant, the welding condition is the welding speed.
The consumable electrode arc welding power source output control method according to claim 1.

請求項3の発明は、継手形状が同一であるときは、前記溶接条件が溶接速度である、
ことを特徴とする請求項1記載の消耗電極アーク溶接電源の出力制御方法である。
In the invention of claim 3, when the joint shape is the same, the welding condition is a welding speed.
The consumable electrode arc welding power source output control method according to claim 1.

本発明によれば、単位溶接長さ当たりのワイヤ溶着量に応じて外部特性の傾きを変化させることによって、溶接状態を安定化することができる。   According to the present invention, the welding state can be stabilized by changing the inclination of the external characteristic in accordance with the amount of wire welding per unit weld length.

本発明の実施の形態1に係る出力制御方法を実施するための消耗電極アーク溶接電源のブロック図である。It is a block diagram of the consumable electrode arc welding power supply for implementing the output control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る溶融池幅設定値Prと傾き設定値Krとの関係図である。FIG. 5 is a relationship diagram between a weld pool width set value Pr and a tilt set value Kr according to Embodiment 1 of the present invention. 本発明の実施の形態1によって厚板低速溶接を行ったときの溶接電圧Vw及び出力電流Iwの波形図である。It is a wave form diagram of welding voltage Vw and output current Iw when thick plate low-speed welding is performed by Embodiment 1 of the present invention. 本発明の実施の形態2に係る単位溶接長さ当たりのワイヤ溶着量設定値Frと傾き設定値Krとの関係図である。FIG. 10 is a relationship diagram between a wire welding amount setting value Fr per unit welding length and an inclination setting value Kr according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る溶接速度設定値Wrと傾き設定値Krとの関係図である。It is a related figure of welding speed set value Wr and inclination set value Kr concerning Embodiment 3 of the present invention. 従来技術における溶接電源の外部特性を示す図である。It is a figure which shows the external characteristic of the welding power supply in a prior art. 従来技術によって厚板低速溶接を行ったときの溶接電圧Vw及び出力電流Iwの波形図である。It is a wave form diagram of welding voltage Vw and output current Iw when thick plate low-speed welding is performed by conventional technology. 図7の溶接時の溶融池の状態を示す図である。It is a figure which shows the state of the molten pool at the time of welding of FIG.

実施の形態1は、本発明の参考となる実施の形態である。以下、図面を参照して本発明の実施の形態について説明する。   The first embodiment is a reference embodiment of the present invention. Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る出力制御方法を実施するための消耗電極アーク溶接電源のブロック図である。以下、同図を参照して説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a consumable electrode arc welding power source for carrying out an output control method according to Embodiment 1 of the present invention. Hereinafter, a description will be given with reference to FIG.

電源主回路PMは、3相200V等の商用電源を入力として、後述する電圧誤差増幅信号Evに従ってインバータ制御、サイリスタ位相制御等の出力制御を行い、出力電圧Eを出力する。リアクトルWLは、出力電圧Eを平滑する。溶接ワイヤ1は溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4の給電チップ(図示せず)と母材2との間には溶接電圧Vwが印可し、出力電流Iwが通電する。   The power supply main circuit PM receives a commercial power supply such as a three-phase 200 V input, performs output control such as inverter control and thyristor phase control according to a voltage error amplification signal Ev described later, and outputs an output voltage E. Reactor WL smoothes output voltage E. The welding wire 1 is fed through the welding torch 4 and an arc 3 is generated between the welding wire 1 and the base material 2. A welding voltage Vw is applied between a power feed tip (not shown) of the welding torch 4 and the base material 2, and an output current Iw is conducted.

電流検出回路IDは、上記の出力電流Iwを検出して、電流検出信号Idを出力する。溶接電圧基準値設定回路VRは、予め定めた溶接電圧基準値信号Vrを出力する。出力電流基準値設定回路IRは、予め定めた出力電流基準値信号Irを出力する。溶融池幅設定回路PRは、溶融池幅を設定するための溶融池幅設定信号Prを出力する。溶融池幅は、目視又はセンサによって計測して設定する。また、溶接ビードの幅を代わりに使用しても良い。傾き設定回路KRは、上記の溶融池幅設定信号Prを入力として、図2で後述するように、外部特性の傾き設定信号Krを出力する。   The current detection circuit ID detects the output current Iw and outputs a current detection signal Id. The welding voltage reference value setting circuit VR outputs a predetermined welding voltage reference value signal Vr. The output current reference value setting circuit IR outputs a predetermined output current reference value signal Ir. The molten pool width setting circuit PR outputs a molten pool width setting signal Pr for setting the molten pool width. The weld pool width is set by visual observation or measurement with a sensor. Alternatively, the width of the weld bead may be used instead. The inclination setting circuit KR receives the above molten pool width setting signal Pr and outputs an inclination setting signal Kr having an external characteristic as will be described later with reference to FIG.

外部特性形成回路ECRは、上記の溶接電圧基準値信号Vr、出力電流基準値信号Ir、傾き設定信号Kr及び電流検出信号Idを入力として、(1)式に従って、Ecr=Kr×(Id−Ir)+Vrを演算して、出力電圧設定信号Ecrを出力する。このように、図6で上述したように、所望の外部特性を形成するために電流検出信号Id(出力電流Iw)に対応した出力電圧設定信号Ecrを算出する。   The external characteristic forming circuit ECR receives the welding voltage reference value signal Vr, the output current reference value signal Ir, the inclination setting signal Kr, and the current detection signal Id, and inputs Ecr = Kr × (Id−Ir) according to the equation (1). ) Calculate + Vr and output the output voltage setting signal Ecr. As described above with reference to FIG. 6, the output voltage setting signal Ecr corresponding to the current detection signal Id (output current Iw) is calculated in order to form a desired external characteristic.

出力電圧検出回路EDは、上記の出力電圧Eを検出して、出力電圧検出信号Edを出力する。電圧誤差増幅回路EVは、上記の出力電圧設定信号Ecrと出力電圧検出信号Edとの誤差を増幅して、電圧誤差増幅信号Evを出力する。上記のようなブロック構成によって、溶融池幅又はビード幅に応じた所望の傾きを有する外部特性を形成することができる。   The output voltage detection circuit ED detects the output voltage E and outputs an output voltage detection signal Ed. The voltage error amplification circuit EV amplifies an error between the output voltage setting signal Ecr and the output voltage detection signal Ed and outputs a voltage error amplification signal Ev. With the block configuration as described above, it is possible to form external characteristics having a desired inclination according to the molten pool width or bead width.

図2は、上記の傾き設定回路KRにおける溶融池幅設定値Prと傾き設定値Krとの関係を示す図である。同図に示すように、溶融池幅設定値Prが広く(大きく)なると、傾き設定値Krは傾きが急な垂下特性になる。逆に、溶融池幅設定値Prが狭く(小さく)なると、傾き設定値Krは平坦な定電圧特性に近づく。溶融池幅設定値Pr=Pr1のときの傾き設定値Kr=Kr1となる。   FIG. 2 is a diagram showing the relationship between the molten pool width setting value Pr and the inclination setting value Kr in the inclination setting circuit KR. As shown in the figure, when the weld pool width set value Pr becomes wider (larger), the slope set value Kr has a drooping characteristic with a steep slope. Conversely, when the weld pool width set value Pr becomes narrow (small), the slope set value Kr approaches a flat constant voltage characteristic. The slope set value Kr = Kr1 when the weld pool width set value Pr = Pr1.

図3は、上述した実施の形態1によって厚板低速溶接を行ったときの溶接電圧Vw及び出力電流Iwの波形図である。同図は、上述した図7と対応しており、直径1.2mmの軟鋼ワイヤを使用して出力電流300AでCO2溶接によって厚板低速溶接を行った場合である。この場合、溶融池幅が広くなるために、外部特性の傾きは急になり垂下特性になる。この結果、同図(A)に示すように、溶接電圧Vwは少し変動するが、同図(B)に示すように、出力電流Iwは図7に比べて急激な変動はほとんどない。このために、出力電流Iwの返送に伴うアーク力の変動が小さくなるので、溶融池が大きく揺動されて溶接状態が不安定になることはない。   FIG. 3 is a waveform diagram of the welding voltage Vw and the output current Iw when thick plate low-speed welding is performed according to the first embodiment described above. This figure corresponds to FIG. 7 described above, and shows a case where thick plate low-speed welding is performed by CO2 welding at an output current of 300 A using a mild steel wire having a diameter of 1.2 mm. In this case, since the molten pool width becomes wide, the slope of the external characteristic becomes steep and becomes a drooping characteristic. As a result, the welding voltage Vw slightly fluctuates as shown in FIG. 7A, but the output current Iw hardly changes as compared with FIG. 7 as shown in FIG. For this reason, since the fluctuation | variation of the arc force accompanying the return of the output current Iw becomes small, a weld pool does not rock | fluctuate greatly and a welding state does not become unstable.

同条件で薄板高速溶接を行った場合は、溶融池幅が狭くなるために、外部特性の傾きは平坦に近づき定電圧特性に変化する。高速溶接時はアーク長制御系のゲインを大きくしないと溶接が安定しないので、定電圧特性にすることによってこれを実現している。   When thin plate high-speed welding is performed under the same conditions, the molten pool width becomes narrow, so the slope of the external characteristics approaches flat and changes to constant voltage characteristics. During high-speed welding, welding is not stable unless the gain of the arc length control system is increased. This is achieved by using constant voltage characteristics.

上述した実施の形態1によれば、溶融池幅に応じて外部特性の傾きを変化させることによって、溶接状態を安定化することができる。   According to the first embodiment described above, the welding state can be stabilized by changing the slope of the external characteristics in accordance with the molten pool width.

[実施の形態2]
上述した実施の形態1では、図1に示すように、傾き設定回路KRは、溶融池幅設定信号Prを入力として予め定めた関係に従って傾き設定信号Krを出力する。これに対して、実施の形態2では、溶融池幅の代わりに単位溶接長さ当たりのワイヤ溶着量設定値Frを使用する。これは、単位溶接長さ当たりのワイヤ溶着量設定値Frが大きいときは溶融池幅の広くなるからである。単位溶接長さ当たりのワイヤ溶着量設定値Frは下式で算出することができる。
Fr[mm/mm]=π・d・Wf[mm/min]/Wr[mm/min]
ここで、Wfはワイヤ送給速度、dは溶接ワイヤの半径[mm]、Wrは溶接速度である。
[Embodiment 2]
In the first embodiment described above, as shown in FIG. 1, the tilt setting circuit KR outputs the tilt setting signal Kr according to a predetermined relationship with the weld pool width setting signal Pr as an input. On the other hand, in Embodiment 2, the wire welding amount set value Fr per unit weld length is used instead of the weld pool width. This is because the weld pool width increases when the wire welding amount set value Fr per unit weld length is large. The wire welding amount set value Fr per unit weld length can be calculated by the following equation.
Fr [mm 3 / mm] = π · d 2 · Wf [mm / min] / Wr [mm / min]
Here, Wf is the wire feed speed, d is the radius [mm] of the welding wire, and Wr is the welding speed.

図4は、実施の形態2に係る傾き設定回路KRにおける単位溶接長さ当たりのワイヤ溶着量設定値Frと傾き設定値Krとの関係を示す図である。同図に示すように、単位溶接長さ当たりのワイヤ溶着量設定値Frが大きくなると、傾き設定値Krは傾きが急な垂下特性になる。逆に、単位溶接長さ当たりのワイヤ溶着量設定値Frが小さくなると、傾き設定値Krは平坦な定電圧特性に近づく。単位溶接長さ当たりのワイヤ溶着量設定値Fr=Fr1のときの傾き設定値Kr=Kr1となる。   FIG. 4 is a diagram showing the relationship between the wire welding amount setting value Fr per unit welding length and the inclination setting value Kr in the inclination setting circuit KR according to the second embodiment. As shown in the figure, when the wire welding amount setting value Fr per unit welding length increases, the inclination setting value Kr has a drooping characteristic with a steep inclination. On the contrary, when the wire welding amount setting value Fr per unit welding length is small, the inclination setting value Kr approaches a flat constant voltage characteristic. The inclination setting value Kr = Kr1 when the wire welding amount setting value Fr = Fr1 per unit weld length is obtained.

上述した実施の形態2によれば、単位溶接長さ当たりのワイヤ溶着量に応じて外部特性の傾きを変化させることによって、溶接状態を安定化することができる。   According to the second embodiment described above, the welding state can be stabilized by changing the slope of the external characteristics in accordance with the amount of wire welding per unit weld length.

[実施の形態3]
上述した実施の形態1では、図1に示すように、傾き設定回路KRは、溶融池幅設定信号Prを入力として予め定めた関係に従って傾き設定信号Krを出力する。これに対して、実施の形態3では、溶融池幅の代わりに溶接速度設定値Wrを使用する。これは、溶接速度設定値Wrが遅くなると溶融池幅も広くなるからである。
[Embodiment 3]
In the first embodiment described above, as shown in FIG. 1, the tilt setting circuit KR outputs the tilt setting signal Kr according to a predetermined relationship with the weld pool width setting signal Pr as an input. On the other hand, in the third embodiment, the welding speed set value Wr is used instead of the molten pool width. This is because the weld pool width increases as the welding speed set value Wr decreases.

図5は、実施の形態3に係る傾き設定回路KRにおける溶接速度設定値Wrと傾き設定値Krとの関係を示す図である。同図に示すように、溶接速度設定値Wrが遅くなると、傾き設定値Krは傾きが急な垂下特性になる。逆に、溶接速度設定値Wrが速くなると、傾き設定値Krは平坦な定電圧特性に近づく。溶接速度設定値Wr=Wr1のときの傾き設定値Kr=Kr1となる。   FIG. 5 is a diagram showing the relationship between the welding speed setting value Wr and the inclination setting value Kr in the inclination setting circuit KR according to the third embodiment. As shown in the figure, when the welding speed set value Wr becomes slow, the slope set value Kr has a drooping characteristic with a steep slope. Conversely, when the welding speed set value Wr is increased, the inclination set value Kr approaches a flat constant voltage characteristic. The inclination set value Kr = Kr1 when the welding speed set value Wr = Wr1 is obtained.

上述した実施の形態3によれば、溶接速度に応じて外部特性の傾きを変化させることによって、溶接状態を安定化することができる。   According to the third embodiment described above, the welding state can be stabilized by changing the inclination of the external characteristic in accordance with the welding speed.

ところで、上述した溶融池幅、ビード幅、単位溶接長さ当たりのワイヤ溶着量又は溶接速度の少なくとも1つ以上を組み合わせて外部特性の傾きを変化させても良い。   By the way, the slope of the external characteristics may be changed by combining at least one of the above-described weld pool width, bead width, wire welding amount per unit welding length, or welding speed.

1 溶接ワイヤ
2 母材
2a 溶融池
3 アーク
4 溶接トーチ
d 溶接ワイヤの半径
E 出力電圧
ECR 外部特性形成回路
Ecr 出力電圧設定信号
ED 出力電圧検出回路
Ed 出力電圧検出信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
Fr 単位溶接長さ当たりのワイヤ溶着量設定値
ID 電流検出回路
Id 電流検出信号
IR 出力電流基準値設定回路
Ir 出力電流基準値(信号)
Iw 出力電流
KR 傾き設定回路
Kr 傾き設定(値/信号)
L1、L2 外部特性
PM 電源主回路
PR 溶融池幅設定回路
Pr 溶融池幅設定(値/信号)
VR 溶接電圧基準値設定回路
Vr 溶接電圧基準値(信号)
Vw 溶接電圧
Wf ワイヤ送給速度
WL リアクトル
Wr 溶接速度設定値
DESCRIPTION OF SYMBOLS 1 Welding wire 2 Base material 2a Weld pool 3 Arc 4 Welding torch d Radius of welding wire E Output voltage ECR External characteristic formation circuit Ecr Output voltage setting signal ED Output voltage detection circuit Ed Output voltage detection signal EV Voltage error amplification circuit Ev Voltage error Amplification signal Fr Wire welding amount setting value ID per unit welding length Current detection circuit Id Current detection signal IR Output current reference value setting circuit Ir Output current reference value (signal)
Iw Output current KR Inclination setting circuit Kr Inclination setting (value / signal)
L1, L2 External characteristics PM Power supply main circuit PR Molten pool width setting circuit Pr Molten pool width setting (value / signal)
VR welding voltage reference value setting circuit Vr welding voltage reference value (signal)
Vw Welding voltage Wf Wire feed speed WL Reactor Wr Welding speed set value

Claims (3)

消耗電極アーク溶接に用いる溶接電源の外部特性の傾きを溶接条件に応じて制御する消耗電極アーク溶接電源の出力制御方法において、
前記溶接条件が単位溶接長さ当たりのワイヤ溶着量である、
ことを特徴とする消耗電極アーク溶接電源の出力制御方法。
In the output control method of the consumable electrode arc welding power source for controlling the inclination of the external characteristic of the welding power source used for consumable electrode arc welding according to the welding conditions,
The welding condition is the amount of wire deposited per unit weld length,
An output control method for a consumable electrode arc welding power source.
溶接ワイヤの半径及びワイヤ送給速度が一定であるときは、前記溶接条件が溶接速度である、
ことを特徴とする請求項1記載の消耗電極アーク溶接電源の出力制御方法。
When the radius of the welding wire and the wire feeding speed are constant, the welding condition is the welding speed.
The output control method for a consumable electrode arc welding power source according to claim 1.
継手形状が同一であるときは、前記溶接条件が溶接速度である、
ことを特徴とする請求項1記載の消耗電極アーク溶接電源の出力制御方法。
When the joint shape is the same, the welding condition is the welding speed,
The output control method for a consumable electrode arc welding power source according to claim 1.
JP2012024795A 2012-02-08 2012-02-08 Output control method of power source in consumable electrode arc welding Pending JP2012086275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024795A JP2012086275A (en) 2012-02-08 2012-02-08 Output control method of power source in consumable electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024795A JP2012086275A (en) 2012-02-08 2012-02-08 Output control method of power source in consumable electrode arc welding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006331476A Division JP5064002B2 (en) 2006-12-08 2006-12-08 Output control method for consumable electrode arc welding power supply

Publications (1)

Publication Number Publication Date
JP2012086275A true JP2012086275A (en) 2012-05-10

Family

ID=46258472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024795A Pending JP2012086275A (en) 2012-02-08 2012-02-08 Output control method of power source in consumable electrode arc welding

Country Status (1)

Country Link
JP (1) JP2012086275A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269976A (en) * 1985-05-24 1986-11-29 Shipbuild Res Assoc Japan Automatic welding equipment
JPH09271945A (en) * 1996-04-09 1997-10-21 Daihen Corp Arc length reset control method and welding equipment in consumable electrode arc welding
JP2005066615A (en) * 2003-08-21 2005-03-17 Daihen Corp Arc-length control method at starting of gas-shielding arc welding with consumable electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269976A (en) * 1985-05-24 1986-11-29 Shipbuild Res Assoc Japan Automatic welding equipment
JPH09271945A (en) * 1996-04-09 1997-10-21 Daihen Corp Arc length reset control method and welding equipment in consumable electrode arc welding
JP2005066615A (en) * 2003-08-21 2005-03-17 Daihen Corp Arc-length control method at starting of gas-shielding arc welding with consumable electrode

Similar Documents

Publication Publication Date Title
US9457420B2 (en) Gas tungsten arc welding with cross AC arcing twin wires
JP4334930B2 (en) Arc length control method for pulse arc welding
US20150158107A1 (en) Method and system to use combination filler wire feed and high intensity energy source for welding
WO2012046411A1 (en) Arc welding method and arc welding device
JP2007229775A (en) Consumable electrode arc welding method
WO2015107974A1 (en) Arc welding control method
JP2004237342A (en) Pulse output control method, and consumable electrode type pulse arc welding equipment
Eriksson et al. Guidelines in the choice of parameters for hybrid laser arc welding with fiber lasers
JP4643161B2 (en) Consumable electrode gas shielded arc welding method with constant current characteristics
JP2006198668A (en) Method for controlling arc welding power output
WO2015141664A1 (en) Arc welding control method
JP5064002B2 (en) Output control method for consumable electrode arc welding power supply
JP4890179B2 (en) Plasma MIG welding method
JP5090759B2 (en) Output control method for consumable electrode AC arc welding power supply
JP5154872B2 (en) Output control method of pulse arc welding
JP6555824B2 (en) Arc welding method
JP2012086275A (en) Output control method of power source in consumable electrode arc welding
JP2012110951A (en) Method of controlling pulsed arc welding
JP5824221B2 (en) Consumable electrode arc welding control method
JP4847142B2 (en) Output control method for consumable electrode pulse arc welding
JP2012170958A (en) Two-wire welding control method
JP5511462B2 (en) Plasma MIG welding method
JP2009045662A (en) Welding power supply
JP2023010100A (en) Arc-welding control method
JP6396139B2 (en) Arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008