JP5090759B2 - Output control method for consumable electrode AC arc welding power supply - Google Patents
Output control method for consumable electrode AC arc welding power supply Download PDFInfo
- Publication number
- JP5090759B2 JP5090759B2 JP2007061376A JP2007061376A JP5090759B2 JP 5090759 B2 JP5090759 B2 JP 5090759B2 JP 2007061376 A JP2007061376 A JP 2007061376A JP 2007061376 A JP2007061376 A JP 2007061376A JP 5090759 B2 JP5090759 B2 JP 5090759B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- external characteristic
- welding
- arc welding
- polarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Arc Welding Control (AREA)
Description
本発明は、溶接条件に応じて溶接電源の外部特性の傾斜を適正値に制御するための消耗電極交流アーク溶接電源の出力制御方法に関するものである。 The present invention relates to an output control method for a consumable electrode AC arc welding power source for controlling an inclination of external characteristics of a welding power source to an appropriate value in accordance with welding conditions.
図4は、消耗電極アーク溶接電源の外部特性を示す図である。同図の横軸は溶接電源の出力電流Iwを示し、縦軸は出力端子電圧である溶接電圧Vwを示す。外部特性L1、L2は、出力電流Iwと溶接電圧Vwとの関係を表すものであり、一般的に右下がりの略直線となる。したがって、外部特性は下式で表すことができる。
Vw=Kr×(Iw−Ir)+Vr …(1)式
但し、Kr[V/A]は外部特性傾斜設定値、Ir[A]は出力電流基準値、Vr[V]は溶接電圧基準値である。これらの値を設定することによって外部特性を設定する。
FIG. 4 is a diagram showing external characteristics of the consumable electrode arc welding power source. In the figure, the horizontal axis indicates the output current Iw of the welding power source, and the vertical axis indicates the welding voltage Vw that is the output terminal voltage. The external characteristics L1 and L2 represent the relationship between the output current Iw and the welding voltage Vw, and are generally a straight line with a downward slope to the right. Therefore, the external characteristic can be expressed by the following formula.
Vw = Kr × (Iw−Ir) + Vr (1) where Kr [V / A] is the external characteristic slope setting value, Ir [A] is the output current reference value, and Vr [V] is the welding voltage reference value. is there. External characteristics are set by setting these values.
例えば、外部特性L1は傾斜設定値Kr=−0.03V/Aの略定電圧特性の場合であり、外部特性L2は傾斜設定値Kr=−0.1V/Aの垂下特性の場合である。消耗電極アーク溶接においては、種々の外乱が発生してもアーク長を適正値に維持することが良好な溶接品質を得るために重要である。この外乱に対してアーク長を適正値に維持する制御をアーク長制御と呼ぶ。外部特性の傾斜はアーク長制御系のゲイン(利得)を決めるので、アーク長制御系の安定性と密接な関係にある。 For example, the external characteristic L1 is a case of a substantially constant voltage characteristic with a slope set value Kr = −0.03 V / A, and the external characteristic L2 is a case of a drooping characteristic with a slope set value Kr = −0.1 V / A. In consumable electrode arc welding, it is important to maintain the arc length at an appropriate value even when various disturbances occur in order to obtain good welding quality. Control for maintaining the arc length at an appropriate value against this disturbance is called arc length control. The slope of the external characteristic determines the gain of the arc length control system, and is therefore closely related to the stability of the arc length control system.
したがって、外部特性の傾斜は、溶接条件に応じてアーク長制御系が安定になるように設定される。従来から、溶接法、溶接ワイヤの直径、材質及び出力電流(ワイヤ送給速度)に応じて、外部特性の傾斜を変化させることによって、アーク長制御系のゲインを調整して安定化を図ってきた。例えば、CO2/MAG溶接の場合にが、同図に示す外部特性L1のように、傾斜設定値Kr=−0.03に設定する。他方、パルスアーク溶接の場合には、同図に示す外部特性L2のように、傾斜設定値Kr=−0.1に設定する。こうすることによって、アーク長制御系が安定化し、アーク状態が良好になる(例えば、特許文献1参照)。 Therefore, the inclination of the external characteristic is set so that the arc length control system becomes stable according to the welding conditions. Conventionally, the gain of the arc length control system has been adjusted and stabilized by changing the slope of the external characteristics in accordance with the welding method, welding wire diameter, material and output current (wire feed speed). It was. For example, in the case of CO2 / MAG welding, the inclination set value Kr = −0.03 is set as in the external characteristic L1 shown in FIG. On the other hand, in the case of pulse arc welding, the inclination set value Kr = −0.1 is set as in the external characteristic L2 shown in FIG. By doing so, the arc length control system is stabilized and the arc state is improved (see, for example, Patent Document 1).
図5は、消耗電極交流アーク溶接の電流・電圧波形図である。同図(A)は極性切換信号Spnを示し、同図(B)は出力電流Iwを示し、同図(C)は溶接電圧Vwを示す。同図は短絡移行アーク溶接の場合であるが、グロビュール移行溶接、スプレー移行溶接等の場合も略同様である。以下の説明において、出力電流Iw、溶接電圧Vw、後述する出力電圧E、外部特性傾斜等の値は絶対値を意味している。したがって、値が大きいという記載は、絶対値が大きいという意味である。以下、同図を参照して説明する。 FIG. 5 is a current / voltage waveform diagram of consumable electrode AC arc welding. FIG. 4A shows the polarity switching signal Spn, FIG. 4B shows the output current Iw, and FIG. 4C shows the welding voltage Vw. The figure shows the case of short-circuit transfer arc welding, but the same applies to the cases of globule transfer welding, spray transfer welding, and the like. In the following description, values such as the output current Iw, the welding voltage Vw, the output voltage E described later, the external characteristic inclination, etc. mean absolute values. Therefore, the description that the value is large means that the absolute value is large. Hereinafter, a description will be given with reference to FIG.
同図(A)に示すように、消耗電極交流アーク溶接では、極性切換信号Spnに従って予め定めた電極プラス極性期間Tepと予め定めた電極マイナス極性期間Tenとを交互に切り換えて溶接を行う。時刻t1において電極プラス極性EPに切り換わると、同図(B)に示すように、電極プラス極性EPの出力電流iwが通電し、同図(C)に示すように、電極プラス極性EPの溶接電圧Vwが溶接ワイヤと母材との間に印加、する。時刻t1〜t2の短絡期間Ts中は、同図(B)に示すように、出力電流Iwは次第に増加し、同図(C)に示すように、溶接電圧Vwは数V程度の低い短絡電圧値になる。時刻t2〜t3のアーク期間Ta中は、同図(B)に示すように、出力電流Iwは次第に減少し、同図(C)に示すように、溶接電圧Vwは数十V程度のアーク電圧値になる。これ以降、時刻t4の電極プラス極性期間Tepが終了するまで短絡期間Tsとアーク期間Taとを繰り返す。 As shown in FIG. 6A, in consumable electrode AC arc welding, welding is performed by alternately switching between a predetermined electrode plus polarity period Tep and a predetermined electrode minus polarity period Ten according to the polarity switching signal Spn. When switching to the electrode positive polarity EP at time t1, as shown in FIG. 5B, the output current iw of the electrode positive polarity EP is energized, and as shown in FIG. A voltage Vw is applied between the welding wire and the base material. During the short-circuit period Ts from time t1 to t2, the output current Iw gradually increases as shown in FIG. 5B, and the welding voltage Vw is a low short-circuit voltage of about several volts as shown in FIG. Value. During the arc period Ta from time t2 to t3, the output current Iw gradually decreases as shown in FIG. 5B, and the welding voltage Vw is an arc voltage of about several tens of volts as shown in FIG. Value. Thereafter, the short-circuit period Ts and the arc period Ta are repeated until the electrode positive polarity period Tep at time t4 ends.
時刻t4において、同図(A)に示すように、極性切換信号SpnがLowレベルになり、溶接電源の出力が電極マイナス極性ENに切り換わると、同図(B)に示すように、電極マイナス極性ENの出力電流Iwが通電し、同図(C)に示すように、溶接電圧Vwが印加する。上記と同様に、時刻t4〜t5の短絡期間Tsと時刻t5〜t6のアーク期間Taを繰り返しながら時刻t7の電極マイナス極性期間Tenの終了まで続く。 At time t4, when the polarity switching signal Spn becomes Low level and the output of the welding power source is switched to the electrode negative polarity EN as shown in FIG. The output current Iw of polarity EN is energized, and the welding voltage Vw is applied as shown in FIG. Similarly to the above, the short-circuit period Ts from time t4 to t5 and the arc period Ta from time t5 to t6 are repeated until the end of the electrode negative polarity period Ten at time t7.
消耗電極交流アーク溶接電源における外部特性は、出力電流Iw及び溶接電圧Vwの絶対値によって直流電源のときと同様に制御される。したがって、消耗電極交流アーク溶接においても、溶接条件に応じて外部特性傾斜が適正値に設定されて溶接が行われる(例えば、特許文献2参照)。。 External characteristics in the consumable electrode AC arc welding power source are controlled in the same manner as in the DC power source by the absolute values of the output current Iw and the welding voltage Vw. Therefore, also in the consumable electrode AC arc welding, the external characteristic inclination is set to an appropriate value according to the welding conditions, and welding is performed (for example, refer to Patent Document 2). .
上述したように、消耗電極アーク溶接において良好な溶接状態を得るためには、アーク長制御系が安定していることが重要である。このために、溶接条件に応じて外部特性傾斜をを適正値に設定することによってアーク長制御系のゲイン(利得)を適正化している。すなわち、アークによる溶滴移行形態に適合した外部特性傾斜に設定することで、良好な溶接状態を得ることができる。したがって、従来技術においては、CO2溶接とパルスアーク溶接とでは溶滴移行形態が異なるので、外部特性傾斜をそれぞれの溶接法に適した値に設定していた。 As described above, in order to obtain a good welding state in consumable electrode arc welding, it is important that the arc length control system is stable. For this purpose, the gain of the arc length control system is optimized by setting the external characteristic slope to an appropriate value according to the welding conditions. That is, a good welding state can be obtained by setting the external characteristic inclination suitable for the droplet transfer mode by the arc. Therefore, in the prior art, since the droplet transfer form is different between CO2 welding and pulse arc welding, the external characteristic gradient is set to a value suitable for each welding method.
消耗電極交流アーク溶接においても同様に、母材材質、送給速度、シールドガスの種類等の溶接条件に応じて外部特性傾斜を適正化していた。このようにすることで、電極プラス極性EP時の溶接状態は良好になるが、電極プラス極性EP時の外部特性傾斜のまま電極マイナス極性溶接を行うと,アーク長制御系のゲイン(利得)が大きすぎて安定化させることが難しかった。この結果,直流の消耗電極アーク溶接に比べて消耗電極交流アーク溶接では溶接状態が不安定な状態になりやすい. Similarly, in the consumable electrode AC arc welding, the external characteristic gradient is optimized according to the welding conditions such as the base material material, the feeding speed, the type of shield gas, and the like. By doing so, the welding state at the time of the electrode positive polarity EP is improved, but if the electrode negative polarity welding is performed with the external characteristic inclination at the time of the electrode positive polarity EP, the gain of the arc length control system is increased. It was too big to stabilize. As a result, compared to DC consumable electrode arc welding, the welding state tends to be unstable in consumable electrode AC arc welding.
上述した課題を解決するために、第1の発明は、電極プラス極性と電極マイナス極性とを交互に切り換えて溶接を行う消耗電極交流アーク溶接に用いる溶接電源の外部特性の傾斜を溶接条件に応じて制御する消耗電極交流アーク溶接電源の出力制御方法において、
前記外部特性傾斜を、前記電極プラス極性のときは第1外部特性傾斜に設定し、前記電極マイナス極性のときは前記第1外部特性傾斜の絶対値よりも大きな絶対値の第2外部特性傾斜に設定し、この第2外部特性傾斜を−0.06〜−0.1(V/A)の範囲に設定する、
ことを特徴とする消耗電極交流アーク溶接電源の出力制御方法である。
In order to solve the above-described problems, the first invention is configured to change the slope of the external characteristic of a welding power source used for consumable electrode AC arc welding in which welding is performed by alternately switching between an electrode positive polarity and an electrode negative polarity according to welding conditions. In the output control method of the consumable electrode AC arc welding power source controlled by
The external characteristic gradient is set to a first external characteristic gradient when the electrode has a positive polarity, and a second external characteristic gradient having an absolute value larger than the absolute value of the first external characteristic gradient when the electrode is a negative polarity. And set the second external characteristic slope in a range of -0.06 to -0.1 (V / A).
An output control method for a consumable electrode AC arc welding power source.
第2の発明は、母材の材質及びシールドガスの種類によって、前記第1外部特性傾斜は変化させ、前記第2外部特性傾斜は変化させない、
ことを特徴とする第1の発明記載の消耗電極交流アーク溶接電源の出力制御方法である。
According to a second aspect of the invention, the first external characteristic gradient is changed and the second external characteristic gradient is not changed depending on the material of the base material and the type of the shielding gas.
An output control method for a consumable electrode AC arc welding power source according to the first aspect of the present invention.
第2の発明は、前記第1外部特性傾斜を、母材の材質及びシールドガスの種類に応じて設定する、ことを特徴とする第1の発明記載の消耗電極交流アーク溶接電源の出力制御方法である。 According to a second aspect of the present invention, the first external characteristic gradient is set according to the material of the base material and the type of the shielding gas, and the output control method of the consumable electrode AC arc welding power source according to the first aspect of the invention It is.
本発明によれば、消耗電極交流アーク溶接電源において、電極プラス極性EP時及び電極マイナス極性EN時の外部特性傾斜を各々の極性における溶接状態が良好になるように設定することによって、各々の極性におけるアーク長制御系を安定化することができる。このために、消耗電極交流アーク溶接の安定性を向上させることができ、高品質な溶接を行うことができる。 According to the present invention, in the consumable electrode AC arc welding power source, the external characteristic gradient at the time of the electrode positive polarity EP and the time of the electrode negative polarity EN is set so that the welding state in each polarity is good, so that each polarity The arc length control system can be stabilized. For this reason, the stability of consumable electrode AC arc welding can be improved, and high quality welding can be performed.
上述した第2の発明によれば、上記の効果に加えて、電極プラス極性EP時の外部特性傾斜を、母材材質及びシールドガスの種類に応じて変化させることによって、母材材質及びシールドガスの種類が変わっても溶接状態の安定性を維持することができる。 According to the second invention described above, in addition to the above-described effects, the external characteristic gradient at the time of the electrode plus polarity EP is changed according to the type of the base material and the shielding gas, so that the base material and the shielding gas are changed. The stability of the welded state can be maintained even if the type of the wire changes.
以下、図面を参照して本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明の実施の形態に係る消耗電極アーク溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。 FIG. 1 is a block diagram of a consumable electrode arc welding power source according to an embodiment of the present invention. Hereinafter, each block will be described with reference to FIG.
インバータ回路INVは、3相200V等の商用電源を入力として、整流した直流電圧を後述するパルス幅変調信号Pwmに従ってインバータ制御して、高周波交流を出力する。高周波変圧器INTは、高周波交流を溶接に適した電圧値に変換する。二次整流器群D2は、変換された高周波交流を整流して、正及び負の直流電圧を出力する。電極プラス極性スイッチング素子PTR及び電極マイナス極性スイッチング素子NTRをオン/オフ制御することによって溶接電源の出力極性を切り換える。電極プラス極性スイッチング素子PTRがオン状態のときは電極プラス極性EPになり、電極マイナス極性スイッチング素子NTRがオン状態のときは電極マイナス極性ENになる。リアクトルWLは、出力を平滑する。 The inverter circuit INV receives a commercial power supply such as a three-phase 200V as an input, and performs inverter control on the rectified DC voltage according to a pulse width modulation signal Pwm, which will be described later, and outputs a high-frequency AC. The high frequency transformer INT converts the high frequency alternating current into a voltage value suitable for welding. The secondary rectifier group D2 rectifies the converted high-frequency AC and outputs positive and negative DC voltages. The output polarity of the welding power source is switched by ON / OFF control of the electrode positive polarity switching element PTR and the electrode negative polarity switching element NTR. When the electrode positive polarity switching element PTR is in the on state, the electrode has a positive polarity EP, and when the electrode negative polarity switching element NTR is in the on state, the electrode has a negative polarity EN. The reactor WL smoothes the output.
溶接ワイヤ1は、送給装置の送給ロール5によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。
The
電極プラス極性スイッチング素子駆動回路EPDは、外部からの極性切換信号SpnがHighレベルのとき電極プラス極性スイッチング素子駆動信号Epdを出力する。電極マイナス極性スイッチング素子駆動回路ENDは、上記の極性切換信号SpnがLowレベルのとき電極マイナス極性スイッチング素子駆動信号Endを出力する。したがって、極性切換信号SpnがHighレベルのときは電極プラス極性EPになり、Lowレベルのときは電極マイナス極性ENになる。 The electrode positive polarity switching element drive circuit EPD outputs the electrode positive polarity switching element drive signal Epd when the polarity switching signal Spn from the outside is at a high level. The electrode negative polarity switching element drive circuit END outputs an electrode negative polarity switching element drive signal End when the polarity switching signal Spn is at a low level. Accordingly, when the polarity switching signal Spn is at a high level, the electrode has a positive polarity EP, and when it is at a low level, the electrode has a negative polarity EN.
外部特性傾斜設定回路KRは、上記の極性切換信号SpnがHighレベル(EP)のときは第1外部特性傾斜設定値Kr1を外部特性傾斜設定信号Krとして出力し、Lowレベル(EN)のときは第2外部特性傾斜設定値Kr2を外部特性傾斜設定信号Krとして出力する。第1外部特性傾斜設定値Kr1は電極プラス極性期間Tep中の外部特性傾斜を設定し、−0.01〜−0.03(V/A)程度の範囲である。第2外部特性傾斜設定値Kr2は、電極マイナス極性期間Ten中の外部特性傾斜を設定し、−0.06〜−0.1(V/A)程度の範囲である。したがって、|Kr1|<|Kr2|である。溶接電圧基準値回路VRは、予め定めた溶接電圧基準値信号Vrを出力する。出力電流基準値回路IRは、予め定めた出力電流基準値信号Irを出力する。電流検出回路IDは、交流の出力電流Iwを検出し絶対値に変換して、電流検出信号Idを出力する。外部特性形成回路ECRは、上記の電流検出信号Id、溶接電圧基準値信号Vr、出力電流基準値信号Ir及び外部特性傾斜設定信号Krを入力として、上述した(1)式に基づいてEcr=Kr×(Id−Ir)+Vrを算出して、出力電圧設定信号Ecrとして出力する。これを図示したものが図2である。外部特性L1は、電極プラス極性EP時の外部特性を示し、Ecr=Kr1×(Id−Ir)+Vrのときである。また、外部特性L2は、電極マイナス極性EN時の外部特性を示し、Ecr=Kr2×(Id−Ir)+Vrとなる。上記の外部特性形成回路ECRによって電流検出信号Idの値に応じた出力電圧設定信号Ecrを刻々と出力して所望の外部特性を形成する。 The external characteristic inclination setting circuit KR outputs the first external characteristic inclination setting value Kr1 as the external characteristic inclination setting signal Kr when the polarity switching signal Spn is at the high level (EP), and when the polarity switching signal Spn is at the low level (EN). The second external characteristic inclination setting value Kr2 is output as the external characteristic inclination setting signal Kr. The first external characteristic gradient setting value Kr1 sets the external characteristic gradient during the electrode positive polarity period Tep, and is in the range of about -0.01 to -0.03 (V / A). The second external characteristic gradient setting value Kr2 sets the external characteristic gradient during the electrode negative polarity period Ten, and is in the range of about -0.06 to -0.1 (V / A). Therefore, | Kr1 | <| Kr2 |. The welding voltage reference value circuit VR outputs a predetermined welding voltage reference value signal Vr. The output current reference value circuit IR outputs a predetermined output current reference value signal Ir. The current detection circuit ID detects an AC output current Iw, converts it to an absolute value, and outputs a current detection signal Id. The external characteristic forming circuit ECR receives the current detection signal Id, the welding voltage reference value signal Vr, the output current reference value signal Ir, and the external characteristic inclination setting signal Kr, and inputs Ecr = Kr based on the above-described equation (1). X (Id−Ir) + Vr is calculated and output as the output voltage setting signal Ecr. This is illustrated in FIG. The external characteristic L1 indicates the external characteristic at the time of electrode plus polarity EP, and is when Ecr = Kr1 × (Id−Ir) + Vr. The external characteristic L2 indicates the external characteristic when the electrode has negative polarity EN, and is Ecr = Kr2 × (Id−Ir) + Vr. The external characteristic forming circuit ECR outputs an output voltage setting signal Ecr corresponding to the value of the current detection signal Id to form desired external characteristics.
電圧検出回路EDは、高周波変圧器INTの2次巻線の交流電圧(出力電圧E)を検出し絶対値に変換して、出力電圧検出信号Edを出力する。誤差増幅回路EAは、上記の出力電圧設定信号Ecrと出力電圧検出信号Edとの誤差を増幅して、誤差増幅信号Eaを出力する。パルス幅変調回路PWMは、この誤差増幅信号Eaを入力としてパルス幅変調を行い、パルス幅変調信号Pwmを出力する。 The voltage detection circuit ED detects the AC voltage (output voltage E) of the secondary winding of the high-frequency transformer INT, converts it to an absolute value, and outputs an output voltage detection signal Ed. The error amplification circuit EA amplifies an error between the output voltage setting signal Ecr and the output voltage detection signal Ed and outputs an error amplification signal Ea. The pulse width modulation circuit PWM receives the error amplification signal Ea as input and performs pulse width modulation to output a pulse width modulation signal Pwm.
図3は、図1で上述した溶接電源の各信号のタイミングチャートである。同図(A)は極性切換信号Spnを示し、同図(B)は出力電流Iwを示し、同図(C)は溶接電圧Vwを示し、同図(D)は電極プラス極性スイッチング素子駆動信号Epdを示し、同図(E)は電極マイナス極性スイッチング素子駆動信号Endを示し、同図(F)は外部特性傾斜設定信号Krを示す。以下、同図を参照して説明する。 FIG. 3 is a timing chart of each signal of the welding power source described above with reference to FIG. (A) shows the polarity switching signal Spn, (B) shows the output current Iw, (C) shows the welding voltage Vw, and (D) shows the electrode plus polarity switching element drive signal. Epd is shown, FIG. 5E shows the electrode negative polarity switching element drive signal End, and FIG. 8F shows the external characteristic tilt setting signal Kr. Hereinafter, a description will be given with reference to FIG.
同図(A)に示すように、極性切換信号SpnがHighレベルになると、同図(D)に示すように、電極プラス極性スイッチング素子駆動信号Epdが出力(Highレベル)されるので、電極プラス極性スイッチング素子PTRはオン状態になり、溶接電源の出力は電極プラス極性EPになる。この電極プラス極性期間Tep中は、同図(B)に示すように、電極プラス極性EPの出力電流Iwが通電し、同図(C)に示すように、電極プラス極性EPの溶接電圧Vwが溶接ワイヤ1と母材2との間に印加する。 また、同図(F)に示すように、外部特性傾斜設定信号Krの値は第1外部特性傾斜設定値Kr1になり、図2で上述した外部特性L1が形成される。
As shown in FIG. 11A, when the polarity switching signal Spn becomes High level, the electrode plus polarity switching element drive signal Epd is output (High level) as shown in FIG. The polarity switching element PTR is turned on, and the output of the welding power source becomes the electrode plus polarity EP. During the electrode positive polarity period Tep, as shown in FIG. 5B, the output current Iw of the electrode positive polarity EP is energized, and as shown in FIG. Applied between the
時刻t2において、同図(A)に示すように、極性切換信号SpnがLowレベルになると、同図(E)に示すように、電極マイナス極性スイッチング素子駆動信号Endが出力(Highレベル)されるので、電極マイナス極性スイッチング素子NTRはオン状態になり、溶接電源の出力は電極マイナス極性ENになる。この電極マイナス極性期間Ten中は、同図(B)に示すように、電極マイナス極性ENの出力電流Iwが通電し、同図(C)に示すように、電極マイナス極性ENの溶接電圧Vwが印加される。また、同図(F)に示すように、外部特性傾斜設定信号Krは第2外部特性傾斜設定値Kr2になり、図2で上述した外部特性L2が形成される。 At time t2, as shown in FIG. 6A, when the polarity switching signal Spn becomes low level, the electrode minus polarity switching element drive signal End is output (high level) as shown in FIG. Therefore, the electrode minus polarity switching element NTR is turned on, and the output of the welding power source becomes the electrode minus polarity EN. During this electrode negative polarity period Ten, as shown in FIG. 5B, the output current Iw of the electrode negative polarity EN is energized, and as shown in FIG. Applied. Further, as shown in FIG. 5F, the external characteristic inclination setting signal Kr becomes the second external characteristic inclination setting value Kr2, and the external characteristic L2 described above with reference to FIG. 2 is formed.
上記の第1外部特性傾斜設定値Kr1及び第2外部特性傾斜設定値Kr2は、溶接条件に応じて適正値に変化させる。特に、第1外部特性傾斜設定値Kr1は、母材材質及びシールドガスの種類によって変化させる必要がある。このときに、第2外部特性傾斜設定値Kr2は、変化させずに同じ値であっても良い。鉄鋼のCO2溶接、鉄鋼のMAG溶接及びステンレス鋼のMIG溶接の順に、第2外部特性傾斜設定値Kr2は例えば−0.01、−0.02、−0.03に設定する。上述した実施の形態においては、短絡移行溶接の場合を例示したが、グロビュール移行溶接、スプレー移行溶接、パルスアーク溶接等の場合にも適用することができる。 The first external characteristic inclination setting value Kr1 and the second external characteristic inclination setting value Kr2 are changed to appropriate values according to the welding conditions. In particular, the first external characteristic inclination set value Kr1 needs to be changed depending on the base material and the type of shield gas. At this time, the second external characteristic inclination setting value Kr2 may be the same value without being changed. The second external characteristic inclination setting value Kr2 is set to, for example, -0.01, -0.02, and -0.03 in the order of steel CO2 welding, steel MAG welding, and stainless steel MIG welding. In the embodiment described above, the case of short-circuit transfer welding has been exemplified, but the present invention can also be applied to the case of globule transfer welding, spray transfer welding, pulse arc welding, and the like.
上述した実施の形態によれば、消耗電極交流アーク溶接電源において、電極プラス極性EP時及び電極マイナス極性EN時の外部特性傾斜を各々の極性における溶接状態が良好になるように設定することによって、各々の極性におけるアーク長制御系を安定化することができる。このために、消耗電極交流アーク溶接の安定性を向上させることができ、高品質な溶接を行うことができる。また、電極プラス極性EP時の外部特性傾斜を、母材材質及びシールドガスの種類に応じて変化させることによって、母材材質及びシールドガスの種類が変わっても溶接状態の安定性を維持することができる。 According to the above-described embodiment, in the consumable electrode AC arc welding power source, by setting the external characteristic gradient at the time of electrode plus polarity EP and at the time of electrode minus polarity EN so that the welding state in each polarity is good, The arc length control system in each polarity can be stabilized. For this reason, the stability of consumable electrode AC arc welding can be improved, and high quality welding can be performed. In addition, the stability of the welded state can be maintained even if the base material material and the type of shield gas are changed by changing the external characteristic gradient at the time of the electrode plus polarity EP according to the base material and the type of shield gas. Can do.
1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
D2 二次整流器群
E 出力電圧
EA 誤差増幅回路
Ea 誤差増幅信号
ECR 外部特性形成回路
Ecr 出力電圧設定信号
ED 電圧検出回路
Ed 出力電圧検出信号
EN 電極マイナス極性
END 電極マイナス極性スイッチング素子駆動回路
End 電極マイナス極性スイッチング素子駆動信号
EP 電極プラス極性
EPD 電極プラス極性スイッチング素子駆動回路
Epd 電極プラス極性スイッチング素子駆動信号
ID 電流検出回路
Id 電流検出信号
INT 高周波変圧器
INV インバータ回路
IR 出力電流基準値回路
Ir 出力電流基準値信号
iw 出力電流
KR 外部特性傾斜設定回路
Kr 外部特性傾斜設定信号
Kr1 第1外部特性傾斜設定値
Kr2 第2外部特性傾斜設定値
L1〜L2 外部特性
NTR 電極マイナス極性スイッチング素子
PTR 電極プラス極性スイッチング素子
PWM パルス幅変調回路
Pwm パルス幅変調信号
Spn 極性切換信号
Ta アーク期間
Ten 電極マイナス極性期間
Tep 電極プラス極性期間
Ts 短絡期間
VR 溶接電圧基準値回路
Vr 溶接電圧基準値信号
Vw 溶接電圧
WL リアクトル
DESCRIPTION OF
Claims (2)
前記外部特性傾斜を、前記電極プラス極性のときは第1外部特性傾斜に設定し、前記電極マイナス極性のときは前記第1外部特性傾斜の絶対値よりも大きな絶対値の第2外部特性傾斜に設定し、この第2外部特性傾斜を−0.06〜−0.1(V/A)の範囲に設定する、
ことを特徴とする消耗電極交流アーク溶接電源の出力制御方法。 In the output control method of the consumable electrode AC arc welding power source for controlling the inclination of the external characteristic of the welding power source used for the consumable electrode AC arc welding for performing welding by alternately switching the electrode positive polarity and the electrode negative polarity according to the welding conditions,
The external characteristic gradient is set to a first external characteristic gradient when the electrode has a positive polarity, and a second external characteristic gradient having an absolute value larger than the absolute value of the first external characteristic gradient when the electrode is a negative polarity. And set the second external characteristic slope in a range of -0.06 to -0.1 (V / A).
An output control method for a consumable electrode AC arc welding power source.
ことを特徴とする請求項1記載の消耗電極交流アーク溶接電源の出力制御方法。 Depending on the material of the base material and the type of shielding gas, the first external characteristic gradient is changed, and the second external characteristic gradient is not changed.
The output control method of the consumable electrode AC arc welding power source according to claim 1.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007061376A JP5090759B2 (en) | 2007-03-12 | 2007-03-12 | Output control method for consumable electrode AC arc welding power supply |
CN 200810081541 CN101264544B (en) | 2007-03-12 | 2008-02-28 | Output control method for consumable electrode AC arc welding power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007061376A JP5090759B2 (en) | 2007-03-12 | 2007-03-12 | Output control method for consumable electrode AC arc welding power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008221269A JP2008221269A (en) | 2008-09-25 |
JP5090759B2 true JP5090759B2 (en) | 2012-12-05 |
Family
ID=39840466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007061376A Active JP5090759B2 (en) | 2007-03-12 | 2007-03-12 | Output control method for consumable electrode AC arc welding power supply |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5090759B2 (en) |
CN (1) | CN101264544B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010075944A (en) * | 2008-09-25 | 2010-04-08 | Daihen Corp | Ac arc welding machine |
JP2013043209A (en) * | 2011-08-25 | 2013-03-04 | Daihen Corp | Welding power source |
JP7017979B2 (en) * | 2018-04-26 | 2022-02-09 | 株式会社神戸製鋼所 | Welding power supply and welding power supply control method |
CN113210802B (en) * | 2021-04-14 | 2022-11-18 | 上海广为焊接设备有限公司 | Auxiliary pilot arc circuit and method for alternating current-direct current argon arc welding |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3584185A (en) * | 1966-11-22 | 1971-06-08 | Gen Dynamics Corp | Arc welding system and process |
JP2670144B2 (en) * | 1989-05-31 | 1997-10-29 | 三菱重工業株式会社 | Gas metal arc welding method |
JP2892198B2 (en) * | 1991-09-30 | 1999-05-17 | 株式会社神戸製鋼所 | Consumable electrode type AC pulse arc welding method |
JPH11104830A (en) * | 1997-09-30 | 1999-04-20 | Daihen Corp | Welding arc length control method and arc welding equipment |
JP2002254172A (en) * | 2001-03-05 | 2002-09-10 | Daihen Corp | Outside characteristic control method for welding source device |
JP4676081B2 (en) * | 2001-03-28 | 2011-04-27 | 株式会社ダイヘン | Output control method for pulse arc welding power supply |
JP3903742B2 (en) * | 2001-06-01 | 2007-04-11 | 松下電器産業株式会社 | Application device for viscous liquid |
JP4490088B2 (en) * | 2003-09-12 | 2010-06-23 | 株式会社ダイヘン | Output control method of pulse arc welding and output control method of arc length fluctuation pulse arc welding |
JP4333368B2 (en) * | 2004-01-07 | 2009-09-16 | 株式会社村田製作所 | Manufacturing method of electronic parts |
JP2005349406A (en) * | 2004-06-08 | 2005-12-22 | Daihen Corp | Method for discriminating short circuit of ac pulsed arc welding |
JP2006142317A (en) * | 2004-11-17 | 2006-06-08 | Daihen Corp | Polarity switching short circuiting arc welding method |
-
2007
- 2007-03-12 JP JP2007061376A patent/JP5090759B2/en active Active
-
2008
- 2008-02-28 CN CN 200810081541 patent/CN101264544B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101264544B (en) | 2013-01-02 |
CN101264544A (en) | 2008-09-17 |
JP2008221269A (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4916759B2 (en) | Polarity switching control method for consumable electrode AC pulse arc welding | |
JP2009072814A (en) | Short circuiting arc welding method using alternating current consumable electrode | |
JP5090765B2 (en) | Feed control method for consumable electrode AC arc welding | |
WO2012046411A1 (en) | Arc welding method and arc welding device | |
JP6982933B2 (en) | AC pulse arc welding control method | |
JP2009178763A (en) | Output control method of welding power source | |
JP2010000539A (en) | Output control method in pulse arc welding | |
JP5770047B2 (en) | Welding equipment | |
JP5090759B2 (en) | Output control method for consumable electrode AC arc welding power supply | |
JP2012071334A (en) | Ac pulse arc welding control method | |
US20160368076A1 (en) | Arc welding control method | |
JP2010075983A (en) | Control method of ac pulse arc welding | |
JP5851798B2 (en) | Current control method for constriction detection in consumable electrode arc welding | |
JP5824221B2 (en) | Consumable electrode arc welding control method | |
JP6593919B2 (en) | Forward / reverse feed AC arc welding method | |
JP5064002B2 (en) | Output control method for consumable electrode arc welding power supply | |
JP5773477B2 (en) | Arc welding control method | |
JP6198327B2 (en) | Arc welding control method | |
JP6396139B2 (en) | Arc welding method | |
JP2010017738A (en) | Setting method of welding condition of mag pulse welding | |
JP7045798B2 (en) | Output control method for AC pulse arc welding | |
JP6516289B2 (en) | Copy control method of forward and reverse feed arc welding | |
JP6516291B2 (en) | Reverse feed arc welding method | |
JP6198324B2 (en) | Arc welding method | |
JP6198326B2 (en) | Arc welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5090759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |